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IDENTIFICATION OF NONLINEAR CIRCUITS AS PORT-HAMILTONIAN SYSTEMS

This paper addresses identification of nonlinear circuits for power-balanced virtual analog modeling and simulation. The proposed method combines a port-Hamiltonian system formulation with kernel-based methods to retrieve model laws from measurements. This combination allows for the estimated model to retain physical properties that are crucial for the accuracy of simulations, while representing a variety of nonlinear behaviors. As an illustration, the method is used to identify a nonlinear passive peaking EQ.

INTRODUCTION

Virtual analog modeling is an active research field, in particular within the audio community. Indeed, vintage analog audio effects are still appreciated among musicians, but original devices are now rare and delicate to maintain. A virtual replica then becomes a compelling alternative.

Historically, modeling methods have been roughly classified into two categories, white box and black box. White box modeling relies heavily on physics, and requires extensive knowledge on the circuit, from components datasheets to circuit schematics. Such modeling include Wave Digital Filters [START_REF] Fettweis | Wave digital filters: Theory and practice[END_REF][START_REF] Werner | Modeling circuits with arbitrary topologies and active linear multiports using wave digital filters[END_REF][START_REF] Bernardini | Wave digital modeling of nonlinear 3-terminal devices for virtual analog applications[END_REF] and State-Space representations [START_REF] Cohen | Real-time simulation of a guitar power amplifier[END_REF][START_REF] Macak | Simulation of Fender type guitar preamp using approximation and state space model[END_REF][START_REF] Holters | A generalized method for the derivation of non-linear state-space models from circuit DAFx[END_REF]. Black box modeling on the other hand is more concerned with reproducing a global input-output behavior, without necessarily capturing local phenomena taking place inside the system. It is usually more adaptable, but less physically interpretable. Neural Networks [START_REF] Damskägg | Real-time modeling of audio distortion circuits with deep learning[END_REF][START_REF] Martínez Ramírez | Deep learning for black-box modeling of audio effects[END_REF] are popular black box models. Volterra-based methods can be either white box oriented [START_REF] Hélie | Sound synthesis of a nonlinear string using Volterra series[END_REF][START_REF] Hélie | Volterra series and state transformation for real-time simulations of audio circuits including saturations: Application to the Moog ladder filter[END_REF], or black box oriented [START_REF] Boyd | Measuring Volterra kernels[END_REF].

A crucial counterpart of modeling is system identification, that is, retrieving model laws and parameters from measurements. Obviously, one designs an identification method with a specific model -white box or black box-in mind (see e.g. [START_REF] Orcioni | Identification of Volterra models of tube audio devices using multiplevariance method[END_REF][START_REF] Bouvier | Phasebased order separation for Volterra series identification[END_REF] for Volterra, or [START_REF] Sondhi | Lattice Wave Digital Filter based IIR system identification with reduced coefficients[END_REF] for WDF). In recent years nonetheless, hybrid modeling, or grey box, has gained considerable momentum for identification. Indeed, it often successfully combines desirable features from both paradigms. Such in-between modeling associates State-Space representations and polynomial models [START_REF] Paduart | Identification of nonlinear systems using polynomial nonlinear state space models[END_REF], State-Space representations and Neural Networks [START_REF] Parker | Modelling of nonlinear state-space systems using a deep neural network[END_REF], digital filters and Neural Networks [START_REF] Nercessian | Lightweight and interpretable neural modeling of an audio distortion effect using hyperconditioned differentiable biquads[END_REF] to list a few.

In this paper, we consider an identification method relying on the State-Space representation known as port-Hamiltonian systems (PHS) [START_REF] Maschke | An intrinsic Hamiltonian formulation of network dynamics: Non-standard Poisson structures and gyrators[END_REF][START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF] on one hand, and kernel-based methods [START_REF] Park | Universal approximation using radial-basis-function networks[END_REF][START_REF] Vapnik | Support vector method for function approximation, regression estimation, and signal processing[END_REF] on the other hand. PHS are built as interconnected components with physical constitutive laws, so that the power balance of the system is structurally satisfied. This energy-based formulation can be associated with numerical methods that preserve the power balance and passivity in the discrete-time domain, for both linear and nonlinear systems. The PHS approach has proved relevant to simulate audio systems [START_REF] Falaize | Passive guaranteed simulation of analog audio circuits: A port-Hamiltonian approach[END_REF]. Although extensive work is concerned with linear PHS identification [START_REF] Medianu | Identification for port-controlled Hamiltonian systems[END_REF][START_REF] Benner | Identification of port-Hamiltonian systems from frequency response data[END_REF], nonlinear PHS identification is still little explored (see e.g. [START_REF] Cherifi | An overview on recent machine learning techniques for port-Hamiltonian systems[END_REF] for an overview). To address nonlinear behavior, we rely on reproducing kernels. Reproducing kernels have long proven to be a valuable and flexible tool for function approximation and solving of differential equations [START_REF] Schaback | Kernel techniques: From machine learning to meshless methods[END_REF]. As such, they already have succesfully been implemented for audio circuit modeling [START_REF] Daniel | Modeling nonlinear circuits with linearized dynamical models via kernel regression[END_REF]. Reproducing kernels are privileged here over deep learning approaches such as in [START_REF] Lutter | Deep lagrangian networks: Using physics as model prior for deep learning[END_REF], because the number of parameters to infer is much smaller, and because they are generally more interpretable. The specificity of our method resides in choosing a kernel and tailoring the regression so that key physical properties of the system, such as power balance and passivity, are retained.

This paper is organized as follows. In section 2, we give a brief overview of PHS. In section 3, we propose a parametrization of the PHS interconnection matrix. In section 4, we present an energy modeling based on reproducing kernels. Section 5 describes an optimization procedure to retrieve PHS parameters from measurements. In section 6, the complete method is tested on a virtual passive peaking EQ. Finally, some conclusions and perspectives are given in section 7.

PORT-HAMILTONIAN FORMULATION AND WORKING ASSUMPTIONS

Port-Hamiltonian formulation

The identification method described in this paper relies on port-Hamiltonian systems [START_REF] Duindam | Modeling and control of complex physical systems: the port-Hamiltonian approach[END_REF][START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF], under a differential-algebraic formulation (PHS). This formulation allows the representation of a dynamical system as a network of:

1. storage components of state x and energy H (x), storing the power P stored = ∇H (x) ⊺ ẋ;

2. dissipative components of flow w and effort z (w), such as the dissipated power P diss = z (w) ⊺ w is non-negative for all w;

3. connection ports conveying the outgoing power Pext = u ⊺ y where u are inputs and y are outputs.

The flows f and efforts e of all components are coupled through a skew-symmetric interconnection matrix S = -S ⊺ (possibly de- 

  ẋ w y   f = S   ∇H (x) z (w) u   e . (1) 
Here, flows can either be currents (e.g. for capacitors) or voltages (e.g. for inductors), and vice versa for efforts. Such systems satisfy the power balance P stored + P diss + Pext = 0. Indeed, P stored + P diss + Pext = e ⊺ f = e ⊺ Se is zero since e ⊺ Se = (e ⊺ Se) ⊺ = -(e ⊺ Se) due to the skew-symmetry of S.

Under some additional assumptions (not detailed here), this formulation can be reduced to the following PH-ODE representation [START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF]:

ẋ y = (J -R) ∇H (x) u , (2) 
where J = -J ⊺ is skew-symmetric, and R = R ⊺ is positive semi-definite. Both matrices are possibly dependent on x. In particular, formulation (2) is possible when the dissipative law z is linear.

Throughout this paper, we adopt the passive sign convention for all components, including ports and external sources. This means that the current is defined positive when entering the component through the positive voltage terminal [START_REF] Bigelow | Power and energy in electric circuits[END_REF].

Example

As an illustration, consider the linear RLC circuit in series (Fig. 1a). The resistor obey Ohm's law, with flow iR (current through the resistor) and effort z(iR) = R iR = vR (voltage across the resistor). The inductor has state ΦL (magnetic flux linkage through the inductor), energy HL(ΦL) = Φ 2 L /2 L and effort H ′ L (ΦL) = ΦL/L = iL (current through the inductor). The capacitor has state qC (electric charge in the capacitor), energy HC(qC) = q 2 C /2 C and effort H ′ C (qC) = qC/C = vC (voltage across the capacitor). Kirchhoff's laws in receptor convention yield the PHS and PH-ODE representations in Fig. 1b and Fig. 1c, respectively.

Working assumptions

In the following, we limit ourselves to circuits verifying that:

1. The dissipation law z is linear.

2. The coefficients of J -R are constant.

3. Separability: the energy law is a separable function of the state, i.e. it takes the form

H (x) = Nx k=1 H k (x k ) , Nx = dim (x).

Smoothness:

H k is at least C 2 ∀k ∈ {1, ..., Nx}.

Convexity: the energy law is convex, i.e. H

(2)

k (x k ) ≥ 0 ∀k, x k , where H (2)
k denote the second derivative of H k (a formal definition can be found in Appendix A).

Assumptions 1 to 3 cover electronic circuits constituted of one-ports such as (possibly nonlinear, see [START_REF] Najnudel | A power-balanced dynamic model of ferromagnetic coils[END_REF]) inductors, (possibly nonlinear, see [START_REF] Biolek | Real-world capacitor as a memcapacitive element[END_REF]) capacitors, linear conductors and linear resistors, which admit a PH-ODE formulation such as Eq. ( 2). This deliberately excludes nonlinear dissipative components such as diodes, transistors and vacuum tubes, which will be the object of future work. Assumptions 4 and 5 are stricter than necessary: actually, a sufficient condition to ensure passivity of storage components is for the energy to have an inferior bound [START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF]. Nevertheless, enforcing convexity results in a desirable asymptotic behavior, and most energy laws are convex anyway (a notable exception concerns meta-stable ferromagnetic cores [START_REF] Najnudel | A power-balanced dynamic model of ferromagnetic coils[END_REF]).

In the next sections, we assume that we can measure x, u and y, and look for an estimation of the reduced matrix J -R and an approximant of H, verifying both Eq. (2) and our working assumptions.

INTERCONNECTION MATRIX MODELING

Decomposition of J

Since J = -J ⊺ is skew-symmetric, it can be written as:

J = J (θ J ) := N J k=1 θ J k J k , θ J = θ J 1 , . . . , θ J N J ∈ R N J , (3) 
where {J k } is the canonical base of skew-symmetric matrices, and

NJ = dim (J ) dim (J ) -1 / 2.
For the example of section 2.2, we have:

{J k } =      0 1 0 -1 0 0 0 0 0   ,   0 0 1 0 0 0 -1 0 0   ,   0 0 0 0 0 1 0 -1 0      , θ J = [1, 0, 1].

Decomposition of R

Since R is positive semi-definite, it admits a Cholesky decomposition [START_REF] Nicholas | Analysis of the Cholesky decomposition of a semi-definite matrix[END_REF][START_REF] Benoit | Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres carrés à un système d'équations linéaires en nombre inférieur à celui des inconnues. Application de la méthode à la résolution d'un système défini d'équations linéaires (procédé du Commandant Cholesky)[END_REF] and can be written as:

R = R(θ R ) = T (θ R )T (θ R ) ⊺ , T (θ R ) := N R k=1 θ R k T k , θ R = θ R 1 , . . . , θ R N R ∈ R N R , (4) 
where {T k } is the canonical base of lower triangular matrices, NR = dim (R) dim (R) + 1 / 2, and diagonal coefficients are non-negative. For convenience, we choose the first dim (R) coefficients to be the diagonal coefficients.

For the example of section 2.2, we have:

{T k } =      1 0 0 0 0 0 0 0 0   ,   0 0 0 0 1 0 0 0 0   ,   0 0 0 0 0 0 0 0 1   ,   0 0 0 1 0 0 0 0 0   ,   0 0 0 0 0 0 1 0 0   ,   0 0 0 0 0 0 0 1 0      θ R = 0, √ R, 0, 0, 0, 0 .

ENERGY LAW MODELING

Optimal approximant

We consider the reproducing kernel theory to build an approximant of H. We refer to [START_REF] Schaback | Native Hilbert spaces for radial basis functions I[END_REF][START_REF] Schaback | Kernel techniques: From machine learning to meshless methods[END_REF] for a complete theoretical overview of Reproducing Kernel Hilbert Spaces (RKHS). In this section, we only recall practical results. Consider the classic scattered data interpolation problem, which is finding a function f verifying:

f (xi) = yi ∀i ∈ {1, ..., N }, (5) 
for some given data {(x1, y1), ..., (xN , yN )}, [x1, ..., xN ] ∈ Ω N . Assuming that f belongs to a RKHS K, the optimal approximant of f in K is the function f defined as:

f : x → N j=1 λjK (x, xj) , (6) 
with K : Ω × Ω → R the positive definite kernel inducing K. In Eq. ( 6), the vector λ is the solution of the linear system Kλ = y, where Ki,j = K (xi, xj). For instance, the kernel defined as:

K (xi, xj) = a π sinc a(xi -xj) ,
where 0 < a < +∞ and sinc(u) = sin(u)/u, is the reproducing kernel of the space of bandlimited continuous functions of bandwith in [-a, a].

In practice, the RKHS K of interest for a given problem is often unknown. Therefore what motivates the choice of kernel boils down to the properties one wishes to attach to the approximant, such as locality 1 , smoothness, interpolation behavior, sensitivity to noise, etc. However, there is an inherent tradeoff between these 1 that is, how much influence a data point has over its neighborhood. properties. Indeed, if locality is desirable (typically, because f contains high frequencies), choosing a local kernel is necessary. Nonetheless good reconstruction with a highly local kernel necessitates a high number of samples N . But a high number of samples can in turn lead to overfitting, especially with noisy data. Therefore, N is usually chosen low enough so that the approximant generalizes well and small changes in the given data do not impact the reconstruction too much. Concomitantly, the kernel support is adjusted through a scaling parameter ρ > 0, so that the approximant is reasonably smooth for the chosen N .

Once N is fixed, several strategies are available in order to find optimal parameters (the N samples and the scaling parameter ρ) for a given kernel, see e.g. [START_REF] Nelles | Nonlinear system identification[END_REF][START_REF] Gregory | On choosing "optimal" shape parameters for rbf approximation[END_REF][START_REF] Mongillo | Choosing basis functions and shape parameters for radial basis function methods[END_REF]. In this work, as the input space dimension is only 1 due to the separability of the energy law, we adopt a grid-based approach: the samples are distributed evenly along the measured data range, and the scaling parameter is adjusted so that some test function is approximated with an arbitrary degree of accuracy. The advantage of this approach resides in its simplicity. Should the energy law not be separable though, a more sophisticated strategy would be preferable. Figure 2 shows approximations from noisy data (SNR = 14 dB with a normal distribution) for different values of N , and K defined as:

K (xi, xj) =
(1 -r) 4 (1 + 4r) r = ∥xi -xj∥ < 1, 0 otherwise.

Choice of kernel

The only assumption we have on the energy H is the convexity assumption. Therefore, any kernel reproducing the convexity of H should be relevant. A simple way of enforcing the convexity of H is to construct a positive approximant of ∇ 2 H. An approximant of H can then be obtained by integration. To ensure the positivity of each H

k , we look for approximants of the form:

H (2) k (x k ) ≈ N H i=1 θ H k,i K (x k , x k,i ) , with θ H k,i ≥ 0 ∀k, i, (7) 
where K is positive definite and continuous. Additionally, we choose K radial, of the form K (xi, xj) = ϕ ∥xi -xj∥ . Indeed, a radial kernel is local by construction. We also choose K compactly supported, so that interpolation matrices are sparse and computation is efficient. A possible choice of kernel verifying these properties is one of the Wendland functions [START_REF] Wendland | Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[END_REF][START_REF] Schaback | Kernel techniques: From machine learning to meshless methods[END_REF] defined as:

ϕ(ρ; r) =      1 ρ 1 - r ρ 2 r = ∥xi -xj∥ < ρ, 0 otherwise, (8) 
where the scaling parameter ρ is different for each component.

Energy law model

To simplify notations in the following, we denote

ϕ k,i : x → ϕ ρ k ;∥x -x k,i ∥ . (9) 
Finally, the energy law approximant we look for has the form:

H θ H ; x := Nx k=1 N H i=1 θ H k,i ϕ (-2) k,i (x k ) , θ H k,i ≥ 0 ∀k, i, (10) 
where ϕ

(-2)
k,i denotes the second antiderivative of ϕ k,i (formal definition in Appendix A). The {ϕ k,i } constitute a compactly supported radial basis of ∇ 2 H. The {x k,i } are called the centers of the radial basis [START_REF] Schaback | A practical guide to radial basis functions[END_REF].

PARAMETER ESTIMATION

Objective function

We denote f [j] the measured average flows at sample j:

f [j] = δx[j]fs y[j] , (11) 
where δx

[j] = x[j + 1] -x[j]
and fs is the sample rate. Similarly we denote f (Θ)[j] the estimated flows at sample j:

f (Θ)[j] = J (θ J ) -R(θ R ) ∇H θ H , x[j], δx[j] u[j] , (12) 
where θ H ⪰ 0, diag T (θ R ) ⪰ 0, and ∇H is the discrete gradient [START_REF] Mclachlan | Discrete gradient methods have an energy conservation law[END_REF] defined component-wise as:

∇H k θ H , x[j], δx[j] =                N H i=1 θ H k,i ϕ (-2) k,i x k [j] + δx k [j] -ϕ (-2) k,i x k [j] δx k [j] δx k [j] > ϵ, N H i=1 θ H k,i ϕ (-1) k,i x k [j] + δx k [j] 2 otherwise. ( 13 
)
Denoting F (resp. F (Θ)) the dim(J ) × n matrix of measured flows (resp. estimated flows) at all n samples, we define the error ϵ(Θ) = F (Θ) -F , and the objective function

E(Θ) = F (Θ) -F 2 
, where ∥∥ is the Frobenius norm. Finally we look for the optimal:

Θ ⋆ = arg min E(Θ) subject to θ H ⪰ 0, diag T (θ R ) ⪰ 0. ( 14 
)
Here diag T (θ R ) denotes the diagonal elements of T (θ R ).

The sample rate fs is considered high enough so that the numerical error is negligible. Therefore we consider that we identify the continuous system, and the specific contribution of the discretization scheme to the global error [START_REF] Cieśliński | Discrete gradient algorithms of high order for one-dimensional systems[END_REF] is not addressed here.

Constrained optimization

To perform a constrained minimization of E, we rely on the Interior Point Method [START_REF] Boyd | Convex optimization[END_REF]. As this method is well documented, in this section we only provide a basic mathematical layout as a reminder.

We define the loss function L:

L : Θ → E(Θ) - 1 t   Nx k=1 N H i=1 ln θ H k,i + dim(J) k=1 ln θ R k   logarithmic barrier . ( 15 
)
The logarithmic barrier [START_REF] Boyd | Convex optimization[END_REF] penalizes the minimization if all coefficients are not strictly positive. The parameter t is set by the user to enforce or relax the constraint 2 . A necessary condition to minimize L is finding a solution to:

F (Θ, µ) = ∂ϵ(Θ) ⊺ ϵ(Θ) -µ µ ⊙ Θ -1/t = 0, ( 16 
)
where ∂ϵ is the Jacobian of ϵ, µ is the derivative of the logarithmic barrier w.r.t Θ, and ⊙ denotes the element-wise product. A solution is estimated with a damped Gauss-Newton iteration [START_REF] Deuflhard | Newton methods for nonlinear problems: Affine invariance and adaptive algorithms[END_REF]. Starting from a particular set of parameters Θ 0 meeting the constraints, the set is improved iteratively using:

Θ k+1 , µ k+1 ⊺ = Θ k , µ k ⊺ -α J -1 Θ k , µ k F Θ k , µ k (17) 
where α ∈ [0, 1] is a damping coefficient computed with a line search [START_REF] Boyd | Convex optimization[END_REF] and J is the Jacobian of F defined as:

J (Θ, µ) = ∂ϵ(Θ) ⊺ ∂ϵ(Θ) -I diag (µ) diag(Θ) . (18) 
Here diag(µ) (resp. diag(Θ)) denotes the square diagonal matrix with the elements of µ (resp. Θ) on its diagonal. The iteration is stopped when the error is sufficiently low, or, since the objective function is non convex, if the error starts increasing.

RESULTS FOR A VIRTUAL PASSIVE PEAKING EQ

Circuit parameters and data generation

We consider a passive peaking EQ [START_REF] Dennis A Bohn | Operator adjustable equalizers: An overview[END_REF] (Fig. 3a). The potentiometer wiper position is parametrized by γ ∈ [0, 1], where γ = 0 corresponds to the lowest position, and γ = 1 to the highest. This parameter determines the shape of the frequency response (Fig. 3b). The potentiometer, resistor and capacitor are all considered to be linear. The inductor is saturating with an effort law of the type [START_REF] Najnudel | A power-balanced dynamic model of ferromagnetic coils[END_REF]:

iL = I0 ΦL Φsat -tanh ΦL η Φsat , (19) 
where I0, Φsat, and η are model parameters (hysteresis is neglected here). Circuit parameters are set so that the center frequency is 50 Hz and the quality factor is 1. They are shown in Table 1. Synthetic measurement data are artificially generated for an input voltage of the form vin = U0 cos (2πf0t). The values of f0 and γ are chosen so that the circuit is maximally resonant. This way, nonlinearities of the inductor can be accurately captured for a plausible U0. The theoretical PH-ODE of the passive peaking EQ is found to be that in Appendix B. The generation is achieved discretizing Eq. ( 2), and performing a standard Newton-Raphson iteration at each sample (a detailed numerical scheme can be found in [START_REF] Najnudel | Simulation of an ondes Martenot circuit[END_REF]). Finally, some noise (SNR from 38 to 98 dB, with a normal distribution) is added to the data to test the robustness of the identification method.

Choice of kernel parameters and initialization

A minima, the approximant must reproduce a linear effort on the measured range of each state. We fix NH = 6. For this NH, we determine (for each component) the smallest ρ so that the relative error (g(x) -g(x))/g(x) × 100 on the test effort g(x) = x stays within some arbitrary bounds, chosen to be 10 %. Here, ρC = 4.10 -5 and ρL = 4.10 -3 yield satisfying results (Figs 4c-4d, for the inductor). Figure 4a (resp. 4b) shows the resulting basis for the approximation of ∇ 2 H (resp. ∇H).

Before performing the optimization procedure, an initial guess Θ 0 has to be estimated. To this end, the problem is linearized around the desired solution. Measurement data are generated with an input voltage small enough to observe a quasi-linear effort, so we have:

F ≈ (J -R) D M X, (20) 
where D is a diagonal matrix with positive coefficients, and X is the dim(J )×n matrix of average states

x[i] = (x[i]+x[i+1])/2
and inputs at all n samples. Since n ≫ dim(J ), the matrix M is extracted using M = F X † , where † denotes the pseudo-inverse. Denoting Ms = -(M + M ⊺ )/2 the opposite of the symmetric part of M , the matrix R is initialized to a positive-definite matrix close to Ms. To this end, Ms is decomposed as:

Ms = U ΣV ⊺ . (21) 
Then the matrix R defined as: is positive-definite, and R is initialized to:

R = U ΣU ⊺ (22) 
R 0 = R/ R , (23) 
to account for the (unknown) contribution of D. Finally, all θ J k and θ H k,i are initialized to 1.

Results

The optimization procedure returns a set of estimated parameters after less than 50 iterations. Here, constraint enforcement is privileged over convergence speed as there are no real-time requirements. Still, the estimation is faster compared to deep neural networks methods (mainly because there are far less parameters to estimate). New simulations are computed with the parameters estimated for each SNR. Figures 5a-5c show that the simulated states match very closely with the "measured" states (here with measured state SNR = 50 dB). Figures 5b-5d show the estimated effort laws. The estimated effort law for the capacitor is linear as expected. The saturating behavior of the inductor is accurately captured within the range of measured data. Figure 6 shows the simulated state Normalized Mean Square Error (NMSE = 20 log ∥x -x∥ /∥x∥ ) vs the measured state SNR. The NMSE stays low (around -60 dB) regardless of the SNR.

Finally, to evaluate the robustness of the estimated model, simulations and measurements are also run with different input amplitudes and frequencies than those used for the estimation. Figures 7a-7d show that the simulated states match closely with the measurements in that case also.

CONCLUSION

In this paper, we have presented an identification method to retrieve parameters of a circuit modeled as a port-Hamiltonian system, given measurements of state x, input u, and output y. This Table 1: Data generation parameters for the virtual passive peaking EQ. method allows the joint estimation of constitutive laws of storage components, as well as the interconnection matrix encoding the circuit topology. In turn, the estimated model may be used for passive guaranteed simulations.

Rp (Ω) R (Ω) γ C (F) I0 (A) Φsat (Wb) η U0 (V) f0 ( 
The method has been tested on a virtual peaking EQ, with accurate results. However, the method needs to be more thoroughly assessed against real measurements. In particular, we should control that the discretization scheme in the simulation error does not introduce too much numerical dispersion, which would alter the optimization process. In that case, the discretization error would have to be taken into account [START_REF] Matsuda | Estimation of ordinary differential equation models with discretization error quantification[END_REF], or the sample rate would have to be increased.

Another immediate perspective for this work is to extend the method in order to include nonlinear dissipative components. This would allow the inclusion of transistors and vacuum tubes, which are an important part of audio circuits.

It would also be interesting to adapt the method to a co-energy variables formulation. This way, measurements would only need to be voltages and currents, instead of charges and magnetic fluxes, which are much more difficult to obtain in practice. Identification from partial measurements (incomplete state, or input and output only) could be studied as well. This will be the object of future work.

f (k) : x → d dx f (k-1) (x). (24) 
Similarly, we denote f (-k) a function defined by:

f (-k) : x → x 0 f (1-k) (u)du + C, ( 25 
)
where C is a constant. In this work, C is taken so that f (-k) (0) = 0.

B. PH-ODE OF THE PASSIVE PEAKING EQ

With

αp = R Rp + R , Gp = 1 Rp + R , Rp ∥ R = RpR Rp + R , (26) 
the PH-ODE of the passive peaking EQ on Fig. 3a is given by:

v C i L v in iout         i C . 1 . . v L -1 -γRp ∥ R Rp R (1 -γ) + 1 γRpGp γRp ∥ R i in . -γRpGp -Gp -αp vout . γRp ∥ R αp -Rp ∥ R . (27) 
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 1 Figure 1: RLC circuit in series and its PHS representations.
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 2 Figure 2: Two different approximants of the same function f (x) = sin(2πx) + sin(6πx) + sin(10πx) with noisy data.
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 4 it can be increased dynamically during iteration. DAFx.Proceedings of the 23 rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21 Passive peaking EQ circuit. (b) Frequency response for several wiper positions.
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 3 Figure 3: Passive peaking EQ and its frequency responses.

  (a) Chosen radial basis for ∇ 2 H. (b) Antiderivatives of the chosen radial basis for ∇ 2 H. (c) Resulting approximation of the effort g(x) = x.(d) Relative error on the effort.

Figure 4 :

 4 Figure 4: Chosen radial basis for the inductor and resulting approximation of the test effort g(x) = x.

  Capacitor simulated state. (b) Capacitor estimated effort. (c) Inductor simulated state. (d) Inductor estimated effort.

Figure 5 :

 5 Figure 5: Estimation results for the virtual passive peaking EQ, with measured state SNR = 50 dB.

Figure 6 :

 6 Figure 6: Simulated state Normalized Mean Square Error with respect to measured state SNR.