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Introduction

During the last decades, time-harmonic wave propagation has proved to be central in many engineering and technological key developments, based e.g. on acoustics, electromagnetism or elastic mechanisms. When one wants to simulate the associated boundary-value problem, one of the difficulties is related to the fact that the solution which has to be computed is set in an exterior unbounded domain Ω + defined as the complementary of a finite scatterer Ω -. Therefore, to use a standard numerical method, it is necessary to bound the computational domain. One well-known possibility is to use an absorbing boundary condition [START_REF] Antoine | Bayliss-Turkel-like radiation condition on surfaces of arbitrary shape[END_REF][START_REF] Antoine | An improved surface radiation condition for highfrequency acoustic scattering problems[END_REF][START_REF] Givoli | High-order local non-reflecting boundary conditions: a review[END_REF][START_REF] Hagstrom | Radiation boundary conditions for the numerical simulation of waves[END_REF][START_REF] Hagstrom | A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems[END_REF][START_REF] Modave | Corner treatments for high-order local absorbing boundary conditions in high-frequency acoustic scattering[END_REF][START_REF] Tsynkov | Numerical solution of problems on unbounded domains. A review[END_REF] or a Perfectly Matched Layer [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF][START_REF] Bérenger | Perfectly matched layer (PML) for computational electromagnetics[END_REF][START_REF] Bermúdez | Perfectly matched layers[END_REF][START_REF] Bermúdez | Perfectly matched layers for time-harmonic second order elliptic problems[END_REF][START_REF] Druskin | Near-optimal perfectly matched layers for indefinite Helmholtz problems[END_REF][START_REF] Turkel | Absorbing PML boundary layers for wave-like equations[END_REF] to bound the domain and then solve the resulting problem by the finite element method [START_REF] Bériot | Efficient implementation of high-order finite elements for Helmholtz problems[END_REF][START_REF] Ihlenburg | Finite Element Analysis of Acoustic Scattering[END_REF][START_REF] Solin | Higher-Order Finite Element Methods[END_REF]. Another widely used alternative is to rewrite equivalently the initial exterior PDE problem as an integral equation over the finite surface Γ of the scatterer Ω - based on the Green's function [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF][START_REF] Antoine | Wave Propagation in Periodic Media -Analysis, Numerical Techniques and Practical Applications[END_REF][START_REF] Burton | The application of integral equation methods to the numerical solution of some exterior boundary-value problems[END_REF][START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF][START_REF] Colton | Integral Equation Methods in Scattering Theory[END_REF][START_REF] Harrington | H-field, E-field and combined field solution for conducting bodies of revolution[END_REF][START_REF] Liu | Fast Multipole Boundary Element Method: Theory and Applications in Engineering[END_REF][START_REF] Martin | Multiple Scattering. Interaction of Time-Harmonic Waves with N Obstacles[END_REF][START_REF] Nédélec | Acoustic and Electromagnetic Equations[END_REF][START_REF] Thierry | Analyse et Simulations Numériques du Retournement Temporel et de la Diffraction Multiple[END_REF]. Then, this has the advantage of reducing from one the dimension of the problem. One of the main drawbacks is that, unlike the initial problem which involves partial differential operators, the integral equation is defined by construction as a nonlocal pseudodifferential operator. When a discretization technique is then applied, as the boundary element method, then the corresponding discrete version of the integral equation leads to the numerical solution of a highly indefinite complex-valued dense linear system which is particularly difficult to tackle in the high-frequency regime. Many technical aspects are then necessary to make it working correctly for some applications, for example to reduce the storage and to accelerate the solution of the linear system [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF][START_REF] Antoine | Wave Propagation in Periodic Media -Analysis, Numerical Techniques and Practical Applications[END_REF][START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF]. Various numerical methods were further developed to propose some other ways to solve, at least approximately, the initial scattering problem. One of them is the On-Surface Radiation Condition (OSRC) method introduced in [START_REF] Kriegsmann | A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach[END_REF] and further developed by many authors (see e.g. [START_REF] Antoine | Computational Methods for Acoustics Problems[END_REF]). Without giving too much details now, the OSRC approach also leads to solve an equation given over the surface of the scatterer, but defined through local surface partial differential operators. Therefore, after the application of the boundary element method, the linear system is highly sparse, yielding an efficient way to solve the scattering problem. The price to pay is that the method can be considered as a numerical asymptotic method, and therefore can lose some accuracy in some cases, in particular when the scatterer is not convex and includes some concave parts [START_REF] Antoine | Computational Methods for Acoustics Problems[END_REF]. The aim of this paper is to contribute to the improvement of the OSRC method for non convex obstacles by proposing a direct simple coupling between the OSRC and the surface integral equation method.

The plan of the paper is the following. In Section 2, we introduce the two-dimensional Dirichlet scattering problem and the basic informations about the integral equation representations and their numerical approximation. Section 3 presents the notion of OSRC and its numerical discretization after writing the variational formulation. Section 4 develops the coupling procedure for the Dirichlet problem. In particular, we explain how to formulate the problem and to improve its convergence properties if it is used in a Krylov solver, based on operator preconditioning. The coupling is validated in a simple two-dimensional example. The extension to the Neumann problem is shortly given in Section 5. Finally, Section 6 is a conclusion.

2 Two-dimensional scattering -integral equation formulations

The two-dimensional scattering problem

Let us consider Ω -as a scatterer with boundary Γ := Ω -. The homogeneous isotropic exterior domain of propagation is denoted by Ω + = R 2 \Ω -. For the sake of conciseness in the presentation, we first assume that the scatterer is acoustically sound-soft (i.e. Dirichlet boundary condition). Nevertheless, the case of a sound-hard scattering problem (Neumann boundary condition) is also treated shortly in Section 5. We now consider a time-harmonic incident plane wave u inc (x) = e ikθ inc •x (with x = (x 1 , x 2 ) ∈ R 2 ) illuminating Ω -, with an incidence direction θ inc = (cos(θ inc ), sin(θ inc )) for a time dependence e -iωt , setting ω as the wave pulsation and k as the wavenumber. The sound-soft scattering problem of u inc by Ω -leads to the computation of the scattered wavefield u as the solution to the boundary-value problem [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF][START_REF] Martin | Multiple Scattering. Interaction of Time-Harmonic Waves with N Obstacles[END_REF] 

     (∆ + k 2 )u = 0, in Ω + , u = -u inc , on Γ, lim ||x||→+∞ ||x|| 1/2 (∇u • x ||x|| -iku) = 0. (1) 
We designate by (∆ + k 2 ) the Helmholtz operator, where ∆ = ∂ 2

x 1 + ∂ 2
x 2 is the laplacian. The gradient operator is ∇ and ||x|| = √ x • x, where x • y is the scalar product of two vectors x and y of R 2 . The last equation of ( 1) is the well-known Sommerfeld's radiation condition at infinity that ensures the uniqueness of the scattered wave field u. Finally, the outwardly directed unit normal vector to Ω -is n. A schematic representation of the problem is given in Figure 1. 

Integral operators for scattering

Let us define G as the two-dimensional free-space Green's kernel

∀x, y ∈ R 2 , x = y, G(x, y) = i 4 H (1) 0 (k x -y ), (2) 
where H

(1) 0

is the first-kind Hankel's function of order zero. Building an integral equation needs the Helmholtz integral representation formula [14, Theorems 3.1 and 3.3]. Proposition 1. If v is a solution to the Helmholtz equation in an unbounded domain Ω + which also satisfies the Sommerfeld radiation condition, then the following relation holds

Γ -G(x, y)∂ n v(y) + ∂ ny G(x, y)v(y) dΓ(y) = v(x) if x ∈ Ω + , 0 otherwise. (3) 
In addition, let us assume that v -is solution to the Helmholtz equation in a bounded domain Ω -. One can write

Γ -G(x, y)∂ n v -(y) + ∂ ny G(x, y)v -(y) dΓ(y) = 0 if x ∈ Ω + , -v -(x) otherwise. (4) 
In Proposition 1, all the integrals on Γ must be understood as duality brackets between the Sobolev space H 1/2 (Γ) and its dual space H -1/2 (Γ). Nevertheless, when the incident wavefield u inc and the curve Γ are sufficiently regular, the scattered field is smooth, implying that the duality bracket can be identified to the (non hermitian) inner product in L 2 (Γ)

f, g H -1/2 ,H 1/2 = Γ f gdΓ.
This identification is systematically used in the presentation.

Let us now introduce the volume single-and double-layer integral operators, respectively denoted by L and M , that are defined through

∀x ∈ R 2 \ Γ, L : ρ -→ L ρ(x) = Γ G(x, y)ρ(y) dΓ(y), ∀x ∈ R 2 \ Γ, M : λ -→ M λ(x) = - Γ ∂ ny G(x, y)λ(y) dΓ(y).
The wave fields v and v -(see ( 3) and ( 4)) can be expressed as

   v(x) = -L (∂ n v| Γ )(x) -M (v| Γ )(x), ∀x ∈ Ω + , v -(x) = L (∂ n v -| Γ )(x) + M (v -| Γ )(x), ∀x ∈ Ω -.
Furthermore, the single-and double-layer integral operators provide some outgoing solutions to the Helmholtz equation [START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF].

Proposition 2. For any densities ρ ∈ H -1/2 (Γ) and λ ∈ H 1/2 (Γ), the functions L ρ and M λ are some outgoing solutions to the Helmholtz equation in R 2 \ Γ.

We now recall the expressions of the trace and normal derivative trace of the volume singleand double-layer potentials which are commonly called jump relations [START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF]Theorem 3.1]. Proposition 3. For any x in Γ, the trace and normal derivative traces of the operators L and M are given by the following relations (the sign +/-indicates that z tends towards x from the exterior/interior of Γ)

lim z∈Ω ± →x L ρ(z) = Lρ(x), lim z∈Ω ± →x M λ(z) = ∓ 1 2 I + M λ(x), lim z∈Ω ± →x ∂ nz L ρ(z) = ∓ 1 2 I + N ρ(x), lim z∈Ω ± →x ∂ nz M λ(z) = Dλ(x), (5) 
where I is the identity operator, and, for x ∈ Γ,

Lρ(x) = Γ G(x, y)ρ(y)dΓ(y), M λ(x) = - Γ ∂ ny G(x, y)λ(y)dΓ(y), N ρ(x) = Γ ∂ nx G(x, y)ρ(y)dΓ(y) = -M * ρ(x), Dλ(x) = -∂ nx Γ ∂ ny G(x, y)λ(y)dΓ(y). (6) 
All along the paper, the boundary integral operators are denoted by a roman letter (e.g. L) while the volume integral operators use a calligraphic letter (e.g. L ). The operator M * = -N is the adjoint operator of M , that is

g, M f H -1/2 ,H 1/2 = -N g, f H -1/2 ,H 1/2 , ∀(f, g) ∈ H 1/2 (Γ) × H -1/2 (Γ).

Direct boundary integral equations for the Dirichlet problem

The aim of this section is to provide without any detail the standard integral equation formulations for solving the two-dimensional scattering problem with Dirichlet boundary condition that will be used later. More details can be found in [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF][START_REF] Thierry | Analyse et Simulations Numériques du Retournement Temporel et de la Diffraction Multiple[END_REF] for the derivation and properties of these integral equations (well-posedness, existence of resonant modes,...).

A first formulation is based on the trace of the single-layer operator

Lρ = -u inc | Γ . ( 7 
)
The equation is well-posed and equivalent to the exterior scattering problem (1) as soon as k is not an irregular interior frequency of the associated Dirichlet boundary-value problem [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF][START_REF] Thierry | Analyse et Simulations Numériques du Retournement Temporel et de la Diffraction Multiple[END_REF]. This integral equation is called Electric Field Integral Equation (EFIE) in electromagnetism. In the sequel, this formulation will be denoted by Single-Layer Integral Equation (SLIE). In the case of a closed boundary Γ, which is the situation in the paper, it can be proved that the spurious internal modes do not radiate. Therefore, there is no pollution in the far-field computation, which justifies that the SLIE can be considered as a reference solution. In addition, for an open surface Γ, the SLIE is the only possible integral equation that can be written.

Another surface integral formulation is given by

( 1 2 I + N )ρ = -∂ n u inc | Γ . (8) 
It is also well-posed and equivalent to the exterior scattering problem (1) if k is not an interior Neumann resonance [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF][START_REF] Thierry | Analyse et Simulations Numériques du Retournement Temporel et de la Diffraction Multiple[END_REF]. This formulation is often designated by Magnetic Field Integral Equation (MFIE). Nevertheless, this integral equation is not recommended in practice since the spurious modes radiate and introduce some errors when computing the far-field pattern. To avoid the interior resonance problem, Burton and Miller [4,[START_REF] Burton | The application of integral equation methods to the numerical solution of some exterior boundary-value problems[END_REF][START_REF] Thierry | Analyse et Simulations Numériques du Retournement Temporel et de la Diffraction Multiple[END_REF] proposed to rather use a linear combination between the EFIE and MFIE. If α is a real-valued parameter such that 0 < α < 1 and if η is a complex parameter with (η) = 0, where (η) is the imaginary part of η, then one gets the Combined Field Integral Equation (CFIE) [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF][START_REF] Harrington | H-field, E-field and combined field solution for conducting bodies of revolution[END_REF][START_REF] Thierry | Analyse et Simulations Numériques du Retournement Temporel et de la Diffraction Multiple[END_REF] or Burton-Miller Integral Equation (BWIE)

(1 -α)( 1 2 I + N ) + αηL ρ = -(1 -α)∂ n u inc | Γ -αηu inc | Γ . (9) 
This integral equation is well-posed for any wavenumber k but can only be applied to closed surfaces. An important point is that all these integral equations are based on the single-layer represen-

tation ∀x ∈ Ω + , u(x) = L ρ(x), (10) 
where the unknown surface field ρ is the physical quantity defined by the jump (set as the difference between the interior and exterior traces)

ρ = [∂ n u] Γ := -∂ n u + |Γ + ∂ n u - |Γ = -(∂ n u |Γ + ∂ n u inc |Γ ). ( 11 
)
To compute the far-field pattern, let us recall that we have: u = L ρ + M λ, where ρ and λ are two unknown densities. In the polar coordinates system (r, θ), the use of asymptotic expansions when r → +∞ leads to the following relation [START_REF] Colton | Integral Equation Methods in Scattering Theory[END_REF] ∀θ

∈ [0, 2π], u(r, θ) = e ikr r 1/2 [a L (θ) + a M (θ)] + O 1 r 3/2 ,
where a L and a M are the radiated far-fields for the single-and double-layer potentials, respectively, defined for any angle θ of [0, 2π] by

       a L (θ) = 1 8 √ kπ e iπ/4 Γ e -ikθ•y ρ(y)dΓ(y), a M (θ) = 1 8 √ kπ e iπ/4 Γ - ik y θ • ye -ikθ•y λ(y)dΓ(y),
with θ := (cos(θ), sin(θ)). In addition, the Sonar Cross Section (SCS) (in dB) is such that

∀θ ∈ [0, 2π], σ(θ) = 10 log 10 (2π |a L (θ) + a M (θ)| 2 ). ( 12 
)
When using the single-layer representation [START_REF] Bermúdez | Perfectly matched layers[END_REF], only a L is needed while a M is set to zero. In the paper, we will focus on the SLIE.

Numerical approximation

To numerically solve equation ( 7) (or ( 9)), we first introduce a polygonal interpolating surface Γ h which approximates Γ. The triangularization of Γ h is built by using n K segments K j . Therefore, we have Γ h = ∪ n K j=1 K j . The notation P designates the space of complex-valued polynomials of order . In (7) (or ( 9)), no derivative operator is applied to the unknown ρ. However, as seen below, the OSRC method, and the integral equation technique for the Neumann problems introduce some tangential derivatives that apply to the surface fields. For this reason, we propose to use the linear Boundary Element Method (BEM) all along the paper, where the conformal finite element space V h of P 1 piecewise continuous functions is defined by

V h := φ h ∈ C 0 (Γ h ); φ K j := φ h|K j ∈ P 1 , ∀j = 1, ..., n K .
For the Dirichlet problem, a P 0 (constant per segment) BEM could also be applied. For the numerical approximation, we use the weak form of the integral equation [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF]. For the SLIE, this leads to ∀q ∈ L 2 (Γ),

Γ Γ G(x, y)ρ(y)q(x)dΓ(y)dΓ(x) = - Γ u inc | Γ (x)q(x)dΓ(x). (13) 
Then, by using the interpolating surface Γ h and the linear approximations of both ρ and q in V h , the discrete form of (13) yields the linear system

Lρ = -Mu inc , ( 14 
)
where L is the complex-valued matrix associated with the single-layer operator and M is the surface mass matrix. If n P is the number of points of the curve Γ h , then all the matrices are elements of the space M n P (C) of complex-valued matrices of size n P × n P . Indeed, assuming that Γ is a closed boundary, then the number of degrees of freedom of the linear boundary element method, i.e. the number of points n P := dim(V h ), is equal to the number of segments: n P = n K . In addition, the unknown complex-valued nodal vector ρ and the nodal incident vector u inc are in C n P . For computing the coefficients of L, some semi-analytical quadrature formula are used to integrate the kernel singularity. If one rather uses the BWIE (9), the discrete form leads to

[(1 -α)( 1 2 M + N) + αηV)]ρ = -(1 -α)M∂ n u inc -αηMu inc , (15) 
where ∂ n u inc is the nodal complex-valued vector related to the normal trace of the incident field. Finally, we have

ρ = -(∂ n u + ∂ n u inc ). ( 16 
)
3 Loss of accuracy of the OSRC method for non convex scatterers

First and second-order OSRCs

The On-Surface Radiation Condition (OSRC) method was introduced in the middle of the eighties by Kriegsmann, Taflove and Umashankar [START_REF] Kriegsmann | A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach[END_REF]. At that time, the main idea was to develop an approximate but efficient and low memory numerical solution for scattering problems, most particularly in the high-frequency regime. Starting from local approximations of the Dirichletto-Neumann (DtN) operator, they were able to propose the computation of the scattered field by two-dimensional simple obstacles. Since then, the OSRC method has received much attention from many researchers and many improvements and extensions have been proposed (see e.g. [START_REF] Antoine | Computational Methods for Acoustics Problems[END_REF]).

For the sake of conciseness, we restrict our presentation to the so-called first-and second-order Bayliss-Turkel-like radiation conditions [START_REF] Antoine | Fast approximate computation of a time-harmonic scattered field using the onsurface radiation condition method[END_REF].

The first-order OSRC (that we denote by OSRC 1 ) is given by

∂ n u 1 + (-ik + κ 2 )u 1 = 0, on Γ. (17) 
In the above equation, (u 1 , ∂ n u 1 ) is the OSRC Cauchy data that approximate the exact Cauchy data (u, ∂ n u) on Γ. Here, let us remark that (u 1 , ∂ n u 1 ) must be understood as a notation since the OSRC is an approximate DtN map, which means that we do not a priori know if ∂ n u 1 is the normal derivative trace of a function u 1 . The function κ := κ(s) is the curvature at a point s of the surface, where s is the curvilinear abscissa counterclockwise directed along Γ. Equation ( 17) can be seen as a simple impedance boundary condition for the exterior domain Ω + . Various ways of deriving [START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF] are available in the literature. Let us mention for example [START_REF] Antoine | Bayliss-Turkel-like radiation condition on surfaces of arbitrary shape[END_REF] were formal and rigorous approaches are developed. The first-order OSRC (17) can be improved, leading to the so-called symmetrical second-order Bayliss-Turkel condition (denoted by OSRC 2 in the sequel)

∂ n u 2 + (-ik + κ 2 - κ 2 8(κ -ik) )u 2 -∂ s ( 1 2(κ -ik) ∂ s )u 2 = 0, on Γ. (18) 
In ( 18), the curvilinear derivative operator is written ∂ s u = ∇u • τ , where τ is the tangent vector to Γ (n • τ = 0). In the same spirit, an Engquist-Majda-like OSRC can be derived [START_REF] Antoine | Computational Methods for Acoustics Problems[END_REF][START_REF] Antoine | Bayliss-Turkel-like radiation condition on surfaces of arbitrary shape[END_REF]. However, some numerical simulations in various papers show that the boundary condition (18) provides a higher accuracy. Therefore, in the present paper, we restrict our study to [START_REF] Hagstrom | Radiation boundary conditions for the numerical simulation of waves[END_REF].

Numerical approximation

To solve [START_REF] Hagstrom | Radiation boundary conditions for the numerical simulation of waves[END_REF], we introduce the weak formulation

Γ ∂ n u 2 vdΓ + Γ (-ik + κ 2 - κ 2 8(κ -ik) )u 2 vdΓ + Γ 1 2(κ -ik) ∂ s u 2 ∂ s vdΓ = 0, on Γ, (19) 
for some suitable test-functions v in H 1 (Γ). The pair of approximate Cauchy data (u 2 , ∂ n u 2 ) is discretized in the finite element space V h ×V h . When the BEM is introduced, then the discretization of ( 19) can be rewritten at the matrix level as

M∂ n u 2 + (M β + S α )u 2 = 0, (20) 
where the functions α and β are defined for OSRC 2 by

α = 1 2(κ -ik) , β = -ik + κ 2 - κ 2 8(κ -ik)
.

The matrices S α and M β are respectively the (sparse) n P × n P generalized stiffness and mass matrices associated with the functions α and β. In addition, the vectors u 2 and ∂ n u 2 are complexvalued vector fields of C n K . Finally, the second-order OSRC method requires the following stable approximation scheme for the curvature [START_REF] Antoine | Fast approximate computation of a time-harmonic scattered field using the onsurface radiation condition method[END_REF]: let K = (a 1 a 2 a 3 ) be a triangle whose vertices a j , j = 1, 2, 3, are points on Γ h , then, the curvature at the vertex a 2 can be approximated by

κ(a 2 ) = 4 × area(K) a 1 a 2 a 3 ,
where a j , for j = 1, ..., 3, are the lengths of the edges of K ordered with respect to the increasing size. This formula is directly applied on the triangles associated with the surface mesh and built on two adjacent segments.

Since we are solving a scattering problem with given Dirichlet boundary condition, then u 2 is given by -u inc and then

M∂ n u 2 = (M β + S α h )u inc . (21) 
This means that ∂ n u 2 is simply obtained through the solution of a complex-valued sparse linear system defined by the mass matrix. Once the unknown is obtained then one can compute an approximation of the jump of the normal derivative trace by the relation

ρ 2 = -(∂ n u 2 + ∂ n u inc ). ( 22 
)
Another way of writing this relation is that ρ 2 is solution to

Mρ 2 = -(M β 2 + S α 2 h )u inc -M∂ n u inc := g 2 . ( 23 
)
The far-field can be directly obtained through expressions [START_REF] Burton | The application of integral equation methods to the numerical solution of some exterior boundary-value problems[END_REF]. Even if the boundary condition ( 17) can be a priori applied to any scatterer Ω -, we will see during the numerical simulations that a serious loss of accuracy is observed when the scatterer presents some concave parts (see [START_REF] Antoine | Fast approximate computation of a time-harmonic scattered field using the onsurface radiation condition method[END_REF] and Figures 1, 2 and3). Indeed, in the concavity, the presence of multiply bounced rays cannot be modeled by local differential operators since the nature of this phenomena is nonlocal. Therefore, the aim of the next sections is to provide a way to directly couple the OSRC formulation in the convex part of the scatterer to the SLIE restricted to the concave part to improve the accuracy. [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF] The coupling procedure for non convex scatterers

Weak coupling procedure and boundary element approximation

Since the OSRC solution is locally inaccurate in the non convex part of the domain, we propose to build a solution which is computed first by the OSRC method and improved thanks to the integral equation where the quality of the OSRC approximation deteriorates. To this end, let us assume that the geometry Γ can be decomposed into two non-overlapping parts Γ := Γ 1 ∪Γ 2 , with Γ 1 ∩Γ 2 = {a 1 ; a 2 }. The geometry Γ 1 is related to the boundary part of Γ which is convex, the complementary (where we will use an integral equation) is Γ 2 (see Figure 1). The proposed procedure uses 1) a global computation of an approximate surface density ρ 2 through the OSRC on Γ and 2) injects the restriction of this approximation to Γ 1 into the global integral equation formulation on Γ to obtain an approximate density on Γ 2 . This way of partitioning the computation allows us to solve a smaller size boundary element system and can be seen as a "one shot" computation.

In the following, if A is a global matrix on Γ, we denote by A j the extracted matrix related to the interaction between the part Γ j of the boundary and Γ , j, = 1, 2. We then have

A = A 11 A 12 A 21 A 22 . (24) 
In a similar way, the restriction of a nodal complex-valued vector z to the part of the boundary Γ is written z , for = 1, 2. Then, we propose the following algorithm for the SLIE formulation: compute

ρ 2 := (ρ 2 1 , ρ2 2 ) ∈ C n P such that 1) OSRC: extract ρ 2 1 = (ρ 2 ) 1 ∈ C n P 1 -2 from the computation of Mρ 2 = g 2 , 2) SLIE: compute ρ2 2 ∈ C n P 2 as the solution to L 22 ρ2 2 = -L 21 ρ 2 1 -(Mu inc ) 2 . (25) 
Even if other coupling possibilities are available, this one has the advantage that no modification of an existing code is required. Let us denote by n Kj (respectively n P j ) the number of segments (respectively points) of the boundary Γ j , j = 1, 2. Then, we have n K = n K1 + n K2 and n P = n P 1 + n P 2 -2 (the two junction points a 1 and a 2 must be counted once). In step 1), we only retain the values of the OSRC solution that are not considered in the cavity, including the two endpoints a 1 and a 2 . This first step needs O(n K ) operations to solve the sparse complex-valued linear system (by using an LU factorization or a preconditioned iterative Krylov solver [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF]) while the memory storage is O(n K1 ). In the second step, the solution to a complex-valued full matrix is necessary. If a full storage is considered, then the linear system solution needs O(n 3 K2 ) elementary operations and the memory storage is O(n 2 K2 ). Usually, in integral equation solvers, most particularly for highfrequency scattering, it is preferable to use a subspace Krylov solver [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF][START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF][START_REF] Saad | GMRES: A Generalized Minimal Residual algorithm for solving nonsymmetric linear systems[END_REF] in conjunction with a fast matrix-vector product algorithm like for example the Multilevel Fast Multipole Method (FMM) [START_REF] Liu | Fast Multipole Boundary Element Method: Theory and Applications in Engineering[END_REF], high-order solvers [START_REF] Antoine | Wave Propagation in Periodic Media -Analysis, Numerical Techniques and Practical Applications[END_REF] or the recent direct Adaptive Cross Approximation (ACA) techniques [START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF]. In this case, the memory requirement is O(n K2 ) for a computational cost O(n K2 log n K2 ). In addition, it is well-known that preconditioning is a requirement to get a fast convergence. The second equation of ( 25) is defined through the single-layer integral operator. Then, the integral equation is a first-kind Fredholm equation which is known to be badly conditioned. To improve this, we propose a preconditioned version of the algorithm (25) based on the Caldèron relations [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF] and well-adapted to fast iterative solvers but without modifying the solution of the initial coupling procedure. Let D be the discrete version of the normal derivative trace operator D and D 22 its restriction to Γ 2 . Then, the preconditioned version of ( 25) is given by: find ρ

2 := (ρ 2 1 , ρ2 2 ) ∈ C n P such that 1) compute ρ 2 1 = (ρ 2 ) 1 ∈ C n P 1 -2 solution to Mρ 2 = g 2 , 2) obtain ρ2 2 ∈ C n P 2 as the solution to D 22 L 22 ρ2 2 = -D 22 L 21 ρ 2 1 -D 22 (Mu inc ) 2 . ( 26 
)
The second equation of ( 26) is defined by a second-kind integral equation formulation which has better clustering properties for the convergence of Krylov subspace solvers. The price to pay is that each iteration of a Krylov solver requires to apply L 22 first and next D 22 . The preconditioned Caldèron SLIE coupling procedure ( 26) is called SLIE-OSRC 2 . Once ρ2 := (ρ 2 1 , ρ2 2 ) ∈ C n P has been computed, all the usual quantities of interest can be obtained like for the SCS given by [START_REF] Burton | The application of integral equation methods to the numerical solution of some exterior boundary-value problems[END_REF].

The SLIE-OSRC 2 formulation may suffer from the existence of interior resonances. Even if the spurious modes do not radiate for the SLIE, it can be better to have access to a stable formulation. To this end, following BWIE-OSRC 2 coupling procedure could alternatively be used: compute

ρ2 := (ρ 2 1 , ρ2 2 ) ∈ C n P such that 1) ρ 2 1 = (ρ 2 ) 1 ∈ C n P 1 -2 is solution to Mρ 2 = g 2 , 2) extract ρ2 2 ∈ C n P 2 from the solution to [(1 -α)( 1 2 M 22 + N 22 ) + αηV 22 )]ρ 2 2 = -[(1 -α)( 1 2 M 21 + N 21 ) + αηV 21 )]ρ 2 1 -(1 -α)(M∂ n u inc ) 22 -αη(Mu inc ) 22 . (27) 
Unlike the SLIE-OSRC 2 formulation, the BWIE-OSRC 2 approach is defined by a second-kind Fredholm integral equation and does not really need to be preconditioned when correctly choosing α and η (see e.g. [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF]). An extra computational cost and memory storage is required since the evaluation of the double-layer potentials N 22 and N 21 are required.

In the following examples, we will report only the results related to the SLIE-OSRC 2 formulation since no resonance were met and we always plot the SCS. In addition, we do not use any iterative solver for the resulting linear systems because we are considering toys problems for a proof of concept. However, for three-dimensional problems, where the method directly extends, the difference between all the formulations may be important in terms of convergence rate. Here, we rather focus on the accuracy improvement. Further investigations are therefore needed, as well as improved formulations and implementation of higher order OSRCs.

A numerical example -validation of the procedure

As previously said, we use the SLIE-OSRC 2 formulation. The model toy problem is the following. We consider the obstacle Ω -as being composed of the square cylinder centered at the origin and with side length 2, with an inner square cavity defined by the corners (1/3, -1/3), (1, -1/3), (1, 1/3) and (1/3, 1/3). The boundary Γ 2 is then defined as the internal boundary to the cavity (blue curve on Figure 1) and Γ 1 is the complementary boundary on Γ (red curve on Figure 1). For an incident plane wave, the reference solution is given by the SLIE [START_REF] Colton | Integral Equation Methods in Scattering Theory[END_REF] discretized by the BEM (with 10 points per wavelength). The results are clearly improved compared to the pure OSRC approach for wave numbers k ≤ 15 and this, independently of the angle of attack θ inc . As it can be observed on the first picture of Figure 2 (Case 1, for k = 2), we almost obtain the reference solution by using the SLIE-OSRC 2 approach while a pure OSRC approximation gives a poor accuracy which deteriorates as k increases. For a higher wave number (Case 2, k = 8), the results are still accurate (see Figure 2). By increasing the frequency, we still have an acceptable solution as seen on the third example of Figure 2 (Case 3, k = 14). For both the integral equations and OSRCs, since we consider a mesh with ten elements per wavelength, the size of the matrix L 2,2 is about n K2 = 2.5k, which is more than four times less than for a pure SLIE solution.

The Neumann scattering problem

The Neumann scattering problem, i.e. considering (1) but with the boundary condition: ∂ n u = -∂ n u inc on Γ, can be treated similarly with the EFIE [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF] based on the normal derivative trace of the double-layer potential written under its weak form (called DLIE). A hyper-singular kernel must then be integrated carefully by semi-integration techniques. For the OSRC, the method applies quite similarly and leads to the solution of a sparse linear system.

In general, the coupling procedure (called DLIE-OSRC 2 ) has proved to be less accurate than for the Dirichlet problem (i.e. for SLIE-OSRC 2 ). We think that this is due to the fact that the OSRC approach requires a higher order operator to provide a suitable fast solution during the first step of the method. We recommend to rather use the square-root OSRC developed in [START_REF] Antoine | An improved surface radiation condition for highfrequency acoustic scattering problems[END_REF]. The resulting coupling technique will be analyzed in a forthcoming work. For low and moderate wave numbers (k ≤ 4), we still get quite acceptable results having always in mind the lower computational cost of the DLIE-OSRC 2 method. However, there is a moderate accuracy for wave numbers such that k ≥ 10 as seen on the two cases reported in Figures 3. Nevertheless, this must be counterbalanced by the lower cost of the procedure and the possibility to increase the OSRC accuracy in the convex part. In addition, we always obtain a good prediction of the main lobs where the energy is mostly radiating. As a general concluding remark, the coupling DLIE-OSRC 2 algorithm provides an interesting alternative to the DLIE. Furthermore, the method is always more accurate than a classical OSRC approach and gives a possibility of its extension to non-convex obstacles.

Conclusion

In this paper, we introduced a simple algorithm coupling the surface integral equation method and the OSRC technique for solving the scattering problem by nonconvex scatterers. While simple, the coupling method leads to an improved accuracy compared with the pure OSRC approach and reduces the computational cost of a direct integral equation formulation. In addition, we explain how operator preconditioning can be directly included into the formulations. The method is validated on a simple two-dimensional problem as a proof of concept. In particular, the method is accurate for the Dirichlet problem, but still needs to be further investigated by using highorder OSRCs in the case of the Neumann problem. We expect that the formulation can be useful for three-dimensional high-frequency scattering problems solved iteratively by Krylov solvers with acceleration algorithms. 
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Figure 1 :

 1 Figure 1: Scattering configuration and notations.
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 2 Figure 2: Bistatic SCS for the unit square cylinder with cavity and Dirichlet boundary condition: Case 1: k = 2 and θ inc = 135 deg., Case 2: k = 8 and θ inc = 160 deg. and Case 3: k = 14 and θ inc = 150 deg. 12

Figure 3 :

 3 Figure 3: Bistatic SCS for the unit square cylinder with cavity and Neumann boundary condition: Case 1: k = 9 and θ inc = 140 deg.; Case 2: k = 13 and θ inc = 160 deg.
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