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ABSTRACT

This paper addresses identification of nonlinear circuits for
power-balanced virtual analog modeling and simulation. The pro-
posed method combines a port-Hamiltonian system formulation
with kernel-based methods to retrieve model laws from measure-
ments. This combination allows for the estimated model to retain
physical properties that are crucial for the accuracy of simulations,
while representing a variety of nonlinear behaviors. As an illus-
tration, the method is used to identify a nonlinear passive peaking
EQ.

1. INTRODUCTION

Virtual analog modeling is an active research field, in particular
within the audio community. Indeed, vintage analog audio effects
are still appreciated among musicians, but original devices are now
rare and delicate to maintain. A virtual replica then becomes a
compelling alternative.

Historically, modeling methods have been roughly classified
into two categories, white box and black box. White box modeling
relies heavily on physics, and requires extensive knowledge on the
circuit, from components datasheets to circuit schematics. Such
modeling include Wave Digital Filters [1, 2, 3] and State-Space
representations [4, 5, 6]. Black box modeling on the other hand is
more concerned with reproducing a global input-output behavior,
without necessarily capturing local phenomena taking place inside
the system. It is usually more adaptable, but less physically inter-
pretable. Neural Networks [7, 8] are popular black box models.
Volterra-based methods can be either white box oriented [9, 10],
or black box oriented [11].

A crucial counterpart of modeling is system identification, that
is, retrieving model laws and parameters from measurements. Ob-
viously, one designs an identification method with a specific model
—white box or black box— in mind (see e.g. [12, 13] for Volterra,
or [14] for WDF). In recent years nonetheless, hybrid modeling,
or grey box, has gained considerable momentum for identification.
Indeed, it often successfully combines desirable features from both
paradigms. Such in-between modeling associates State-Space rep-
resentations and polynomial models [15], State-Space represen-
tations and Neural Networks [16], digital filters and Neural Net-
works [17] to list a few.

In this paper, we consider an identification method relying on
the State-Space representation known as port-Hamiltonian systems
(PHS) [18, 19] on one hand, and kernel-based methods [20, 21] on
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the other hand. PHS are built as interconnected components with
physical constitutive laws, so that the power balance of the system
is structurally satisfied. This energy-based formulation can be as-
sociated with numerical methods that preserve the power balance
and passivity in the discrete-time domain, for both linear and non-
linear systems. The PHS approach has proved relevant to simulate
audio systems [22]. Although extensive work is concerned with
linear PHS identification [23, 24], nonlinear PHS identification is
still little explored (see e.g. [25] for an overview). To address non-
linear behavior, we rely on reproducing kernels. Reproducing ker-
nels have long proven to be a valuable and flexible tool for function
approximation and solving of differential equations [26]. As such,
they already have succesfully been implemented for audio circuit
modeling [27]. Reproducing kernels are privileged here over deep
learning approaches such as in [28], because the number of param-
eters to infer is much smaller, and because they are generally more
interpretable. The specificity of our method resides in choosing a
kernel and tailoring the regression so that key physical properties
of the system, such as power balance and passivity, are retained.

This paper is organized as follows. In section 2, we give a
brief overview of PHS. In section 3, we propose a parametrization
of the PHS interconnection matrix. In section 4, we present an en-
ergy modeling based on reproducing kernels. Section 5 describes
an optimization procedure to retrieve PHS parameters from mea-
surements. In section 6, the complete method is tested on a virtual
passive peaking EQ. Finally, some conclusions and perspectives
are given in section 7.

2. PORT-HAMILTONIAN FORMULATION AND
WORKING ASSUMPTIONS

2.1. Port-Hamiltonian formulation

The identification method described in this paper relies on port-
Hamiltonian systems [29, 19], under a differential-algebraic for-
mulation (PHS). This formulation allows the representation of a
dynamical system as a network of:

1. storage components of state x and energy H (x), storing
the power Pstored = ∇H (x)⊺ ẋ;

2. dissipative components of flow w and effort z (w), such as
the dissipated power Pdiss = z (w)⊺ w is non-negative for
all w;

3. connection ports conveying the outgoing power Pext =
u⊺y where u are inputs and y are outputs.

The flows f and efforts e of all components are coupled through
a skew-symmetric interconnection matrix S = −S⊺ (possibly de-
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(a) RLC circuit in series.
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(b) Corresponding PHS. Dots indicate zeros.

∇H (x) u
vC iL vin[ ]
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(c) Corresponding PH-ODE. Dots indicate zeros.

Figure 1: RLC circuit in series and its PHS representations.

pendent on x):  ẋw
y


︸ ︷︷ ︸

f

= S

∇H (x)
z (w)
u


︸ ︷︷ ︸

e

. (1)

Here, flows can either be currents (e.g. for capacitors) or voltages
(e.g. for inductors), and vice versa for efforts. Such systems satisfy
the power balance Pstored + Pdiss + Pext = 0. Indeed, Pstored +
Pdiss + Pext = e⊺f = e⊺Se is zero since e⊺Se = (e⊺Se)⊺ =
− (e⊺Se) due to the skew-symmetry of S.

Under some additional assumptions (not detailed here), this
formulation can be reduced to the following PH-ODE representa-
tion [19]: [

ẋ
y

]
= (J −R)

[
∇H (x)

u

]
, (2)

where J = −J⊺ is skew-symmetric, and R = R⊺ is positive
semi-definite. Both matrices are possibly dependent on x. In par-
ticular, formulation (2) is possible when the dissipative law z is
linear.

Throughout this paper, we adopt the passive sign convention
for all components, including ports and external sources. This
means that the current is defined positive when entering the com-
ponent through the positive voltage terminal [30].

2.2. Example

As an illustration, consider the linear RLC circuit in series (Fig.
1a). The resistor obey Ohm’s law, with flow iR (current through
the resistor) and effort z(iR) = R iR = vR (voltage across the
resistor). The inductor has state ΦL (magnetic flux linkage through
the inductor), energy HL(ΦL) = Φ2

L/2L and effort H′
L(ΦL) =

ΦL/L = iL (current through the inductor). The capacitor has state
qC (electric charge in the capacitor), energy HC(qC) = q2C/2C
and effort H′

C(qC) = qC/C = vC (voltage across the capacitor).
Kirchhoff’s laws in receptor convention yield the PHS and PH-
ODE representations in Fig. 1b and Fig. 1c, respectively.

2.3. Working assumptions

In the following, we limit ourselves to circuits verifying that:

1. The dissipation law z is linear.

2. The coefficients of J −R are constant.

3. Separability: the energy law is a separable function of the
state, i.e. it takes the form H (x) =

∑Nx
k=1 Hk (xk) , Nx =

dim (x).

4. Smoothness: Hk is at least C2 ∀k ∈ {1, ..., Nx}.

5. Convexity: the energy law is convex, i.e. H(2)
k (xk) ≥

0 ∀k, xk, where H(2)
k denote the second derivative of Hk

(a formal definition can be found in Appendix A).

Assumptions 1 to 3 cover electronic circuits constituted of
one-ports such as (possibly nonlinear, see [31]) inductors, (pos-
sibly nonlinear, see [32]) capacitors, linear conductors and lin-
ear resistors, which admit a PH-ODE formulation such as Eq. (2).
This deliberately excludes nonlinear dissipative components such
as diodes, transistors and vacuum tubes, which will be the object
of future work. Assumptions 4 and 5 are stricter than necessary:
actually, a sufficient condition to ensure passivity of storage com-
ponents is for the energy to have an inferior bound [19]. Neverthe-
less, enforcing convexity results in a desirable asymptotic behav-
ior, and most energy laws are convex anyway (a notable exception
concerns meta-stable ferromagnetic cores [31]).

In the next sections, we assume that we can measure x, u
and y, and look for an estimation of the reduced matrix J − R
and an approximant of H, verifying both Eq. (2) and our working
assumptions.

3. INTERCONNECTION MATRIX MODELING

3.1. Decomposition of J

Since J = −J⊺ is skew-symmetric, it can be written as:

J = J(θJ) :=

NJ∑
k=1

θJk Jk, θJ =
[
θJ1 , . . . , θ

J
NJ

]
∈ RNJ , (3)

where {Jk} is the canonical base of skew-symmetric matrices, and
NJ = dim (J)

(
dim (J)− 1

)
/ 2.

For the example of section 2.2, we have:

{Jk} =


 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0

 ,

θJ = [1, 0, 1].
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3.2. Decomposition of R

Since R is positive semi-definite, it admits a Cholesky decompo-
sition [33, 34] and can be written as:

R = R(θR) = T (θR)T (θR)⊺,

T (θR) :=

NR∑
k=1

θRk Tk, θR =
[
θR1 , . . . , θ

R
NR

]
∈ RNR ,

(4)

where {Tk} is the canonical base of lower triangular matrices,
NR = dim (R)

(
dim (R) + 1

)
/ 2, and diagonal coefficients are

non-negative. For convenience, we choose the first dim (R) coef-
ficients to be the diagonal coefficients.

For the example of section 2.2, we have:

{Tk} =


1 0 0
0 0 0
0 0 0

 ,

0 0 0
0 1 0
0 0 0

 ,

0 0 0
0 0 0
0 0 1

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 0
1 0 0

 ,

0 0 0
0 0 0
0 1 0


θR =

[
0,
√
R, 0, 0, 0, 0

]
.

4. ENERGY LAW MODELING

4.1. Optimal approximant

We consider the reproducing kernel theory to build an approximant
of H. We refer to [35, 26] for a complete theoretical overview of
Reproducing Kernel Hilbert Spaces (RKHS). In this section, we
only recall practical results.

Consider the classic scattered data interpolation problem, which
is finding a function f verifying:

f (xi) = yi ∀i ∈ {1, ..., N}, (5)

for some given data {(x1, y1), ..., (xN , yN )}, [x1, ..., xN ] ∈ ΩN .
Assuming that f belongs to a RKHS K, the optimal approximant
of f in K is the function f̃ defined as:

f̃ : x 7→
N∑

j=1

λ̃jK (x, xj) , (6)

with K : Ω × Ω 7→ R the positive definite kernel inducing K. In
Eq. (6), the vector λ̃ is the solution of the linear system Kλ = y,
where Ki,j = K (xi, xj). For instance, the kernel defined as:

K (xi, xj) =
a

π
sinc

(
a(xi − xj)

)
,

where 0 < a < +∞ and sinc(u) = sin(u)/u, is the reproducing
kernel of the space of bandlimited continuous functions of band-
with in [−a, a].

In practice, the RKHS K of interest for a given problem is of-
ten unknown. Therefore what motivates the choice of kernel boils
down to the properties one wishes to attach to the approximant,
such as locality1, smoothness, interpolation behavior, sensitivity
to noise, etc. However, there is an inherent tradeoff between these

1that is, how much influence a data point has over its neighborhood.

Figure 2: Two different approximants of the same function f(x) =
sin(2πx) + sin(6πx) + sin(10πx) with noisy data.

properties. Indeed, if locality is desirable (typically, because f
contains high frequencies), choosing a local kernel is necessary.
Nonetheless good reconstruction with a highly local kernel neces-
sitates a high number of samples N . But a high number of samples
can in turn lead to overfitting, especially with noisy data. There-
fore, N is usually chosen low enough so that the approximant gen-
eralizes well and small changes in the given data do not impact the
reconstruction too much. Concomitantly, the kernel support is ad-
justed through a scaling parameter ρ > 0, so that the approximant
is reasonably smooth for the chosen N .

Once N is fixed, several strategies are available in order to
find optimal parameters (the N samples and the scaling parameter
ρ) for a given kernel, see e.g. [36, 37, 38]. In this work, as the in-
put space dimension is only 1 due to the separability of the energy
law, we adopt a grid-based approach: the samples are distributed
evenly along the measured data range, and the scaling parameter
is adjusted so that some test function is approximated with an ar-
bitrary degree of accuracy. The advantage of this approach resides
in its simplicity. Should the energy law not be separable though, a
more sophisticated strategy would be preferable. Figure 2 shows
approximations from noisy data (SNR = 14 dB with a normal dis-
tribution) for different values of N , and K defined as:

K (xi, xj) =

{
(1− r)4 (1 + 4r) r =∥xi − xj∥ < 1,

0 otherwise.

4.2. Choice of kernel

The only assumption we have on the energy H is the convexity
assumption. Therefore, any kernel reproducing the convexity of
H should be relevant. A simple way of enforcing the convexity of
H is to construct a positive approximant of ∇2H. An approximant
of H can then be obtained by integration. To ensure the positivity
of each H(2)

k , we look for approximants of the form:

H(2)
k (xk) ≈

NH∑
i=1

θHk,i K (xk, xk,i) , with θHk,i ≥ 0 ∀k, i, (7)

where K is positive definite and continuous. Additionally, we
choose K radial, of the form K (xi, xj) = ϕ

(
∥xi − xj∥

)
. In-

deed, a radial kernel is local by construction. We also choose
K compactly supported, so that interpolation matrices are sparse
and computation is efficient. A possible choice of kernel verifying
these properties is one of the Wendland functions [39, 26] defined
as:

ϕ(ρ; r) =


1

ρ

(
1− r

ρ

)2

r =∥xi − xj∥ < ρ,

0 otherwise,
(8)
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where the scaling parameter ρ is different for each component.

4.3. Energy law model

To simplify notations in the following, we denote

ϕk,i : x 7→ ϕ
(
ρk;∥x− xk,i∥

)
. (9)

Finally, the energy law approximant we look for has the form:

H
(
θH;x

)
:=

Nx∑
k=1

NH∑
i=1

θHk,i ϕ
(−2)
k,i (xk) , θ

H
k,i ≥ 0 ∀k, i, (10)

where ϕ(−2)
k,i denotes the second antiderivative of ϕk,i (formal def-

inition in Appendix A). The {ϕk,i} constitute a compactly sup-
ported radial basis of ∇2H. The {xk,i} are called the centers of
the radial basis [40].

5. PARAMETER ESTIMATION

5.1. Objective function

We denote f [j] the measured average flows at sample j:

f [j] =

[
δx[j]fs
y[j]

]
, (11)

where δx[j] = x[j+1]−x[j] and fs is the sample rate. Similarly
we denote f̃(Θ)[j] the estimated flows at sample j:

f̃(Θ)[j] =
(
J(θJ)−R(θR)

)[∇H
(
θH,x[j], δx[j]

)
u[j]

]
,

(12)
where θH ⪰ 0, diag

(
T (θR)

)
⪰ 0, and ∇H is the discrete gra-

dient [41] defined component-wise as:

∇Hk

(
θH,x[j], δx[j]

)
=

NH∑
i=1

θHk,i
ϕ
(−2)
k,i

(
xk[j] + δxk[j]

)
− ϕ

(−2)
k,i

(
xk[j]

)
δxk[j]

∣∣δxk[j]
∣∣ > ϵ,

NH∑
i=1

θHk,i ϕ
(−1)
k,i

(
xk[j] +

δxk[j]

2

)
otherwise.

(13)

Denoting F (resp. F̃ (Θ)) the dim(J) × n matrix of measured
flows (resp. estimated flows) at all n samples, we define the er-
ror ϵ(Θ) = F̃ (Θ) − F , and the objective function E(Θ) =∥∥∥F̃ (Θ)− F

∥∥∥2, where∥∥ is the Frobenius norm. Finally we look
for the optimal:

Θ⋆ = argmin E(Θ)

subject to θH ⪰ 0,

diag
(
T (θR)

)
⪰ 0.

(14)

Here diag
(
T (θR)

)
denotes the diagonal elements of T (θR).

The sample rate fs is considered high enough so that the nu-
merical error is negligible. Therefore we consider that we identify
the continuous system, and the specific contribution of the dis-
cretization scheme to the global error [42] is not addressed here.

5.2. Constrained optimization

To perform a constrained minimization of E , we rely on the Interior
Point Method [43]. As this method is well documented, in this
section we only provide a basic mathematical layout as a reminder.

We define the loss function L:

L : Θ 7→ E(Θ)− 1

t

Nx∑
k=1

NH∑
i=1

ln θHk,i +

dim(J)∑
k=1

ln θRk


︸ ︷︷ ︸

logarithmic barrier

. (15)

The logarithmic barrier [43] penalizes the minimization if all co-
efficients are not strictly positive. The parameter t is set by the
user to enforce or relax the constraint2. A necessary condition to
minimize L is finding a solution to:

F (Θ,µ) =

[
∂ϵ(Θ)⊺ϵ(Θ)− µ
µ⊙Θ− 1/t

]
= 0, (16)

where ∂ϵ is the Jacobian of ϵ, µ is the derivative of the logarith-
mic barrier w.r.t Θ, and ⊙ denotes the element-wise product. A
solution is estimated with a damped Gauss-Newton iteration [44].
Starting from a particular set of parameters Θ0 meeting the con-
straints, the set is improved iteratively using:[
Θk+1,µk+1

]⊺
=
[
Θk,µk

]⊺
−α J−1

(
Θk,µk

)
F
(
Θk,µk

)
(17)

where α ∈ [0, 1] is a damping coefficient computed with a line
search [43] and J is the Jacobian of F defined as:

J (Θ,µ) =

[
∂ϵ(Θ)⊺∂ϵ(Θ) −I

diag (µ) diag(Θ)

]
. (18)

Here diag(µ) (resp. diag(Θ)) denotes the square diagonal matrix
with the elements of µ (resp. Θ) on its diagonal. The iteration is
stopped when the error is sufficiently low, or, since the objective
function is non convex, if the error starts increasing.

6. RESULTS FOR A VIRTUAL PASSIVE PEAKING EQ

6.1. Circuit parameters and data generation

We consider a passive peaking EQ [45] (Fig. 3a). The poten-
tiometer wiper position is parametrized by γ ∈ [0, 1], where γ
= 0 corresponds to the lowest position, and γ = 1 to the highest.
This parameter determines the shape of the frequency response
(Fig. 3b). The potentiometer, resistor and capacitor are all consid-
ered to be linear. The inductor is saturating with an effort law of
the type [31]:

iL = I0

(
ΦL

Φsat
− tanh

(
ΦL

η Φsat

))
, (19)

where I0, Φsat, and η are model parameters (hysteresis is ne-
glected here). Circuit parameters are set so that the center fre-
quency is 50 Hz and the quality factor is 1. They are shown in
Table 1.

Synthetic measurement data are artificially generated for an
input voltage of the form vin = U0 cos (2πf0t). The values of f0
and γ are chosen so that the circuit is maximally resonant. This

2it can be increased dynamically during iteration.
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(a) Passive peaking EQ circuit.

(b) Frequency response for several wiper positions.

Figure 3: Passive peaking EQ and its frequency responses.

way, nonlinearities of the inductor can be accurately captured for
a plausible U0. The theoretical PH-ODE of the passive peaking
EQ is found to be that in Appendix B. The generation is achieved
discretizing Eq. (2), and performing a standard Newton-Raphson
iteration at each sample (a detailed numerical scheme can be found
in [46]). Finally, some noise (SNR from 38 to 98 dB, with a nor-
mal distribution) is added to the data to test the robustness of the
identification method.

6.2. Choice of kernel parameters and initialization

A minima, the approximant must reproduce a linear effort on the
measured range of each state. We fix NH = 6. For this NH, we
determine (for each component) the smallest ρ so that the relative
error

∣∣(g(x)− g̃(x))/g(x)
∣∣ × 100 on the test effort g(x) = x

stays within some arbitrary bounds, chosen to be 10 %. Here, ρC
= 4.10−5 and ρL = 4.10−3 yield satisfying results (Figs 4c-4d, for
the inductor). Figure 4a (resp. 4b) shows the resulting basis for the
approximation of ∇2H (resp. ∇H).

Before performing the optimization procedure, an initial guess
Θ0 has to be estimated. To this end, the problem is linearized
around the desired solution. Measurement data are generated with
an input voltage small enough to observe a quasi-linear effort, so
we have:

F ≈ (J −R)D︸ ︷︷ ︸
M

X, (20)

where D is a diagonal matrix with positive coefficients, and X is
the dim(J)×n matrix of average states x̄[i] = (x[i]+x[i+1])/2
and inputs at all n samples. Since n ≫ dim(J), the matrix M is
extracted using M = FX†, where † denotes the pseudo-inverse.
Denoting Ms = −(M + M⊺)/2 the opposite of the symmetric
part of M , the matrix R is initialized to a positive-definite matrix
close to Ms. To this end, Ms is decomposed as:

Ms = UΣV ⊺. (21)

Then the matrix R̃ defined as:

R̃ = UΣU⊺ (22)

(a) Chosen radial basis for ∇2H. (b) Antiderivatives of the chosen ra-
dial basis for ∇2H.

(c) Resulting approximation of the
effort g(x) = x.

(d) Relative error on the effort.

Figure 4: Chosen radial basis for the inductor and resulting ap-
proximation of the test effort g(x) = x.

is positive-definite, and R is initialized to:

R0 = R̃/
∥∥∥R̃∥∥∥ , (23)

to account for the (unknown) contribution of D. Finally, all θJk
and θHk,i are initialized to 1.

6.3. Results

The optimization procedure returns a set of estimated parameters
after less than 50 iterations. Here, constraint enforcement is priv-
ileged over convergence speed as there are no real-time require-
ments. Still, the estimation is faster compared to deep neural net-
works methods (mainly because there are far less parameters to
estimate).

New simulations are computed with the parameters estimated
for each SNR. Figures 5a-5c show that the simulated states match
very closely with the "measured" states (here with measured state
SNR = 50 dB). Figures 5b-5d show the estimated effort laws. The
estimated effort law for the capacitor is linear as expected. The sat-
urating behavior of the inductor is accurately captured within the
range of measured data. Figure 6 shows the simulated state Nor-
malized Mean Square Error (NMSE = 20 log

(
∥x− x̃∥ /∥x∥

)
) vs

the measured state SNR. The NMSE stays low (around −60 dB)
regardless of the SNR.

Finally, to evaluate the robustness of the estimated model, sim-
ulations and measurements are also run with different input am-
plitudes and frequencies than those used for the estimation. Fig-
ures 7a-7d show that the simulated states match closely with the
measurements in that case also.

7. CONCLUSION

In this paper, we have presented an identification method to re-
trieve parameters of a circuit modeled as a port-Hamiltonian sys-
tem, given measurements of state x, input u, and output y. This

DAFx.5
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Table 1: Data generation parameters for the virtual passive peaking EQ.

Rp (Ω) R (Ω) γ C (F) I0 (A) Φsat (Wb) η U0 (V) f0 (Hz) fs (Hz)

251.3 502.6 1 12.6×10−6 50×10−3 4×10−3 1.1 0.5 & 10 50 10×103

(a) Capacitor simulated state. (b) Capacitor estimated effort.

(c) Inductor simulated state. (d) Inductor estimated effort.

Figure 5: Estimation results for the virtual passive peaking EQ, with measured state SNR = 50 dB.

Figure 6: Simulated state Normalized Mean Square Error with re-
spect to measured state SNR.

method allows the joint estimation of constitutive laws of storage
components, as well as the interconnection matrix encoding the
circuit topology. In turn, the estimated model may be used for
passive guaranteed simulations.

The method has been tested on a virtual peaking EQ, with ac-
curate results. However, the method needs to be more thoroughly
assessed against real measurements. In particular, we should con-
trol that the discretization scheme in the simulation error does not
introduce too much numerical dispersion, which would alter the
optimization process. In that case, the discretization error would
have to be taken into account [47], or the sample rate would have
to be increased.

Another immediate perspective for this work is to extend the
method in order to include nonlinear dissipative components. This
would allow the inclusion of transistors and vacuum tubes, which
are an important part of audio circuits.

It would also be interesting to adapt the method to a co-energy
variables formulation. This way, measurements would only need

to be voltages and currents, instead of charges and magnetic fluxes,
which are much more difficult to obtain in practice. Identification
from partial measurements (incomplete state, or input and output
only) could be studied as well. This will be the object of future
work.
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A. DERIVATIVE AND ANTIDERIVATIVE NOTATIONS

By convention, f (0) = f . Then for some positive integer k ≥ 1,
we denote f (k) the function defined by:

f (k) : x 7→ d

dx
f (k−1)(x). (24)

Similarly, we denote f (−k) a function defined by:

f (−k) : x 7→
∫ x

0

f (1−k)(u)du+ C, (25)

where C is a constant. In this work, C is taken so that f (−k)(0) =
0.

B. PH-ODE OF THE PASSIVE PEAKING EQ

With

αp =
R

Rp +R
, Gp =

1

Rp +R
, Rp ∥ R =

RpR

Rp +R
, (26)

the PH-ODE of the passive peaking EQ on Fig. 3a is given by:

vC iL vin iout


iC . 1 . .

vL −1 −γRp ∥ R
(

Rp

R
(1− γ) + 1

)
γRpGp γRp ∥ R

iin . −γRpGp −Gp −αp

vout . γRp ∥ R αp −Rp ∥ R

.

(27)
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