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Abstract: In this paper, principal-singular-vector utilization for modal analysis (PUMA) was adapted
to perform time delay estimation on ground-penetrating radar (GPR) data by taking into account
the shape of the transmitted GPR signal. The super-resolution capability of PUMA was used to
separate overlapping backscattered echoes from a layered pavement structure with some embedded
debondings. The well-known root-MUSIC algorithm was selected as a benchmark for performance
assessment. The simulation results showed that the proposed PUMA performs very well, especially
in the case where the sources are totally coherent, and it requires much less computational time than
the root-MUSIC algorithm.

Keywords: ground-penetrating radar (GPR); nondestructive testing; signal processing; time delay
estimation (TDE); pavement monitoring; PUMA

1. Introduction

Ground-penetrating radar (GPR) is commonly used in civil engineering as a nonde-
structive testing (NDT) technique for the survey of various transport infrastructures [1],
including pavements [2–6], tunnels [7–11], bridges [12–16], railways [17–20], as well as
buildings [21–24] and retaining walls [25–28]. GPR relies on the propagation of electromag-
netic (EM) waves and the backscattered echoes from any dielectric discontinuities to image
the subsurface of the structure [29].

This paper focuses on a pavement survey using air-coupled GPR. Several defects that
appear on a road surface such as cracks may be caused by debondings (delaminations)
between the layers of the road pavement. Therefore, an early detection and characterization
of debondings before any visual deterioration on the road surface can help maintenance
services take appropriate measures at the right time, increasing the longevity of the road
pavement and reducing the maintenance cost. In this paper, GPR aims at characterizing
thin debonding layers (<1 cm thick) embedded between the first two top layers of the
pavement structure [30–32]. The thickness of the debonding layers can be estimated with
the help of the permittivity of the material found within the debonding interfaces and
the time delay difference of the echoes reflected from the debonding interfaces [2,32,33].
The thin debonding thickness (<1 cm) is much smaller than the resolution capacity of
the classical GPR algorithms, resulting in overlapping echoes for which the time delay
difference ∆T is lower than the inverse of the GPR system bandwidth B. There are two
ways by which the resolution of a GPR can be improved [3]: (I) by increasing the signal
bandwidth of the GPR or (I I) by applying advanced signal processing methods to the
recorded GPR data. The latter solution was preferred in this paper given that operators
usually have little control over the bandwidth of conventional GPRs.

To this aim, two subspace-based algorithms were considered for high-resolution time
delay estimation (TDE) in this paper, namely the conventional root-MUSIC algorithm [34]
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and the more recent PUMA algorithm [35]. Root-MUSIC was successfully used for the
TDE of overlapping and nonoverlapping echoes using synthetic and field GPR data in [3],
and it has been shown to be sensitive to the correlated multipath background. Specific
preprocessing, namely sub-band averaging techniques, are then required to recover the
super-time-resolution performance at the expense of additional computing time.

By contrast, PUMA is a more recent algorithm. It is an iterative subspace method based
on linear prediction (LP) and weighted least squares (WLS) that was first introduced for
spectral analysis in [36,37] and then for direction of arrival (DOA) estimation in [35,38,39].
PUMA has been shown to have a performance close to that of the maximum likelihood
(ML) method, but with a lower computational cost.

In this paper, the proposed adaptation of PUMA to TDE is appealing for GPR applica-
tion mainly because PUMA has been shown to be more efficient in the presence of coherent
sources compared to other subspace algorithms [35,36]. In contrast to unitary-ESPRIT [40]
and unitary root-MUSIC [41], PUMA can handle more than two coherent sources. Nev-
ertheless, the proposed adaptation of PUMA to GPR data processing requires taking into
account the shape of the GPR pulse in the mathematical formalism. PUMA is compared to
the widespread root-MUSIC algorithm, for which new sub-band averaging techniques are
introduced to handle correlated echoes.

The rest of the paper is organized as follows. The GPR data model taking the shape of
the transmitted radar pulse into account is presented in Section 2. Section 3 briefly reviews
the principle of root-MUSIC for TDE and details the adaptation of PUMA to process the
data model in Section 2 for TDE. In Sections 4 and 5, the performance of both algorithms is
compared in terms of the robustness to noise, time resolution, and average computational
time. Conclusions and perspectives are given in Section 6.

Notation: Throughout this paper, vectors and matrices are denoted by lowercase
and uppercase boldface letters, respectively. (·)∗, [·]T , (·)H , (·)−1, and (·)† represent the
complex conjugate, transpose, conjugate-transpose, matrix inverse, and pseudo inverse
operations, respectively. E[·] is the statistical mean. ⊗ is the Kronecker product. vec(·) is
the vectorization operator. tr(·) is the trace operator. â represents the estimate of a. diag(·)
denotes a diagonal matrix. Im is the (m, m) identity matrix, and Jm is the (m, m) exchange
matrix with ones on its antidiagonal and zeros elsewhere. [a]m refers to the mth element of
any vector a.

2. Data Model

Let us consider a road pavement probed by a GPR at vertical incidence under the
following assumptions:

• The road pavement is a stratified medium consisting of K smooth and homogeneous
layers with low permittivity and negligible electrical conductivity;

• The impinging EM waves on the road pavement are assumed to be plane waves
emitted from an antenna in the far field;

• Each layer contributes only one echo to the data model (single scattering assumption).

The backscattered signal recorded by the GPR under the above assumptions is the
sum of the shifted and attenuated copies of the emitted radar pulse. The amplitude of each
echo depends on the permittivity of the layers through Fresnel reflection coefficients. The
received signal can be expressed as follows in the frequency domain [3,33]:

ỹ( fi) =
K

∑
k=1

sk ẽ( fi) e−j 2π fi τk + ñ( fi) (1)

where sk is the amplitude of the kth echo, which is considered to be independent of the
frequency because the pavement layers have smooth interfaces, and ẽ( fi) and ñ( fi) are
the Fourier transforms of the emitted and noise signals, respectively. Equation (1) can be
written in matrix form as:

y = ΛAs + n (2)
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with:

y = [ ỹ( f1), ỹ( f2), ..., ỹ( fN) ]
T : (N, 1) frequency data vector;

Λ = diag( ẽ( f1), ẽ( f2), ..., ẽ( fN) ): (N, N) diagonal matrix whose elements are the Fourier
transforms of the emitted pulse;
A = [ a(τ1), a(τ2), ..., a(τK) ]: (N, K) mode matrix;
a(τk) = [ e−j2π f1τk , e−j2π f2τk , ..., e−j2π fN τk ]T : steering vector of size (N, 1);
s = [ s1, s2, ..., sK ]T : (K, 1) source vector containing the amplitudes of the echoes;
n = [ ñ( f1), ñ( f2), ..., ñ( fN) ]

T : (N, 1) noise vector with zero mean and covariance matrix
σ2IN ;
fi = f1 + (i− 1)∆ f : the frequency samples where f1 is the beginning of the bandwidth,
∆ f is the frequency difference between two adjacent samples, and i = 1, 2, · · · , N.

The data covariance matrix Γ can be written as:

Γ = E[ yyH ] = ΛAΓsAHΛH + σ2IN (3)

where Γs = E[ssH ] and σ2IN = E[nnH ] are the covariance matrices of the source vector
and the noise vector, with dimensions (K, K) and (N, N), respectively.

Compared to the conventional model in the literature, the magnitude variations of the
radar pulse over the bandwidth are taken into account in the data model and the covariance
matrix in (1) and (3), respectively. For the GPR configuration used in this application, the
backscattered echoes consist of multipath from the same transmitter (Tx). The echoes in the
source vector s are then expected to be highly correlated with each other, and the associated
covariance matrix Γs may be rank deficient, i.e., 1 ≤ rank(Γs) ≤ K. Different correlation
scenarios are thus considered in Section 4 for testing the TDE algorithms presented in the
next section.

3. Time Delay Estimation Algorithms

This section presents two root-finding algorithms that are used in Section 4 to process
GPR data for TDE. Firstly, the well-known root-MUSIC algorithm is recalled, and then, the
proposed adaptation of PUMA to TDE is presented. Both algorithms take advantage of
the eigendecomposition of the covariance matrix in different ways in order to estimate the
time delays of the echoes.

3.1. Eigendecomposition

Assuming that Γs is of full rank, without loss of generality (in the case where the
sources are totally coherent, the sub-band averaging techniques can be used for recovering
the rank of Γs), the covariance matrix of the received signal can be expressed as follows
after eigendecomposition:

Γ = EsDsEH
s + EnDnEH

n (4)

where the columns of Es = [u1, · · · , uK], which are the eigenvectors associated with the first
K largest eigenvalues in Ds = diag(λ1, · · · , λK), span the signal subspace and the columns
of En = [uK+1, · · · , uN ], which are the eigenvectors associated with the N − K smallest
eigenvalues in Dn = diag(λK+1, · · · , λN), span the noise subspace. The eigenvalues are
arranged in decreasing order: λ1 > · · · > λK > λK+1 = · · · = λN = σ2.

Using (3) and (4),

Γ− σ2IN = ΛAΓsAHΛH = Es(Ds − σ2IK)EH
s . (5)

From (5),
Es = ΛAT⇒ A = Λ−1EsT−1 (6)

where T is a nonsingular matrix of dimension (K, K). Equation (6) means that span(ΛA) =
span(Es)⇒ span(A) = span(Λ−1Es).
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3.2. Root-MUSIC

MUSIC is a well-known subspace method, which was adapted to TDE for pro-
cessing GPR data in [3]. It is based on the orthogonality between the signal subspace,
spanned by the columns of ΛA, and the noise subspace generated by the columns of
En = [uK+1, · · · , uN ]. For the data model in (3), MUSIC searches for the K time delays that
minimize the following function:

FM(τ) = a(τ)HΛHEnEH
n Λa(τ). (7)

The polynomial version of MUSIC, namely root-MUSIC, achieves better performance
with a lower computational burden. Root-MUSIC searches for the complex roots z of the
following 2N − 2-degree polynomial:

FRM(z) = dT(1/z)ΛHEnEH
n Λd(z) (8)

where d(z) =
[
1, z, . . . , zN−1]T and z = e−2jπ∆ f τ .

The time delays are estimated from the phases of the K roots ẑk of FRM(z) closest to
and inside the unit circle as follows:

τ̂k = −
∠ẑk

2π∆ f
, 1 ≤ k ≤ K. (9)

3.3. PUMA for TDE

In contrast to root-MUSIC, PUMA is an iterative subspace method [35,36]. According
to the literature, PUMA may be directly applied to raw GPR data without preprocessing
because it is more robust in the presence of correlated sources. In addition, it achieves a sim-
ilar performance to that of conventional subspace methods in the presence of uncorrelated
sources and has a lower average computational cost.

PUMA relies on linear prediction theory to estimate the time delays in the mode matrix
A. A has a Vandermonde structure; thus, the following orthogonal relation holds [35]

BA = 0 (10)

where:

B =

cK cK−1 · · · c0 0
. . . . . . . . .

0 cK cK−1 · · · c0

 (11)

is an (N − K, N) Toeplitz matrix. The coefficients of B define a polynomial with roots lying
on the unit circle as follows [35]:

c0zK + c1zK−1 + · · ·+ cK = c0

K

∏
k=1

(z− e−j2π∆ f τk ) = 0 (12)

where c0 6= 0. Let c0 = 1 and c = [c1, c2, · · · , cK]
T ; the time delays are estimated from the

phases of the K roots of (12) with the use of (9).
Equation (10) also implies that each mth element (m ≥ K + 1) in the kth column of A

can be written as a linear combination of the previous K elements in that column as:

[a(τk)]m +
K

∑
i=1

ci[a(τk)]m−i = 0, m ≥ K + 1; 1 ≤ k ≤ K. (13)

In practice, we do not have access to A. However, following (6), the columns of matrix
Λ−1Es span the same subspace generated by the columns of the mode matrix A in the
absence of noise. Let:

Λ−1Es = [v1, · · · , vK]; (14)
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thus, (13) can be rewritten as:

[vk]m +
K

∑
i=1

ci[vk]m−i = 0, m ≥ K + 1; 1 ≤ k ≤ K. (15)

Apart from the modification in (14), the rest of the algorithm is similar to that in [35].
For the completeness of presentation, the different steps of the algorithm are briefly recalled.

Equation (15) can be written in matrix form as:
[vk]K [vk]K−1 . . . [vk]1
[vk]K+1 [vk]K . . . [vk]2

...
...

...
[vk]N−1 [vk]N−2 . . . [vk]N−K




c1
c2
...

cK

+


[vk]K+1
[vk]K+2

...
[vk]N

 = 0,

with:

Fk =


[vk]K [vk]K−1 . . . [vk]1
[vk]K+1 [vk]K . . . [vk]2

...
...

...
[vk]N−1 [vk]N−2 . . . [vk]N−K

 (16)

gk = −[ [vk]K+1, . . . , [vk]N ]T (17)

We can then write:
Fkc− gk = 0((N−K),1), 1 ≤ k ≤ K (18)

and:
vec(BΛ−1Es) = Fc− g = 0((N−K)K,1) (19)

where:

F =


F1
F2
...

FK


((N−K)K,K)

, g =


g1
g2
...

gK


((N−K)K,1).

Vector c can be found by solving:

min
c
‖Fc− g‖2

2 = min
c
‖e‖2

2 = min
c

eHe . (20)

The least squares estimate of c can be obtained as:

ĉLS = (FHF)−1FHg = F†g . (21)

However, in the presence of noise, (21) gives a biased estimate of c, which eventually
leads to inaccurate time delay estimates.

PUMA proposes to use weighted least squares to find c. It solves [35,36]:

min
c

êHŴê (22)

where ê = F̂c − ĝ and Ŵ is an estimate of the weighting matrix. Ŵ is of dimension
((N − K)K, (N − K)K), and it is defined as:

Ŵ = (E(êêH))−1 ≈ T̂⊗ (B(B)H)−1 (23)

where T̂ is a diagonal matrix defined as:

T̂ ≈ diag

(
(λ̂1 − σ̂2)2

λ̂1
, · · · ,

(λ̂K − σ̂2)2

λ̂K

)
(24)
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with σ̂2 = 1
N−K tr(D̂n).

The WLS solution to (22) is given by [35,36,38]:

ĉWLS =
(

F̂HŴF̂
)−1

F̂HŴĝ. (25)

It can be seen that (25) cannot be used directly because Ŵ depends on c; thus, an
initial value of c needs to be found. The following steps summarize PUMA for TDE:

1. Initialize c with the least squares solution in (21): ĉ = ĉLS;
2. Calculate the weighting matrix Ŵ with ĉ using (11) and (23);
3. Calculate the WLS solution of ĉ, ĉWLS with (25);
4. Let ĉ = ĉWLS, and repeat Steps 2 and 3 until ‖ĉ− ĉWLS‖2 becomes stable.

It was found that 3 iterations of Steps 2 and 3 were enough to satisfy the condition in
Step 4 [36]. The time delays were estimated from (9) after finding the K roots of (12) with ĉ
obtained from the steps described above.

4. Simulated Data

In this section, the parameters used to simulate the GPR data over a simplified
debonded pavement structure are presented. They serve to compute the data covariance
matrices that are processed by the two selected TDE algorithms. In order to test the
robustness of the selected algorithms within a multipath background, three different
correlation scenarios were introduced, and two modified sub-band averaging techniques
are proposed in Appendices A and B to mitigate the influence of coherent sources.

4.1. Parameters for the Pavement Survey

As shown in Figure 1, the defected pavement was modeled as a layered structure
in which the debonding (Layer 2) was a thin layer with relative permittivity εr2 = 10
embedded between Layer 1 and Layer 3, with relative permittivities εr1 = 4 and εr3 = 7,
respectively. The pavement structure was probed with an air-coupled step-frequency GPR,
of which the pulse was modeled as a Ricker pulse with processed bandwidth B = 3 GHz
([0.7− 3.7] GHz) and fc = 2.2 GHz as the central frequency. N = 150 frequency samples
were considered in the data vector. The noise was assumed to be white Gaussian. The
thickness of Layer 1 was taken as d1 = 7 cm, and that of Layer 3 was considered infinite. In
the RMSE versus SNR simulations, the debonding region was set to d2 = 0.5 cm; thus, the
times of arrival associated with the backscattered echoes from the top surfaces of Layer 1,
the debonding region, and Layer 3 were [τ1, τ2, τ3] = [2.0, 2.9, 3.0] ns, respectively. The
amplitudes of the backscattered echoes from Layer 1, the debonding, and Layer 3 were
found to be s1 = −0.333, s2 = −0.200, and s3 = 0.075, respectively, from the Fresnel
equations. Figure 2 displays the shape of the Ricker pulse and the noiseless simulated
signals over the debonded (d2 = 0.5 cm) and the healthy areas.

Layer 1

Layer 3

Layer 2 (Debonding)

air

emitted
signal

received signals

cm

Figure 1. Layered pavement structure with debonding (on the left).
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Figure 2. (a) Ricker pulse in the frequency domain with B = 3 GHz; (b) noiseless simulated signals
over the debonded (d2 = 0.5 cm) and the healthy regions of the pavement structure shown in Figure 1.

To test the time resolution capability of the selected TDE algorithms in Section 5, the
debonding thickness d2 was varied from 0.05 cm to 3.97 cm, corresponding to a variation
of B∆T2 from 0.03 to 2.51, with ∆T2 = τ3 − τ2. Conventional FFT-based methods can easily
resolve echoes when B∆T ≥ 1, but they fail to detect overlapping echoes, i.e., B∆T < 1.

4.2. Correlation Scenarios

The two selected algorithms were performed on the simulated data covariance matrix
in (3). To test the robustness of the algorithms, the following three simulation scenarios
were considered by varying the correlation coefficients in the source covariance matrix Γs
in (3), which is defined for three echoes as follows:

Γs =

 |s1|2 ρ12|s1||s2| ρ13|s1||s3|
ρ∗12|s1||s2| |s2|2 ρ23|s2||s3|
ρ∗13|s1||s3| ρ∗23|s2||s3| |s3|2

 (26)

where sk with k = {1, 2, 3} are the amplitudes of the echoes and ρij are the correlation
coefficients between the ith and jth echoes (with i = {1, 2, 3}, j = {1, 2, 3}, i 6= j).

4.2.1. Scenario 1: Uncorrelated Echoes

This scenario investigated the best performance of the selected algorithms by assuming
that the 3 backscattered echoes were fully uncorrelated. This correlation scenario was
believed to match to the performance achieved by the Cramer–Rao bound. The full rank
data covariance matrix corresponding to this case was simulated by setting ρ12 = ρ13 =
ρ23 = 0 in (26).

4.2.2. Scenario 2: Full Correlation between Overlapping Echoes

In this scenario, the last two echoes were correlated with each other while uncorrelated
with the first one; thus, ρ12 = ρ13 = 0 and ρ23 = 1 in (26). This scenario is similar to the first
simulation carried out by Qian et al. in [35] within the scope of DOA application. It was
expected to be closer to what can be observed in practice for the GPR application under
scope, because the second and third echoes strongly overlapped.
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4.2.3. Scenario 3: Full Correlation between Echoes

In this case, the three backscattered echoes were considered to be fully correlated;
thus, ρ12 = ρ13 = ρ23 = 1, reducing the rank of the covariance matrix of sources Γs to 1.
Compared to Scenarios 1 and 2, this scenario was expected to be the closest to the GPR
experiment, where the backscattered echoes originated from the same transmitter.

4.3. Computed Data Covariance Matrix

The signal parameters in Section 4.1 were used to compute the data covariance matrix
Γ in (3) that were processed by the two selected TDE algorithms. The noise covariance
matrix is estimated from I independent snapshots as follows:

Γ̂noise =
1
I

NNH (27)

where N = [n1, · · · , nI ] is the noise data matrix.
To mitigate the influence of coherent sources in Scenarios 2 and 3, TDE was also

performed on the modified FB (forward–backward) data covariance matrix (ΓFB
Λ ) and the

modified MSSP (modified spatial smoothing processing) data covariance matrix (ΓMSSP
Λ ),

which are detailed in Appendices A and B, respectively. Both matrices rely on the well-
known FB and MSSP sub-band averaging techniques [41,42]. The two proposed techniques
avoid some limitations of the conventional FB and MSSP techniques when they are applied
to the GPR data model in (2).

FB applies the averaging technique only once over the whole GPR bandwidth in
both the forward and backward directions. For MSSP, the averaging technique was per-
formed over overlapping frequency sub-bands of size L. According to [3], MSSP performs
best when the effective bandwidth ratio L/N is between 80 % and 90 %. In this paper,
L/N = 80 % was chosen.

5. Results

In this section, the performance of the proposed PUMA algorithm is compared to
root-MUSIC for the three correlation scenarios introduced in the previous section.

5.1. Evaluation Criteria

The selected algorithms were compared in terms of the root-mean-squared error
(RMSE) versus the signal-to-noise ratio (SNR), the RMSE versus B∆T2, and average com-
putational time. The RMSE was focused on the two overlapping echoes to expect more
sensitive results, and it is computed as follows:

RMSE =

(
1
2I

3

∑
k=2

I

∑
i=1

(τ̂k,i − τk)
2

)1/2

(28)

where τ̂k,i is the kth time delay estimate obtained from the ith test and τk is the true kth time
delay. I = 100 is the number of Monte Carlo tests. For this application, the SNR is defined
as the ratio between the sum of the squared magnitude of the two overlapping echoes to
that of the noise power:

SNR =
|s2|2 + |s3|2

σ2 . (29)

5.2. Scenario 1: Uncorrelated Echoes

Figures 3 and 4 show the RMSE versus the SNR and the RMSE versus B∆T2 plots,
respectively. It can be seen from Figure 3 that root-MUSIC is more robust to noise than
PUMA. At SNRs ≥ 10 dB, the performance of PUMA approaches that of root-MUSIC.
From Figure 4, it can be concluded that the selected algorithms can successfully resolve the
two overlapping echoes from the debonding with root-MUSIC having better resolution
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capabilities than PUMA for SNR = 25 dB. The RMSE plots of root-MUSIC are used as the
benchmark in the next scenarios.

-10 0 10 20 30 40

SNR(dB)

10
-6

10
-4
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10
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R
M
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n
s
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Figure 3. RMSE versus SNR, K = 3, all echoes uncorrelated (Scenario 1), N = 150, B = 3 GHz.
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Figure 4. RMSE versus B∆T2, Scenario 1, SNR = 25 dB, N = 150, B = 3 GHz.

5.3. Scenario 2: Full Correlation between the Overlapping Echoes

The two selected algorithms were successively applied on the data covariance matrix
in (3) and on the FB data covariance matrix ΓFB

Λ defined in (A6). During the processing
of the former and the latter, (8) and (14) were computed using the pulse matrix Λ in (2)
and ΛFB derived from (A4), respectively. The RMSE versus the SNR and the RMSE versus
B∆T2 plots are shown in Figures 5 and 6, respectively.

As expected, root-MUSIC failed to work on the covariance data matrix in (3), because
it had a reduced rank equal to two. By contrast, PUMA succeeded in TDE for SNRs≥ 20 dB,
as shown in Figure 5, and likely achieved the best performance at a very high SNR.

The FB-root-MUSIC and FB-PUMA approach had the best performance, with FB-
root-MUSIC performing better than FB-PUMA. The former and the latter outperformed
root-MUSIC and PUMA because forward–backward averaging restored the rank of Γs. It is
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worth noticing that under this scenario, the performance of PUMA in [35] corresponds to
that of FB-PUMA in our paper.

The time resolution of both algorithms is displayed in Figure 6. Figure 6 shows that
only PUMA can separate the overlapping echoes, i.e., for B∆T2 < 1, when the algorithms
are performed on the data covariance matrix. The time resolution of PUMA and root-
MUSIC improved once they were applied to ΓFB

Λ . At B∆T2 = 0.3 (i.e., 0.5 cm), FB-PUMA
and FB-root-MUSIC showed similar performance, and they both outperformed PUMA and
root-MUSIC. However, the ultimate time resolution stayed lower than the one achieved
with fully uncorrelated sources.
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Figure 5. RMSE versus SNR, K = 3; the 2 overlapping echoes are fully correlated with each other,
but uncorrelated with the surface echo (Scenario 2).
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Figure 6. RMSE versus B∆T2, Scenario 2, SNR = 25 dB.

5.4. Scenario 3: Full Correlation between Echoes

As for Scenario 2, PUMA and root-MUSIC were successively applied on the data
covariance matrix in (3), the FB data covariance matrix ΓFB

Λ in (A6), and finally, the MSSP
data covariance matrix ΓMSSP

Λ in (A19). For MSSP, (8) and (14) were computed using ΛMSSP
derived from (A17).
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Figures 7 and 8 plot the RMSE of the selected algorithms versus the SNR and B∆T2,
respectively. The performance of root-MUSIC is not plotted because it does not work in
the presence of correlated sources. As shown in Figure 7, FB-root-MUSIC failed to work
because the FB averaging technique can handle at most two correlated sources. FB-PUMA
worked for SNRs > 6 dB, thus improving the performance of PUMA, which is limited to
SNRs > 22 dB. MSSP-PUMA and MSSP-root-MUSIC had a similar performance, and they
both outperformed FB-PUMA, FB-root-MUSIC, and PUMA because ΓMSSP

Λ was of full rank.
Surprisingly, MSSP-PUMA and MSSP-root-MUSIC performed better than the reference
algorithm at SNRs < 10 dB, and MSSP was believed to improve the robustness to noise
with its sub-band average.
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Figure 7. RMSE versus SNR, K = 3, fully correlated echoes (Scenario 3).
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Figure 8. RMSE versus B∆T2, Scenario 3, SNR = 25 dB.

Figure 8 shows that MSSP-PUMA and MSSP-root-MUSC outperformed FB-PUMA,
PUMA, and FB-root-MUSIC when B∆T2 ≤ 0.3 at an SNR of 25 dB. The “bumps” observed
were due to the oscillations of the effective correlation coefficients obtained after the MSSP
sub-band averaging technique. The magnitude of the “bumps” was smaller for PUMA
owing to a better robustness against correlation.

Finally, in Figure 9, the average computational time of PUMA and root-MUSIC for
SNR = 25 dB is plotted against the size of the data vector N. N was varied from 50 to
300 samples, and the computational time at each number of samples was averaged over
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100 runs. The computational time increased with respect to N for both algorithms, with
PUMA being about 10-times faster than root-MUSIC. All the simulations were carried out
on a PC with Intel Core i5, 4 GB RAM, and 2.5 GHz.

50 100 150 200 250 300

Number of frequency Samples (N)

10
0

10
1

10
2

10
3

10
4

A
.
 
c
o
m
p
u
t
a
t
i
o
n
a
l
 
t
i
m
e
 
(
m
s
)

PUMA

root-MUSIC

Figure 9. Average computational time versus the number of samples (N), fully uncorrelated signals,
K = 3, SNR = 25 dB.

6. Conclusions

In this paper, PUMA was successfully adapted to the processing of GPR data for time
delay estimation by directly taking into account the radar pulse form. Two important
modified sub-band averaging techniques were introduced. The simulation results illus-
trated the use of PUMA for the detection of thin debondings within pavement structures
from air-coupled GPR data. The performance of the proposed method was compared
with the classical root-MUSIC method. In terms of robustness against noise and time
resolution capability, PUMA achieved a similar performance to that of the reference in
the ideal scenario, i.e., fully uncorrelated echoes, and lower performance compared to the
reference in more realistic scenarios with correlated echoes. Besides, PUMA was found
to be about 10-times faster than root-MUSIC. In any case, the achieved time resolution
clearly proves that PUMA can meet the needs of the application under scope by detecting
subcentimeter-thick debondings within a pavement structure. However, the simulation
results suggested that the PUMA algorithm can be further enhanced in the case of fully
correlated echoes, and this can be done by extending the PUMA algorithm to directly
exploit the properties of the rank-deficient source covariance matrix. In the near future, it
is planned to test PUMA on the existing field database in [43].
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Appendix A. Modified FB Covariance Matrix

In order to perform FB averaging, the covariance matrix in (3) has to be whitened. The
whitened covariance matrix, Γw, is defined from (3) as:

Γw = Λ−1ΓΛ−H = AΓsAH + σ2Λ−1Λ−H . (A1)

Using JNA∗ = AΨ, with:

Ψ = diag
(

ej2π( f1+ fN)τ1 , · · · , ej2π( f1+ fN)τK
)
(K,K)

,

the FB averaging of Γw can be written as [41]:

ΓFB
w =

1
2
(Γw + JNΓ∗wJN)

= AΓFB
s AH + σ2ΣFB , (A2)

where:

ΓFB
s =

(
Γs + ΨΓ∗s ΨH)

2
,

and:

ΣFB =
(Λ−1Λ−H + JNΛ−1Λ−HJN)

2

= diag
(

1
2|ẽ( f1)|2

+
1

2|ẽ( fN)|2
,

1
2|ẽ( f2)|2

+
1

2|ẽ( fN−1)|2

, · · · ,
1

2|ẽ( fN)|2
+

1
2|ẽ( f1)|2

)
(A3)

are matrices with dimensions (K, K) and (N, N), respectively. ΓFB
s is the FB covariance

matrix of the source vector [41], and ΣFB is the noise metric obtained after FB averaging. Let:

Λ−1
FB = (ΣFB)

1/2 (A4)

where ΛFB is the modified pulse matrix with dimension (N, N). Thus, the noise metric,
ΣFB, can be rewritten as:

ΣFB = Λ−1
FB Λ−H

FB . (A5)

As opposed to the general assumption in the literature, the FB noise covariance matrix
in (A2) corresponds to a colored noise, which limits the performance of the TDE algorithms.

To recover the ideal noise metric and then achieve optimal TDE performance, the
following modified FB data covariance matrix is proposed:

ΓFB
Λ = ΛFBΓFB

w ΛH
FB

= ΛFBAΓFB
s AHΛH

FB + σ2IN . (A6)

It is easily seen that the final formalism of ΓFB
Λ in (A6) is similar to the initial formalism

of the data covariance matrix in (3).

Appendix B. Modified MSSP Covariance Matrix

Dividing the total bandwidth ( fN − f1) into M overlapping sub-bands of L frequencies
each, with M = N − L + 1, the data covariance matrix of the mth sub-band is written as:

Γm = ΛmAmΓsAH
m ΛH

m + σ2IL, m = 1, 2, · · · , M (A7)
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where:
Λm = diag(ẽ( fm), ẽ( fm+1), · · · , ẽ( fm+L−1)), (A8)

and:
Am = [am(τ1), am(τ2), · · · , am(τK)] (A9)

are matrices with dimensions (L, L) and (L, K), respectively, with:

am(τk) = e−j2π fmτk dL(τk), 1 ≤ k ≤ K

where dL(τk) =
[
1, e−j2π∆ f τk , · · · , e−j2π(L−1)∆ f τk

]T
.

Equation (A9) can be rewritten as:

Am = ÃLGm (A10)

where ÃL and Gm are (L, K)- and (K, K)-dimensional matrices, respectively, defined as:

ÃL = [dL(τ1), dL(τ2), · · · , dL(τK)],

and:
Gm = diag(e−j2π fmτ1 , e−j2π fmτ2 , · · · , e−j2π fmτK ). (A11)

Using (A10), (A7) can be rewritten as:

Γm = ΛmÃLGmΓsGH
m ÃH

L ΛH
m + σ2IL. (A12)

The whitened covariance matrix in the mth sub-band is defined as:

Γw,m = Λ−1
m ΓmΛ−H

m = ÃLGmΓsGH
m ÃH

L + σ2Λ−1
m Λ−H

m . (A13)

According to [42] and using JLÃ∗L = ÃLΨL, with:

ΨL = diag
(

ej2π( f1+ fL)τ1 , · · · , ej2π( f1+ fL)τK
)
(K,K)

,

MSSP is performed on the M overlapping sub-bands as follows:

ΓMSSP
w =

1
2M

M

∑
m=1

(
Γw,m + JLΓ∗w,mJL

)
= ÃLΓMSSP

s ÃH
L + σ2ΣMSSP (A14)

where:

ΓMSSP
s =

(
1

2M

M

∑
m=1

GmΓsGH
m + ΨLG∗mΓ∗s GT

mΨH
L

)
, (A15)

and:

ΣMSSP =
1

2M

M

∑
m=1

(
Λ−1

m Λ−H
m + JLΛ−1

m Λ−H
m JL

)
= diag

(
1

2M

M

∑
m=1

(
1

|ẽ( fm)|2
+

1
|ẽ( fm+L−1)|2

)
,

1
2M

M

∑
m=1

(
1

|ẽ( fm+1)|2
+

1
|ẽ( fm+L−2)|2

)
,

· · · ,
1

2M

M

∑
m=1

(
1

|ẽ( fm+L−1)|2
+

1
|ẽ( fm)|2

))
(A16)
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are matrices with dimensions (K, K) and (L, L), respectively. ΓMSSP
s is the MSSP data

covariance matrix of the source vector [42], and ΣMSSP is the noise metric obtained after
applying MSSP. Let:

Λ−1
MSSP = (ΣMSSP)

1/2 (A17)

where ΛMSSP is the modified pulse matrix with dimension (L, L). Therefore, the noise
metric, ΣMSSP, can be written as:

ΣMSSP = Λ−1
MSSPΛ−H

MSSP .

Hence, (A14) can be rewritten as follows:

ΓMSSP
w = ÃLΓMSSP

s ÃH
L + σ2Λ−1

MSSPΛ−H
MSSP . (A18)

Given that the noise covariance matrix of ΓMSSP
w is colored, in order to recover the ideal

noise metric and achieve the optimal performance of the TDE algorithms, the following
modified MSSP data covariance matrix, which whitens the noise and takes the shape of the
radar pulse into account, is proposed:

ΓMSSP
Λ = ΛMSSPΓMSSP

w ΛH
MSSP = ΛMSSPÃLΓMSSP

s ÃH
L ΛH

MSSP + σ2IL. (A19)

It can be observed that the formalism of the modified MSSP covariance matrix, ΓMSSP
Λ ,

is similar to that of the data covariance matrix, Γ, in (3).
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