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On the Study of Interference and their Localization
in the Time-Frequency Plane

Sylvain Meignen, Thomas Oberlin

Abstract—In this paper, our goal is first to investigate the
conditions for the separation of the modes making up mul-
ticomponent signals based on the analysis of the short-time
Fourier transform. More precisely, we put forward necessary and
sufficient conditions for the existence of ridges associated with the
modes in the time-frequency plane. The focus is put on signals
either made of purely harmonic modes or parallel linear chirps,
for which we show that when the modes are strongly interfering
in the time-frequency plane, the ridges no longer exist and are
replaced by some structures called time-frequency bubbles. Based
on a careful study of interference patterns, we show that the zeros
of the spectrogram involved in these share very specific features,
on which we found a new algorithm to determine interference
locations based on the Delaunay triangulation of spectrogram
zeros.

Index Terms—Time-frequency analysis, short-time Fourier
transform, spectrogram zeros, Delaunay triangulation.

I. INTRODUCTION

The analysis of multicomponent signals (MCSs) using time-
frequency representations (TFRs) has been the subject of
intense research in the last few decades, since the modes
making up a MCS are associated with specific regions around
TF curves, called ridges [1], [2]. The locations of these ridges
lead to estimates the instantaneous frequencies (IFs) of the
modes [3], [4]. Among linear TFRs the most popular ones are
the short-time Fourier Transform (STFT) and the continuous
wavelet transform (CWT) while the most commonly used
quadratic TFR is the spectrogram.

The quality of IF estimation from ridge extraction is tightly
related to how well the modes are separated in the TF plane,
namely to the choice of the analysis window in the case of
spectrogram. Indeed, an inappropriate window choice results
in mode interference. In that framework, optimal window
length can be found by minimizing the Rényi entropy which
is proved to be a good measure of the level of interfer-
ence in the TF plane [5], [6]. However, even when one
considers the TFR minimizing the Rényi entropy, there is
no guarantee that the modes are not interfering in the TF
plane. To improve mode separation for IF estimation, the so-
called adaptive short-time Fourier transform (ASTFT) was
introduced [7], [8] and recently adapted to the context of
synchrosqueezing transform [9], [10]. Alternative techniques
aiming at improving IF estimation from reassigned transform
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[11] were also developed in [12], [13], the basic principle
of these approaches being to disentangle the components at
interference locations by modifying the reassignment process.
Note that reassignment approaches are also very common
to deal with overlapping transients, a situation frequently
encountered in echolocation calls [14], [15]. In this regard,
multi-taper approaches [16] result in significant improvement
in terms of transient separation on that type of signals [17].

To adapt locally the window length to reduce interference,
one often uses the argument that the sparsest representations
should lead to the best IF estimation. Nevertheless, such an
adaption is not necessary at each time instant to obtain good
mode separation. To have an insight into where to modify the
window length, an analysis of the TF interference pattern can
be carried out. It was remarked in [18] that the TFR associated
with the Gabor transform of the sum of two pure harmonic
modes could exhibit so-called time-frequency bubbles (TFBs),
consisting of circles of local maxima at the TF location of
the two modes. Such structures were also observed in more
complex situations [18]. In practice, TFBs arise when, at some
time instant, two modes generate only a single maximum of
the spectrogram. When TFBs are present, the estimation of
the IF of the modes based on ridge extraction is no longer
possible. Though in [18] some elements were given to explain
when such TFBs occured, a clear mathematical analysis was
lacking. In the present paper, our first goal is thus to bridge
that gap, putting forward a necessary and sufficient condition
for the existence of TFBs when the signal is made of two pure
harmonic modes and when the TFR is the spectrogram. Then,
we show how to extend these conditions to the case of the
sum of two parallel linear chirps.

More generally, the spectrogram of close modes can be
viewed as a continuum from separate ridges to TFBs, the
latter corresponding to the highest level of interference. For IF
estimation based on ridge detection, it is crucial to determine
where interference occur in the TF plane, because even a
low interference level can reduce drastically the quality of
IF estimation from TF ridges. For that purpose, we analyze
interference patterns, and show that these involve local max-
ima, zeros and saddle points of the spectrogram. Based on this
study, we propose a novel algorithm to localize interference
in the TF plane based on Delaunay triangulation of the zeros
of the spectrogram involved in interference patterns.

The motivation for using the zeros of the spectrogram
can be found in the pioneering work by Flandrin [19]. In
that paper, the zeros of the spectrogram of Gaussian white
noise were studied, and further investigated in [20]. The
conclusions of these papers were that, on the one hand,
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the spectogram zeros tend not to clutter and, on the other
hand, they cannot be too far one from another. Based on this
last remark, a new technique using Delaunay triangulation of
spectrogram zeros was proposed to separate the noise from the
signal in the spectrogram [21]. The rationale supporting the
algorithm proposed in that paper was basically that the signal
corresponded to zero-free regions, and thus the surrounding
zeros generated triangles with long edges in the Delaunay
triangulation of the spectrogram zeros. Thus, the criterion
chosen to separate the triangles related to noise from those
corresponding to the signal was based of the analysis of the
edge length in the triangulation. We here propose to develop a
variant to this approach to localize interference in the TF plane.
More precisely, we study in details the nature of the triangles
surrounding the zeros involved in the Delaunay triangulation
and then found our algorithm to localize interference on that
analysis.

The paper is organized as follows. In the following section,
we introduce the notation that we will use throughout the
paper. Then, we state the main theoretical contributions re-
garding the existence of TFBs, studying successively the case
of a signal made either of two pure harmonic modes or of
parallel linear chirps. Finally, we propose a novel technique
to localize mode interference in the TF plane based on the
Delaunay triangulation of spectrogram zeros.

II. NOTATION

Considering a signal f ∈ L1(R)∩L2(R) and a real window
h ∈ L∞(R) ∩ L2(R), the (modified) short-time Fourier
transform (STFT) is defined as:

V hf (t, η) =

∫
R
f(τ)h(τ − t)e−2iπ(τ−t)ηdτ, (1)

the spectrogram being the square modulus of V hf . In the
sequel, we are going to study the interference between the
modes of a multicomponent signal (MCS), defined as the
superposition of P AM-FM components:

f(t) =

P∑
p=1

fp(t) with fp(t) = Ap(t)e
2iπφp(t), (2)

in which the instantaneous amplitudes (IAs) Ap(t) are posi-
tive, as well as the instantaneous frequencies (IFs) φ′p(t). We
further assume that the IFs are sorted in decreasing order,
namely φ′p+1(t) > φ′p(t) for all t.

III. FREQUENCY DOMAIN INTERFERENCE

In this section, we first investigate the existence of TFBs
when the signal is the sum of two pure harmonic modes. We
then explain how the obtained results can be extended to the
case of two parallel linear chirps. More precisely, we show
that the existence of these TFBs is related to that of extrema
of the spectrogram. For our study, we will use the Gaussian
window h(t) = e−π

t2

σ2 to define the STFT, because with that
choice analytical results can be derived.

A. Existence of TFBs in the Case of the Sum of the Two Pure
Harmonic Signals

Let f(t) = f1(t)+f2(t) with f1(t) = Aei2πξ1t and f2(t) =
ei2πξ2t, where ξ1 < ξ2. For such a signal, one has V hf1

(t, η) =

ĥ(η − ξ1)Aei2πξ1t = σAei2πξ1te−π(η−ξ1)2σ2

and V hf2
(t, η) =

σei2πξ2te−π(η−ξ2)2σ2

and thus:

|V hf (t, η)|2 = σ2(A2e−2πσ2(η−ξ1)2

+ e−2πσ2(η−ξ2)2

+2Ae−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t))

(3)

which attains, considering η fixed, its maximum at tk =
k

ξ2−ξ1 , k ∈ Z for which:

|V hf (tk, η)|2 = σ2(Ae−πσ
2(η−ξ1)2

+ e−πσ
2(η−ξ2)2

)2. (4)

Studying |V hf (tk, .)|2, where . means we consider this variable,
we get the following result.

Proposition III.1. |V hf (tk, .)|2 has three extrema if and only
if α :=

√
π
2σ(ξ2 − ξ1) > 1 and

| log(A)| < 2α
√
α2 − 1− log

(
α+
√
α2 − 1

α−
√
α2 − 1

)
= 2α

√
α2 − 1− 2 arccosh(α).

(5)

In any other case, |V hf (tk, .)|2 has a unique extremum which
is a maximum.

The proof is given in Appendix A. Note that one can easily
show that the extrema are all in the interval ]ξ1, ξ2[. If A = 1,
remarking that log

(
α+
√
α2−1

α−
√
α2−1

)
= 2 arccosh(α) the condition

to have three extrema reads:

2α
√
α2 − 1− log

(
α+
√
α2 − 1

α−
√
α2 − 1

)
> 0

⇔ − arccosh(α) + α
√
α2 − 1 > 0.

(6)

As the function − arccosh(x)+x
√
x2 − 1 is strictly increasing

on [1,+∞[ and is zero at zero, the condition boils down to
α > 1.

Now, η being fixed, let us consider the time instants where
|V hf (t, η)|2 attains its minima which correspond to time t =

t̃k = 1/2+k
ξ2−ξ1 , k ∈ Z, at which:

|V hf (t̃k, η)|2 = σ2(e−πσ
2(η−ξ1)2

−Ae−πσ
2(η−ξ2)2

)2. (7)

Then, we have the following proposition regarding the number
of extrema of |V hf (t̃k, .)|2:

Proposition III.2. |V hf (t̃k, .)|2 has a unique minimum in-
side the interval [ξ1, ξ2], a unique maximum on the interval
]ξ2,+∞[, and a unique maximum on the interval ]−∞, ξ1[.

The proof is available in Appendix B. This can be general-
ized to other time instants than tk and t̃k in the case A = 1,
since we have the following proposition.

Proposition III.3. If A = 1, |V hf (t, .)|2 has three extrema if
and only if α =

√
π
2σ(ξ2 − ξ1) satisfies:

α >

√
1 + cos(2π(ξ2 − ξ1)t)

2
(8)
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Fig. 1: (a): spectrogram of two parallel pure harmonic modes with the same amplitude, when there exists three extrema at
each time instant (ridges are thus well defined); (b): spectrogram of two parallel pure harmonic modes exhibiting TFBs (ridges
associated with each mode can no longer be defined); (c): same as (a) but when the pure harmonic modes have different
amplitude (three extrema are still present but the symmetry no longer exists).

and one otherwise.

The proof is available in Appendix C. This can be general-
ized to any time t and any amplitude A through the following:

Proposition III.4. Assuming α is defined as in Proposition
III.3, and defining γ = cos(2π(ξ2−ξ1)t), |V hf (t, .)|2 has three

extrema if and only if α >
√

1+γ
2 and

| log(A)| < − arccosh(X2) + 2α2

√
X2

2 − 1

X2 + γ
, (9)

with X2 = γ(α2−1)+α
√
γ2(α2 − 2) + 2. In any other case,

|V hf (t, .)|2 has a unique extremum.

The proof is available in Appendix D. Note that when γ =
1, we get X2 = 2α2 − 1, and then

− arccosh(X2) + 2α2

√
X2

2 − 1

X2 + 1
= − arccosh(X2) +

√
X2

2 − 1

= − arccosh(2α2 − 1) + 2α
√
α2 − 1 (10)

= −2 arccosh(α) + 2α
√
α2 − 1

which is exactly the condition of Proposition III.1. Similarly,
when A = 1 the right hand side of (9) is positive and the
condition to have three extrema boils down to α >

√
1+γ

2 ,
which is the condition enounced in Proposition III.3.

Now, to finish this study we state a necessary and sufficient
condition to have three extrema:

Proposition III.5. |V hf (t, .)|2 whatever t has three extrema if
and only if α :=

√
π
2σ(ξ2 − ξ1) > 1 and

| log(A)| < −2 arccosh(α) + 2α
√
α2 − 1. (11)

In any other case there exists some time t where |V hf (t, .)|2
has a unique extremum.

The proof is given in Appendix E. This last proposition
means that if the spectrogram has three extrema at tk then it
has three extrema at each time t. In that context, the existence
of TFBs is related to the conditions of Proposition III.1 being
not fulfilled. In such a case, each mode cannot be associated

with a ridge. To illustrate this, we consider the spectrogram
of the sum of two pure harmonic modes with A = 1 such
that the conditions of Proposition III.1 are fulfilled in Fig. 1
(a) and not in Fig. 1 (b), in which TFBs appear. Finally, in
Fig. 1 (c), we consider the case A 6= 1 when the conditions
of Proposition III.1 are fulfilled. We notice that the locations
of the extrema of the spectrogram at time instants t̃k, and in
particular the locations of the zeros, are not much changed.
But, this is not the case of the extrema locations at time tk.

B. Existence of TFBs in the Case of two Parallel Linear
Chirps

Our goal is now to extend the previous study to parallel
linear chirps. We thus consider f(t) = f1(t) + f2(t) with
f1(t) = Ae2iπφ1(t) and f2(t) = e2iπφ2(t), with φ′′1(t) =
φ′′2(t) = C constant. It can be easily shown that in such a
case one has:

|V hf (t, η)|2 = r−1

(
A2e

− 2πσ2(η−φ′1(t))2

1+C2σ4 + e
− 2πσ2(η−φ′2(t))2

1+C2σ4

+2Ae
−π

σ2[(η−φ′1(t))2+(η−φ′2(t))2]
1+C2σ4 cos(2πφ(t, η))

)
,

(12)

with r =
√

1
σ4 + C2 and

φ(t, η) = φ2(t)− φ1(t)

+
Cσ4

1 + C2σ4
(φ′2(t)− φ′1(t))

(
η − φ′2(t) + φ′1(t)

2

)
.

(13)

Now, given a real number γ in [−1, 1], let us consider the
set of TF points (t, η) such that cos(2πφ(t, η)) = γ. These
points are such that φ(t, η) = arccos(γ)

2π + k = βk. As φ1(t) =
a1t+ C

2 t
2 and φ2(t) = a2t+ C

2 t
2, we have that:

(a2 − a1)

(
t+

Cσ4

1 + C2σ4

(
η − a1 + a2 + 2Ct

2

))
= βk

⇔ t = −Cσ4η +
βk(1 + C2σ4) +

(a2
2−a

2
1)Cσ4

2

a2 − a1

⇔ t = Dη +Bk.

(14)
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Fig. 2: (a): Spectrogram of two parallel linear chirps with the same amplitude, when there exists three extrema at each time
instant in the direction D, the upper and lower ridges are also superimposed; (b): Spectrogram of two parallel linear chirps
when TFBs are present (three extrema no longer exist in the direction D for each translation factor Bk, and ridge extraction is
no longer possible); (c): same as (a) but when the linear chirps have different amplitude (three extrema are still present along
the direction D).

From this, we deduce that

|V hf (Dη +Bk, η)|2 = r−1(
A2e

− 2πσ2(η−a1−C(Dη+Bk))2

1+C2σ4 + e
− 2πσ2(η−a2−C(Dη+Bk)2

1+C2σ4

+2Ae
−π

σ2[(η−a1−C(Dη+Bk))2+(η−a2−C(Dη+Bk))2]
1+C2σ4 γ

)
= r−1

(
A2e−2πσ̃2(η− a1+CBk

1−CD )2

+ e−2πσ̃2(η− a2+CBk
1−CD )2

+

2Ae
−πσ̃2

[
(η− a1+CBk

1−CD )2+(η− a2+CBk
1−CD )2

]
γ

)
,

(15)

with σ̃ = σ(1−CD)√
1+C2σ4

= σ
√

1 + C2σ4. As the expression (15) is
the same as (3) replacing σ by σ̃ and ξ1 and ξ2 respectively by
a1+CBk
1−CD and by a2+CBk

1−CD . This leads to the following properties

Proposition III.6. Assume (t, η) is evolving on the line t =
Dη + Bk such that cos(2πφ(t, η) = 1, then |V hf (t, η)|2 has
three extrema (two maxima and one minimum) along the line
t = Dη +Bk if and only if:√

π

2
σ̃(a2 − a1) > 1,

and a unique maximum in that interval otherwise.

The proof is the same as that of Proposition III.1. If we now
consider the case γ = −1, we have the following property:

Proposition III.7. Assume (t, η) is on the line t = Dη +
Bk, such that cos(2πφ(t, η) = −1, |V hf (t, η)|2 always
has, along the line t = Dη + Bk, a unique minimum
for η ∈ [a1+CBk

1−CD , a2+CBk
1−CD ], a unique maximum for η ∈

]a2+CBk
1−CD ,+∞[, and a unique maximum in the interval ] −
∞, a1+CBk

1−CD [

The proof is the same as that of Proposition III.2. Going
further we can prove that for any γ ∈ [−1, 1]:

Proposition III.8. If A = 1, |V hf (t, η)|2 has three extrema
along the line t = Dη+Bk if and only if αC =

√
π
2 σ̃(a2−a1)

satisfies:

αC >

√
1 + γ

2
,

and one otherwise.

The proof of Proposition III.8 follows the same line as that
of Proposition III.3. The arguments can be generalized to any
A by adapting Proposition III.4 as follows:

Proposition III.9. Assuming αC is defined as in Proposition
III.8, and that γ = cos(2πφ(t)), |V hf (t, η)|2 has three extrema

along the line t = Dη +Bk if and only if αC >
√

1+γ
2 and

| log(A)| < − arccosh(X2) + 2α2
C

√
X2

2 − 1

X2 + γ
, (16)

with X2 = γ(α2
C − 1) + αC

√
γ2(α2

C − 2) + 2. In any other
case, |V hf (t, η)|2 has a unique extremum along the line t =
Dη +Bk.

We finally state a necessary and sufficient condition to have
three extrema along the direction D:

Proposition III.10. |V hf (t, η)|2 has three extrema along the
line t = Dη + Bk if and only if αC :=

√
π
2 σ̃(a2 − a1) > 1

and

| log(A)| < −2 arccosh(αC) + 2αC

√
α2
C − 1. (17)

In any other case, where |V hf (t, η)|2 has a unique extremum
along the line t = Dη +Bk.

An illustration of this is given in Fig. 2 (a) where we
display the spectrogram of two parallel linear chirps for which
there always exist 3 extrema in the direction D, making ridge
extraction tractable, then, in Fig. 2 (b), we display the case
where there exists only one extremum in the direction D for
some value of γ, and thus TFBs are present. Finally, in Fig. 2
(c) we display a case where there are still three extrema in the
direction D but when A is no longer equal to 1. Note that, as
the computation of saddle points involves the determination of
the direction D, we do not display extrema in that case, but
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(a) (b) (c)

(d) (e) (f)

Fig. 3: (a): spectrogram of two interfering modes with DTSZ superimposed, the white circles correspond to vertices v such that
I(v, 30) ≥ 1 (input SNR = 20 dB); (b): same as (a) except the white circles correspond to vertices v such that I(v, 30) ≥ 4;
(c): same as (a) with I(v, 30) ≥ 4; (d): spectrogram of three interfering modes with DTSZ superimposed, the white circles
correspond to vertices v such that I(v, 30) ≥ 1 (input SNR = 20 dB); (e): same as (d) with I(v, 30) ≥ 4; (f): same as (d)
with I(v, 30) ≥ 5.

the conclusion regarding the stability of the zeros observed in
the case of two pure harmonic modes remains valid here.

IV. DETERMINATION OF THE INTERFERENCE REGIONS
USING SPECTROGRAM ZEROS

A. Motivation for Using Spectrogram Zeros

The previous study tells us that when two modes are
interfering, there always exist zeros at some time instants
located between the IF of the modes, even when TFBs are
present. On the contrary, as shown in the previous section,
the number of local maxima of the spectrogram involved in
interference patterns may vary both in terms of their number
and locations. Furthermore, we numerically notice that the
saddle points are very unstable in noisy situations. For these
reasons, to localize interference in the TF plane we are not
going to directly use the saddle points or the maxima of
the spectrogram, but rather the zeros generated by mode
interference. Another important reason for using spectrogram
zeros is that when the window is the unit Gaussian window,
as remarked in [19], STFT admits a Hadamard-Weirstrass
decomposition, that can be fully determined by the locations
of the spectrogram zeros [22]–[24].

To build our algorithm to localize mode interference in the
TF plane, our source of inspiration is the paper by Flandrin
[19] in which the properties of the Delaunay triangulation
of the zeros of the spectrogram of Gaussian white noises
were investigated. Indeed, it was shown in that paper that the
edge length in such a triangulation is bounded above by a

maximum value Le (depending on the normalization of the
analysis window), and also that the zeros cannot clutter. Note
that a deeper mathematical analysis of the properties of these
zeros from the perspective of point processes is available in
[20].

B. Localizing Interference Using Delaunay Triangulation of
Spectrogram Zeros

In this section, we are going to explain how to use the results
of Section III to build an algorithm to localize interference
in the TF plane. First, as remarked in [19] the presence of
signal in the TF plane gives rise to triangles in the Delaunay
triangulation of spectrogram zeros (DTSZ) having at least
one edge with length exceeding Le. Then, another interesting
remark is that when two modes are interfering the zeros
involved in the interference pattern belong to more triangles of
that kind than other zeros of the spectrogram. To quantify this,
we first propose to keep only the triangles of the DTSZ that
contain at least one edge larger than a prescribed threshold.
To do so, we sort out the edge lengths in ascending order and
then consider the triangles that contain an edge among the
Pe % longest, the choice for that parameter being discussed
later. At the end of this procedure, we obtain a set of triangles
we denote by T (Pe) from now on. Then we compute the
number of such triangles the zeros of the spectrogram belong
to by associating with each vertex v (we use bold notation
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(a) (b) (c)
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Fig. 4: (a): spectrogram with DTSZ superimposed, the white circles correspond to the zeros v satisfying I(v, 30) ≥ 5 (input
SNR equals 20 dB); (b): same as (a) except the input SNR equals 10 dB; (c): same as (a) except the input SNR equals 5 dB; (d):
DTSZ on which the mask corresponds to |V g

f̃
(t, η)| ≥ βγ̂, with β = 8, the red circles then correspond to Isignal(v, 30, 8) = 1

(input SNR equals 20 dB); (e): same as (d) except the input SNR equals 10 dB; (f): same as (d) except the input SNR equals
5 dB and β is set to 4.

because v has two components) of the triangulation T (Pe) a
connectivity index as follows:

I(v, Pe) = #{T ∈ T (Pe),v ∈ T}, (18)

where #X denotes the cardinal of the set X . In this regard,
we also define the set of corresponding triangles as follows:

Tv(Pe) = {T ∈ T (Pe), s.t. v ∈ T} . (19)

To get an insight into what an appropriate value for I(v, Pe)
would be, we consider the two different signals corresponding
to the spectrograms depicted in Fig. 3 (a) and (d). In Fig.
3 (a), we superimpose on top of the spectrogram the DTSZ
(green edges), the white circles representing the vertices v
such that I(v, 30) ≥ 1 (input SNR equals 20 dB). Then, in
Fig. 3 (b) and (c), the white circles correspond to I(v, 30) ≥ 4
and I(v, 30) ≥ 5 respectively. On the second row of Fig. 3,
we perform the same computation as that on the first row
except we consider the spectrogram of Fig. 3 (d). These first
simulations show that the connectivity index is a good pa-
rameter to discriminate the zeros associated with interference
pattern from the others. The value for Pe has to be chosen
all the smaller that more zeros are associated with the signal
and finally, by choosing a connectivity index of 5 the zeros
associated with interference are kept while many of the other
zeros are left apart. In what follows, we denote by ”first step”
of the algorithm the just described process to select the zeros
of the spectrogram.

However, such a simple criterion is not enough to fully

discriminate the zeros associated with interference. To go
further, a first naive approach would consist of recalling that,
from Section III, the distance between the zeroes located
between two interfering pure harmonic modes is monitored
by 1

ξ2−ξ1 so when the modes are close, not only the edges
of the triangles crossing the modes should be long, but also
the one in the direction of interference is not arbitrary and
should larger than Le when the modes are close. However,
as the instantaneous frequencies of the interfering modes are
unknown, it is very difficult to build a criterion on that remark
and alternatively, we propose to use some information on the
energy on the triangles involved in the computation of the
connectivity index.

More precisely, consider Φ a zero mean complex Gaussian
white noise, then V gΦ is also Gaussian with zero mean and
satisfies:

Var (<{V gΦ}) = Var (={V gΦ}) = σ2‖g‖22, (20)

where <{X} (resp. ={X}) denotes the real (resp. imaginary)
part of complex number X , Var the variance, and ‖g‖2 is the
l2 norm of the window g. From this, we deduce that |V

g
Φ |

2

σ2‖g‖22
is

χ2 distributed with 2 degrees of freedom. Then, using table of
χ2 law the probability of false alarm is less than 1 % if |V gΦ | is
larger than 3σ‖g‖2. So, to separate the noise from the signal
in the TF plane, one first computes an estimate of γ = σ‖g‖2
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using the robust estimator proposed in [25], namely:

γ̂ :=
median |<

{
V g
f̃

}
|

0.6745
, (21)

in which f̃ = f + Φ denotes the noisy signal.
Based on this analysis of the STFT of the noise, for each

vertex selected at the end of the first step, we compute the
proportion of triangles involved in the computation of the
connectivity index that are above the noise level by computing
the following index, for each v such that I(v, Pe) ≥ 5:

Isignal(v, Pe, β)

=
#
{
T ∈ Tv(Pe),∃(t, η) ∈ T s.t. |V g

f̃
(t, η)| ≥ βγ̂

}
#Tv(Pe)

.
(22)

An illustration of the zeros selected using that procedure is
given in Fig. 4, when the noise level varies. On the first row,
we display the zeros selected by considering I(v, 30) ≥ 5
(first step), when the input SNR is equal to 20, 10, and 5 dB,
respectively in Fig. 4 (a), (b) and (c). We notice that though
some zeros are not associated with interference pattern, the
selected set of zeros contain those we want to discriminate.
On the second row of Fig. 4, we show that the criterion (22)
is very efficient to discriminate the zeros of the interference
region from the others. Indeed, in that case, we plot the mask
associated with |V g

f̃
(t, η)| ≥ βγ̂ for an appropriate value for

β (yellow zones on Fig. 4. (d), (e) and (f)), the value of
which will be discussed later. Then, we select the zeros such
that Isignal(v, Pe, β) = 1. These correspond to red circles
on Fig. 4 (d),(e) and (f), which exactly correspond to the
zeros associated with interference. Note that both the zeros
associated with TFBs and those associated with more classical
interference patterns are detected.

V. PARAMETER DETERMINATION

The algorithm proposed for the determination of the zeros
associated with interference depends on three parameters Pe,
then the value of I(v, Pe), and finally β. Our strategy in that
matter is to try to discriminate the zeros associated with a
single mode from those associated with several modes. In this
regard, we remark that, independently of the choice for Pe,
the zeros associated with an isolated ridge seldom belong to
5 or more triangles crossing the ridge (such a situation only
happens when the ridge has some curvature), so to consider
I(v, Pe) larger or equal to 5 seems a good strategy provided
Pe is chosen sufficiently large so as to select only the triangles
crossing the ridges when computing the connectivity index.
When Pe is small many triangles are associated with noise and
then I(v, Pe) is very often larger or equal to 5, but when Pe
increases the number of vertices selected using I(v, Pe) ≥ 5
should stabilize and be related to the signal. In Fig. 5 we
plot the proportion of zeros kept with respect to Pe assuming
I(v, Pe) ≥ 5, for the spectrograms of Fig. 4 (a), (b) and (c),
corresponding to input SNRs of 20, 10 and 5 dB, respectively.
We observe that there exist two different regimes, the first one
corresponds to a fast decay of the number of zeros kept and is
related to the elimination of the zeros corresponding to noise,

while the smaller decay observed for larger Pe corresponds
to the progressive elimination of the zeros associated with the
signal. To better illustrate this aspect, we also plot, in Fig. 5,
the linear approximation of the data for the different regimes.
In this regard, we observe that Pe = 30 is a good choice and
that the behavior is similar regardless of the noise level.
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Fig. 5: Proportion of zeros corresponding to I(v, Pe) ≥ 5
when Pe varies and for the signal whose spectrograms are
depicted in Fig. 4 (a), (b) and (c).

The last parameter we need to fix is β which is used in
(22) to fully characterize the zeros associated with interference
pattern. To do so, we still consider the spectrograms of Fig. 4
(a), (b) and (c), and that I(v, Pe) ≥ 5, and set Pe = 30.
Of course, this last parameter should be fixed differently
depending on the signal. Our strategy to determine the right
choice for β is then based on the fact that when β increases
the zeros related to noise should be progressively eliminated
by considering the vertices v such that Isignal(v, 30, β) = 1.
Indeed, when β = 3, the probability that |V g

f̃
(t, η)| ≥ βγ̂

at location where only the noise is present is below 1 %.
In Fig. 6 we compute the number of vertices v such that
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Fig. 6: Number of zeros kept corresponding to
Isignal(v, 30, β) = 1 when β varies and for the signal
whose spectrograms are depicted in Fig. 4 (a), (b) and (c).

Isignal(v, 30, β) = 1 with respect to β and again for the
spectrogram of Fig. 4 (a), (b) and (c). We notice that, for
β ≥ 3, the number of zeros reaches a plateau, this corresponds
to all the zeros corresponding to noise have been eliminated,
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only remain those of interest. We then notice that these zeros
are robust to an increase in the value of β, and all the more so
that the noise level is low. In that context, to select the right
zeros one should consider a value for β associated with such
the plateau regime mentioned above, and thus the possible
choices depend on the noise level.

VI. CONCLUSION

In this paper, we first put forward necessary and sufficient
conditions for time-frequency bubbles to exist when two
parallel pure harmonic modes or linear chirps are interfering.
We notice that these conditions are very similar except that
the modulation has to be taken into account when considering
linear chirps. In the second part of the paper, after noticing
that the Delaunay triangulation of spectrogram zeros have very
interesting properties, we proposed an algorithm to localize
interference in the TF plane based on the analysis of this
triangulation. Future work should involve the improvement of
the proposed criteria to localize interference regions in heavier
noise situations, and it would also certainly be interesting to
investigate whether the mathematical characterization of the
appearance of TF bubbles could be extended to non parallel
modes.

VII. APPENDIX

A. Proof of Proposition III.1

Let us consider the function, (Ae−πσ
2(η−ξ1)2

+
e−πσ

2(η−ξ2)2

)2 whose extrema are the same as those
of

l(η) = Ae−πσ
2(η−ξ1)2

+ e−πσ
2(η−ξ2)2

.

Defining ξ = ξ2−ξ1
2 and making the change of variables η =

ν + ξ1+ξ2
2 , we get:

l(ν +
ξ1 + ξ2

2
) = Ae−πσ

2(ν+ξ)2

+ e−πσ
2(ν−ξ)2

,

which we denote by q(ν). Differentiating q(ν), we get after
rearranging the terms:

q′(ν) = −2πσ2e−πσ
2(ν2+ξ2)[

A(ν + ξ)e−2πσ2ξν + (ν − ξ)e2πσ2ξν
]

= 2πσ2e−πσ
2ν2

e−πσ
2ξ2

ξ(Ae−2πσ2ξν + e2πσ2ξν)(
−ν
ξ
− Ae−2πσ2ξν − e2πσ2ξν

Ae−2πσ2ξν + e2πσ2ξν

)
= 2πσ2e−πσ

2ν2

e−πσ
2ξ2

ξ(Ae−2πσ2ξν + e2πσ2ξν)(
−ν
ξ

+ tanh(2πσ2ξν − log(A)

2
)

)
.

(23)

So q′ has the same sign as g(ν) = −νξ + tanh(2πσ2ξν −
log(A)

2 ) whose derivative is:

g′(ν) =
1

ξ

(
−1 + 2πσ2ξ2(1− tanh2(2πσ2ξν − log(A)

2
)

)
which is always negative if 2πσ2ξ2 ≤ 1. In such a case,
q′ is decreasing and then and as lim

ν→−∞
q′(ν) = +∞ and

lim
ν→+∞

q′(ν) = −∞, it annihilates once and thus l has a unique
extremum which is a maximum.

Now when 2πσ2ξ2 > 1, g′ has two zeros, and we have the
following table of variations:

ν −∞ ν1 ν2 +∞
g′(ν) − 0 + 0 −

+∞ g(ν2)
g(ν)

g(ν1) −∞

If g(ν1) ≥ 0, then g(ν) and hence q′(ν) are positive on ] −
∞, ν2[ and g(ν) and hence q′(ν) annihilate and change signs
at some ν′2 in ]ν2,+∞[. In this case, q(ν) is strictly increasing
on ] − ∞, ν′2] and strictly decreasing on [ν′2,+∞[, and thus
has a maximum at ν = ν′2 which is the unique extremum.
If g(ν2) ≤ 0, g(ν) and hence q′(ν) annihilate and change signs
once for a certain ν′1 in ]−∞, ν1[ and then q has a maximum
at ν = ν′1 which will be its unique extremum.
If g(ν1) < 0 and g(ν2) > 0, g(ν) and q′(ν) annihilate and
change sign 3 times, once in ]−∞, ν1[, once in ]ν1, ν2[, and
once in [ν2,+∞[, and thus q has three extrema.

We finally need to compute g(ν1) and g(ν2). Remember
that ν1 and ν2 are the roots of g′ thus of

1− 1

2πσ2ξ2
= tanh2(2πσ2ξν − log(A)

2
)

and therefore

ν1 =
1

2πσ2ξ

(
log(A)

2
+ arctanh(−

√
1− 1

2πσ2ξ2
)

)
ν2 =

1

2πσ2ξ

(
log(A)

2
+ arctanh(

√
1− 1

2πσ2ξ2
)

)
and thus as α =

√
π
2σ(ξ2 − ξ1) =

√
2πσξ, we may write:

g(ν1) = − log(A)

4πσ2ξ2
−

arctanh(−
√

1− 1
2πσ2ξ2 )

2πσ2ξ2

−
√

1− 1

2πσ2ξ2

= − log(A)

2α2
−

arctanh(−
√
α2−1
α )

α2
−
√
α2 − 1

α

= − log(A)

2α2
−

log(α−
√
α2−1

α+
√
α2−1

)

2α2
−
√
α2 − 1

α

g(ν2) = − log(A)

2α2
−

log(α+
√
α2−1

α−
√
α2−1

)

2α2
+

√
α2 − 1

α
.

From this we deduce that g(ν1) < 0 and g(ν2) > 0, and thus
q has three extrema, if and only if:

| log(A)| < 2α
√
α2 − 1− log(

α+
√
α2 − 1

α−
√
α2 − 1

).

B. Proof of Proposition III.2

The derivative of |V hf (t̃k, η)|2 is null if η satisfies:(
(ξ1 − η)Ae−πσ

2(η−ξ1)2

+ (η − ξ2)e−πσ
2(η−ξ2)2

)
(
Ae−πσ

2(η−ξ1)2

− e−πσ
2(η−ξ2)2

)
= 0.

(24)



9

Looking for a a solution in [ξ1, ξ2], we remark that the
derivative is null if Ae−πσ

2(η−ξ1)2−e−πσ2(η−ξ2)2

= 0, which
leads to

η̂ =
logA

2πσ2(ξ1 − ξ2)
+
ξ1 + ξ2

2
. (25)

This extremum corresponds to a zero of |V hf (t̃k, η)|2, and is
thus a minimum of |V hf (t̃k, η)|2. Now, considering the same
formalism as previously, outside of the interval ]ξ1, ξ2[, the
extrema satisfy

η − ξ1
η − ξ2

= Ae−2πσ2(ξ1−ξ2)(η− ξ1+ξ2
2 ). (26)

Putting h1(η) = η−ξ1
η−ξ2 and h2(η) = Ae−2πσ2(ξ1−ξ2)(η− ξ1+ξ2

2 ),
we remark that h′1(η) < 0 and h′2(η) > 0. On in-
terval ] − ∞, ξ1[, as lim

η→−∞
h1(η) = 1, h1(ξ1) = 0,

lim
η→−∞

h2(η) = 0 and h2(ξ1) = Ae−πσ
2(ξ1−ξ2)2

, so there

is a unique solution to (26) in ] − ∞, ξ1[, corresponding
to a maximum for |V hf (t̃k, η)|2. Investigating the case of
interval ]ξ2,+∞[, as lim

η→ξ2
h1(η) = +∞, lim

η→+∞
h1(η) = 1,

h2(ξ2) = Aeπσ
2(ξ2−ξ1)2

and lim
η→∞

h2(η) = +∞ there is a

unique solution to (26) in ]ξ2,+∞[, which corresponds to a
maximum for |V hf (t̃k, .)|2.

C. Proof of Proposition III.3

Let us consider A = 1, for which we put:

l(η) = e−2πσ2(η−ξ1)2

+ e−2πσ2(η−ξ2)2

+2e−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t),

(27)

and then define γ = cos(2π(ξ2 − ξ1)t). Considering the same
change of variables as previously, namely η = ν + ξ1+ξ2

2 and
reclling ξ = ξ2−ξ1

2 , we define:

q(ν) := l(ν +
ξ1 + ξ2

2
)

= e−2πσ2(ν+ξ)2

+ e−2πσ2(ν−ξ)2

+2e−πσ
2[(ν+ξ)2+(ν−ξ)2]γ,

(28)

whose derivative reads:

q′(ν) = 8πσ2e−2πσ2ν2

e−2πσ2ξ2[
−ν(cosh(4πσ2ξν) + γ) + ξ cosh(4πσ2ξν)

]
= 8πσ2e−2πσ2ν2

e−2πσ2ξ2

(cosh(4πσ2ξν) + γ)[
−ν + ξ

sinh(4πσ2ξν)

cosh(4πσ2ξν) + γ

]
,

(29)

which has the sign of the odd function k(ν) = −ν +

ξ sinh(4πσ2ξν)
cosh(4πσ2ξν)+γ (so we study it only for positive ν). Com-

puting the derivative of this function we get:

k′(ν) = −1 + 4πσ2ξ2

cosh(4πσ2ξν)(cosh(4πσ2ξν) + γ)− sinh2(4πσ2ξν)

(cosh(4πσ2ξν) + γ)2

= −1 + 4πσ2ξ2 1 + β cosh(4πσ2ξν)

(cosh(4πσ2ξν) + γ)2
,

(30)

which has the same sign as

r(ν) = −(cosh(4πσ2ξν)+γ)2+4πσ2ξ2(1+γ cosh(4πσ2ξν)).

Differentiating again, we get

r′(ν) = −2(cosh(4πσ2νξ) + γ)4πσ2 sinh(4πσ2νξ)

+16π2ξ3σ4ξ2 sinh(4πσ2νξ))

= 8πξσ2 sinh(4πσ2νξ)

(− cosh(4πσ2νξ)− γ + 2πσ2ξ2).

(31)

which has the sign of s(ν) = − cosh(4πσ2νξ)− γ + 2πσ2ξ2

which is decreasing for ν > 0. As s(0) = −1−γ+2πσ2ξ2, we
have two cases. The first one is when −1−γ+2πσ2ξ2 ≤ 0. As
r(0) = −(1+γ)2+4πσ2ξ2(1+γ) = (1+α)(−1−γ+4πσ2ξ2),
if −1 − γ + 4πσ2ξ2 ≤ 0, we have the following table of
variations:

ν 0 +∞
r′(ν) −

r(0) ≤ 0
r(ν)

−∞
k′(ν) −

0
k(ν)

−∞
Note that from the above table of variations we deduce that
the function q is decreasing for ν > 0, and q has a unique
maximum at 0. Now if −1− γ+ 4πσ2ξ2 > 0 still with −1−
γ + 2πσ2ξ2 ≤ 0, we get the table of variations:

ν 0 ν0 ν1 ν2 +∞
r′(ν) −

r(0) > 0
r(ν)

−∞
k′(ν) + 0 −

k(ν)
0 −∞

q′(ν) + 0 −

q(ν)
q(0) −∞

and so in that case, we obtain that q has three extrema.

The second case corresponds to −1−γ+2πσ2ξ2 > 0, then
−1−γ+4πσ2ξ2 > 0 then r(0) > 0, and we get the following
table of variations:

ν 0 ν0 ν1 ν2 +∞
r′(ν) + 0 −

r(ν)
r(0) > 0 −∞

k′(ν) + 0 −

k(ν)
0 −∞

q′(ν) + 0 −

q(ν)
q(0) −∞

Conclusion: The function q has three extrema if 1 + γ <
4πσ2ξ2, which corresponds to the sought condition, and 1
otherwise.
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D. Proof of Proposition III.4

Let us consider the function:

l(η) = A2e−2πσ2(η−ξ1)2

+ e−2πσ2(η−ξ2)2

+2Ae−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t),

(32)

and then put γ = cos(2π(ξ2 − ξ1)t) Considering the same
change of variables as previously, namely η = ν + ξ1+ξ2

2 and
putting ξ = ξ2−ξ1

2 , we may write:

f1(ν) =l(ν +
ξ1 + ξ2

2
)

=e−2πσ2(ν2+ξ2)(A2e−4πσ2ξν + e4πσ2ξν + 2Aγ).

(33)

We then make a new change of variables by putting ν =
log(A)+µ

4πσ2ξ , which enables us to write:

f1(ν) =f2(µ)

=e
−2πσ2

[(
log(A)+µ

4πσ2ξ

)2
+ξ2

]
(Ae−µ +Aeµ + 2Aγ)

=e
−2πσ2

[(
log(A)+µ

4πσ2ξ

)2
+ξ2

]
2As(cosh(µ) + γ).

(34)

The derivative of f2 reads:

f ′2(µ) =e
−2πσ2

[(
log(A)+µ

4πσ2ξ

)2
+ξ2

]

2A

[
− log(A) + µ

4πσ2ξ2
(cosh(µ) + γ) + sinh(µ)

] (35)

which has the sign of:

g(µ) = − log(A) + µ

4πσ2ξ2
+

sinh(µ)

cosh(µ) + γ

assuming γ 6= −1, and recalling that α =
√

π
2σ(ξ2 − ξ1) =√

2πσξ, we rewrite:

g(µ) = − log(A) + µ

2α2
+

sinh(µ)

cosh(µ) + γ
.

Differentiating g we get

g′(µ) = − 1

2α2
+

cosh(µ)(cosh(µ) + γ)− sinh2(µ)

(cosh(µ) + γ)2

= − 1

2α2
+

1 + γ cosh(µ)

(cosh(µ) + γ)2

(36)

which has the same sign as

h(cosh(µ)) = − (cosh(µ) + γ)2

2α2
+ 1 + γ cosh(µ)

= −cosh(µ)2

2α2
+ γ(1− 1

α2
) cosh(µ) + 1− γ2

2α2

=
1

α2
(−cosh(µ)2

2
+ γ(α2 − 1) cosh(µ) + α2 − γ2

2
).

The term inside the parentheses is a second order polynomial
in cosh(µ) whose discriminant reads:

∆ = γ2(α2 − 1)2 + (2α2 − γ2) = α2(γ2(α2 − 2) + 2) > 0.

The roots of this polynomial are denoted by X1 and X2

with X1 < X2, and we know that h(X) < 0 if X ∈

]−∞, X1[
⋃

]X2,+∞[ and h(X) > 0 if X ∈]X1, X2[.
We now need to know the location of cosh(µ). To do this, let

us first compute h(1) = (γ+1)(1− γ+1
2α2 ) which has the same

sign as α2− γ+1
2 . Let us assume α ≤

√
γ+1

2 , as h(1) ≤ 0 then
1 belongs to ] −∞, X1] or [X2,∞[. To determine to which
interval 1 belongs to we compare it to X1+X2

2 = γ(α2−1) <
1. Thus 1 belongs to ]X2,+∞[. Finally, as for all µ ∈ R
cosh(µ) ≥ 1, h(µ) and thus g′(µ) are negative. From this
study we deduce the following table of variations:

µ −∞ µ1 +∞
+∞

g(µ)
−∞

f ′2(µ) + 0 −

f2(µ)

and that the function l(η) has a unique extremum which is a

maximum when α ≤
√

γ+1
2 .

If we now assume that α >
√

γ+1
2 , then h(1) > 0 and thus

1 belongs to ]X1, X2[. As cosh(µ) ∈ ]X1, X2[ is equivalent
to |µ| < arccosh(X2), this means that h(cosh(µ)) < 0 if

µ ∈]−∞,− arccosh(X2)[
⋃

] arccosh(X2),+∞[,

and h(cosh(µ)) is positive in the opposite case. We thus get
the following table of variations:

µ −∞ − arccosh(X2) arccosh(X2) +∞
g′(µ) − 0 + 0 −

+∞
g(µ)

−∞
g(µ) vanishes with a change of sign only once at some µ = µ1

if and only if g(− arccosh(X2)) ≥ 0 or g(arccosh(X2)) ≤ 0.
In this case, we deduce that

µ −∞ µ1 +∞
f ′2(µ) + 0 −

f2(µ)

meaning l(η) has a unique maximum in that case (which is a
maximum).

If g(− arccosh(X2)) < 0 and g(arccosh(X2)) > 0, g(µ)
will vanish with a change of signs three times at some µ = µ1,
µ2 and µ3 respectively. We therefore deduce the following
table of variations for f2:

µ −∞ µ1 µ2 µ3 +∞
g(µ) + 0 − 0 + 0 −

f2(µ)

In such case, l(η) has three extrema: 2 maxima and a mimi-
mum.

Finally, to specify in which situations l has three extrema,
as

g(arccosh(X2)) = − log(A) + arccosh(X2)

2α2
+

√
X2

2 − 1

X2 + γ

g(− arccosh(X2)) = − log(A)− arccosh(X2)

2α2
−
√
X2

2 − 1

X2 + γ
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we deduce that:

g(arccosh(X2)) > 0

⇔ log(A) < − arccosh(X2)) + 2α2

√
X2

2 − 1

X2 + γ

g(−arccosh(X2)) < 0

⇔ − log(A) < − arccosh(X2)) + 2α2

√
X2

2 − 1

X2 + γ
.

(37)

From this we get that l(η) has three extrema if and only if α >√
1+γ

2 and then if | log(A)| < − arccosh(X2)) + 2α2

√
X2

2−1

X2+α

with X2 = γ(α2 − 1) + α
√
γ2(α2 − 2) + 2.

E. Proof of Proposition III.5
In this section, we assume that −1 < γ ≤ 1. We know that

f ′2(µ) has the same sign as:

g(µ) = − log(A) + µ

4πσ2ξ2
+

sinh(µ)

cosh(µ) + γ

we denote this function by g(µ, γ). We can rewrite:

g(µ, γ) = − log(A) + µ

2α2
+

sinh(µ)

cosh(µ) + γ
.

We know from the previous proposition that the function f2

has three extrema if and only if

α >

√
1 + γ

2
and

g(− arccosh(X2), γ) < 0 and g(arccosh(X2), γ) > 0

Let us show that this is equivalent to:

∃ y0 < 0 g(y0, γ) < 0 and y′0 > 0 g(y′0, γ) > 0

This condition is a necesssary condition since the values
y0 = − arccosh(X2) and y′0 = arccosh(X2), satisfy the
property. Conversely, let us assume that there exist y0 < 0
and y′0 > 0 such that g(y0, γ) < 0 and g(y′0, γ) > 0. As

lim
µ→+∞

g(µ, γ) = −∞ and lim
µ→−∞

g(µ, γ) = +∞, this implies

that g(., γ) (and also f ′2(µ) ) passes through 0 and changes
signs three times, respectively on the intervals ] − ∞, y0[,
]y0, y

′
0[, and on ]y′0,+∞[, and thus f2 has three extrema.

Let us now show that, if the function f2 has three extrema
for γ = 1, it also has three extrema for γ ∈]− 1, 1]. Based on
the above characterization of the existence of three extrema
based on the study of the function g, let us assume that there
exist y0 < 0 and y′0 > 0 such that g(y0, 1) and g(y′0, 1) > 0.
But whatever γ ∈]−1, 1] one has ∀µ ∈ R 1

cosh(µ) ≥
1

cosh(µ)+1 ,
which means that

∀µ ≥ 0,
sinh(µ)

cosh(µ) + γ
≥ sinh(µ)

cosh(µ) + 1
and

∀µ ≤ 0,
sinh(µ)

cosh(µ) + γ
≤ sinh(µ)

cosh(µ) + 1
.

Finally, we deduce that

∀µ ≥ 0, g(µ, γ) ≥ g(µ, 1) and ∀µ ≤ 0, g(µ, γ) ≤ g(µ, 1).

This means in particular that g(y′0, γ) ≥ g(y′0, 1), and that
g(y0, γ) ≤ g(y0, 1). So we deduce from this that g(y′0, γ) > 0

and g(y0, γ) < 0, and thus whatever γ ∈]− 1, 1], the function
g satisfies the condition for f2 to have three extrema.

So finally, we may conclude that the function f2 has three
extrema whatever γ ∈ [−1, 1], if and only if

α > 1 and | log(A)| < −2 arccosh(α) + 2α
√
α2 − 1.
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