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Analysis of Reassignment Operators Used in
Synchrosqueezing Transforms: With an Application

to Instantaneous Frequency Estimation
Sylvain Meignen and Neha Singh

Abstract—In this paper, our goal is to investigate the behavior
of reassignment operators used in synchrosqueezing transforms
to reassign the time-frequency representation of multicomponent
signals made of the superposition of amplitude and frequency
modulated modes. Indeed, while these operators are particularly
efficient on specific types of modes, their quality worsens drasti-
cally when the modes depart from the ideal case they are designed
for. In particular, when these interfere in the time-frequency
plane or when some noise is present, we show the limits to the
use of these reassignment operators for the estimation of the
instantaneous frequency of the modes by studying their behavior
in the vicinity of spectrogram ridges, and then propose a novel
approach to circumvent these limitations.

Index Terms—time-frequency analysis, Fourier-based syn-
chrosqueezing, reassignment methods

I. INTRODUCTION

MULTICOMPONENT signals (MCSs) are very often
used to represent non-stationary signals encountered

in many different fields such as pathology diagnosis [1], [2],
structural damage [3], [4] or physiological signals [5]. To
analyze this type of signals the short-time Fourier transform
(STFT) is very often considered since, with that time-frequency
representation (TFR), the modes making up a MCS are associ-
ated with specific regions around ridges in the time-frequency
(TF) plane [6], which consist of instantaneous frequency (IF)
estimators of the modes [7], [8]. In that context, the IF
estimates correspond to some specific local extrema along the
frequency axis of the spectrogram. Other IF estimators can
be designed by considering the reassignment operators used
in synchrosqueezing transforms (SSTs), which can be applied
to STFT [9], [10], to obtain the so-called Fourier-based syn-
chrosqueezing transform (FSST), or to the continuous wavelet
transform [11], [12]. SSTs have been widely used in various
domains of applications among which fault diagnosis [13],
[14], analysis of seismic signals [15], medical data analysis
[5], [16], [17] and characterization of voice jitter [18] to name
a few.

Variants of FSST were proposed to take into account the
different nature of the modes to be reassigned. Indeed, in
the seminal work of [9], [10] FSST used an IF estimator
proved to be very accurate only when the modes can be locally
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approximated by pure harmonic modes. This approach was
then extended by considering local linear chirp approximation
for the modes in [19], [20], and then by assuming the modes
have higher degree polynomial phases [21].

Nevertheless, the quality of the IF estimators used in FSSTs
strongly depends on how well the modes are separated in the
TF plane and also on the presence of noise. In particular,
these estimates are ill-defined when the modes are crossing
in the TF plane and a separation condition is assumed on the
modes. It is worth noting here that recent works have tried
to deal with crossing modes by estimating the chirp rate and
IF simultaneously [22], while many different techniques have
been developed to improve the separation of the modes by
considering so-called adaptive STFT [23]–[26].

However, to adapt the window length in STFT as is done in
adaptive STFT does not warranty perfect IF estimation in noisy
situations, and windows with different lengths at each time are
to be used to estimate the IF of the different modes [24]. When
only one window is used, the optimal window length is often
computed using the properties of the Rényi entropy [27], [28],
which is proved to lead to optimal concentration measure in
the case of a linear chirp [29].

As to improve IF estimation of the modes by only modifying
the window length is somewhat limited, we here propose
to focus on the study of the IF estimators used in FSSTs
in the case of interference or noise. In a first section, we
introduce the notations that are used throughout the paper,
and then recall the definition of the IF estimators used in
FSSTs, which take simpler forms when the window is the
Gaussian window. In the next section, we recall the relation
between these IF estimators and reassignment vectors, whose
zeros are shown to satisfy simple equations. We then propose
different new expressions to approximate reassignment vectors
in the vicinity of their zeros, this being done to better analyze
what is at work in the reassignment processes on the specific
examples that we study next. Indeed, in the next section, we
investigate the behavior of reassignment vectors on interfering
modes, and propose a novel technique to compute the IF of
the modes, while the last section does the same but this time
for noisy mono-component signals.

II. NOTATIONS

A. Short-Time Fourier Transform

In this section, we introduce a series of definitions that
will be used throughout the paper. Considering a signal f ∈
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L1(R) ∩ L2(R) and a real window h ∈ L∞(R) ∩ L2(R), the
(modified) Short-Time Fourier Transform (STFT) is defined
as:

V hf (t, η) =

∫
R
f(τ)h(τ − t)e−2iπ(τ−t)ηdτ. (1)

In the sequel, we are going to study multicomponent signals
(MCSs), defined as the superposition of several AM-FM
components as follows:

f(t) =

P∑
p=1

Ap(t)e
2iπφp(t), (2)

in which we assume Ap is positive, and φ′p(t) > 0 such
that φ′p+1(t) > φ′p(t) where φ′p(t) denotes the instantaneous
frequency (IF) of mode fp at time t.

B. Instantaneous Frequency Estimators Used in
Synchrosqueezing Transforms

The IF of each mode of f can be estimated from STFT by
defining a so-called local instantaneous frequency (LIF) es-
timator. This estimator used in STFT-based synchrosqueezing
transform (FSST), is defined wherever V hf (t, η) 6= 0 by first
considering the complex estimate:

ω̃f (t, η) =
∂tV

h
f (t, η)

2iπV hf (t, η)
= η − 1

2iπ

V h
′

f (t, η)

V hf (t, η)
, (3)

the LIF estimator being then defined as

ω̂f (t, η) = <{ω̃f (t, η)} = η −<

{
1

2iπ

V h
′

f (t, η)

V hf (t, η)

}
. (4)

The Fourier based synchrosqueezing transform (FSST) then
consists of reassigning the STFT through:

Thf (t, ω) =

∫
|V hf (t,η)|>γ

V hf (t, η)δ(ω − ω̂f (t, η))dη, (5)

where δ is the Dirac distribution and γ some threshold.
The quality of LIF estimator ω̂f is however only satisfac-

tory when the signal is made of perturbed purely harmonic
modes. To overcome this limitation, a new LIF estimator was
introduced based on a local linear chirp approximation [19],
[20] and then used in the definition of second-order STFT-
based synchrosqueezing transform (FSST2). More precisely,
introducing the complex time delay:

t̃f (t, η) = t−
∂ηV

h
f (t, η)

2iπV hf (t, η)
= t+

V thf (t, η)

V hf (t, η)
, (6)

and the complex frequency modulation operator [21] (we omit
(t, η) for the sake of simplicity):

q̃f =
∂ηω̃f

∂η t̃f
=

1

2iπ

V h
′

f V thf − V hf V th
′

f −
(
V hf

)2
V hf V

t2h
f −

(
V thf

)2 , (7)

the second-order complex LIF estimator is then defined by:

ω̃
[2]
f =

{
ω̃f + q̃f × (t− t̃f ) if ∂η t̃f 6= 0

ω̃f otherwise, (8)

and ω̂[2]
f = <

{
ω̃
[2]
f

}
is the new LIF estimator. FSST2 is then

defined by replacing ω̂f by ω̂[2]
f in (5).

New LIF estimators were then proposed to handle MCSs
containing AM-FM modes having non-negligible φ(k)p (t) for
k ≥ 3, especially those with fast oscillating phase [21]. In a
nutshell, let us consider f(τ) = A(τ)ei2πφ(τ) with A(τ) (resp.
φ(τ)) equal to its Sth-order (resp. N th-order) Taylor expansion
for τ close to t, with S ≤ N , meaning:

f(τ)

= exp

 N∑
j=0

(
[log(Ap)]

(j)(t) + i2πφ
(j)
p (t)

)
(τ − t)j

j!

 .
(9)

From (9), and the definition of STFT we may write:

∂tV
h
f (t, η) = ([log(A)]′(t) + 2iπφ′(t))V hf (t, η)

+

N∑
j=2

r
[N ]
j (t)V t

j−1h
f (t, η)

= r
[N ]
1 (t)V hf (t, η) +

N∑
j=2

r
[N ]
j (t)V t

j−1h
f (t, η)

(10)

where r[N ]
j (t) = [log(A)](j)(t)+2iπφ(j)(t)

(j−1)! .

Now, when f is a multicomponent signal made of modes
following (9), the equality (10) turns into an approximation,
namely for (t, η) in the vicinity of (t, φ′p(t)) for some p, one
may write:

∂tV
h
f (t, η)

= r
[N ]
1 (t, η)V hf (t, η) +

N∑
j=2

r
[N ]
j (t, η)V t

j−1h
f (t, η),

(11)

where r[N ]
j (t, η) ≈ [log(Ap)]

(j)(t)+2iπφ(j)
p (t)

(j−1)! , and <
{
r
[N]
1 (t,η)
2iπ

}
thus approximates the IF of fp. Defining ω̃

[N ]
f (t, η) :=

r
[N]
1 (t,η)
2iπ , we may write, when V hf (t, η) 6= 0, that [21]:

ω̃
[N ]
f (t, η) = ω̃f (t, η)−

N∑
j=2

r
[N ]
j (t, η)

V t
j−1h
f (t, η)

2iπV hf (t, η)
, (12)

and then the LIF estimator corresponds to ω̂
[N ]
f (t, η) :=

<
{
ω̃
[N ]
f (t, η)

}
. A simple way to compute r

[N ]
1 is to come

back to Eq. (11) which, remarking that ∂ηV
h
f (t, η) =

−2iπV thf (t, η), can be written under the matrix form:
∂tV

h
f

i
2π∂η∂tV

h
f

...
iN−1

(2π)N−1 ∂
N−1
η ∂tV

h
f



=


V hf V thf · · · V t

N−1h
f

V thf V t
2h
f · · · V t

Nh
f

...
...

. . .
...

V t
N−1h
f V t

Nh
f · · · V t

2(N−1)h
f



r
[N ]
1

r
[N ]
2
...

r
[N ]
N

 = DR.

(13)
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Based on simple properties of the determinant of matrices,
one obtains that:

r
[N ]
1 =

det(M1)

det(D)
, (14)

with

M1 =


∂tV

h
f V thf · · · V t

N−1h
f

i
2π∂η∂tV

h
f V t

2h
f · · · V t

Nh
f

...
...

. . .
...

iN−1

(2π)N−1 ∂
N−1
η ∂tV

h
f V t

Nh
f · · · V t

2(N−1)h
f

 . (15)

Then, as ∂tV hf = i2πηV hf − V
g′

f , we get, for any k ≥ 1:

∂kη∂tV
h
f = (−2iπ)k

(
−kV t

k−1h
f − V t

kh′

f + 2iπηV t
kh
f

)
, (16)

leading to: det(M1) = i2πηdet(D)−det(U1)−det(V1) with:

U1 =


0 V thf · · · V t

N−1h
f

V hf V t
2h
f · · · V t

Nh
f

...
...

. . .
...

(N − 1)V t
N−2h
f V t

Nh
f · · · V t

2(N−1)h
f



V1 =


V h
′

f V thf · · · V t
N−1h
f

V th
′

f V t
2h
f · · · V t

Nh
f

...
...

. . .
...

V t
N−1h′

f V t
Nh
f · · · V t

2(N−1)h
f


, (17)

and thus

ω̂
[N ]
f =

1

2π
=
{
r
[N ]
1

}
= η − 1

2π
=
{
det(U1) + det(V1)

det(D)

}
(18)

C. Simplified IF Estimators when h is the Gaussian Window

When h is the Gaussian window e−π
t2

σ2 , the LIF estimators
introduced above have simpler expressions. Indeed, as h′(t) =
− 2π
σ2 th(t), we have:

ω̂f = η + =

{
1

σ2

V thf
V hf

}
, (19)

and we may rewrite ω̂[2]
f as:

ω̂
[2]
f = ω̂f + <

{
1

2iπ

(V hf )2 + V hf V
th′

f − V h′f V thf

V hf V
t2h
f − (V thf )2

V thf
V hf

}

= ω̂f + <

{
1

2iπ

V hf V
th
f

V hf V
t2h
f − (V thf )2

}
−=

{
1

σ2

V thf
V hf

}

= ω̂f + <

{
1

2iπ

V hf V
th
f

V hf V
t2h
f − (V thf )2

}
− (ω̂f − η)

= η + =

{
1

2π

V hf V
th
f

V hf V
t2h
f − (V thf )2

}
.

(20)

An alternative technique to compute and LIF estimator still
assuming a local linear chirp approximation for the modes is
to consider that the complex modulation operator is not defined

by (7) but obtained as follows [19]:

q̄f =
∂tω̃f

∂tt̃f
=

1

2iπ

V h
′′

f V hf − (V h
′

f )2

V thf V h
′

f − V th
′

f V hf
. (21)

Replacing q̃f by q̄f in (8), one obtains a new LIF estimator,
which is actually the same as the one introduced in [21].
Indeed, one has

1

2iπ

V h
′′

f V hf − (V h
′

f )2

V thf V h
′

f − V th
′

f V hf

=
1

2iπ

(−V hf + 2π
σ2 V

t2h
f )V hf − 2π

σ2 (V thf )2

−(V thf )2 + V t
2h
f V hf

=
1

iσ2
−

(V hf )2

2iπ(V t
2h
f V hf − (V thf )2)

,

(22)

and the LIF estimator obtained using q̄f instead of q̃f reads:

ω̄
[2]
f = ω̂f + <

{
(− 1

iσ2
+

(V hf )2

2iπ(V t
2h
f V hf − (V thf )2)

)
V thf
V hf

}

= ω̂f + <

{
V hf V

th
f

2iπ(V t
2h
f V hf − (V thf )2)

}
−=

{
1

σ2

V thf
V hf

}
= ω̂

[2]
f .

(23)

As far as higher order LIF estimators, i.e. N > 2, are
concerned, to use the Gaussian window also brings interesting
simplifications. Indeed, in such a case the first two columns
of matrix V1 introduced in (17) are colinear and thus its
determinant of is null. In that context, we may thus write:

ω̂
[N ]
f =

1

2π
=
{
r
[N ]
1

}
= η − 1

2π
=
{
det(U1)

det(D)

}
. (24)

In the following sections, we will stick to the use of
the Gaussian window since the studied LIF estimators have
simpler forms.

III. ON APPROXIMATIONS OF REASSIGNMENT VECTORS
IN THE VICINITY OF THEIR ZEROS

In this section, we first investigate more in details the
nature of the zeros of the reassignment vectors namely of
ω̂
[N ]
f (t, η)− η, focusing in particular on the cases N = 1 and
N = 2. Then we propose different simple approximations of
reassignment vectors in the vicinity of their zeros that will help
us understand the differences between reassignment processes.

A. Characterization of the Zeros of Reassignment Vectors

To study the zeros of the reassignment vector, when N =
1, we first recall that (omitting again (t, η) for the sake of
simplicity):

ω̂f − η = =

{
1

σ2

V thf
V hf

}

= −=

{
1

2iπσ2

∂ηV
h
f

V hf

}
=

1

4πσ2

∂η|V hf |2

|V hf |2
,

(25)

whose zeros correspond to the points (t, η) such that
∂η|V hf (t, η)|2 = 0.



4

Now, we investigate the zeros of ω̂[2]
f (t, η)−η corresponding

to:

ω̂
[2]
f (t, η)− η = =

{
1

2π

V hf V
th
f

V hf V
t2h
f − (V thf )2

}
= 0 (26)

that is to say

=
{
V hf V

th
f (V hf V

t2h
f − (V thf )2)∗

}
= 0

⇔ |V hf |2=
{
V thf (V t

2h
f )∗

}
− |V thf |2=

{
V hf (V thf )∗

}
= 0

⇔ |V hf |2<
{
V thf ∂η(V thf )∗

}
− |V thf |2<

{
V hf ∂η(V hf )∗

}
= 0

⇔ |V hf |2∂η|V thf |2 − |V thf |2∂η|V hf |2 = 0.

(27)

which can also be viewed as

det

[
|V hf |2 ∂η|V hf |2
|V thf |2 ∂η|V thf |2

]
= 0.

The reassignment vector when N = 2 thus reads:

ω̂
[2]
f − η =

|V hf |2∂η|V thf |2 − |V thf |2∂η|V hf |2

|V hf V t
2h
f − (V thf )2|2

, (28)

and the zeros of this reassignment vector are attractive or
repulsive points, when the derivative of |V hf |2∂η|V thf |2 −
|V thf |2∂η|V hf |2 is non zero at these locations.

To extend (27) to higher order N could be carried out by
considering the points (t, η) such that ={det(U1)det(D)∗} =
0, but this leads to much more complex expressions, whose
analysis is left for future work.

B. Approximating Reassignment Vectors in the Vicinity of their
Zeros

We are now interested in approximating the different re-
assignment vectors in the vicinity of their zeros. We first
approximate second order reassignment vector, i.e. N = 2,
considering that, in the vicinity of its zeros, V thf is small,
bearing in mind that for a linear chirp it is proven to be equal to
0 at these zeros. We thus consider the following approximation
of ω̂[2]

f (t, η) in the vicinity of its fixed points (i.e. the zeros of
ω̂
[2]
f (t, η)− η):

ω̂
[2]
f (t, η) = η + =

{
1

2π

V hf V
th
f

V hf V
t2h
f − (V thf )2

}

= η + =

 1

2π

V thf

V t
2h
f

1

1− (V thf )2

V hf V
t2h
f


≈ η + =

{
1

2π

V thf

V t
2h
f

}
+ =

{
1

2π

(V thf )3

V hf (V t
2h
f )2

}
.

(29)

When
(V thf )2

V hf V
t2h
f

<< 1, one can approximate ω̂[2]
f only including

the first order term in V thf in approximation (29), which we
denote by ω̂[2]

f,1. In the opposite case, one should consider two
terms in the approximation, namely third order terms in V thf .
We denote by ω̂[2]

f,2 this approximation.
From now on, we call second order zeros the zeros of

ω̂
[2]
f (t, η)−η, and we now define approximations of ω̂[3]

f in the

vicinity of these points when f is a monocomponent satisfying
(9) with A constant. For that purpose, we first rewrite ω̂[3]

f (t, η)

as a perturbation of ω̂[2]
f (t, η), and show the following relation

between second and third order reassignment operators:

Proposition III.1. Assume f satisfies (9) with A constant,
then we have:

ω̂
[3]
f = ω̂

[2]
f + =

{
r
[3]
3

2π

}
<

{
(V t

2h
f )2 − V t3hf V thf

(V thf )2 − V t2hf V hf

}
(30)

The proof is available in Appendix A.
From this, we deduce that at a zero (t, η0) of ω̂[2]

f (t, η)− η
one has:

ω̂
[3]
f (t, η0)

≈ η0 + =

{
r
[3]
3 (t, η0)

2π

}
<

{
(V t

2h
f )2 − V t3hf V thf

(V thf )2 − V t2hf V hf

}
(31)

Assuming that both V thf and V t
3h
f are small at this point, we

get the following approximation of ω̂[3]
f :

ω̂
[3]
f,1(t, η0) = η0 + =

{
r
[3]
3 (t, η0)

2π

}
<

{
−V t2hf

V hf

}
.

To investigate the role played by the term V t
3h
f , we also

consider the following approximation of ω̂[3]
f in which we only

neglect the second order terms in V thf :

ω̂
[3]
f,2(t, η0) =

η0 + =

{
r
[3]
3 (t, η0)

2π

}
<

{
−V t2hf

V hf
+
V t

3h
f V thf

V t
2h
f V hf

}
.

(32)

We will investigate this different types of approximation later
in numerical applications.

IV. ANALYSIS OF REASSIGNMENT VECTORS ON
INTERFERING PURE HARMONIC MODES

In this section we study the behavior of reassignment vectors
when the signal is made of interfering pure harmonics. First,
we investigate the zeros of the reassignment vectors when
N = 1 or N = 2, and the behavior of the latter in the
vicinity of spectrogram ridges, corresponding to the points
∂η|V hf (t, η)|2 = 0. We then propose a new technique to
retrieve the IFs of the modes making up the signal by studying
the reassigned transforms. Finally, we investigate the behavior
of the third order reassignment vector in that context.

Let us consider that f(t) = f1(t) + f2(t) with f1(t) =
Aei2πξ1t and f2(t) = ei2πξ2t, where ξ1 < ξ2. For such a signal
and when h is the Gaussian window mentioned above, one has
V hf1(t, η) = ĥ(η − ξ1)Aei2πξ1t = σAei2πξ1te−π(η−ξ1)

2σ2

and
V hf2(t, η) = σei2πξ2te−π(η−ξ2)

2σ2

, and the spectrogram reads:

|V hf (t, η)|2 = σ2(A2e−2πσ
2(η−ξ1)2 + e−2πσ

2(η−ξ2)2

+2Ae−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t))

(33)
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Fig. 1: (a): STFT of two interfering modes, with the two ridges associated with local maxima superimposed; (b): FSST of the
signal in (a); (c): FSST2 of the signal in (a)

A. Determination of the Zeros Common to First and Second
Order Reassignment Vectors

We here investigate the set of TF points consisting of the
zeros common to the first and second order reassignment
vector. In the previous, section we showed that the zeros at
time t of ω̂f−η corresponded to η satisfying ∂η|V hf (t, η)|2 = 0

and V hf (t, η) 6= 0. We can then prove the following result:

Proposition IV.1. A zero (t, η) of ω̂f−η, such that V hf V
t2h
f −

(V thf )2 6= 0 is a zero of ω̂[2]
f − η if and only if

A(η − ξ1)e−πσ
2(η−ξ1)2 = ±(η − ξ2)e−πσ

2(η−ξ1)2

The proof is available in Appendix B. The time instants
associated with these points then obey the following rule:

Proposition IV.2. If (t, η) is a zero common to ω̂f − η

and ω̂
[2]
f − η such that A(η − ξ1)e−πσ

2(η−ξ1)2 = −(η −
ξ2)e−πσ

2(η−ξ1)2 (resp. A(η − ξ1)e−πσ
2(η−ξ1)2 = (η −

ξ2)e−πσ
2(η−ξ1)2 ), then t = tk = k

ξ2−ξ1 for some k ∈ Z (resp.
t̃k = k+1/2

ξ2−ξ1 for some k ∈ Z).

The proof is available in Appendix C. Note that the time
instants tk when k varies (resp. t̃k) are associated with local
maxima (resp. minima) of |V hf (., η)|2. Furthermore, we can
also remark that the locations tk (resp. t̃k) correspond to
local maxima (resp. minima) of the spectrogram along the
spectrogram ridges.

B. Analysis of Second Order Reassignment Vector in the
Vicinity of Spectrogram Ridges

Let us first remark that at location tk and t̃k defined in the
previous section we have for any η:

|V hf (tk, η)|2 = (Ae−πσ
2(η−ξ1)2 + e−πσ

2(η−ξ2)2)2

|V hf (t̃k, η)|2 = (Ae−πσ
2(η−ξ1)2 − e−πσ

2(η−ξ2)2)2
(34)

At time tk, when the level of interference is not too
high |V hf (tk, .)|2 has three extrema, located respectively at
ηmax
0 < ηmax

1 < ηmax
2 . We use the superscript max to recall

that |V hf (., η)|2 is maximum at tk. Note that ηmax
0 and ηmax

2

correspond to maxima and ηmax
1 to a minimum of |V hf (tk, .)|2.

Similarly, at time t̃k, |V hf (t̃k, .)|2 has three extrema located

at ηmin
0 < ηmin

1 < ηmin
2 (the superscript min recalling that

|V hf (., η)|2 is minimum at t̃k). Note that ηmin
0 and ηmin

2

correspond to maxima and ηmin
1 to a minimum of |V hf (t̃k, .)|2.

Finally, one can also remark that the point (t̃k, η
min
1 ) is a zero

of the spectogram.
The points (tk, η

max
2 ) and (t̃k, η

min
2 ) are part of what we

call from now on the upper spectrogram ridge (see the blue
curve in Fig. 1 (a)) , while (tk, η

max
0 ) and (t̃k, η

min
0 ) belong to

the lower spectrogram ridge (see the red curve in Fig. 1 (a)).
Investigating the behavior of the second order reassignment
vector on the upper and lower spectrogram ridges, we find the
following property:

Proposition IV.3. On the upper (resp. lower) spectrogram
ridge the second order reassignment vector is oriented towards
higher (resp. lower) frequencies except at points correspond-
ing to time instants tk and t̃k.

The proof is available in Appendix D. An illustration of
Proposition IV.3 is given in Fig. 1 (c), in which we see, by
comparing with Fig. 1 (a), that the TF coefficients are not
reassigned onto the spectrogram ridges with FSST2: the point
on the upper (resp. lower) spectrogram ridge (except those at
time tk and t̃k) are reassigned at a higher frequency (resp.
lower) frequency. Finally, note that, even if the spectrogram
ridges are the zeros of the first order reassignment vector, this
does mean FSST ridges, i.e. TF curves corresponding to local
maxima of the modulus of FSST along the frequency axis, are
the same as the spectrogram ridges (see Fig. 1 (b)).

C. New IF Estimator from the Ridges of the Reassigned
Transforms

From Fig. 1, it transpires that neither the spectrogram
ridges nor FSST2 ridges, i.e. TF curves corresponding to local
maxima of the modulus of FSST2 along the frequency axis,
are good estimates of the IF of the modes.

We are now going to explain how to use the ridges of
the reassigned transforms to define a new technique for the
estimation of the IFs of the modes. For that purpose, we shall
first remark that at points t̄k = 2k+1

4(ξ2−ξ1) , the spectrogram reads

|V hf (t̄k, η)|2 = σ2(A2e−2πσ
2(η−ξ1)2 + e−2πσ

2(η−ξ2)2)

= |V hf1(t̄k, η)|2 + |V hf2(t̄k, η)|2.
(35)
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Fig. 2: (a): moduli of FSST and FSST2 along their upper ridge for the FSST of Fig. 1 (b) and (c) (plain line corresponds
to FSST and dashed line to FSST2, circles and squares are located at the local maxima in each case); (b): lower ridges for
STFT (dashed dotted line), FSST (plain line) and FSST2 (dashed line) (the stars, circles and squares denote the locations of
the local maxima of the modulus of each TFR along the corresponding ridge); (c): same as (b) but for the upper ridge.

This means that, at these points, STFT does not see mode
interference, therefore the points on the spectrogram ridge at
these time instants should give the best estimate of the IFs
of the modes. However, to determine the time instants t̄k is
not possible because it explicitly uses ξ1 and ξ2 the unknown
frequencies.

Note that FSST should be sharp at these points because
the corresponding reassignment vector is only slightly con-
taminated by mode interference. Based on this remark, we
propose a novel strategy to estimate the IF of the modes by
considering the most significant maxima of the modulus of
FSST along its ridges, and then by defining an IF estimator as
the frequency locations of these maxima. An estimator of t̄k
can also be obtained by considering the time instants of these
maxima.

Interestingly, these time instants t̄k are also critical for the
second order reassignment operator. Indeed, recalling that we
have:

V thf =
1

2iπ
∂ηV

h
f =

σ3

i

[
A(η − ξ1)e−πσ

2(η−ξ1)2e2iπξ1t

+ (η − ξ2)e−πσ
2(η−ξ2)2e2iπξ2t

] (36)

one obtains that, at t = t̄k:

|V thf (t̄k, η)|2 = |V thf1 (t̄k, η)|2 + |V thf2 (t̄k, η)|2. (37)

Then the numerator of (28) is made of expressions that clearly
separate the first mode from the second, and thus FSST2
should also be sharp at t̄k. A new IF estimator can then be
obtained by considering again the most significant maxima of
FSST2 modulus along FSST2 ridges, and then the points t̄k
could be estimated as the time locations of these maxima.

To illustrate the new strategy for IF estimation, we plot in
Fig. 2 (a), the modulus of FSST and FSST2 along their upper
ridges, and notice that their most significant local maxima are
very close in time, which is in accordance with the fact their
time locations are estimates of time instants t̄k. To check the
relevance of these time indices for IF estimation, we plot
in Fig. 2 (b) and (c), STFT, FSST and FSST2 lower and
upper ridges respectively as well as the locations of the local
maxima of their moduli. We notice that the locations of the

local maxima of the moduli of FSST and FSST2 actually
correspond to the IF of each mode and that the locations
of these maxima are close to the time locations where the
spectrogram ridges pass through the true IF. We also remark
that the ridges associated with FSST are at the expected IF
location, while the ridges of FSST2 are closer to those of the
spectrogram (though higher (resp. lower) for the upper (resp.
lower) ridge than the upper (resp. lower) spectrogram ridge as
predicted by Proposition IV.3).

To explain why FSST ridges consist of a better IF estimator
than FSST2 ridges, we plot ω̂f and ω̂[2]

f in the vicinity of the
lower spectrogram ridge, at location tk and t̃k, in Fig. 3 (a) and
(b). We notice, at location tk, that, as one moves away from
the spectrogram ridge towards lower frequency, ω̂f is much
more accurate than ω̂[2]

f . From Fig. 3 (b), a similar conclusion
can be drawn at time t̃k. This explains why FSST ridge is a
better IF estimator than FSST2 ridge. To better understand the
behavior of ω̂[2]

f in the vicinity of the lower spectrogram ridge,
we also plot in Fig. 3 (c) and (d) its approximations ω̂[2]

f,1 and
ω̂
[2]
f,2, defined right after (29), at time tk and t̃k. While close

to the ridge these approximations are correct, the hypothesis
that V thf is small becomes rapidly erroneous as one moves
away from the spectrogram ridge towards lower frequencies,
and the proposed simple approximation of ω̂[2]

f are no longer
valid.

D. Behavior of Third Order Synchrosqueezing Transform in
the Vicinity of Spectogram Ridges

Let us consider the point on the lower spectrogram ridge
at time t̃k, which is a zero of ω̂[2]

f − η. Denote by (t, ψ′0(t))
the spectrogram ridge in the vicinity of that point. We first

remark that =
{
r
[3]
3 (t,ψ′0(t))

2π

}
≈ ψ

(3)
0 (t) which is such that

ψ
(3)
0 (t̃k) > 0 (see Fig. 1 (a), lower ridge). Then making a pure

harmonic approximation, we get that <
{
−V t

2h
f

V hf

}
≈ −σ2 < 0

at these points. From this, we deduce that the zeros of ω̂[2]
f −η

are reassigned towards lower frequency using ω̂
[3]
f,1. As ω̂[3]

f,1
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Fig. 3: (a): ω̂f and ω̂
[2]
f in the vicinity of the lower spectrogram ridge at time tk; (b): same as (a) but at time t̃k; (c): ω̂[2]
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Fig. 4: (a): ω̂f , ω̂[2]
f , ω̂[3]

f and its approximation around TF point (tk, η
max
1 ); (b): same as (a) but around point (t̃k, η

min
1 ); (c):

modulus of FSST3 for the interfering modes along with the corresponding ridges.

is a good approximation of ω̂[3]
f at that point (see Fig. 4 (b)),

such will also be the case when one uses ω̂[3]
f : the reassigned

value when using ω̂[3]
f are farther from ξ1 than the one given

ω̂f or ω̂[2]
f . Similarly, at time tk, still on the lower spectrogram

ridge, the third order reassignment vector is oriented upward
(see Fig. 4 (a)), since ψ(3)

0 (tk) < 0 and using the same pure
harmonic approximation as previously (remarking ω̂[3]

f,1 is still
a good approximation of ω̂[3]

f (see Fig. 4 (c))). The reassigned
value is again farther from ξ1 than the one given ω̂f or ω̂[2]

f .
The modulus of FSST3 for the signal of Fig. 1 (a) along with
its ridges are finally displayed in Fig. 4 (c), and we notice that
ridge detection is less accurate in that case.

V. ANALYSIS OF REASSIGNMENT VECTORS ON NOISY
MONOCOMPONENT SIGNALS

In this section, we first investigate the nature of the zeros
common to first and second order reassignment vectors in
the case of a linear chirp, then we study the behavior of
reassignment vectors on different noisy signals and propose
a new technique for IF estimation based on significant local
maxima along the ridges of the reassigned transforms. Finally,
we explain why in such a context IF estimators based on higher
order reassignment operators should be precluded.

A. Determination of the Common Zeros of First and Second
Reassignment Vectors

Let us first remark that the STFT of a linear chirp f(t) =

Ae2iπφ(t) computed with the Gaussian window g(t) = e−π
t2

σ2

reads [19]:

V hf (t, η) = V hf (t, φ′(t))e
−πσ2(1+iφ′′(t)σ2)

1+(φ′′(t)σ2)2
(η−φ′(t))2

. (38)

From this we immediately get that:

V t
kh
f (t, η) =

(
i

2π

)k
∂kηV

h
f (t, η) =(

i

2π

)k
∂k−1η

[
−2πσ2(1 + iφ′′(t)σ2)

1 + (φ′′(t)σ2)2
(η − φ′(t))V hf (t, η)

]
=

(
i

2π

)k −2πσ2(1 + iφ′′(t)σ2)

1 + (bσ2)2[
(η − φ′(t))∂k−1η V hf (t, η) + (k − 1)∂k−2η V hf (t, η)

]
=
−2πσ2(1 + iφ′′(t)σ2)

1 + (φ′′(t)σ2)2[
(η − φ′(t)) i

2π
V t

k−1h
f (t, η)− (k − 1)

1

4π2
V t

k−2h
f (t, η)

]
.

(39)

Thus, V t
kh
f (t, φ′(t)) is null when k is odd, which enables us

to deduce the following proposition.

Proposition V.1. The zeros of ω̂f − η and ω̂
[2]
f − η are the
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Fig. 5: (a):Modulus of the STFT of a linear chirp; (b): Modulus of the STFT of a signal with cosinusoidal phase; (c): output
SNR associated with IF estimation ŝ, ω̂ and ω̂[2] for noisy version of signal (a), with respect to input SNR (the results are
averaged over 20 noise realizations); (d): same as (c) but for the signal displayed in (b).

same.

Proof: Indeed assume, (t, η) is a zero of ω̂f − η, that is
we have ∂η|V hf (t, η)|2 = 0 which is equivalent to η = φ′(t).
Now let us compute

∂η|V thf (t, η)|2

=
σ4

1 + (φ′′(t)σ2)2
∂η
[
(η − φ′(t))2|V hf (t, η)|2

]
=

σ4

1 + (φ′′(t)σ2)2[
2(η − φ′(t))|V hf (t, η)|2 + (η − φ′(t))2∂η|V hf (t, η)|2

]
,

(40)

from which we get that

|V hf (t, η)|2∂η|V thf (t, η)|2 − |V thf (t, η)|2∂η|V hf (t, η)|2

=
σ42(η − φ′(t))
1 + (φ′′(t)σ2)2

|V hf (t, η)|4
(41)

which is null if and only if η = φ′(t), meaning the zeros of
the first and second order reassignment operators are the same.

B. New IF Estimator from the Ridges of the Reassigned
Transforms

We here consider some complex Gaussian white noise n is
added to the monocomponent signal f to obtain f̃ = f+n, the
zeros of ω̂f+n−η still correspond to the points (t, η) satisfying
∂η|V hf+n(t, η)|2 = 0. So, if f is a linear chirp, the zeros of the
first order reassignment vector are no longer located at η =
φ′(t) and the noise also creates new zeros for that reassignment
vector that are not related to the signal. In that context, the
zeros of ω̂f+n−η are different but close to those of ω̂[2]

f+n−η.
Another important aspect is that the presence of noise

creates some oscillations of the amplitude of the modulus
of the STFT along spectrogram ridges. As in the case of
interfering mode, we hypothesize that the most significant
FSST2 modulus maxima along these ridges are also those the
least impacted by noise. In this regard, note that most ridge
detectors adopt a very similar point of view by considering
that the largest modulus maxima of STFT are most probably
related to the signal [8], [30], [31]. So, we propose to compute

a new IF estimator using a cubic spline approximation of the
most significant modulus maxima along FSST2 ridge. Namely,
if we denote by M this set we consider the cubic spline:

ŝ = argmin
s∈S

p ∑
[n,k]∈M

|k − s(n
L

)|2 + (1− p)
∫
|s(2)(t)|dt

 , (42)

where S is the set of cubic spline, and p is trade-off parameter
between the data term and the smoothing term. We display
in Fig. 5 (c) and (d), the output SNR associated with IF
estimator ŝ, for different values of p, along with ω̂ and ω̂[2]

for the two signals of Fig. 5 (a) and (b), and when the
input SNR varies. In the case of a linear chirp, corresponding
to the results of Fig. 5 (c), the IF estimators based on ŝ,
with no smoothing, ω̂ and ω̂[2] are very similar, meaning
the information contained in the significant modulus maxima
along the FSST2 ridge is sufficient to obtained a performant
IF estimator. Then, as by putting p = 0.9 one obtains a
significantly better IF estimator, in the case of a linear chirp,
smoothing is essential to improve IF estimation. Considering
the signal with cosinusoidal phase of Fig. 5 (b), we get that
IF estimator ŝ without smoothing behaves similarly to ω̂[2],
meaning again that the significant modulus maxima along
the FSST2 ridge contain enough information to perform IF
estimation. Note finally that in such a case no smoothing
should be used and that IF estimator degrades significantly
at negative input SNR mainly because ridge detection fails in
some instances.

C. Behavior of Higher Order Reassignment Operator on
Noisy Linear Chirps

As in the case of two pure harmonics interfering, we here
analyze the behavior of ω̂[3]

f+n in the vicinity of the zeros of
ω̂
[2]
f+n − η. At these points, which are located on some ridge

(t, ψ′(t)), we still have:

ω̂
[3]
f+n(t, ψ′(t))− η ≈

=

{
r
[3]
3 (t, ψ′(t))

2π

}
<

{
(V t

2h
f+n)2 − V t3hf+nV

th
f+n

(V thf+n)2 − V t2hf+nV
h
f+n

}
(43)
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Following what was done in the case of interference we numer-

ically notice that <
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(V t
2h
f+n)

2−V t
3h
f+nV

th
f+n

(V thf+n)
2−V t2hf+nV

h
f+n

}
remains negative on

(t, ψ′(t)) thus ω̂[3]
f+n(t, ψ′(t))−η is positive when ψ′(t) is con-

cave and negative otherwise. The consequence of this is that
if the ridge (t, ψ′(t)) is oscillating then FSST3 ridge oscillates
even more. To confirm this, we consider a noisy linear chirp
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Fig. 6: (a): Modulus of FSST3 for a noisy linear chirp (SNR
equal -5 dB); (b): zoom in on FSST3 modulus, on which
FSST2 ridge (plain line) and the true IF (dashed line) are
superimposed

whose FSST3 modulus is displayed in Fig. 6 (a), and a zoomed
in version in Fig. 6 (b), on which we superimpose FSST2
ridge (plain line ) and true IF (dashed line). We notice that,
as expected, when the FSST2 ridge oscillates, FFST3 ridge
oscillates even more: this is accordance with the study of the
third order reassignment vector depending on the concavity of
ψ′(t), and thus IF estimation from FSST3 ridge is less accurate
than that based FSST2 ridge on that type of noisy signals.

VI. CONCLUSION

In this paper, we proposed to analyze the behavior of the
reassignment vectors used in synchrosqueezing transforms in
various situations. Our goal was first to investigate more in
details the zeros of reassignment vectors, and then to study re-
assignment vectors applied to interfering pure harmonic modes
and then to noisy mono-component signal. From our study,
it transpired that the TF coefficients are reassigned to very
different locations depending on the order of the reassignment
vector, and the ridges of the reassigned transform should not be
used directly as IF estimates as the oscillations created either
by the interference or the noise on the spectrogram ridge are
interpreted as related to the signal. In this regard, we showed
that by considering the most significant local modulus maxima
along the ridges of the reassigned transforms, it was possible
to build new robust IF estimates using very few TF points. In a
near future, we would like to find a mean to fully characterize
the zeros of the reassignment vector of any order and to better
understand the reassignment process of noisy signals so as to
find a mean to control the oscillations of the ridges of high
order reassigned transforms.

APPENDIX

A. Proof of Prosposition III.1

Referring to Proposition III.1 of [21], one can write that:

r
[3]
2 = r

[2]
2 − x3,2r

[3]
2 . (44)

in which xk,1 =
V t
k−1h
f

2iπV hf
and then xk,j =

∂ηxk,j−1

∂ηxk,j−1
meaning

that:

x3,2 =
∂ηx3,1
∂ηx2,1

=
∂η

V t
2h
f

V hf

∂η
V thf
V hf

=
V t

2h
f V thf − V t

3h
f V hf

(V thf )2 − V t2hf V hf

As we also have:

ω̃
[3]
f = ω̃f − r[3]2 x2,1 − r[3]3 x3,1

= ω̃
[2]
f + r

[3]
3 (x2,1x3,2 − x3,1)

and thus

ω̂
[3]
f = ω̂

[2]
f + <

{
r
[3]
3 (x2,1x3,2 − x3,1)

}
= ω̂

[2]
f + =

{
r
[3]
3

2π

(V t
2h
f )2 − V t3hf V thf

(V thf )2 − V t2hf V hf

}

= ω̂
[2]
f + =

{
r
[3]
3

2π

}
<

{
(V t

2h
f )2 − V t3hf V thf

(V thf )2 − V t2hf V hf

}

+<

{
r
[3]
3

2π

}
=

{
(V t

2h
f )2 − V t3hf V thf

(V thf )2 − V t2hf V hf

}

= ω̂
[2]
f + =

{
r
[3]
3

2π

}
<

{
(V t

2h
f )2 − V t3hf V thf

(V thf )2 − V t2hf V hf

}
.

(45)

Note that the last equality holds because A is constant.

B. Proof of Proposition IV.1

In the context of Proposition IV.1, the zeros of ω̂f−η satisfy:

∂η|V hf (t, η)|2 = 0

⇔ A2(η − ξ1)e−2πσ
2(η−ξ1)2 + (η − ξ2)e−2πσ

2(η−ξ2)2 +

A(2η − ξ1 − ξ2)e−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t) = 0.

Then, among these zeros, those satisfying V hf V
t2h
f −(V thf )2 6=

0 are also zeros of ω̂[2]
f − η if they satisfy:

∂η|V thf (t, η)|2 =
1

4π2
∂η|∂ηV hf (t, η)|2

= σ6(2∂η|V hf (t, η)|2 −A24πσ2(η − ξ1)3e−2πσ
2(η−ξ1)2

−4πσ2(η − ξ2)3e−2πσ
2(η−ξ2)2 − 4Aπσ2(η − ξ1)(η − ξ2)

(2η − ξ1 − ξ2)e−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t)) = 0.

Then, from these two equations we get that the zeros of
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ω̂f − η are zeros of ω̂[2]
f − η if and only if:

−A2(η − ξ1)3e−2πσ
2(η−ξ1)2 − (η − ξ2)3e−2πσ

2(η−ξ2)2

−A(η − ξ1)(η − ξ2)(2η − ξ1 − ξ2)e−πσ
2[(η−ξ1)2+(η−ξ2)2]

cos(2π(ξ2 − ξ1)t))

= (ξ2 − ξ1)[
−A2(η − ξ1)2e−2πσ

2(η−ξ1)2 + (η − ξ2)2e−2πσ
2(η−ξ2)2

]
= 0.

or equivalently:

A(η − ξ1)e−πσ
2(η−ξ1)2 = ±(η − ξ2)e−πσ

2(η−ξ2)2 .

C. Proof of Proposition IV.2
Assume A(η − ξ1)e−πσ

2(η−ξ1)2 = −(η − ξ2)e−πσ
2(η−ξ1)2 ,

then we may write:

∂η|V hf (t, η)|2 = 0⇔
(2η − ξ1 − ξ2)(η − ξ1)

(1− cos(2π(ξ2 − ξ1)t))e−2πσ2(η−ξ2)2 = 0

⇔ t = tk =
k

ξ2 − ξ1
,

(46)

since it can be easily shown that the η of interest are different
from ξ1 and ξ1+ξ2

2 . When A(η − ξ1)e−πσ
2(η−ξ1)2 = (η −

ξ2)e−πσ
2(η−ξ1)2 , we similarly obtain that the time instants t

corresponding to the studied zeros are the t̃k = k+1/2
ξ2−ξ1 , k ∈ Z.

D. Proof of Proposition IV.3
As one can easily show that ηmax

2 < ηmin
2 , and as

|V hf (tk, .)|2 attains a maximum at ηmax
2 its derivative is

negative on [ηmax
2 , ηmin

2 ], which is, using (34), equivalent to:

−A(η − ξ1)e−πσ
2(η−ξ1)2 ≤ (η − ξ2)e−πσ

2(η−ξ2)2 . (47)

Similarly, remarking that |V hf (t̃k, .)|2 attains a maximum at
ηmin
2 , its derivative is positive on [ηmax

2 , ηmin
2 ], meaning that,

on that interval

−A(η − ξ1)e−πσ
2(η−ξ1)2 ≥ −(η − ξ2)e−πσ

2(η−ξ2)2 (48)

Putting (47) and (48) together, we get that on the interval
[ηmax

2 , ηmin
2 ]:

|A(η − ξ1)e−πσ
2(η−ξ1)2 | ≤ |(η − ξ2)e−πσ

2(η−ξ2)2 |. (49)

Then, we remark that on the upper spectrogram ridge, η
belongs to [ηmax

2 , ηmin
2 ]. Using arguments developed in the

proof of Proposition IV.1, one can write that at such (t, η),
i.e. such that ∂η|V hf (t, η)|2 = 0, one has:

ω̂
[2]
f (t, η)− η

=
|V hf (t, η)|2∂η|V thf (t, η)|2

|V hf (t, η)V t
2h
f (t, η)− (V thf (t, η))2|2

= 4πσ8
|V hf (t, η)|2(ξ2 − ξ1)

|V hf (t, η)V t
2h
f (t, η)− (V thf (t, η))2|2[

−A2(η − ξ1)2e−2πσ
2(η−ξ1)2 + (η − ξ2)2e−2πσ

2(η−ξ2)2
]
,

(50)

which has the sign of −A2(η − ξ1)2e−2πσ
2(η−ξ1)2 + (η −

ξ2)2e−2πσ
2(η−ξ2)2 . Using (49), we can thus deduce that the

reassignment vector on the upper spectrogram ridge is oriented
towards higher frequencies and is null at points (t̃k, η

min
2 ) and

(tk, η
max
2 ).

The same reasoning can be carried out for the lower
ridge, namely studying the reassignment vector on the interval
[ηmin

0 , ηmax
0 ], and enables us to show that the second order

reassignment vector on that ridge is oriented towards lower
frequencies.
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