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ABSTRACT
A general method is presented that allows for the inverse identification of the intrinsic properties
of multi-layer porous materials in an impedance tube. To avoid the inverse problem ill-posedness,
different air-gaps are placed behind the materials, artificially increasing the information contained
within the observed signals. A Bayesian representation of knowledge is taken, where information
on a material property is encoded in a probability density function. A numerical case with known
material properties is shown as an example for the identification of a three-layer material.

1. INTRODUCTION

Porous materials are widespread elements that can be found in a wide variety of research areas such as
geology, medicine and acoustics. The knowledge of their intrinsic properties (porosity, pore size, etc.)
is a key element towards the proper characterization of their behaviour. Auspiciously, some of these
intrinsic properties have been linked via semi-phenomenological models to the acoustic behaviour of
porous materials. It thus stands to reason that inverse methods, based on acoustic measurements of
a sound field interacting with a porous medium, can yield information on the pore micro-structure.
This strategy is now routinely used in acoustic labs, often relying on the common impedance tube
measurement to obtain the acoustic signals needed by the inverse method [1–6].

While the identification of a single-layer material has been broadly studied [7], there is very little in
the literature about the identification of multi-layer or inhomogeneous materials with acoustic inverse
methods [6, 8]. When dealing with a fixed number of known materials that can be characterized
independently, there is no need for such a multi-layer identification. However, when a single material
is inhomogeneous and can be approximated by a discrete number of unknown layers, the method
becomes relevant.

The main difficulty of acoustical inverse problems for parameter estimation is the ill-posedness of
the problem, i.e., there is a non-uniqueness, an indetermination in the obtained solution [2,9,10]. The
non-uniqueness of the solution can be partially characterized using a Bayesian inference approach,
where the multi-modality of the parameters’ pdf show each individual solution, and their likelihood.
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A more thorough numerical investigation on the topic is available in Ref. [11], where additional details
can be found.

The models and methods used in the article are first recalled succinctly in Sec. 2. A common pitfall
leading to biased results in inverse problems based on impedance tube measurements is highlighted in
Sec. 3 , followed by the formulation of a straightforward solution. In addition, a simple measurement
scheme is showed in Sec. 4 that can be used to remove some of the inverse problem ill-posedness.
This technique is based on the addition of air-gaps behind the acoustic material. Conclusions are
drawn in Sec. 5.

2. MODELS AND METHODS

The present section gives a brief account of the acoustic modelling that was used in this work, as well
as the Bayesian inference approach that was followed to carry the parameter estimation.

2.1. Acoustic modelling
Only rigid porous media are considered in this work, assumed infinite in all but one dimension
(the thickness is finite). A transfer matrix approach is followed to evaluate the normalized surface
impedance Zs of a multi-layer material [12, Chap. 11], and thus its reflection coefficient R̃.

The pore dissipation model is the JCAPL model [13–16] coupled with the hypotheses on the pore
distribution by Horoshenkov [17], i.e., the pore sizes follow a log-normal distribution and the pores
have a circular shape. This specialized model is used in order to limit the number of parameters
to estimate. The model parameters are the porosity φ, the pore mean size s̄ and the pore standard
deviation σs.

Given a certain impedance tube (see Fig. 1 for a schematics), one can calculate the pressure field
within the tube at at microphone locations in a direct way as

p (x, ω) = Ãe−jk(ω)x + ÃR̃ (ω) e+jk(ω)x, (1)

with Ã the source coefficient , j the imaginary unit, x the longitudinal microphone locations in the
tube and where k (ω) = ω/c f is the propagation wavenumber of air for the plane wave (here the tube
is assumed wide enough to neglect viscous effects at the walls), with c f the speed of sound.

Sound source
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Figure 1: Schematics of an impedance tube.

These pressure fields, evaluated at 3 discrete locations to mimic an experiment with microphones,
are used as inputs of the inverse problem instead of the impedance or the reflection coefficient. The
main reason is to avoid a bias during the identification, as explained in Sec. 3.

2.2. Bayesian Inference for Parameter Estimation
Using Bayesian inference, one can interpret the degree of belief on estimated parameters via
probabilities [18, Chap. 8]. This approach is an alternative to classical deterministic inverse
problems, where a minimization is performed to match observed and modelled data. In the present
study, we use a MCMC approach to approximate the pdfs of all the parameters of the problem.



In particular, the strategy of Ref. [19] is used, as it allows for the identification of multimodal
distributions even in a high dimension parameter space. This is particularly attractive since non-
uniqueness of the solution is expected in the inverse problem at hand. The same strategy was applied
for porous media parameter identification in Refs. [9, 10], albeit for single layer porous samples.

3. AN AVOIDABLE SOURCE OF BIAS

It may seem logical to the practitioner to use the impedance spectrum or the reflection coefficient
spectrum, measured in an impedance tube, as the observable data used as inputs in the Bayesian
inference process (or a deterministic approach) for parameter estimation. However, a given constant
uncertainty on the measured pressure at the microphone location does not translate into a constant
uncertainty in impedance of reflection coefficient.

A numerical example is given in Fig. 2, where the reflection coefficient is shown with credibility
intervals. In this case, the numerical pressures are polluted with a Gaussian white noise whose
amplitude is 5% of the incident wave amplitude Ã. A pseudo-inverse strategy is performed to
identify the reflection coefficient, taking as inputs the pressure measurements. This is done 104 times
with different noises added to the "true" pressure measurements, to average the results. As seen in

Figure 2: Real and imaginary parts of the reflection coefficient of a foam of thickness 30mm with
φ = 0.98, s̄ =250µm and σs = 0.05. The continuous line are the true values. The dashed lines
correspond to the intervals containing ≈ 95% of the 104 samples that were used to obtain converged
statistics.

Fig. 2, the uncertainty is not constant anymore in the signal. It increases sharply at low frequency
because of the pseudo-inverse matrix conditioning (relates to microphone spacing) and near 2kHz
for an unknown reason. Since the uncertainty of the observed signal is directly responsible for the
uncertainty on the estimated parameters, it stands to reason to use pressure measurements instead
of signals derived from them (i.e., impedance or reflection coefficient). In the present method, a
constant uncertainty is assumed on the pressure measurements (zero-mean Gaussian white noise of
standard deviation σR for the real part of the pressure and σI for the imaginary part).

4. MULTI-LAYER IDENTIFICATION

Using numerical noisy measurements at three microphone locations as observed inputs, a Bayesian
inference is performed using the MCMC technique of Ref. [19]. A serial assembly of three different



foams is considered. Their properties are listed in Table. 1. Since the same model is used for
generating the data and for estimating the parameters, an inverse crime is realised (despite the
presence of noise in the input data). This problem will be addressed in a future work by considering
different pore dissipation models. For the present study, we argue that the main goal of removing the
inverse problem ill-posedness can still be well exemplified with an inverse crime, where the exact
parameter values are known and can be used for comparison.

Table 1: True parameters of the samples, with L the sample thickness, φ the porosity, s̄ the pore mean
size and σs the pore standard deviation (in log 2 base).

Material L(mm) φ s̄ (µm) σs

M1 10 0.85 100 0.2

M2 10 0.65 50 0.5

M3 10 0.98 250 0.05

The prior knowledge is encoded in the Bayesian inference via uniform probabilities having a large
support, to perform a blind inference where little information is given. The bounds of these supports
are given in Table 2. The true value of the ambient temperature is 20°C, the true value of the ambient
pressure is 105Pa, the true value of the standard deviation on the real part of the pressure measurement
is σR = 0.04Pa and for the imaginary part, σI = 0.08Pa.

Table 2: Prior bounds of the parameters, where the symbol – means that there is no unit. The indices i
and j denote the layer number and air-gap number, respectively. The ∗ exponent means the true value
of a parameter.

Parameter σR σI T P0 Lp,i φi s̄i σs,i La, j

Unit Pa Pa ◦C 105 Pa mm – µm – mm

Min 10−4 10−4 5 0.95 0.5L∗p,i 0.1 10 0 1

Max 0.5 0.5 25 1.05 1.5L∗p,i 0.999 103 0.99 100

The numerical signal obtained on a single layer of material M1 is shown in Fig. 3 to give an idea
of the noise level that has been added.

Figure 3: Microphone signals in the impedance tube for material M1 at 3 microphone locations.



The main take-away of the present work is to add additional observations on a multi-layer sample,
via air-gaps placed behind the material. The presence of an air-gap changes the sample reflection
coefficient, which can improve parameter estimation. This was attempted previously in Ref. [20],
albeit with additional boundary conditions at the end of the impedance tube, and only for single layer
materials.

Three different multi-layers are considered (among the 12 that were studied), with different
configurations of samples M1, M2 and M3. For all three multi-layers, two parameter estimations are
performed. The first one, named "Case 1" in the figures, represents the standard default Bayesian
inference, where only a single signal is used to perform the parameter estimation. The frequency
range of the measured signal within the tube is, for this numerical test, [100-6000] Hz, with a step
of about 1.2Hz, totalling 4800 data points. When adding observations with an air-gap, the total
number of data points should increase. However, to keep a fair comparison between both parameter
estimations, the signals are down-sampled so as to keep 4800 data points even when additional
air-gaps are added to the Bayesian inference. In the second Bayesian inference, named "Case 2",
there are 3 different air-gaps that have been added behind the sample (numerically) in addition to the
no air-gap case. The maximum sample size reaches 9cm, which is close to the current limitation we
have in our impedance tube sample holder.

We first display in Fig. 4 the identification results for parameters that do not pertain to the porous
sample microstructure, i.e. the temperature, pressure and the noise standard deviations σR and σI.
While the pressure does not seem to easily identifiable, the remain parameters are quite well identified.
This result held true in all the tests that were performed (bi- and tri-layers alike, totalling 12 different
material assemblies).

We then display in Figs.5,6,7 the identification results pertaining to the samples microstructures.

Findings The main finding of the present work is that for the same number of observation, the
Bayesian inference containing observations including the presence of an air-gap behind the material
("Case 2") systematically perform better than the reference case where no air-gap is included ("Case
1"). This is seen in Figs.5,6,7, where the pdf of "Case 2" are consistently closer to the true value, and
more peaked. This peaked nature indicates that the information contained within the input data brings
more information that in a case where the pdf would be broad. Also, the multi-modality of the pdfs,
largely present in the reference case (see Fig. 7), has disappeared with the introduction of the data
obtained with air-gaps.

5. CONCLUSIONS

It was first shown that using the surface impedance or reflection coefficient signals as the input of an
inverse problem for the identification of the intrinsic properties of porous media would necessarily
lead to biased parameter estimations. This is caused by an unknown frequency dependency of the
uncertainty on these signals, which are derived initially from microphone pressure measurements
using a nonlinear relationship. A more robust approach consists in directly using the pressure
measurements at all the available microphones for the inverse problem input.

An objective Bayesian inference strategy was conducted on 3 different multi-layer assembly with
3 layers, to retrieve each layer’s intrinsic properties, consisting in the parameters of Horoshenkov [17]
applied to the JCAPL equivalent fluid model.

It was shown that adding multiple air-gaps behind a material to perform more additional acoustic
observations could lead to an improved parameter estimation, removing the problem ill-posedness
that can be present in the reference case without air-gap. This was shown in the case where the total
amount of data was kept constant.



Figure 4: Probability density functions for the noise standard deviations σR and σI, the temperature
T and the ambient pressure P. Units are the same as in 2. A vertical bar shows the true value. Case
1 is the reference case without any air gap, while Case 2 is the identification results with 3 air-gaps
and the reference no air-gap case. Both inferences are conducted on the same amount of data. The
multi-layer material is made of the serial assembly of M1, M2 and M3 (from left to right in Fig. 1.
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Figure 5: Probability density functions for the porosity φ, the mean pore size s̄ and the pore standard
deviation σs. Units are the same as in 2. Case 1 is the reference case without any air gap, while Case
2 is the identification results with 3 air-gaps and the reference no air-gap case. Both inferences are
conducted on the same amount of data. The multi-layer material is made of the serial assembly of
M1, M2 and M3 (from left to right in Fig. 1).



Figure 6: Probability density functions for the noise standard deviations σR and σI, the temperature
T and the ambient pressure P. Units are the same as in 2. Case 1 is the reference case without any air
gap, while Case 2 is the identification results with 3 air-gaps and the reference no air-gap case. Both
inferences are conducted on the same amount of data. The multi-layer material is made of the serial
assembly of M2, M3 and M1 (from left to right in Fig. 1).



Figure 7: Probability density functions for the noise standard deviations σR and σI, the temperature
T and the ambient pressure P. Units are the same as in 2. Case 1 is the reference case without any air
gap, while Case 2 is the identification results with 3 air-gaps and the reference no air-gap case. Both
inferences are conducted on the same amount of data. The multi-layer material is made of the serial
assembly of M3, M2 and M1 (from left to right in Fig. 1).
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