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Abstract This paper addresses the power-balanced modeling of physical systems with nu-
merous degrees of freedom. The proposed approach combines statistical physics and port-
Hamiltonian formulation, to produce macroscopic power balanced systems with reduced com-
plexity. Thermodynamic variables are explicitly taken into account in the modeling to ensure
thermodynamic consistency. The method is illustrated on two applications: an ideal gas in a
thermostat, and a ferromagnet in a thermostat.
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1. INTRODUCTION

Physical modeling is concerned with the representation of
a system governed by laws of physics. An accurate physical
model provides insight into the system’s behavior, beyond
the conditions available to the experimenter.

Several physical modeling techniques have been devel-
opped over the years: see e.g. Ersal et al. (2008) for an
overview. In this paper, we consider in particular the state-
space form known as port-Hamiltonian systems (PHS)
introduced in Maschke et al. (1992); van der Schaft et al.
(2014). PHS are multi-physical (that is, mechanical, elec-
trical, thermal ... or a combination as well), and modular (a
power-conserving or dissipative interconnection assembly
of PHS is still a PHS). Most importantly, the PH formalism
structurally fulfills the physical power balance. Moreover,
numerical methods that preserve this guarantee in the
discrete-time domain are available for simulations: Falaize
and Hélie (2016). Nevertheless, simulating PHS with nu-
merous degrees of freedom can prove an issue, as it involves
very large matrices.

On the other hand, statistical physics is especially designed
to describe complex systems with a reduced number of
variables. From a collection of interacting elementary
particles subject to constraints, statistical physics predicts
macroscopic thermodynamic phenomena, such as entropy
creation and phase transitions: Stowe (2007); Landsberg
(2014).

While thermodynamics has been broadly studied in the
context of PHS modeling in e.g. Eberard and Maschke
(2004); Eberard et al. (2007); Ramirez et al. (2013); Del-
venne and Sandberg (2014); van der Schaft (2020), the
proper derivation of thermodynamic variables through sta-
tistical physics is seldomly addressed. In this paper, we
combine the two approaches and propose a series of steps
to systematically construct a simplified yet physically-
based, structured macroscopic PHS, from a complex sys-
tem described by statistical physics.

This paper is structured as follows. Section 2 presents
the key principles behind statistical physics, and details
the derivation of a macroscopic PHS from a stochastic
description. Section 3 applies the method to two illustra-
tive examples: an ideal gas, and a ferromagnet. Finally,
section 4 gives some conclusions and perspectives.

2. THEORETICAL FRAMEWORK

2.1 Micro-state of a system

Consider a system composed of particles of matter occu-
pying a volume. Denote M the set of all possible configura-
tions of all (or subsets of) countable particles for all volume
values. A particular configurationm ∈M is called amicro-
state of a system. For instance, each micro-state of a gas
can be described in classical mechanics by a particular set
of positions and momenta.

Each micro-state is mapped to a number of particles, a
volume, and an energy, corresponding to the following
functions:
N : M 7→ N∗

m 7→ N (m) micro-state number of particles,
V : M 7→ R+∗

m 7→ V(m) micro-state volume,
E : M 7→ R

m 7→ E(m) micro-state energy,
(1)

where the energy function E is assumed to have an inferior
bound, i.e., E(m) ≥ c for some c ∈ R.

2.2 Accessible micro-states under constraints

According to experimental conditions, any quantity ϕ ∈
F = {N ,V} can be fixed while E and the remaining
unfixed quantities in F are left free to fluctuate 1 . In this
1 Note that F is susceptible to contain other functions, depending
on the physics (electric, magnetic, etc) of the considered system.



case, the experimental constraints determine the set of
accessible micro-states Ma. For instance, a closed system
(no exchange of particles with the environment) has a
fixed N (m) = N0 ∀m, while V and E can fluctuate.
However these fluctuations are coupled through the quan-
tity E(m) + P0V(m), where P0 is the (constant) exter-
nal pressure 2 . Similarly, an isochoric system has a fixed
volume V(m) = V0, and the fluctuations of N and E
are coupled through the quantity E(m)−µ0N (m), where
µ0 is the (constant) external chemical potential. Denote
Q = {E , E + P0V, E − µ0N , E + P0V − µ0N }. If the
system is thermally insulated, the constraint on Ψ ∈ Q is
Ψ(m) = Ψ0 with a given Ψ0 ∈ R, hence :

Ma = {m ∈M | Ψ(m) = Ψ0}. (2)

The case of a system in thermal contact with its environ-
ment is addressed in section 2.4.

2.3 Stochastic modeling and measure of uncertainty

The system may be in any accessible micro-state, and goes
randomly from one accessible micro-state to another. As
it is not possible to predict these fluctuations in a de-
terministic fashion, statistical physics adopts a stochastic
description. This description assigns to each micro-statem
a probability p(m) to be the actual state of the system.

Given a probability distribution p, a measure of the un-
certainty on the fluctuating micro-state is the statistical
entropy Gray (2011), defined as (for a discrete distribu-
tion 3 ):

S : p 7−→ −k
∑

m∈Ma

p(m) ln p(m), (3)

where k is a positive constant. The entropy is indeed a
measure of lack of information. For instance, a probability
distribution assigning 1 to some micro-state m0 and 0 to
all others would mean that the system is in the micro-state
m0 for certain. From (3), the system entropy would be
zero for such a distribution. Conversely, an equiprobable
distribution between all micro-states would maximize the
uncertainty for an observer, as well as the entropy.

The entropy is a positive quantity, since 0 ≤ p(m) ≤
1 ∀m. Moreover, the total entropy of two independent
systems is the sum of their entropies, since p(m,m′) =
p(m)p(m′). It follows that the entropy is an extensive
quantity.

2.4 Principle of maximum entropy at thermodynamic
equilibrium

Thermodynamic equilibrium is reached when the con-
straints on the system are met. At that point, the system
stops evolving and provides a minimal amount of informa-
tion. Therefore, at equilibrium, the micro-state probability
distribution maximizes the statistical entropy, given the
constraints on the system. Moreover, at thermodynamic
equilibrium, statistical physics assumes the ergodic hypoth-
esis (see e.g. Patrascioiu (1987) for a discussion about its
validity; here we will admit it as a working hypothesis).
2 The derivation of such coupling quantities is not detailed here.
However, they are listed in Table 1, see also Graben and Ray (1991).
3 It is similarly defined for a continuous distribution: the sum is
replaced with an integral.

This hypothesis states that at equilibrium, the system
visits all accessible micro-states, given a sufficiently long
period of time. As a result, the temporal mean Ψ̄ of a
fluctuating quantity Ψ ∈ Q coincides with its expectation:

E[Ψ ] :=
∑

m∈Ma

p(m)Ψ(m) = Ψ̄ . (4)

It follows that the micro-state probability distribution at
equilibrium p? is:

p? = arg max
p

S(p)

subject to


E[Ψ ] = Ψ̄∑
m∈Ma

p(m) = 1

(5)

In the following, the constant k in (3) is taken as the Boltz-
mann constant kb = 1.38× 10−23J.K−1. This ensures that
the statistical entropy coincides with the thermodynamic
entropy at equilibrium.

To solve (5), we introduce and optimize the Lagrangian:

L : (p, λΨ , λ0) 7→ − kb
∑

m∈Ma

p(m) ln p(m) + λΨ
(
E[Ψ ]− Ψ̄

)
+ λ0

 ∑
m∈Ma

p(m)− 1

 ,

(6)
where λΨ and λ0 are Lagrange multipliers.

Case 1: system thermally insulated. From (2), E[Ψ ] =
Ψ0. The Lagrangian simplifies, and solving ∂L = 0 yields
the equiprobable distribution:

p?
(
m | Ψ0

)
= 1/Ω, Ω = card (Ma) . (7)

Case 2: system in thermal contact. Solving ∂L = 0
yields:

p?
(
m | Ψ̄

)
=

exp
(
λΨΨ(m)/kb

)
Z (λΨ )

,

Z (λΨ ) =
∑

m∈Ma

exp
(
λΨΨ(m)/kb

)
.

(8)

A more detailed derivation can be found in Jaynes
(1982).

For systems in thermal contact with their environment,
the Lagrange multiplier λΨ has a direct physical interpre-
tation. Indeed, from (4)-(8), we deduce :

Ψ̄ =
∂

∂λΨ
kb lnZ (λΨ ) . (9)

Moreover, reinjecting (8) in (3) yields the thermodynamic
entropy S:

S = S(p?) = kb lnZ (λΨ )− λΨ Ψ̄ := S
(
Ψ̄
)
. (10)

It follows that S is a Legendre transform of kb lnZ and
that:

− λΨ =
∂

∂Ψ̄
S
(
Ψ̄
)

= − 1

T
, (11)

where T is the temperature (both internal and external,
at equilibrium).

By applying maximum entropy to each constraint, we
systematically derive the micro-state probability and the
entropy for the corresponding statistical ensemble (Ta-
ble 1, see also Ray (2005)).



Table 1. Statistical ensembles and associated constraints.

Ensemble Constraint p?(m) Entropy Example
Micro-canonical E(m) = E0 1/Ω kb ln Ω Gas in an isolated tank

Isoenthalpic-isobaric E(m) + P0V(m) = H0 1/Ω kb ln Ω
Gas in a closed tank

No

with a piston,
thermally insulated

thermal contact Unnamed E(m)− µ0N (m) = L0 1/Ω kb ln Ω
Gas in a porous tank,
thermally insulated

Unnamed E(m) + P0V(m) 1/Ω kb ln Ω
Gas in a porous tank
with a piston,

−µ0N (m) = R0 thermally insulated

Thermal contact

Canonical E[E] = Ē exp(−E(m)/kbT)
Z(T )

kb lnZ(T ) + Ē/T Gas in a closed tank,
in contact with a thermostat

Isothermal-isobaric E[E + P0V] = H̄ exp(−H(m)/kbT)
Z(T,P0)

kb lnZ(T, P0) + H̄/T
Gas in a closed tank
with a piston,
in contact with a thermostat

Grand-canonical E[E − µ0N ] = L̄
exp(−L(m)/kbT)
Z(T,µ0)

kb lnZ(T, µ0) + L̄/T
Gas in a porous tank,
in contact with a thermostat

Unnamed E[E + P0V − µ0N ] = R̄ exp
(
−R(m)/kbT

)
R̄/T

Gas in a porous tank
with a piston,
in contact with a thermostat

2.5 Macro-state of a system and PHS formulation

Following the ergodic hypothesis, the macroscopic number
of particles at equilibrium is N = E[N ]. Similarly, the
macroscopic volume at equilibrium is V = E[V]. A third
macroscopic variable is the thermodynamic entropy S.
If all external efforts constraining the system (that is,
T, µ0, P0, or a combination of them depending on the
experimental conditions) are kept constant in time, there
is no dynamics since all macroscopic variables become
constant in time. However if these quantities are allowed to
vary (slowly, so that the ergodic hypothesis is still verified),
one can study the system dynamics between successive
equilibrium states.

In order to do that, we rely on port-Hamiltonian sys-
tems: Duindam et al. (2009); van der Schaft et al. (2014),
under a differential-algebraic formulation Beattie et al.
(2017). This formulation allows the representation of a
dynamical system as a network of:

(1) storage components of state x and energy E (x),
storing the power Pstored = ∇E (x)

ᵀ
ẋ;

(2) dissipative components of flow w and effort z (w),
such as the dissipated power Pdiss = z (w)

ᵀ
w is non-

negative for all w;
(3) connection ports conveying the outgoing power Pext =

uᵀy where u are inputs and y are outputs.

The flows f and efforts e of all components are coupled
through a skew-symmetric interconnection matrix J =
−Jᵀ (possibly dependent on x): ẋw

y


︸ ︷︷ ︸

f

= J

∇E (x)
z (w)
u


︸ ︷︷ ︸

e

. (12)

For instance, an open system in a thermostat is governed
by the conservative PHS in Fig. 1, where δeS/dt denotes
the outgoing entropy flow, int indexes internal flows and
efforts, ext indexes external flows and efforts.

∇E(x) u

Tint µint −Pint
δeS/dt Ṅext V̇ext


Ṡ . . . −1 . .

ẋ Ṅint . . . . −1 .
V̇int . . . . . −1
Text 1 . . . . .

y µext . 1 . . . .
Pext . . 1 . . .

Figure 1. Conservative PHS of an open system in a
thermostat (dots represent zeros).

2.6 Method recap

To sum up, the derivation of a macroscopic PHS from a
stochastic description is performed in 5 steps:

Step 1 Express micro-state m and laws N ,V, E .
Step 2 Pick a statistical ensemble of interest, according
to experimental hypotheses.

Step 3 Compute the corresponding micro-state probabil-
ity distribution at equilibrium.

Step 4 Compute the internal energy Ē and the macro-
scopic state x = [S,N, V ]ᵀ.

Step 5 Express the internal energy Ē as a function of the
macroscopic state to obtain E(S,N, V ).

A PHS is finally derived by adding ports accounting for
the environment, as shown for each example in the next
section.

2.7 Remark on thermodynamic potentials

If only some external efforts constraining the system are
kept constant, it is possible to work with an appropriate
Legendre transform of the internal energy, in order to re-
duce the PHS formulation. For instance, the (conservative)
PHS of an open system in a constant thermostat, becomes
that of Fig. 2, with F (T,N, V ) = E(S,N, V )− TS.
Table 2 recaps usual Legendre transforms of the internal
energy, also called thermodynamic potentials.



Table 2. Thermodynamic potentials.

Constant Potential
Internal energy E(S,N, V )

T Helmholtz free energy F (T,N, V ) = E(S,N, V )− TS

P Enthalpy H(S,N, P ) = E(S,N, V ) + PV

T, P Gibbs free energy G(T,N, P ) = H(S,N, P )− TS

µ Hill energy L(S, µ, V ) = E(S,N, V )− µN

T, µ Grand potential J(T, µ, V ) = L(S, µ, V )− TS

P, µ Ray energy R(S, µ, P ) = E(S,N, V ) + PV − µN

T, P, µ Guggenheim energy R(S, µ, P )− TS = 0

∇F (x) u

µint −Pint Ṅext V̇ext
ẋ Ṅint . . −1 .

V̇int . . . −1
y µext 1 . . .

Pext . 1 . .

Figure 2. Conservative PHS of an open system in a
constant thermostat (dots represent zeros).

3. APPLICATIONS

3.1 Ideal gas in a thermostat

Consider N indiscernible, non-interacting atoms in a
closed, rigid cube (constant volume V ) in contact with
a thermostat at temperature T .
Step 1. A micro-state of an atom is a vector m =
[nx, ny, nz] ∈ N∗3, where ni is the energy quantization
along axis i. Denoting by m the atom mass, a the cube
edge length, and h the Planck constant, the Hamiltonian
of the atom is given by Davies (1998):

E(m) =
(
n2
x + n2

y + n2
z

)
h2
/8ma2. (13)

Step 2. From the hypotheses, the statistical ensemble of
interest is the canonical ensemble (see Table 1).
Step 3. The micro-state probability distribution at equi-
librium is p?(m) = exp

(
−E(m)/kbT

)
/Z(T ).

Step 4. From (8), the partition function for one atom is:

Z0(T ) =
(

2π T/T0

)3/2
, with T0 = h2

/ma2kb (14)
(proof in Appendix A). For N atoms, the partition func-
tion becomes:

Z(T ) = Z0(T )N/N ! =
(

2π T/T0

)3N/2
/N !. (15)

For the canonical ensemble, (9) can be rewritten as:

Ē = kbT
2 ∂ lnZ
∂T

(T ), (16)

so that:
Ē = 3/2 NkbT. (17)

From (10), we deduce:
S = kb lnZ(T ) + Ē/T = S0 + 3/2 Nkb ln

(
T/T0

)
,

S0 = 3/2 Nkb ln
(

2πe/
(
N !

2/3N
))
.

(18)

Step 5. From (18), we deduce:
T = T0 exp

(
2 (S−S0)/3Nkb

)
. (19)

Reinjecting in (17), we obtain:
E(S) = 3/2 NkbT0 exp

(
2 (S−S0)/3Nkb

)
. (20)

It is immediately verified that, as expected, ∂E/∂S = T .
As N and V are constant, they are removed from the state
of the PHS and the only state variable is the entropy S.
The constraint due to the thermostat is expressed at the
ports of the PHS. Finally, we obtain the following PHS:

∇E(x) u
Tint

δeS/dt[ ]
ẋ Ṡ . −1
y Text 1 .

.

3.2 Ferromagnetic core in a thermostat

Here, we sum up results of Najnudel et al. (2020). The
goal is to illustrate the modeling of a more complex system
exhibiting phase transitions and dissipation.

Consider a ferromagnetic core with constant number of
atoms N , constant volume V , in contact with a thermostat
at temperature T .
Step 1. Following the model of Ising Ising (1925) (see also
Newell and Montroll (1953); Strecka and Jascur (2015)),
the core is represented as a set ofN adimensional magnetic
moments, interacting with one another. A micro-state of
the core is a particular configuration m ∈ M = {−1, 1}N .
The corresponding energy is the Heisenberg Hamiltonian:

E(m) = −1/2 mᵀJexm, (21)
where each coefficient Jexi,j is the exchange energy be-
tween moment i and moment j Liechtenstein et al. (1984).
Assuming isotropic interactions affecting nearest neigh-
bours only, this exchange energy simplifies to:

Jexi,j =

{
J i, j nearest neighbours, i 6= j,

0 otherwise, (22)

where J is a constant energy characterizing the material.
Step 2. From the hypotheses, the statistical ensemble of
interest is the canonical ensemble (see Table 1).
Step 3. The micro-state probability distribution at equi-
librium is p?(m) = exp

(
−E(m)/kbT

)
/Z(T ).

Step 4. Above dimension 2 in space, there is no an-
alytic expression for Z(T ). Assuming small micro-state
fluctuations, we rely on the mean-field approximation:
Utermohlen (2018), which yields

ZMF (m,T ) = exp
(
−NJqm2

/2 kbT
) (

2 cosh
(
Jqm/kbT

))N
.

(23)



Figure 3. Energy function of the ferromagnetic core.

In (23), the auxiliary variable m ∈ [−1, 1] can be in-
terpreted as a mean magnetic moment, while q is the
(constant) number of nearest neighbours of each moment.
Reinjecting (23) in (16), the mean-field internal energy is
found to be:
Ē ≈ EMF (m,T ) = E0

(
m2
/2−m tanh

(
mTc/T

))
, (24)

where E0 = NJq, and Tc = Jq/kb is the critical tem-
perature, above which the core becomes paramagnetic.
Reinjecting (23) in (10), we obtain the thermodynamic
entropy:

S ≈ SMF (m,T ) = S0 f
(
mTc/T

)
, (25)

where S0 = Nkb and f(χ) = ln
(
2 cosh (χ)

)
− χ tanh (χ).

Step 5. Finally, introducing the total magnetic flux
BVcore

= m µ0MsV , where µ0 = 4π × 10−7 H.m−1 is
the vacuum magnetic permeability and Ms is the core
saturation magnetization, we obtain:

Ecore(S,BVcore) = E0

(
1/2
(
BVcore/BVs

)2 −∣∣BVcore/BVs ∣∣ g(S)
)
,

(26)
where BVs

= µ0MsV and g(S) = tanh
(
f−1

(
S/S0

))
.

The internal effort is ∇Ecore(S,BVcore
) = [Tcore, Hcore]

ᵀ,
where Tcore and Hcore denote the core temperature and
the internal magnetic field, respectively. Figure 3 shows
the core going from two meta-stable equilibrium states to
one stable equilibrium state, as the entropy increases. This
corresponds to a phase transition from ferromagnetic to
paramagnetic.

Dissipation. When the core is constrained by an exterior
magnetic field Hin (created by a coil for instance), jumps
between meta-stable states, called Barkhausen jumps,
occur: Bertotti (1998). These jumps are damped (Fig. 4)
due to domain structure and non-homogeneities (see Kittel
(1949)). This damping can be modeled with a linear
magnetic resistor rcore connected in series with the core
(Fig. 5a). As the difference of energy before and after
a jump is entirely dissipated as heat Bertotti (1998),
Barkhausen jumps are also responsible for the variation of
entropy creation δiS in the core. The associated thermal
power is equal to the magnetic power dissipated through
rcore, so that:

rcoreH
2
rcore − Tcore

δiS/dt = 0, (27)
where dt stands for an infinitesimal increment of time. We
deduce the dissipative flow and effort:

w = [−Tcore, Hrcore ]
ᵀ

z(w) =
[
rcoreH

2
rcore/Tcore, rcoreHrcore

]ᵀ
=
[
δiS/dt, ḂVrcore

]ᵀ
.

(28)

Figure 4. Damped Barkhausen jumps and resulting hys-
teresis during a cycle. The red curve is the theoretical
core internal magnetic field, the blue curve is the real
trajectory followed by the total magnetic flux of the
core constrained by an external magnetic field.

Finally, the second law of thermodynamics Landsberg
(2014) states:

Ṡ = δiS/dt− δeS/dt. (29)
Kirchoff’s laws in receptor convention, as well as (26)-(28)-
(29), yield the PHS formulation in Fig. 5b. Note that in
addition to the power balance, the entropy balance is made
explicit in this formulation.

This model has been successfully implemented in several
applications simulating audio circuits (see Najnudel et al.
(2020)).

4. CONCLUSION

In this paper, we presented a method for deriving an
ad hoc macroscopic port-Hamiltonian formulation for a
constrained system described by statistical physics.

This method is based on two key principles of statistical
physics (that is, maximum entropy and the ergodic hy-
pothesis), and expresses the internal energy of the system
as a function of extensive thermodynamic variables. The
exchanges of energy and entropy are made explicit through
the PH formulation. Constraints are modeled in ports as
inputs, and entropy creation is modeled as dissipation. Al-
ternative formulations based on thermodynamic potentials
are also possible, under certain conditions.

The method is applied to model two systems: an ideal
gas in a thermostat, and a ferromagnet in a thermostat.
In the case of the ferromagnet, the method successfully
captures complex phenomena such as phase transitions,
meta-stability, dissipation and entropy creation, with only
two state variables and one dissipative component.

A perspective of this work is to extend the method to
other microscopic quantities and constraints, not restricted
to the system number of atoms and volume. Another
perspective is to generalize the mean-field approximation
(for systems composed of particles interacting with one
another), and introduce appropriate auxiliary variables in
order to obtain approximations of the partition function
with an arbitrary degree of accuracy. This shall be the
object of future work.
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Appendix A. PARTITION FUNCTION OF AN ATOM
IN A BOX

Denoting ε0 = h2
/(8ma2), we have

Z0(T ) =
∑
m

exp
(
−E(m)/kbT

)
=

+∞∑
nx=1

+∞∑
ny=1

+∞∑
nz=1

exp

(
−
(
n2
x + n2

y + n2
z

)
ε0/kbT

)

=

+∞∑
n=1

exp
(
−n2ε0/kbT

)3

≈

(∫ +∞

0

exp
(
−x2ε0/kbT

)
dx

)3

=
(

1/2
√
πkbT/ε0

)3

=
(

2π T/T0

)3/2
, T0 = h2

/ma2kb.

(A.1)


