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Abstract: A novel approach allowing the production of electrical energy by an advanced oxidation
process is proposed to eliminate organic micropollutants (MPs) in wastewaters. This approach is
based on associating the Galvano–Fenton process to the generation of electrical power. In the previ-
ous studies describing the Galvano–Fenton (GF) process, iron was directly coupled to a metal of more
positive potential to ensure degradation of organic pollutants without any possibility of producing
electrical energy. In this new approach, the Galvano–Fenton process is constructed as an electro-
chemical cell with an external circuit allowing recovering electrons exchanged during the process. In
this study, Malachite Green (MG) dye was used as a model of organic pollutant. Simultaneous MG
degradation and electrical energy production with the GF method were investigated in batch process.
The investigation of various design parameters emphasis that utilization of copper as a low-cost
cathode material in the galvanic couple, provides the best treatment and electrical production perfor-
mances. Moreover, these performances are improved by increasing the surface area of the cathode.
The present work reveals that the GF process has a potential to provide an electrical power density
of about 200 W m−2. These interesting performances indicate that this novel Energy-from-Waste
strategy of the GF process could serve as an ecological solution for wastewater treatment.

Keywords: Galvano–Fenton process; new energy sources; micropollutants; ferrous scrap recovery;
electrochemical wastewater treatment

1. Introduction

The worldwide contamination of surface water, groundwater, and drinking water
with organic micropollutants (MPs) such as cosmetics, pesticides, pharmaceuticals, steroid
hormones . . . , poses potential risks for human health and the ecosystem [1]. Since MPs are
resistant to biological degradation, most wastewater treatment plants cannot effectively
eliminate them from the treated effluents and cannot prevent them from entering the
environment [2]. Therefore, efficient and inexpensive wastewater treatment processes
for eliminating MPs are needed. Different methods have been proposed to remove MPs
from aqueous solution reviewed in several papers [3,4]. Among these mentioned methods,
the destruction of MPs by Fenton reagent is a promising option due to its efficiency and
operational simplicity [5]. In Fenton treatment, hydroxyl radical (•OH), a strong oxidant of
organic pollutants, is produced in the aqueous solution with a mixture of ferrous ion and
hydrogen peroxide as expressed in Equation (1).

Fe2+ + H2O2 → Fe3+ + •OH + OH− (1)
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Other variants of the Fenton process, such as electro-Fenton [6], photo-Fenton [7], and
photo-electro-Fenton [8], have a great efficiency in destroying organic pollutants. Indeed,
the different forms of energy input enhance the rate of Fenton’s reaction and therefore the
degradation of organic pollutants. However, the major drawbacks of these processes are
their need for continuous energy consumption, which increases equipment and operating
costs. These challenges have been addressed in several recent studies [9,10]. On the
other hand, the classical Fenton process requires no additional energy. It is a relatively
economical method characterized by its lower equipment costs. However, it requires
continuous injection of excessive amounts of ferrous ions during treatment [11]. Moreover,
direct use of ferrous salt catalyst results in rapid and useless consumption of Fe2+ as well
as overload of ferric ions in the treatment medium [12,13]. Therefore, several studies have
reported the use of zero valent iron (ZVI) as the heterogeneous source of Fe2+ ions in the
Fenton process [14,15]. In this technology, ZVI metal in contact with aqueous solution
corrodes spontaneously producing ferrous ions [16]. The oxidation of ZVI metal in acidic
condition, required in Fenton’s reaction, is usually linked to the reduction of H+ producing
H2 [17]. The global mechanism associated to ZVI-based technology may be represented by
Equations (1) and (2).

Fe0 + 2H+ → Fe2+ + H2 (2)

This approach is a promising alternative since it allows both to overcome the disad-
vantages associated with Fe2+-based Fenton processes and to reutilize scrap iron residues
or byproduct from other industries. Indeed, recent studies have reported the use of scrap
zero-valent iron (SZVI) as heterogeneous catalysts in the Fenton process to eliminate suc-
cessfully organic pollutants [18,19]. Therefore, the use of ZVI offers the possibility of
reducing treatment costs while recovering waste material. We have recently patented an
advanced Fenton process (called Galvano–Fenton (GF)), which assist the Fenton reaction
by a galvanic corrosion of iron plates [20]. This new process ensures effective degradation
of organic pollutants by continuous in situ production of catalyst without any energy
consumption [21,22]. Herein, we describe a new approach to convert the Galvano–Fenton
process to a source of electrical power, which increases the efficiency of the Fenton reaction
and reduces running costs. In the previous studies describing Galvano–Fenton process,
iron was directly coupled to a metal of more positive potential to accelerate iron corrosion
without any possibility of producing electrical energy. In this new approach, the Galvano–
Fenton process is constructed as an electrochemical cell with an external circuit allowing
recovering electrons exchanged during the process (Figure 1). Iron is contacted with a
more noble metal that acts as a cathode and the more negative iron metal becomes an
anode. In this galvanic cell, iron anode corrodes at an accelerated rate and the cathode
is protected from corrosion [23]. Therefore, iron metal is used as a sacrificial anode and
is continuously consumed by anodic dissolution reaction, which permits to increase the
quantity of ferrous ions produced in solution. Moreover, the galvanic coupling allows
electrical energy production. Indeed, due to the driving force resulting from the potential
difference between the anode and cathode, electrons produced by iron oxidation circulate
spontaneously in the external circuit to the cathode. At this positive electrode, electrons
allow reduction of protons forming hydrogen gas. In the meantime, the flow of electrons
between both electrodes in an external resistance generates an electrical current that can be
harnessed. In the present study, malachite green (MG), a triphenylmethane dye, was used
as an organic pollutant model to investigate the effect of different operating parameters
on the performance of the GF process. MG has been extensively used as dye in textile
industries causing several health hazards [24]. Therefore, many treatment technologies
have been applied to study the degradation of MG in aqueous medium [25–27].
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Figure 1. Schematic representation of the mechanism for producing electrical energy with the
Galvano–Fenton process.

2. Results and Discussion
2.1. Effect of Cathode Materials on GF Process Performances

Some variables such as corrosion potentials of anode and cathode, as well as their
relative surface areas, can affect the rate of the galvanic corrosion [23] and therefore the per-
formance of GF process in terms of pollutant degradation and electrical energy production.
First, the effect of cathode material on performance of GF process was examined. In this
study, graphite (C), stainless steel (SS), and copper (Cu) electrodes were used as cathodes,
since these materials are more noble than iron and easily available at reasonable prices. The
degradation of MG (10 mg·L−1, 21.57 µM) in aqueous solutions containing 2 mM H2O2
acidified with sulfuric acid at an initial pH of 3.00, was conducted in a batch reactor in the
presence of an iron plate (6 cm2 of immersed surface) electrically connected to a cathode
of the same surface (Figure S1). Figure 2a shows that galvanic coupling increases initial
degradation rate of MG for the GF process obtained with the different cathode materials
(Fe–Cu, Fe–SS, and Fe–C) compared to the ZVI-based process without galvanic coupling
(Fe). Data inspection reveals that MG degradation occurs more rapidly at the beginning of
treatment process and thus, 5.8, 10.6, 11.3, and 19.3 µM·min−1 initial degradation rates are
obtained for the Fe, Fe–C, Fe–SS, and Fe–Cu processes, respectively (Table S1). Although
oxidation capacity is maximum (1/b~1) for all processes, 100% decolorization of MG is
attained with different durations of 10, 12, 15, and 20 min for the Fe–Cu, Fe–SS, Fe, and
Fe–C processes, respectively. These results indicate that copper material is the best cathode
for degradation performances in the GF process.
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The maximal power density (Pmax) was determined from power curves of each gal-
vanic couple during the treatment in order to compare their electrical energy performances
(Figure 2b). Pmax are different for the three couples. The GF process with the Fe–SS couple
produces the lowest Pmax of 18 mW·m−2. The Fe–C couple provides a Pmax of 80 mW·m−2

while the Fe–Cu couple produces the best Pmax of 175 mW·m−2. An Evans diagram was
plotted for each galvanic couple (Figure 3). This potential–current density diagram shows
that the best cathode material to be connected to iron is graphite (C) since it provides the
higher corrosion current (Icorr = 27 µA·cm−2) with more positive galvanic corrosion poten-
tial (Ecorr = −246 mV/AgCl/Ag). Moreover, the Fe–Cu and Fe–SS galvanic couples provide
lower Icorr values (Fe–Cu: Icorr = 15 µA·cm−2 and Fe–SS: Icorr = 7 µA·cm−2) with more nega-
tive Ecorr values (Fe–Cu: Ecorr =−325 mV/AgCl/Ag and Fe–SS: Ecorr = −360 mV/AgCl/Ag)
indicating that iron corrodes at a lower rate when it is connected to them. These results dis-
agree with those resulting from the study of MG degradation and electrical energy production
with the Fe–C couple. This is probably due to the reaction of hydroxyl radicals during the
treatment with the carbonaceous cathode to form simple olefinic and acetylenic hydrocarbons,
as previously reported [28]. This reaction leads to the consumption of free radicals by the
carbonaceous cathode during the treatment and the loss in its electrochemical activity.
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2.2. Comparison of Two Different GF Process Configurations

Degradation performances of GF process were examined using 10 mg·L−1 of MG
solutions under two different conditions (GF-A and GF-B) that can be used for energy
production before degradation process (GF-A) or during degradation process (GF-B). In
the first condition (GF-A), the iron anode and copper cathode were removed from solutions
after different immersion times and H2O2 was added at a final concentration of 2 mM
to initiate the degradation reaction. In the second condition (GF-B), the electrodes were
left immersed in solutions during the degradation reaction started by adding H2O2 after
immersion times (Figure S2). To carry out this study, the concentration of total dissolved
iron ions produced by galvanic corrosion of an iron plate (6 cm2 of immersed surface)
electrically connected to a copper cathode of the same surface in aqueous solutions (100 mL)
at an initial pH of 3.00, was determined for different immersion times. Thus, 2.7, 8, 11.8,
and 17.8 mg·L−1 of total dissolved iron concentrations are obtained for 1, 5, 10, and
20 immersion times, respectively. Degradation performances of both GF process conditions
were compared to MG degradation obtained by the classical Fenton process (CF) in the
same operating conditions for Fe2+ concentrations equivalent to the total dissolved iron
ions determined for the four immersion times.
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Figure 4 shows the MG degradation in the three comparative systems. As compared to
the classical Fenton technique, the GF process not only leads to remarkable improvements
in the initial degradation rate of MG in both conditions GF-A and GF-B, but also increases
its maximum oxidation capacity (Table S2). In the CF process, a rapid initial MG decay
is observed in the first minute, followed by a much slower degradation stage, which is
due to the depletion of Fe2+ catalyst in the solution. The increase of the initial concentra-
tion of Fe2+ ions, increases both the initial degradation rate and the maximum oxidation
capacity of CF process. Similar decay curves are obtained with GF-A process but with
faster initial degradation rates and higher maximum degradation capacities for equivalent
concentrations of total dissolved iron ions. The differences in degradation performances
between CF and GF-A processes may be due to the formation of more reactive or more
stable iron dissolved species in the case of ZVI-based Fenton, as previously reported [29,30].
The GF-B condition shows a faster and more complete MG degradation versus the GF-A
condition for 1 min of immersion time. It indicated that the presence of anode and cathode
electrodes during the treatment accelerate MG degradation. This result could be explained
by the galvanic corrosion of ZVI electrode during the treatment that could enhance the
release of total dissolved iron species. The presence of electrodes could also regenerate
Fe2+ catalyst by reducing Fe3+ ions on copper cathode or on iron surface as previously
reported [31,32]. For longer immersion times, the GF-A and GF-B conditions show similar
degradation performances. By comparing both conditions, the longer the immersion time,
the faster degradation of MG and the less the kinetics dependent on the presence of the
electrodes. Power curves plotted in both conditions (Figure 5) show an important decrease
in the maximal power density of GF process from 40 W·m−2 during the treatment (GF-B) to
175 mW·m−2 before the degradation process (GF-A). This result indicates that the Fenton
reaction negatively affects the electrical production process, which involves a series of
irreversible phenomena, such as activation overpotential due to electrochemical kinetics
on the electrode surfaces, ohmic overpotentials associated with ohmic losses in both the
ionic and electronic conductor, and concentration overpotentials due to the mass transfer
limitations. Further study of the GF process based on individual anodic and cathodic com-
partments connected by a salt bridge will help us to understand the impact of the Fenton
reaction on electrical energy production. This study shows that the GF-A configuration
allows to produce more electrical energy but extends the duration of the treatment owing
to long immersion times required to reach a sufficient concentration of Fe2+. The GF-B
configuration allows for a reduction in the treatment duration but produces less electrical
energy. Both configurations offer better degradation performances than classical Fenton
and conventional ZVI-based Fenton. Moreover, electrical energy performances of the GF
process obtained with both the GF-A and GF-B configuration are higher than electrical
performances of microbial fuel cell technology, another electrochemical technology using
bacteria to produce electrical energy from biodegradable organic molecules in wastewater
with maximum power comprised between 1 mW·m−2 and 1 W·m−2 [33,34]. The electrical
energy generated by the GF process can be harvested and exploited using an external
circuit based on electronic power converters and digital processing devices that extract the
maximum amount of electrical power and increase the voltage as needed.

2.3. Effect of Anode/Cathode Area Ratio on GF Process Performances

Another important factor in electrical energy obtained with galvanic cell is the effect
of the surface area ratio of anode and cathode that directly affects galvanic current [23].
The Evans diagram indicates that the copper cathode is the rate-limiting electrode during
galvanic corrosion. Thus, the larger the cathode compared with the anode, the more
proton reduction can occur and the greater the galvanic current. To study the effect of
the surface area ratio on GF process, the surface of copper area was changed from 6 to
36 cm2, with a constant anode surface area of 6 cm2. Degradation performances of the
GF process for these copper/iron surface ratios, were studied in batch reactors, using
300-mL solutions of 10 mg·L−1 of MG at an initial pH of 3.00 in the presence of 2 mM H2O2
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(Figure S3). As shown in Figure 6a, increasing the copper/iron surface ratio improves
considerably the initial rate of MG degradation. Thus, initial degradation rate increases
from 1.7 to 6 µM·min−1 by changing the surface ratio from 1 to 6, reducing the duration
of 100% MG decolorization from 15 to 5 min (Table S3). This is very likely to result from
the enhancement of the galvanic corrosion rate, and hence, the concentration increases of
total dissolved iron released in solution. Power curves plotted during the treatment in the
presence of H2O2 (Figure 6b) show an important increase in the maximal power density of
GF process from 175 mW·m−2 to 45 W·m−2 by increasing the cathode surface from 6 to
36 cm2. This sharp increase in power cannot be only due to the rise of corrosion current
density. Moreover, as shown in Figure 6c, electrical energy production of electrochemical
cells in the absence of Fenton reaction (without H2O2) is higher. Thus, 40 and 200 W·m−2

of Pmax are obtained with 6 and 36 cm2 of cathode areas, respectively. In this last case,
the increase of Pmax is only due to the rise of corrosion current density since it is directly
proportional to the cathode surface. In what follows, the effect of operating parameters on
the performance of GF process will be analyzed with GF-A configuration, since it allows to
produce more electrical energy.
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(b) Power curves of the GF process obtained with different Cu/Fe area ratios during degradation
process (GF-B configuration), (c) Power curves of Fe/Cu couple without the Fenton reaction for
different area ratios (GF-A configuration).

2.4. Effect of pH on GF Process Performances

The effect of pH on the performance of the GF process was studied under the GF-A
configuration at a pH range from 2 to 7. The pH of the solution was adjusted to the desired
level by using sulfuric acid. The effect of pH on energy production was studied before
degradation in batch reactors, by galvanic corrosion of an iron plate (6 cm2 of immersed
surface) electrically connected to a copper cathode (36 cm2 of immersed surface) in 300-mL
solutions of 10 mg·L−1 MG. Degradation performances were studied by removing iron
anode and copper cathode from solutions after 5 min of immersion time and by adding H2O2
at a final concentration of 2 mM to initiate the degradation reaction. As shown in Figure 7a,b,
the maximum power density (200–280 mW·m−2) and the maximum initial degradation rate
of MG (20–77 µM·min−1) are obtained at a lower acidic pH range (2–3). Increasing the pH
range, from 4 to 7, considerably decreases the maximal power density (0.1–10 mW·m−2) and
the initial degradation rate (0.4–2.3 µW·m−2). This sharp decrease in power and degradation
efficiency, is probably due to the transformation of ferric and ferrous ions into insoluble
amorphous hydroxides at higher pH. Precipitation of amorphous hydroxides can lead to
electrode passivation. The kinetic pathways of iron electrode transformations in the GF
process and the mechanistic of in situ iron catalyst formation were described in a previous
work [21]. In addition, the increase in pH slows down the proton reduction kinetics at
the cathode. Indeed, hydrogen reduction rates are faster in acidic environments [35]. At
higher pH, the corrosion current density could decrease since it is directly proportional to
the hydrogen reduction rate at the cathode surface. Like the Fenton oxidation, the optimum
initial pH of MG degradation for the GF process ranges between 2 and 3. At higher pH,
hydrogen peroxide is unstable and may decompose losing its oxidation ability [36]. Overall,
it can be concluded that the maximum efficiency of the GF process toward MG degradation
can be achieved at pH 2–3.
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2.5. Effect of Temperature on GF Process Performances

The effect of temperature on energy production and MG degradation rate of GF process
was studied under the GF-A configuration at a temperature range from 10 to 40 ◦C. The
temperature of MG solutions (300-mL solutions of 10 mg·L−1 MG) was adjusted in batch
reactors. Energy production was studied by immersion of an iron plate (6 cm2 of immersed
surface) electrically connected to a copper cathode (36 cm2 of immersed surface) in solutions.
Degradation performances were studied by removing electrodes from solutions after 5 min
of immersion time and by adding H2O2 at a final concentration of 2 mM. According to the
Figure 8a, maximum energy production is obtained at 25 ◦C (Pmax = 220 mW·m−2). The
maximum power density, Pmax, decreases to 40 mW·m−2 by decreasing the temperature
to 10 ◦C. While the rise in temperature from 25 to 30 ◦C decreases Pmax to 90 mW·m−2.
From 35 ◦C, Pmax reaches a threshold value of 65 mW·m−2. A general explanation of
observed temperature effects on energy production cannot be made because of the variety
of influences that temperature has on several components of the galvanic system. Energy
production depends on the redox reaction rates, galvanic potential, and conductivity of
both ionic electrolyte solution and metallic electrodes. Each of these parameters responds to
temperature change. With rise in temperature the overvoltage for hydrogen reduction on
cathode diminishes and the rate of galvanic corrosion increases [37]. Ionic conductivity of the
electrolyte solution also increases with increase of temperature [38]. One or both parameters
are probably predominant in the energy production process at low temperature, leading to
the increase of Pmax with the rise in temperature from 10 to 25 ◦C. The electrical conductivity
of metallic electrodes decreases with increase of temperature [39]. Increasing temperature
also accelerates self-corrosion rate of electrodes [40]. The galvanic potentials change with
temperature and reversal of polarity is possible, if the potentials of the coupled metals
change unevenly enough [41]. The way in which each of these units responds to temperature
change, could explain the decrease in energy production for temperatures above 25 ◦C.
Figure 8b shows the extent of MG degradation as function of time at different temperatures.
It is clear that the rate of MG degradation increases by increasing temperature. At 10 ◦C,
the degradation rate is much lower compared with the values at higher temperatures.
After 15 min of degradation time, MG decolorization at 10 ◦C was about 57%, while 100%
decolorization was achieved at higher temperatures. These results indicate that initial
concentration of Fe2+ ions at 10 ◦C was much lower compared with higher temperatures
because of decrease in galvanic corrosion rate. Based on these results, it can be concluded
that the maximum efficiency of the GF process can be obtained at 25 ◦C.
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2.6. Effect of H2O2 Concentration on GF Process Performances

The effect of H2O2 concentration on MG degradation rate of the GF process was
studied under GF-A condition at 25 ◦C. In a batch reactor, an iron plate (6 cm2) elec-
trically connected to a copper cathode (36 cm2) were immersed in 300-mL solutions of
10 mg·L−1 MG. Degradation performances were studied by removing electrodes from
solutions after 5 min of immersion time and by adding H2O2 at a final concentration range
from 0.5 to 50 mM. Figure 9 shows MG degradation rates as a function of time at different
initial H2O2 concentrations, which increases with increasing H2O2 concentration from
0.5 to 3 mM. In this concentration range, 98% decolorization is achieved after less than
10 min. For higher H2O2 concentrations, MG degradation rate decreases leading to 99%,
98%, and 88% decolorization for 5, 10 and 50 mM, respectively, after 1 h. An optimal
H2O2 concentration has already been reported in the Fenton oxidation of dyes [42,43].
Indeed, for high concentrations, H2O2 excess acts as a scavenger of hydroxyl radical (•OH),
resulting in less dye degradation. For these conditions of copper/iron surface ratio and
iron surface/solution volume ratio, the maximum efficiency of GF process can be obtained
at the optimal H2O2 concentration of 3 mM.
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2.7. Effect of Initial MG Concentration on GF Process Performances

The effect of initial dye concentration on the degradation efficiency of MG dye was
studied under GF-A configuration according to the same experiment described to study
the effect of H2O2 concentration. H2O2 was added at a final concentration of 2 mM.
Figure 10 shows MG degradation rates at five different initial MG concentrations ranging
from 10 to 50 mg·L−1. It can be seen that the rate of MG degradation decreases when
the initial concentration of the dye increases, which is mainly due to a higher number of
dye molecules available for reaction. Thus, degradation efficiency decreases considerably
with an increase in the MG concentration. Indeed, 100% decolorization of 10 mg·L−1 is
achieved after 20 min, while 100% decolorization of 20 mg·L−1 is obtained after 1 h. For
higher initial concentrations of MG, total decolorization of solutions is never achieved after
1 h, leading to 91%, 68%, and 59% decolorization of 30, 40, and 50 mg·L−1 concentrations
of MG, respectively. It can be concluded that under these experimental conditions, the
GF process can achieve total decolorization of MG solutions for concentrations below
20 mg·L−1 in less than 1 h.
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3. Materials and Methods
3.1. Materials

Reagent grade hydrogen peroxide (30 wt.% solution), iron(II) sulfate heptahydrate
(FeSO4·7H2O), sulfuric acid, sodium hydroxide, and malachite green were all purchased
from Sigma-Aldrich (Vienne, France). Iron, stainless steel, copper, and graphite plates were
purchased from GoodFellow (Lille, France).

3.2. Setup and Operation

To study the effect of cathode materials and to compare the performance of GF to
classical Fenton process, batch process experiments were carried out in a Pyrex glass reactor
(Labbox, Rungis, France) of 250 mL containing 100 mL of malachite green (10 mg·L−1).
Solutions were adjusted to pH 3 using sulfuric acid and iron(II) sulfate heptahydrate was
added for the classical Fenton study. Prior to each GF process experiment, electrodes were
mechanically polished with SiC papers up to 4000 grade and then cleaned with distilled
water and dried with warm air. All experiments were initiated by addition of a known
amount of hydrogen peroxide. The solution in the reactor was thoroughly stirred (200 rpm)
with a magnetic stirrer to ensure complete mixing. The reaction temperature was kept
constant at the room temperature (25 ◦C). A Pyrex glass reactor of 500 mL was used to
study the effect of cathode/anode area ratios.

3.3. Monitoring MG Degradation

The efficiency of MG degradation was evaluated by measuring absorbance at 619 nm
using a spectrophotometer (DR 3900, Hach-Lange, Marne La Vallée, France). The con-
centration of the MG in the reaction mixture at different reaction times was determined
by measuring the absorption intensity at λmax = 619 nm and from a calibration curve.
Prior to the measurement, a calibration curve was obtained by using the standard MG
solution with known concentrations. The decolorization percentage was calculated using
the following equation:

% Decolorization =
C0 − Ct

C0
× 100 (3)
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where C0 is the initial concentration of the dye (µM) and Ct is its concentration (µM) at any
time t (min). Spectrophotometry was applied to characterize the MG decolorization kinetics.
The kinetics study was carried out using Chu’s model expressed by Equation (4) [44].

Ct

C0
= 1− t

[p + a× t]
(4)

where a and p are two constants related to initial reaction rate and maximum oxidation
capacity, respectively. 1/p depends on the initial decolorization rate (−r0) according to
Equation (5).

(−r0) = C0 × (1/p) (5)

where 1/a represents the maximum oxidation capacity beyond which no higher degra-
dation can be achieved. The Chu’s kinetics model suitably describes the decolorization
kinetics of dyes by Fenton reaction in both homogeneous and heterogeneous systems [45].
More details on operating parameters and model kinetic parameters are described in
supporting information section.

3.4. Determination of Total Dissolved Iron Ions

The concentrations of total dissolved iron ions (the sum of ferrous ions and ferric ions)
were analyzed using the FerroVer© test purchased from Hach-Lange (Marne La Vallée,
France). This analysis was based on 1,10-phenanthroline method. The reagent in this
test procedure converts all soluble iron and most insoluble forms of iron in the sample to
soluble ferrous iron for measurement. The ferrous iron reacts with the 1–10 phenanthro-
line indicator in the reagent to form an orange color (510 nm) in proportion to the iron
concentration. DR 3900 spectrophotometer (Hach, Marne La Vallée, France) was used to
measure the wavelength and to quantify total dissolved iron ions produced by galvanic
corrosion of an iron plate (6 cm2 of immersed surface) electrically connected to a copper
cathode (6 cm2 of immersed surface) submerged in aqueous solutions (100 mL) at an initial
pH of 3.00. Figure S4 shows the concentration of total dissolved iron ions determined for
different immersion times.

3.5. Corrosion Characterization

The galvanic corrosion of metal couples was investigated by Evans diagrams plotted
using linear sweep voltammetry (LSV) utilizing a three-electrode arrangement at a scanning
rate of 10 mV·s−1 in aqueous solutions acidified with sulfuric acid at pH of 3.00. A
potentiostat OGS 500 from Origalys was used to perform electrochemical characterizations.
The metal electrodes (6 cm2) were used as working electrodes, a commercial saturated
Ag/AgCl electrode as a reference and a Pt wire electrode as an auxiliary electrode. The
geometric surface area of metal electrodes was used for calculating galvanic corrosion
current density. These diagrams allow for identification of Ecorr and icorr, where the anodic
and cathodic reactions proceed with the same rate.

3.6. Polarization Curve Measurement

The polarization curves of the GF processes were measured by LSV utilizing a two-
electrode arrangement with a potentiostat (OGS 500 from Origalys, Rillieux-la-Pape,
France). LSV was performed from the open circuit potential to 0 V using a scan rate
of 10 mV·s−1. The power was calculated by multiplying the current by the voltage. The ge-
ometric surface area of iron electrode was used for calculating power density of GF process.

4. Conclusions

In summary, a new approach to produce electrical energy in the Galvano–Fenton
process was successfully developed. Simultaneous MG degradation and electrical energy
production were investigated in a batch process. The investigation of various design pa-
rameters emphasizes that utilization of copper as a low-cost cathode material that provides
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good treatment and electrical production performances. Moreover, these performances
are improved by increasing the surface area of the cathode (220 mW·m−2). Degradation
efficiency was also investigated with the influence of process parameters including pH,
temperature, and the concentrations of H2O2 and MG dye. The optimal conditions in-
cluded a pH range of 2–3, a temperature of 25 ◦C, and an H2O2 concentration of 3 mM. The
results indicated that GF process was operative as a color degradation efficiency of 100%
attained within 30 min with initial MG concentration of 10 mg/L, and 98% with initial
MG concentration of 20 mg/L obtained after 1 h. These interesting performances indicate
that this new Energy-from-Waste approach of the GF process has promising application
potential as an advanced oxidation process for wastewater treatment, but also for scrap
iron recovering and production of electrical energy as well as chemical energy via cathodic
formation of hydrogen.

Supplementary Materials: The following are available online. Figure S1: schematic illustration
of the experience studying the performance of the GF process with different cathode materials;
Figure S2: schematic illustration of the experience studying the performance of the GF process under
two conditions in comparison with classical Fenton process; Figure S3: schematic illustration and
photos of the experience studying the effect of anode/cathode area ratio on GF process performances;
Figure S4: Total dissolved iron ions determined for different immersion times; Table S1: Chu’s
model parameters of MG degradation kinetics with GF process using different cathode materials;
Table S2: Chu’s model parameters of MG degradation kinetics with CF, GF-A and GF-B processes;
Table S3: Chu’s model parameters of MG degradation kinetics with GF process using different
cathode/anode area ratios; Table S4: Chu’s model parameters of MG degradation kinetics with GF
process in different pH.
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