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Abstract – In recent years, new concepts of acoustic absorbers dedicated to the reduction of low-frequency
noise have been developed. Among them, liners with moving parts, such as membrane-based liners, have been
an object of particular interest. In the present paper, we propose a liner concept based on a cantilever beam
made of articulated plates with micro-slits. Compared to membrane technologies, these micro-slits introduce
a small leakage from the backing cavity that reduces the high compressibility effects occurring at very low fre-
quencies in a small cavity. An acoustic liner including an ensemble of such articulated plates has been fabricated
and characterized for grazing acoustic incidence in absence and in presence of flow. Measurements in an impe-
dance tube at normal incidence have also been performed, and perfect absorption is obtained at a frequency
where the liner thickness corresponds to 1/16th of the acoustic wavelength. A new and simple model is proposed
to predict the attenuation of this type of acoustic treatment. The results are in good agreement with the mea-
surements, indicating a correct identification of the physical phenomena here at stake.

Keywords: Acoustic materials, Metamaterials, Vibrating beams

1 Introduction

Reducing low-frequency sound with small size devices
remains challenging. As a result, various new sound absor-
ber concepts for the reduction of low-frequency noise have
been developed in recent years. Conventional locally react-
ing absorbers consist of a honeycomb structure acting as a
cavity and a perforated or micro-perforated plate where the
air in the holes acts as a resistance and also as an oscillating
mass [1, 2]. In this case, the resonance frequency is some-
where between the quarter-wave resonance of the cavity
(f = c0/4B where c0 is the speed of sound and B is the
height of the cavity) and the Helmholtz resonance fre-
quency (f ¼ c0=2p

ffiffiffiffiffiffiffiffiffiffiffi
r=Be

p
where r is the ratio of the area

of the holes to the total area (open area ratio) and e is
the effective thickness of the perforations). To reduce the
height B, several strategies have been adopted [3–5], like
space-coiling structures [6–9], slow-sound materials [10,
11] or by increasing the effective thickness of the plate
[12]. These new structures lead to perforated plates with a
low open area ratio r in order to be able to reduce the
height B. As the velocity in the holes is equal to the incident
acoustic velocity divided by r, non-linear effects can easily
occur in the holes when the amplitude of the incident wave
becomes sufficiently large. In many engineering applica-
tions, grazing flow is present and its effect on the
impedance of the material is inversely proportional to r

[1, 11]. Therefore, in the case of high sound levels or in
the presence of flow, the additional constraint of having a
high open area ratio is also required in the design of these
new materials.

In this regard, the use of elastic membranes and deco-
rated elastic membranes as sound absorbers is an interest-
ing option [13–16]. In this case, the membrane can
represent a large part of the total surface area and the fre-
quency can easily be reduced by increasing the added mass
[17]. The effect of a grazing flow has already been studied on
this type of structure [18, 19], however it has the disadvan-
tage of containing an encapsulated volume of air which can
expand in the presence of a depression causing static defor-
mation of the membrane. This is why other vibrating struc-
tures have been considered such as cantilever beams but
with micro slits around them [20–22].

The present paper deals with the concept of cantilevered
thin blades that can vibrate above a cavity. In order to
soften these blades, two I-shaped cuts are introduced. The
first one makes the fixation less rigid while the second, real-
ized in the middle of the beam, leads to bi-articulated blades
with two degrees of freedom and a low stiffness.

First, a simple analytical model is proposed to predict
the behavior of the blade. Then, a parametric study is per-
formed in order to design experimental samples. The first
experiments are conducted in an impedance tube, where
both the acoustic in the duct and the vibration of the beam
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are measured. The closeness of the experimental and
the analytical results indicates that the right physical
phenomena have been identified. Finally, a last set of exper-
iments performed in a grazing flow facility gives hint about
the possible application of such acoustic treatments to air-
craft noise reduction.

2 Analytical model
2.1 Model of a mono-articulated beam

In order to predict the low-frequency behavior of the
articulated beam with micro-slits, a simple model with a
single degree of freedom is firstly considered. This model
will be further referred as the mono-articulated one in the
text, while a second structural mode will be introduced in
Section 2.5 to constitute a bi-articulated beam model. In
the case of the mono-articulated model depicted in Figure 1,
the beam is assimilated to a plate rotating around its end
with a restoring torque due to the deformation. Considering
a time dependance exp(jxt) where x is the frequency, the
motion equation that links the rotation angle h to the pres-
sure difference between the two faces of the beam Dp reads
in the frequency domain:

�Jx2h ¼
X

M ¼ l�pSb=2� bh� c jxh: ð1Þ

The moment of inertia J is equal to J = qbeSbl
2/3, where qb

is the density of the beam, e its thickness, Sb its area and l
its length. The two coefficients b and c are linked respec-
tively to the stiffness and to the damping of the beam.

After having defined the mean normal velocity of the
beam vb = jxlh/2, equation (1) can be transformed into
an equation that links the pressure difference
Dp = pi � pc (pi and pc are the pressure just above and just
under the beam in the cavity, respectively) to vb:

�p ¼ jx 4
3 qbe 1� x2

b
x2

� �
þ q0c0d

h i
vb

¼ q0c0 jkbeb x
xb

1� x2
b

x2

� �
þ d

h i
vb ¼ q0c0Zbvb;

ð2Þ

where xb is the resonance frequency of the beam,
kb ¼ xb=c0, eb ¼ 4qbe=ð3q0Þ is an equivalent thickness of
the beam, d is the dimensionless structural damping, q0
is the fluid density and c0 is the speed of sound.

In the slits, the same pressure difference Dp induces a
mean velocity vs so that

�p ¼ q0c0ðRs þ jkbesx=xbÞvs
¼ q0c0Zsvs;

where Rs is the resistance of the slit, es its equivalent
length and Zs its specific impedance. Then, the continuity
of the acoustic mass flux implies that

Sivi ¼ Sbvb þ Ssvs ¼ Scvc; ð3Þ
where Si is the area corresponding to one periodic cell of
the material, vi the incident vertical mean velocity on
one cell, Ss the slits area, Sc the transverse area of the cav-
ity and vc the mean vertical velocity at the entrance of the

cavity. The impedance of the cavity Zc is introduced by
writing

pc ¼ q0c0Zcvc ¼ q0c0
j tanðkbBx=xbÞ vc; ð4Þ

where B is the thickness of the cavity. The continuity
equation (3) can then be written as

Sb=Si

q0c0Zb
þ Ss=Si

q0c0Zs

� �
pi � pcð Þ ¼ vi;

from which the impedance Zi seen by an incoming wave
can be calculated:

Zi ¼ pi
q0c0vi

¼ Sb=Si

Zb
þ Ss=Si

Zs

� ��1

þ Si

Sc
Zc: ð5Þ

This impedance is that of a resonator placed in parallel with
a resistor and loaded by a cavity.

2.2 Acoustical effects of the micro-slits

In order to obtain low resonance frequencies, a can-
tilever and two I-shaped cuts were made in the blade using
a very thin laser beam. The used technology creates a
slightly conical groove with a width of 50 lm at the narrow-
est point. In the slit, since the dimensions are much smaller
than the studied wavelengths, the flow can be considered as
incompressible. In this case, the pressure difference Dp
between the two faces of the beam is linked to the mean
velocity in the slit vs by [23]:

�p
q0c0vs

¼ � jxe
c0

1� tanhðjsÞ
js

� ��1

; ð6Þ

where s is the width of the slit opening. Here,
j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxq0=4l
p ¼ ð1þ jÞ=2dv, where dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l=xq0

p
is

the viscous boundary layer thickness and l the dynamic
viscosity of air. This result comes directly from the appli-
cation of Newton’s law, where the velocity time derivative
is linked to the pressure difference Dp between the two
sides of the slits and to the spatial second derivative of
the velocity in the longitudinal direction, i.e. q0ov/o
t = �Dp + lo2v/oy2.

Figure 1. Sketch of a mono-articulated blade of length l with
laser cut micro-slits. The structure is attached to a cavity with a
thickness of B and a length of L. The rotation angle of the beam
is denoted h.
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When the ratio s/dv is small, a Taylor expansion per-
mits to approximate the resistance by Rs = (12le)/
(q0c0s

2), while the imaginary part reads (6xe)/(5c0). Thus,
the impedance can be written as Zs = Rs + j(x/xb)es where
Rs and es = 6/5ekb are independent of the frequency. The
above values only take into account what happens in the
slit without considering what happens when air enters or
exits the slit. Usually, these effects are accounted for by
introducing an extra length that is not considered here [2].

2.3 Analytical results

The predicted acoustic behaviour of the system is dis-
played in Figure 2. The absorption at normal incidence
(a = 1 � |(1 � Zi)/(1 + Zi)|

2) as well as the imaginary
and real parts of the impedance Zi are shown as functions
of the frequency normalised by the beam resonance fre-
quency. The values of the parameters given in the figure
caption correspond to values close to those obtained exper-
imentally. It can be seen that perfect absorption at normal
incidence can be achieved at a frequency that is closed to
the resonance frequency of the beam. What generally limits
the possibility to obtain low frequency attenuation with lin-
ers is the presence of the backing cavity whose reactance
(green curve on Fig. 2) goes towards �1 as 1/k0B. The
beam creates an additional reactance that is negative at
low frequency and positive at high frequencies, with a rapid
variation at its resonance frequency where zero is reached. If
the beam reactance rises high enough, the cavity reactance
can be counterbalanced and a total zero reactance is
obtained for a frequency close to that of resonance. In the
particular case displayed in Figure 2, the ratio between
the wavelength at the beam resonance and the thickness
of the cavity is 16.2.

At the same time, in order to obtain perfect absorption,
which occurs when Zi = 1 for normal incidence, the coupled
system resistance must be equal to 1. The resistance comes
mainly from the dissipation in the micro-slits. However,
near the resonance frequency the slits are short-circuited,
and the velocity in the cavity comes mainly from the
motion of the blade. As the structural damping of the beam
is considered to be significantly lower than the slit resis-
tance, the short-circuit in the vicinity of the resonance pro-
duces a localised dip in the resistance curve whose minimum
value depends on the beam structural damping d. Then, an
appropriate choice of R and d permits to obtain a resistance
of 1 for the frequency at which the reactance is zero. Thus,
perfect absorption is provided for a normally incident wave.

2.4 Influence of the parameters

The analysis of the effects of the problem parameters is
illustrated in Figure 3 where, starting from the reference
configuration already shown in Figure 2, the parameters
are varied one by one.

The first parameter that can be changed is the mass of
the beam, see Figure 3a. In practice, this mass can be chan-
ged either by modifying the material and thus the density,
or by changing the thickness of the beam. Obviously, these

changes will also involve a change in the beam resonance
frequency fb. A reduction in mass (kbeb decreases) leads to
a softer resonance but with the same amplitude. This leads
to an increase in the frequency where the system is efficient,
as well as a widening of the absorption bandwidth. A small
adjustment of the structural damping d is needed to achieve
perfect absorption again.

The second parameter that could be modified is the
thickness of the cavity B, see Figure 3b. As it is decreased,
the zero crossing of the reactance moves to higher frequen-
cies. At these frequencies, the corresponding resistance
doesn’t display a dip and is thus too high to induce good
absorption.

The third parameter that is studied is the structural
damping d, see Figure 3c. The increase of d makes the res-
onance less pronounced and increases the overall resistance
(the resistance dip is less marked). On the other hand, it can
be noted that the very low absorption values that were
reached when f = fb are now increased because the struc-
tural damping takes over the damping in the slits when d
is large enough.

The last parametric study considers the resistance in the
slits and the results are shown in Figure 3d. For this, we
consider the resistance R = Si/SsRs, which takes into
account the percentage of open surface. Therefore, it is
referred to the total surface. If the resistance increases,
the width of the system efficiency peak is reduced. When
R = 1, the system works very differently. Indeed, the
change in reactance due to the beam resonance is very weak
and the reactance passes through zero for higher frequencies
(f/fb = 1.84 in this particular case). Such a frequency is
outside the resistance dip and the resistance value is then

(a)

(b)

b

b

Figure 2. (a) Absorption coefficient and (b) impedance com-
puted from the mono-articulated model as a function of the
frequency normalised by the beam resonance frequency. Sb=Si =
0.48, Ss=Si = 0.0083, Sc=Si = 0.825, kbeb = 0.8133, d ¼ 0:01,
R ¼ Si=SsRs = 8, kbes = 0.0065, kbB = 0.39. The green curve is
the imaginary part induced by the cavity and the blue curve is
the imaginary part induced by the beam and the micro-slits.
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very close to the nominal value of 1, which leads to perfect
absorption for a frequency close to twice the resonance fre-
quency of the beam. In fact, in this operating mode, the
beam is in its inertial regime. Perfect absorption is then
obtained with a system that consists of a mass (the beam),
a resistance (the slits) placed in parallel and a stiffness (the
cavity). Such systems are called In-Parallel Resonator and
have been investigated in detail in [22]. In the present
paper, we are not interested in this type of operating mode,
since the goal was to take an acoustic advantage of the
beam resonance that occurs at lower frequencies. Finally,
an interesting behaviour appears for an intermediate resis-
tance (R = 3) value, where both modes work simultane-
ously. In this case, the operating band of the absorber is
widened, in counterpart of a decrease in maximal absorp-
tion which is now of the order of a = 0.8 for 1.05 < f/
fb < 1.85.

2.5 Influence of other modes of the plate

In any deformable system, several modes can appear.
The displacement of the beam is then written as a sum of
the displacements induced by each of these modes. Thus,
the continuity equation (3) now reads

Sivi ¼
X
j

Sbvbj þ Ssvs ¼ Scvc; ð7Þ

where vbj is the mean velocity induced by the jth mode.
Then, the effect of the various modes j can be modelled
by writting the impedance of the jth mode as:

Zbj ¼ jkbebj
x
xb

1� x2
bj

x2

� �
þ dj:

Considering that this impedance is in parallel with that of
the micro-slits and in series with the one of the cavity leads
to the following expression for the impedance of the coupled
system:

Zi ¼
X
j

Sb=Si

Zbj
þ Ss=Si

Zs

" #�1

þ Si

Sc
Zc: ð8Þ

The three parameters that define each of the modes (equiv-
alent mass, resonance frequency and modal damping) can
be determined either analytically from the beam deforma-
tion equation, numerically or experimentally.

To examine the effect of the additional modes, two
modes are used to calculate the impedance and the absorp-
tion displayed in blue and compared in Figure 4 to the
results with only one mode. It can be observed that the first
absorption peak is only slightly modified and that the sec-
ond peak appears near the resonance frequency of the sec-
ond mode. The resistance remains close to its nominal
value (here R = 8) except near the resonant frequencies
where dips are found. An interesting effect of the presence
of the additional mode is that the reactance decreases just
after the first peak. Between peaks the reactance therefore
remains close to zero, which is usually required for large
acoustic attenuation.

3 Experimental validation

To test the validity of the above model, measurements
were performed on a 0.5 mm thick composite beam made
with a carbon fibre/epoxy material (M21E/IMA). The den-
sity of this material was measured to be 1550 kg m�3. The

b b

bb

(a) (b)

(c) (d)

Figure 3. Absorption coefficient computed by the mono-articulated model as a function of the normalised frequency. (a) Variation of
the mass of the beam. (b) Variation of the thickness of the cavity. (c) Variation of the structural damping. (d) Variation of the
resistance. The magenta curves are the same that in Figure 2a.

M.E. D’Elia et al.: Acta Acustica 2021, 5, 314



Poisson’s ratio (which does not have a great influence on
the vibration of the beam) is estimated to be 0.35. The
Young’s modulus was adjusted to a value of 75 GPa so that
the first calculated resonance frequency corresponded to the
measured value.

Two samples have been made: one for measurements in
a normal incidence tube (cut in a disk of diameter 38 mm)
and a second one for measurements in the wall of a rectan-
gular duct (cut in a rectangular plate of 120� 50 mm2). For
these two samples, the micro-cutting was performed in the
same way and with the same geometry. The micro-slits
were made by laser micro-cutting with high precision
machining. The resulting micro-slits are 50 lm wide (see
inset pictures of Fig. 6).

Using the geometry and the material parameters and
neglecting air loading on the beam, the vibration modes
of the beam can be computed using a finite element method
(COMSOL). The first two vibration modes are shown in
Figure 5. The first one (f = 709 Hz, see Fig. 5a) corresponds
to an almost pure rotation of the whole beam. The stiffness
results from the deformation of the two arms at the base of
the beam. The second mode (f = 4412 Hz, see Fig. 5b) is a
bending mode while the third mode (f = 4453 Hz) is a tor-
sion mode which has an average velocity equal to 0. There-
fore, it is assumed not to interfere with the acoustics.

3.1 Normal incidence measurements

The circular sample is glued onto a ring (inner diameter
30 mm, outer diameter 38 mm) and placed in an impedance
tube which is made of steel tubes with an inner diameter of
30 mm and a wall thickness of 4 mm, see Figure 6. Four
microphones (B&K 4136 and 2670 with amplifier Nexus
2690) are used for the overdetermined separation of inci-
dent and reflected waves [24, 25]. The microphones are dis-
tant of L2 = 30 mm, L3 = 100 mm and L4 = 285 mm in
order to cover a large range of frequencies. The length

between the first microphone and the sample is
L1 = 230 mm. In order to measure the velocity induced
by the beam vibration, a laser vibrometer impinges on the
beam. After an in-situ calibration of the microphones, the
signals from the microphones and from the laser vibrometer
are transferred to a data acquisition system. The measure-
ments are performed using a sine sweep excitation signal
going from 100 to 4000 Hz with a step of 5 Hz. At each fre-
quency, all transfer functions are averaged over 500 cycles.

The measurement system allows to control the acoustic
level of the incident wave. Several levels ranging from
110 dB to 140 dB were tested but no non-linear effects were
detected.

3.1.1 Vibrometer measurements

First, the velocity of the bi-articulated beam when
placed at the end of the tube (without cavity) was mea-
sured using a laser vibrometer, when acoustic excitation is

(a)

(b)

Figure 4. (a) Absorption coefficient and (b) impedance as a
function of the normalized frequency when one (mono-articu-
lated beam, in magenta) or two (bi-articulated beam, in blue)
modes are considered. For the first mode, the parameters are the
same that in Figure 2. The second mode is defined by
xb2 = 6.05 xb, kb2eb2 = kbeb/8 and d2 = 2.5d.

Figure 6. Schematic diagram of the setup for impedance tube
experiments. Acoustic measurements are performed using four
microphones separated by distances L1. . .4). Vibrations are
evaluated using a Laser Doppler vibrometer, and two measure-
ment points are defined on the beam. The back cavity of length
B can be removed to characterize the blade alone. The inset
pictures display the composite sample used for the normal
incidence measurements, as well as a zoom on the laser cut slits.

1mm

l1 =
 9 mm

l2 =
 7 mm

12 mm

(a)

(b)

2 mm 1mm
2 mm

Figure 5. (a) First (f= 709 Hz) and (b) second (f= 4412 Hz)
mode of the cantilever beam with the I-cut shaped slits, as
computed using a finite elements method (Comsol). l1 and l2 are
the lengths of the two parts of the beam.
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present. From the sound pressures measured on the three
microphones, it is possible to calculate the sound pressure
pi that is applied to the plate. The velocities vM1 and vM2

measured respectively at the end and in the middle of the
beam (i.e. at the end of the first plate composing the beam,
see Fig. 6 where the pointsM1 andM2 are indicated) related
to the incident pressure are plotted in Figure 7. The first
two modes of the bi-articulated plate can be seen very
clearly. The first mode is at a frequency of 710 Hz. For this
mode, we find that vM1=ðl1 þ l2Þ ¼ vM2=l2 (l1 and l2 are
defined in Fig. 5). It indicates that this mode is very close
to a rotation of the plate around its base articulation, with-
out deformation. For the second mode (f = 3650 Hz), the
velocities are almost opposite vM1 ’ �vM2 , which indicates
that we are dealing with a bending mode as shown in
Figure 5. An average velocity can be computed, assuming
two rigid plates pivoted to each other, by vb ¼ vM2=2þ
l1vM1=ðl1 þ l2Þ. This averaged velocity is also plotted in
Figure 7. Assuming a low radiation impedance of the tube
and therefore zero sound pressure on the outside of the
plate, this average velocity relative to the sound pressure
on the plate is the inverse of the impedance of the beam
defined by equation (2): Zb = pi/(q0c0vb).

These velocity measurements confirm that the impe-
dance Zb can be described by the contribution of the first
two modes with:

1
Zb

¼ 1
Zb1

þ 1
Zb2

;

where

Zb1 ¼ j A1
f
f1

1� f1
f

� �2
 !

þ d1;

Zb2 ¼ j A2
f
f2

1� f2
f

� �2
 !

þ d2:

Thus, this vibration measurement allows to experimentally
determine some parameters of the model described in
Section 2.

Indeed, if some of them are easily computable such as the
equivalent mass of the beam for the first mode, others are
more difficult to evaluate. From eq. (2), the equivalent mass
is computed from A1 ¼ kbeb ¼ 4qbxbe=ð3q0c0Þ ¼ 10:55.
Note that the equivalent thickness of the beam is
eb = 0.81 m. It corresponds to the thickness of air that would
have to be set in motion to obtain the same effect. This
shows the interest of making vibrate a solid part when we
want to perform low frequency attenuation. If we simply
consider that the beam is a rotating plate and that the stiff-
ness comes from the deformation of the two arms of width
b = 1 mm and length a = 4 mm at the base of the plate,
the resonance frequency reads x2

1 ¼ 0:5ðE=qbÞbe2=ðBal3Þ
where E is the Young modulus, B is the width of the plate
and l = l1 + l2 is its length. Using the dimensions and char-
acteristics of the cut composite plate, the predicted fre-
quency is equal to f1 = 1080 Hz while the measured

frequency is f1 = 710 Hz. This difference comes from the
crudeness of the model used to predict stiffness. Neverthe-
less, this model allows us to identify the main parameters
influencing this resonance frequency and to compare it with
that of a cantilever beam of the same dimensions without
I-cuts, which is here given by x2 = 1.02(E/qb)e

2/l4, leading
to a frequency f = 2680 Hz. The structural damping is more
complex to evaluate and is deduced from the vibrometer
measurements: d1 = 0.01.

The values of the three parameters of the second mode
are deduced directly from the vibrometer measurements:
d2 = 1.25, A2 = 150, f2 = 3730 Hz. The measured impe-
dance Zb (in blue) and the calculated impedance (in red)
are shown in Figure 8. A correct agreement between these
two values is found, especially in the vicinity of resonances
where the imaginary part of Zb becomes zero.

3.1.2 Acoustic measurements

Using the four microphones described in Figure 6, the
reflection coefficient r can be obtained by an over-
determined separation of incident and reflected waves by
means of a least-squares method. From r, the absorption
coefficient a = 1 � |r|2 and the impedance Z = (1 + r)/
(1 � r) can be easily computed. Here, the bi-articulated
beam is backed up by a 30 mm deep closed cavity whose
cross-section is as large as the incident tube (diameter
30 mm).

To predict the impedance of this device, equation (5) is
used. In this equation, the beam impedance Zb is deduced
from the vibration measurements described in the previous
subsection. The cavity impedance Zc can be computed from
equation (4) with B = 30 mm. The most tricky part to esti-
mate is the acoustic impedance of the slit Zs. Indeed, the slit
resistance is extremely sensitive to the width of the slit s. If
we use the relationRs = 12le/(q0c0s

2) we see that this resis-
tance is inversely proportional to the square of s. In addition
if one relates this impedance to the incident surface R = Si/
Ss Rs, where Si = lss and ls = 88 mm the total length of the
slits, we see that the resistance R is proportional to s�3).
The machining process of these micro-slits results in a slight
conicity of the slit which therefore does not have a constant
width s. On the height of e = 500 lm, it is estimated that

Figure 7. Dimensionless ratio between the velocities vM 1 and
vM 2 and the pressure on the plate pi. vb is the average velocity
along the beam.
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the width goes from 50 lm (see the photo under the micro-
scope on Fig. 6) at the narrowest to 100 lm on the other
side of the plate. For a constant width s = 50 lm the resis-
tance is R = 16 while for s = 100 lm the resistance is R = 2.
It is therefore difficult to say more than 2 < R < 16 and the
exact value of R had to be experimentally adjusted.

The measured absorption coefficient a and impedance Z
are plotted with a wide blue line in Figure 9. What happens
on these curves in the vicinity of the first resonance fre-
quency of the beam is very similar to what the model pre-
dicts. In particular, we can see that the maximum
absorption frequency (735 Hz) is slightly higher than the
first resonance frequency of the beam (710 Hz) which in fact
corresponds to a very low absorption. We also note that the
real part of the impedance (dashed line in Fig. 9b) tends at
low frequency towards a constant which is the resistance R.
We can therefore estimate the value of the resistance:
R = 8.5.

At this stage, all the parameters that describe the mea-
sured device are known and the impedance and absorption
coefficient can be calculated (thin red curve on Fig. 9). This
suggests that the proposed model takes into account the
main effects that occur in such a device and that it is pos-
sible to tailor such a system for specific uses.

3.2 Grazing incidence measurements

In order to perform measurements with grazing inci-
dence and grazing flow, a second sample was made from
the same composite material plate and with exactly the
same micro-cutting geometry. This sample is made in a
plate of 120 � 50 mm2, where 3 rows of 5 beams have been
micro-cut, in blue on Figure 10. This plate was glued on a
support (in black in Fig. 10) with 15 cavities of section
15 � 22 mm2 and height B = 30 mm.

During the measurements, this sample of 15 beams is
flush mounted on the wall of a waveguide with a rectangu-
lar section. The height of the channel is H = 40 mm while
the transverse dimension is 50 mm. This means that the
sample covers the entire width of the channel. This duct
facility has already been introduced and described in [26,
27]. The acoustic waves are generated by two compression
chambers which can be placed either upstream or either

downstream of the test section. A sinusoidal sweep ranging
from 200 Hz to 4000 Hz with a step of 5 Hz is used.

The sound pressure in the duct is recorded by two sets
of three flush-mounted microphones located upstream (ui)
and downstream (di) of the test section, where i = 1 indi-
cates the microphone located the closest to the test section.
The positions of the microphones are xu1 � xu2 ¼ xd2�
xd1 ¼ 30 mm, xu1 � xu3 ¼ xd3 � xd1 ¼ 175 mm, and both
u1 and d1 are placed 113 mm away from the sample. All
the microphones are calibrated relatively to u1 in a separate
cavity. At each frequency step of the sine sweep, the acous-
tic pressure on each microphone is calculated by averaging
the pressure value over 400 cycles without flow, and over
1000 cycles with flow.

An overestimated determination of the incident and of
the reflected waves on both sides of the sample is permitted
by this mounting of six microphones. Then, the elements of
the sample scattering matrix, namely the reflection and
transmission coefficients (r±, t±) defined for incident plane
waves coming from upstream (r+, t+) and downstream
(r�, t�) of the sample, are computed. Two different acoustic
states are needed to obtain these four coefficients. The first
one consists in placing the compression chambers upstream
of the test section, while they are located downstream for
the second acoustic state [28].

As for the normal incidence case, this measuring system
makes it possible to control the acoustic level of the incident
wave. Several levels were tested but no non-linear effects
were detected.

To predict the effect of the sample on propagation, two
separate actions are required. The first one is to calculate
the equivalent impedance of the sample. The second one

Figure 8. Impedance of the beam Zb deduced from the laser
vibrometer measurements. The blue curves are the measure-
ments and the red ones correspond to the fit described in the
text.

(a)

(b)

Figure 9. (a) Absorption coefficient and (b) impedance as
functions of the frequency. The resistance are displayed by
dashed lines and the reactance by solid lines. The experimental
results (blue curves) are compared to the analytical results
computed with the bi-articulated plate model (red curves).
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is to predict the propagation in the duct in the presence of
an acoustically treated wall.

The prediction of impedance is relatively easy since the
impedances of the beam Zb and the slits Zs are identical to
the case in normal incidence since the material and the
geometry are the same. Similarly, since the cavity has the
same depth B, the cavity impedance Zc is also unchanged.
The only things that change in equation (5) are the incident
sections Si = 120 � 50/15 mm2 and the cavity section
Sc = 15 � 22 mm2.

To predict the propagation with an impedance wall, a
numerical simulation is carried out. To this end, a multi-
modal method is used to calculate the linearized two-
dimensional lossless problem. This method has already been
described in detail elsewhere [28] and therefore only a few
points are merely reported. The linear propagation of small
perturbations can be described by the linearized Euler and
continuity equations. The multimodal method is used and
the perturbations are therefore expressed as a linear combi-
nation of the acoustic transverse modes. These modes and
wave numbers are computed on uniform segments using a
finite difference method by discretizing the equations in
the transverse y-direction. Here, the modes must be calcu-
lated in the rigid duct and in the lined part wall. The scat-
tering matrix of the sample is found by matching the modes
at the discontinuities at each ends of the sample.

The comparison between the predicted and mea-
sured transmission and reflection coefficient is depicted in
Figure 11. Due to reciprocity, without flow, the measured
transmission coefficients in both directions are identical.
Conversely, the reflection coefficients r+ and r� differ
slightly. This seems to indicate some inhomogeneity
between the different beams which would not all react in
the same way. This may for instance be due to the bonding
of the plate to its support, which may not be exactly iden-
tical at every location. The comparison between predicted

and measured values of transmission and reflection is rela-
tively correct around the first resonance of the beam. It
can be noted that the hypothesis that one can substitute
a discrete set of cells, of fairly large size, with a distributed
and homogeneous impedance can quickly find its limit when
the frequency increases. Moreover, the implicit assumption
that cells do not acoustically interfere with each other is
also very questionable.

A striking effect is the disappearance of the second high-
frequency peak (near f2 = 3730 Hz). As f = 4000 Hz corre-
sponds to the cut-off frequency of the second propagative
mode in the rigid conduit that our setup does not allow
to characterize, it was not possible to know if this second
peak was rejected at higher frequency or if it simply disap-
peared. As mentioned above, for these frequencies the
length of a cell is of the order of a quarter of the wavelength
and the hypothesis of uniformity of impedance is no longer
valid.

In spite of its approximations, the impedance homoge-
nization model, as expressed from equation (8), gives good
results at low frequencies and makes it possible to under-
stand the main effects of treatments with vibrating articu-
lated plates and micro slits on the propagation and
reflection of the incident acoustic field.

3.3 Effect of flow

The implementation of the acoustic treatment in the
wall of a duct allows studying the effect of a flow on its
acoustic behavior. For this purpose, the duct installation
is connected to a rotating lobe blower that can provide a
mean velocity of up to 85 m/s. The flow velocity is mea-
sured at the center of the duct downstream of the test sec-
tion by a Pitot tube connected to a differential pressure
sensor. This measurement gives the maximum value of
the flow velocity in the duct section. It is then multiplied
by 0.8 in order to obtain the value of the average velocity
and the Mach number M [29]. The measurements shown
in Figure 12 were performed at a Mach number of 0.25.

Figure 10. (Top) Schematic representation of the grazing
incidence facility used to characterise the liner sample using two
sets of three microphones. The duct has a rectangular cross
section of height H ¼ 4 cm and a rotating lobe blower is used to
introduce flow. (Bottom) The composite plate has been glued
over 15 cavities of section 15 � 22 mm2 so that there is one
cantilever beam per cavity. The height of the cavities is B ¼ 30
mm.

t
r

r
r+

t
t+

Figure 11. Transmission and reflection coefficients of the liner
sample as a function of the frequency, without flow. The
experimental results (red curves) are compared to the results
provided by the multimodal method (green curves). For the
latter, the boundary condition in the lined section is given by the
bi-articulated plate model.

M.E. D’Elia et al.: Acta Acustica 2021, 5, 318



The presence of an assumed uniform flow is also fairly
easy to take into account in propagation modeling. To do
this, it is necessary to add convection terms to the equations
used. It is also necessary to modify the boundary condition
that applies to the wall with impedance. Here we have used
the classical condition of continuity of pressure and normal
displacement, in general referred as the Ingard [30] – Myers
[31] condition [32]. Finally, it is necessary to apply a special
mode matching between the duct with impedance and the
rigid duct that takes into account this Ingard–Myers condi-
tion [28].

The fairly good agreement between the experimental
and the numerical results shows that the flow does not sig-
nificantly change the value of the impedance of the mate-
rial. The flow is therefore mainly introducing convection
effects, both in the propagation itself and in the Ingard–
Myers condition.

4 Conclusion

This paper shows that it is possible and interesting to
use vibrating articulated plates combined with micro slits
to obtain sound attenuation at low frequencies. Two behav-
iors exist in this type of structure. In the first one, the
frequency is closed to the structure alone resonance. In
the second one, only the structural mass is involved, the
stiffness being provided by the cavity. In this second case,
not studied in this paper [22], the frequency is higher for
a given height of the cavity. A very simple model has been
developed to describe the behavior of this type of structure
both in normal and grazing incidence and fits well with the
experiments. Compared to other types of acoustic surfaces
[11], this type of structure does not seem to be very sensitive
to the effects of sound level and grazing flow, with the latter
being restricted to the convective effects on propagation.

Certainly, the operation of hinged plates with micro slits
is rather narrow-band and fatigue problems can occur when
using vibrating parts, but this device can tackle low fre-
quency noise in parallel with other devices for other fre-
quency ranges.
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