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Abstract—Pelvic floor disorders mainly affect women and turn
to be a public health issue although their pathophysiology is
still poorly understood. As the main concerned organs undergo
motions and deformations that are specific to the pathology,
dynamic MRI is a now gold standard for radiologists. Unclear
organ boundaries, inter-subject variability of organ shapes and
pathological deformities make segmentation difficult to perform.
To develop an imaging software towards pathology gradation,
accuracy of the MRI segmentation of the organ borders is
a critical criterion. Automatic methods are not yet accurate
enough to replace the mandatory manual segmentation step.
Automatic segmentation methods using a fully convolutional
neural network (FCN) have been developed, but usually the loss
functions used for their training are not sufficiently accurate for
organ boundary detection. We propose a loss function dedicated
to organ boundary detection to enhance training and therefore
improve results accuracy. The method was evaluated on bladder
segmentation from dynamic 2D MRI, using a baseline U-Net
architecture [1]. The results have shown that the use of our
boundary loss function coupled with the Dice loss outperformed
existing methods and improved the segmentation accuracy in
comparison with the widely used Dice loss.

Index Terms—Image segmentation, Fully convolutional net-
work, Hybrid loss, Distance loss, dynamic MRI, pelvis

I. INTRODUCTION

Pelvic floor disorders affect 50% of women over the age
of 50 [2]. Pathophysiology is poorly known, causes are mul-
tiple and symptoms may vary from incontinence to sexual
dysfunction or pelvic organ prolapse. The current clinical
practice for the study of these pathologies is dynamic 2D
MRI on the sagittal plane showing the movement of the organs
during straining exercises. The segmentation of these images is
mandatory for the computer aided quantitative analysis of or-
gan deformations, beyond a simple visual investigation [3]. To
date, segmentations are mainly performed manually and are a
complex and time-consuming task, as they must be performed
on each image of a sequence. In addition, 2D dynamic MRI
segmentation is a challenging task because: (1) pelvic organ
boundaries are not well contrasted (2) organ deformation along

the sequence is significant due to stress exercise. Automatic
segmentation methods such as active-contour methods have
been developed to perform the segmentation of pelvic organs
[4] but these methods require user-intervention which is a
time-consuming and subjective process. More recently, deep
learning methods (DL) have been developed for medical image
segmentation with the emergence of FCN such as the U-Net
architecture [1]. U-Net has provided convincing results for
pelvic organ segmentation without user-intervention. However,
with respect to the pelvic region, studies have mostly been
performed using computed tomography (CT) images for the
study of prostate cancer [5]. Fewer studies were dedicated
to MRI, dealing mainly with axial rather than sagittal plane
[6], [7]. To the best of the authors knowledge, we are the
first to apply a deep learning method to the segmentation of
pathological female pelvis on 2D dynamic MRI.

In DL based pelvic segmentation, boundary aware repre-
sentations were used only on CT images [8], [9], [10]. In
these methods, additional networks were used to integrate
the boundary-sensitive aspect, which complicated the network
training and the hyperparameter tuning. In [9], the authors
used a multiclass ground truth representation to implement
the boundary representation, making the network training even
more complex. In [10], a non-differentiable loss function was
used, which is problematic for the gradient descent process.

Instead of using multiple networks, which is yet possible,
we investigated on the loss function of the FCN. Research
has been conducted on modules that take into account the
distance between segmentation boundaries to complement the
information provided by the Dice loss function. In a review
[11] shows that various studies have been carried out on
loss functions using distance maps. Among the boundary-
based loss functions a method using average distance between
surfaces (ASD) estimation was found to be performant [12],
[13]. It does not require additional modules and does not have
a high algorithmic cost which made it a good candidate to
improve the pelvic organs boundary detection.



The challenge was then to combine the distance function
with the Dice loss function, the two functions having different
scales and gradients. In the literature, this issue is not generally
discussed and only empirical solutions were proposed.

The first contribution of our study is the combination of
the Dice loss function and a boundary loss function using a
gradient rescaling technique. The second contribution consists
in applying our method, with a U-Net architecture, to the
segmentation of pelvic organs on dynamic 2D sagittal MRI.
We show that our approach improved contour accuracy on
dynamic images of controls and patients with pathological
disorders and outperformed DL methods using standard loss
functions and more classical methods such as active contours.

II. METHODS

The section is organized as follows. The first part describes
the scores used for the evaluation of the results, this expla-
nation being necessary to understand our loss function. Then
follows a description of the function and the solutions found
to associate it with the Dice loss.

A. Evaluation metrics

Experimental results need to be assessed with quantitative
scores to show the accuracy of a segmentation method. The
results were evaluated using 3 common indicators in segmenta-
tion that quantify the similarity between the network prediction
and the manually established ground truth. The first one is the
dice similarity coefficient (DSC) which measures the overlap
between a segmentation result and the ground truth. Let X be
the network’s prediction and Y the ground truth mask, where
X and Y are binary images. The DSC is defined by (1) with
values varying between 0 (no overlap) and 1 (full overlap).

DSC(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

(1)

The two other indicators concern the distance from the mask
boundary: the ASD (2) and the Hausdorff distance (HD) (3).
ASD measures a global distance error whereas HD focuses
on the longest difference between prediction and the mask.
Each measure is symmetric with respect to its operand. Let
∂X, ∂Y be respectively the boundaries of X and Y , and
δ(x, y) the euclidean distance between two points x and y.
δ(x, ∂Y ) denotes the minimal euclidean distance between x
and the boundary ∂Y .

ASD(∂X, ∂Y ) =

∑
x∈∂X δ(x, ∂Y ) +

∑
y∈∂Y δ(∂X, y)

|∂X|+ |∂Y |
(2)

HD(∂X, ∂Y ) = max{ sup
x∈∂X

δ(x, ∂Y ), sup
y∈∂Y

δ(∂X, y)} (3)

Although the DSC is a widely used measure, it is not
sufficient to properly assess a result quality since it represents
an average which is not sensitive to thin shaped errors. For
example, in Fig. 1 in the upper right image, although the
DSC is high (0.89) so is the HD (6.6 mm), showing a
segmentation failure. Overlap and distance between boundaries

Fig. 1. Examples of 3 bladder image segmentations: ground truth (red),
network trained with LO (green), network trained with the proposed method
LP (blue). Yellow arrows show main delineation errors.

are complementary to compare efficiency of segmentation
algorithms. A well-designed loss function should take into
account these 3 metrics to segment effectively.

B. Loss functions

Our function is designed as a combination of an overlap
based function (Dice loss) and a boundary-aware loss based
on ASD. The Dice loss, which is a well known estimation of
DSC, is first presented. Let Ω ⊂ R2 be the pixel grid where
p ∈ Ω represents a pixel coordinates, X is the network output
composed of real values in [0, 1] (i.e. the probability softmax
output). Let Y be the binary ground truth (1 inside, 0 outside).
LO, the DSC based loss function is as follows :

LO(X,Y ) = 1− 2

∑
p∈ΩX(p)Y (p)∑

p∈ΩX(p)2 +
∑

p∈Ω Y (p)2
(4)

LO values go from 1 (no similarity) to 0 (perfect similarity)
with real values in order to be minimized by the optimization
process.

The second loss was inspired by the ASD score. However,
ASD and HD cannot be used as loss functions for a learning
algorithm because they are not differentiable and have a high
algorithmic cost. Therefore, estimates of each metric must be
found for use as a cost function. The boundary loss function
is an estimate of the ASD that can be formulated as a function
using a boundary distance map associated with ground truth
only, as reported by Karimi et al. [13]. Indeed, calculation
of the prediction distance map would imply too high an
algorithmic cost as it would need to be computed for each
predicted image. Let dY be the distance map. It assigns to
each image pixel a value corresponding to the distance of that
pixel from the boundary of the ground truth mask. It is the
same size as the image. So, the loss function, LD (Distance
loss), is asymmetric and defined as follows :
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Fig. 2. DSC (Left), HD (Middle) and ASD (Right) scores of segmentation made by network trained with Dice loss (LO), combined loss with empirical α
coefficient (LOD) and our proposed loss function (LP ). Each flier represents the score for a subject.

LD(X,Y ) =
1

|Ω|
∑
p∈Ω

(X(p)− Y (p))2dY (p) (5)

The map weights are high if the squared error between
ground truth and prediction is far from the ground truth
boundary and low when the error approaches it. The loss value
depends strongly on the distance from boundary.

C. Loss functions compatibility

The combination of two loss functions raised an issue
of compatibility. Theoretically, minimizing one loss function
should minimize the second one in the same time. In practice,
the loss functions may be minimized at different speeds since
they did not have the same order of magnitude. We introduced
an α coefficient which plays two roles: (1) ensuring gradient
compatibility, (2) smoothing the transition between the training
with dice loss only and combined loss. Usually, α coefficients
are chosen empirically. In [11], an α starting at 0 with a 0.01
increment by epoch (until reaching 1) is used in most cases and
the Dice loss is weighted by 1−α. This choice is empirical and
by definition may not work in all cases. Thus, we designed an
adaptive α to solve the compatibility problem between our two
losses. It is defined as the ratio between µo and µd averaged
over the last 20 learning iterations, where µo and µd are the
gradients norms associated with LO and LD respectively.

LOD(X,Y ) = LO(X,Y ) + αLD(X,Y ) (6)

Thus, the distance loss gradient is rescaled to avoid explod-
ing gradient issues, leading to the combined loss LOD (6).
Besides, the distance based loss yielded exploding gradient
values when the prediction was too far from the ground truth.
Which is specially the case when detection is not achieved
yet. Thus, we have chosen to start the training with the Dice
loss. Once an average training error of 0.05 (i.e. a DSC of
0.95) is reached, the ASD reduction function is integrated
to refine the result. This refinement strategy was chosen to
shorten the training because when two loss functions are
combined, the convergence of the network can be longer.

Although the threshold choice is arbitrary, it was found to
have little influence on the outcome.

III. EXPERIMENTS AND RESULTS

A. Datasets

Pelvis areas of 26 subjects were imaged with a 1.5T MRI
scanner (PHILIPS Gyroscan) using an ultrafast T2-weighted
pulse sequence (TR: 3.6 ms, TE: 1.8 ms, slice thickness: 10
mm, image size: 256 x 256, pixel size : 1.17 x 1.17 mm2).
For each subject, 12 images were acquired during a dynamic
acquisition of the sagittal median plane. Among subjects, 16
exhibited pathological deformities of the bladder. To show the
interest of our boundary loss function, we have chosen to focus
on the bladder which is the organ with visible contours.

B. Implementation

As a preprocessing a N4 bias field correction was applied
and images were then normalized to range between 0 and 1.
The architecture chosen for the experiment was a 4 layers
U-Net [1], which is classically used for medical imaging
segmentation tasks. The number of filters per layer for the
encoder was chosen as follows: 64/128/256/512, the decoder is
symmetric. Within a Pytorch framework, the chosen optimizer
was AdamW with a learning rate of 10−4. Batch normalization
and spatial dropout layers were added to the network as well
as early stopping to prevent from overfitting. The optimization
was made with mini-batches of 4 images. Experiments were
run on a Linux Xeon Silver Workstation (4214cpu@2.2 GHz -
96Gb) with a Nvidia GeForce RTX 2080 Super GPU, training
time was around 2 hours for one network. To evaluate our
method, a leave-one-out cross validation was chosen, which
means one network per subject of the study has been trained
and the whole dataset has been evaluated.

C. Results

To demonstrate the improvements made by our method,
the results of three experiments were compared: (1) training
with LO only, (2) training with LOD using α starting at 0



and incrementing by 0.01 per epoch (3) training with our
proposed method. Figure 2 shows the DSC, HD and ASD
by subject. The scores are computed over the entire 12-frame
sequence of a subject, allowing us to analyze the network’s
ability to segment all instants of pelvic dynamics (i.e. all
possible bladder shapes) of each subject. The HD and ASD
are respectively the maximum and mean distance over the 12
images of a sequence. The best scores were achieved with
our proposed method with average DSC, HD and ASD of
0.92± 0.05, 6.5± 6.5 mm, 1.5± 1.0 mm. Average DSC, HD
and ASD for method (1) and (2) were respectively 0.91±0.06,
8.2±8.4 mm, 2.09±2.88 mm and 0.90±0.05, 11±9.4 mm,
2.15± 2.68 mm.

IV. DISCUSSION

The segmentation has been mostly successful with DSC
over 0.9 and ASD around 1.5mm. With the same dataset, our
results are better (DSC> 0.9 except P51 at 0.90) than those
were achieved with an active contour based method in [4].
Comparison of our results with those of the others work cited
here is not relevant because of the distinct nature of images.

Two important pieces of information can be extracted from
the results. First, the addition of a cost function with an
empirical alpha coefficient may not improve the results com-
pared to the classical Dice loss. Indeed, the scores of DSC,
HD and ASD are worse and the variability of the scores is
larger. Second, the addition of an adaptive alpha coefficient
allows to outperform the results obtained with the Dice loss.
The HD and ASD values of the network predictions were
reduced by 21 and 28%. The dispersion of the scores was
also reduced by 23% for the HD and 65% for the ASD.
The impact of adding a distance loss function helped greatly
the boundaries detection, as illustrated in Fig.1. Our method
helped improving the segmentation quality and reduced the
inter-subject variability.

Despite the progress achieved, the loss function presented
in this paper has two main limitations. First, the function is
asymmetric as only ground truth distance map was computed.
This asymmetry made the estimation less exact, and we
can suppose that a better estimation would have improved
the accuracy of the result. Second, we experimented that
having two losses raises an issue of gradient compatibility.
Considering two losses have two different gradient scales,
optimizing the first loss won’t necessarily optimize the second
one. In this study, the issue has been solved with the help of
the α coefficient, which rescales the loss gradients. However,
more studies on gradient compatibility deserves to be done
especially because hybrid losses are developing in every deep
learning tasks.

Further researches have to be done around loss function
as a function that takes into account all segmentation errors,
overlap-, boundary- and shape-based. Studies have been made
on metrics to improve the evaluation of segmentation in
the medical field. However, these metrics are not always
appropriate for deep learning, since the cost function must

be differentiable, and need to have a low computational cost
to allow an efficient training.

V. CONCLUSION

This study contribution is twofold. First, a method for
segmenting pelvic organs on 2D dynamic MRI in a ro-
bust and automatic way has been developed. Second, a loss
function combining overlap and boundary aware errors have
been introduced to tackle the variety of organ deformations
during straining exercise. A rescaling gradient coefficient was
introduced to ensure compatibility between loss functions. The
results have consistently shown that our contour-aware loss
provides more robust results in comparison with the classical
Dice loss only. Accurate automatic segmentation of the main
organs paves the way towards an automatic gradation of pelvis
pathology. Efficiency of the proposed method regarding other
architectures and other organs is a work in progress.
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