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This paper is concerned with the modeling of ferromagnetic coils with audio applications
in mind. The proposed approach derives a macroscopic, energy-based formulation from sta-
tistical physics. This choice allows for thermodynamic variables to be explicitly taken into
account. As a consequence, macroscopic features such as saturation and hysteresis arise di-
rectly. As the proposed model is expressed through a port-Hamiltonian formulation, power
balance and passivity are guaranteed. Moreover, the model may be straightforwardly con-
nected to other multi-physical components, and included into more complex systems. The
proposed model is compared to measurements on a real ferromagnetic coil. Simulations of a
passive band-pass filter and a transformer built around the model are presented as an illustra-
tion.

0 INTRODUCTION

Coils and transformers built around ferromagnetic cores
are largely present in audio circuits, from emblematic ef-
fect pedals to amplifiers and loudspeakers. Ferromagnetic
materials are sought for their high inductance, which in-
creases the coil quality factor. On the other hand, these
materials exhibit non-linear characteristics such as satu-
ration and hysteresis, which may cause audible distortion
and power loss. Understanding ferromagnetic materials is
therefore necessary in order to accurately predict a coil’s
behavior, so that one may carefully avoid – or exploit –
distortion when designing or simulating circuits.

Ferromagnetism is a long-enduring research field, and
several empirical macroscopic models already exist in the
literature. One of the most widely used in the audio com-
munity is the Jiles-Atherton model [1, 2, 3], which is built
around a differential equation involving a saturation curve
and a friction term. However, some concern has been ex-
pressed regarding its physical interpretation [4], and sub-
sequent accuracy issues in simulations. Another popular
model is the Gyrator-Capacitor [5, 6, 7], whose strength
resides in its simplicity. Indeed, it essentially consists in a
Gyrator-Capacitor representation where the capacitor has
a polynomial law. Other recent models based on fractional
derivatives [8] have proved particularly accurate, but like
the Jiles-Atherton or GC models previously mentioned,
their parameters are not related to actual physical quan-
tities. Moreover, neither of these models takes explicitly

into account the significant role of temperature in the shape
of the hysteresis curve. Yet temperature may vary in cir-
cuits, especially after an extended use; therefore its influ-
ence should not be entirely neglected. On the other hand,
models explicitly built on energetic considerations, such as
variational models [9], rely on costly finite-element meth-
ods, making real-time use difficult. Similarly, the Preisach
model [10, 11] thoroughly captures the phenomenology in-
volved in ferromagnetism, including thermodynamics; but
it is obviously too complex for audio applications. There-
fore to our present knowledge, a model both physically-
based (allowing refined and realistic simulations in a wide
range of contexts) and suitable for audio applications does
not seem to exist.

In this paper, we propose a non-linear model of ferro-
magnetic coil that is physically-based, passive (no hidden
sources of energy), modular (allowing electric and thermal
connections) and with a reduced complexity (only 3 state
variables and 5 parameters).

First, we derive a core macroscopic model from classic
statistical physics results, with a special care brought to the
choice of state variables for thermodynamic consistency
and modularity. Then, we build a ferromagnetic coil model
connecting a core and a coil. It ensues that typical charac-
teristics (hysteresis or its absence thereof) naturally arise
from the interaction between the coil and the core, in asso-
ciation with features intrinsically present in our core model
(meta-stability or stability). Moreover, as the model dy-
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namics is expressed through a Port-Hamiltonian Systems
(PHS) formulation [12, 13], the power balance is struc-
turally fulfilled. This formulation also makes the connec-
tion to other components straightforward, so that including
the model in more complex systems poses no difficulty.

This ferromagnetic coil model is then used to simulate
two circuits: a passive band-pass filter, and a transformer.
The circuits are also modeled as PHS, and the simula-
tions are based on numerical methods [14] that preserve
the power balance in the discrete-time domain.

The paper is structured as follows: in section 1, the Port-
Hamiltonian formalism is briefly presented. In section 2,
the core macroscopic model is constructed from statistical
physics and thermodynamics. Section 3 addresses the con-
nection between the core and the coil, and describes the
resulting complete model. In section 4, the model is as-
sessed against measurements on a Fasel inductor. Finally,
simulations of chosen audio circuits are presented in sec-
tion 5, before providing elements of discussion and work
perspectives in section 6.

1 PORT-HAMILTONIAN SYSTEMS:
DIFFERENTIAL-ALGEBRAIC FORMULATION

All subsequent modeling relies on Port-Hamiltonian
systems [15, 13], under a differential-algebraic formula-
tion [14]. This formulation allows the representation of a
dynamical system as a network of:

1. storage components of state xxx and energy E (xxx);
2. dissipative components described by an effort law www 7→

z(www), such as the dissipated power Pdiss = z(www)ᵀ www is
non-negative for all flows www;

3. connection ports conveying the outgoing power Pext =
uuuᵀyyy where uuu are inputs and yyy are outputs.

The flows fff and efforts eee of all the components are cou-
pled through a skew-symmetric interconnection matrix
JJJ = −JJJᵀ:  ẋxx

www
yyy


︸︷︷︸

fff

= JJJ

∇E(xxx)
z(www)

uuu


︸ ︷︷ ︸

eee

. (1)

Here, flows can either be currents (e.g. for capaci-
tors) or voltages (e.g. for inductors), and vice versa
for efforts. Such systems satisfy the power balance
Pstored + Pdiss + Pext = 0 where Pstored = ∇E(xxx)ᵀẋxx denotes
the stored power. Indeed, Pstored + Pdiss + Pext = eeeᵀ fff =
eeeᵀJJJeee is zero since eeeᵀJJJeee = (eeeᵀJJJeee)ᵀ = −(eeeᵀJJJeee) due to the
skew-symmetry of JJJ.

All models herein will be formulated as (1).

2 FERROMAGNETIC CORE MODELING

In this section, a macroscopic model of the ferromag-
netic core is derived from a microscopic representation,
known in the literature as the Ising model [16, 17, 18]. The
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Figure 1: Possible micro-state mmm of a core with N = 9 mo-
ments.

change of scale is performed within the statistical physics
framework. As the use of statistical physics leads to the
emergence of thermodynamic variables, the latter are taken
into account explicitly in the modeling. Consequently, the
chosen macroscopic state and its corresponding internal
energy allow the connection of the core to both electro-
magnetic ports and thermal ports. These ports, through the
PHS formalism, control the influence of an external mag-
netic field on one hand (ultimately responsible for the pres-
ence of hysteresis, as will be shown), and the influence
of phase transitions on the other hand (responsible for the
amount of hysteresis) on the core state and its subsequent
dynamics.

Understanding the Ising model at a quantum level is not
the object of this paper. Here we only give necessary ele-
ments in order to derive a macroscopic model. Similarly,
we do not propose new results on statistical physics but
use it in a standard way as a mean to an end. Therefore, we
present the main concepts without detailing all intermedi-
ate steps. Readers who wish to deepen their knowledge on
the subject may refer to [19, 20, 21].

2.1 Ising model
In the Ising model, a ferromagnetic core is repre-

sented as a set of N adimensional magnetic moments,
interacting with one another. A possible state mmm of the
core (called micro-state in the following) is therefore
a particular configuration of these moments: mmm ∈M =
{−1,1}N . Figure 1 shows a possible micro-state mmm =[
1, −1, 1, 1, 1, −1, −1, 1, −1

]ᵀ
for N = 9.

The interactions between the micro-state moments are
expressed through the Heisenberg hamiltonian H (mmm):

H (mmm) = −1
2

mmmᵀJexmmm, (2)

where each coefficient Jexi, j is the exchange energy [22]
between moment i and moment j. Assuming isotropic in-
teractions affecting nearest neighbours only, this exchange
energy simplifies to:

Jexi, j =

{
J i, j nearest neighbours, i 6= j,

0 else,
(3)

where J is a constant energy characterizing the material.
For ferromagnetic materials, J is positive; consequently,

the Heisenberg hamiltonian minimizes itself for configura-
tions in which moments align with one another.
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2.2 Statistical physics
The micro-state of the core may fluctuate randomly

over time, without affecting its overall macroscopic prop-
erties: indeed, several micro-states yield the same hamilto-
nian. Therefore, the specific micro-state of the core at any
given time cannot be known from macroscopic observa-
tions. Thus, we rely on a probabilistic description of the
core (refered to as the system in the following) to predict
its macroscopic behavior.

To this end, we consider the canonical ensemble, which
is the thermodynamic ensemble (i.e., a time-invariant prob-
ability space) of interest for a system under the following
set of assumptions hyp:

1. The system is closed (constant number of atoms N).
2. The system is isochoric (constant volume V ).
3. The system may exchange energy with the exterior (its

energy fluctuates over time).
4. The exterior is much larger than the system and behaves

like a thermostat (Tcore = Text = T ).

The first two assumptions are taken into account in the ex-
pression of the hamiltonian in Eq. (2). The fourth assump-
tion constrains the energy exchanges between the system
and the exterior.

With this set hyp, we look for the micro-states proba-
bility distribution for the canonical ensemble at thermody-
namic equilibrium, denoted p?hyp. This distribution derives
from a fundamental principle of statistical physics: the sta-
tistical entropy maximization at thermodynamic equilib-
rium.
Derivation. Given a probability distribution p of micro-
states, the statistical entropy measures the amount of infor-
mation required to know the exact micro-state of the sys-
tem. It is defined as:

S : p 7−→ −kb ∑
mmm∈M

p(mmm) ln p(mmm), (4)

where kb = 1.38× 10−23J.K−1 is the Boltzmann constant.
Indeed, for a distribution mapping some micro-state mmm0 to
1 and the others to 0, the system is entirely known to be in
the state mmm0. According to Eq. (4), this distribution would
yield a zero entropy (the definition of S can be extended
to 0 since lim

x 7→0
x lnx = 0). Conversely, an equiprobable dis-

tribution between all micro-states maximizes the lack of
information on the system. From Eq. (4), this distribution
also maximizes the entropy.

When a system reaches thermodynamic equilibrium, it
stops evolving. At this point the only information available
is the information corresponding to our assumptions on the
system. Since this information is minimal (any less infor-
mation would characterize a different system), the system
entropy should be maximal. Moreover, at equilibrium, the
third assumption in hyp actually translates into the ergodic
hypothesis. This hypothesis stipulates that at equilibrium,
the internal energy defined as the mean energy over time
Ē, also coincides with the expectation of the hamiltonians

of all possible micro-states:

Ē = E[H ] := ∑
mmm∈M

p?hyp(mmm)H (mmm). (5)

Therefore for the canonical ensemble, the entropy maxi-
mization at equilibrium can be written as:

p?hyp = argmax
p

S(p)

subject to Ē = E[H ].
(6)

Solving Eq. (6) (usually with Lagrange multipliers)
yields the well-known Boltzmann distribution for the
canonical ensemble:

p?hyp(mmm) =
exp
(
−H (mmm)

kbT

)
Z (T )

,

Z (T ) = ∑
mmm∈M

exp
(
−H (mmm)

kbT

)
.

(7)

The dependency to the temperature T is directly related to
the constraint on Ē. Indeed, it can be shown that the asso-
ciated Lagrange multiplier λ , which appears in p?hyp during
the derivation, is λ = −∂S/∂ Ē = −1/Tcore = −1/T (see
e.g. [23] for a detailed derivation). The denominator Z (T )
defines the partition function of the system and acts as a
normalization factor. From Eq. (7), it is clear that at low
temperatures, micro-states with a lower hamiltonian (i.e.,
whose moments are aligned with each other) are favored,
whereas at high temperatures, all micro-states tend to be
equiprobable. It follows that the higher the temperature,
the higher the entropy, but the Boltzmann distribution is
nonetheless the distribution maximizing the entropy at a
given temperature.

Finally, reinjecting Eq. (7) in Eq. (4) and Eq. (5) yields
the thermodynamic entropy and the internal energy as
functions of the temperature:

S = S(p?hyp) = S (T ) :=
∂

∂T
(kbT lnZ )(T ), (8)

Ē = E (T ) := kbT 2 ∂ lnZ

∂T
(T ) (9)

(see e.g. [24] for detailed proof).

2.3 Core macroscopic state and energy
The classic mean-field Ising model computes an ap-

proximation of the free energy, which corresponds to the
amount of energy convertible into work, at constant tem-
perature. This mean-field free energy depends on a macro-
scopic, scalar order parameter m ∈ [−1,1]. This order pa-
rameter can be understood as a "mean magnetic moment".
It is ±1 when moments tend to align for all micro-states, 0
if there is no alignment tendency at all. The free energy, in
its classic formulation, also depends on the external mag-
netic field (see e.g. [25] for a complete derivation).

Here, we also rely on a mean-field approximation, but
choose to express the internal energy as a function of the
(extensive) entropy S and another extensive variable, the
total magnetic flux BV . This way, in (1), the flow ẋxxcore ac-
counts for the time variation of extensive quantities (to bal-
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ance with quantities external to the core, or equilibrium-
establishing) and, concomitantly, the effort accounts for in-
tensive quantities (shared with the exterior at the core in-
terface, or equilibrium-determining). Thus, the externality
of the thermostat and magnetic field is made explicit. The
core macroscopic state can only change if the core is in
contact with the exterior (or another component) through
connection ports.

Assuming the core has periodic boundaries (a toric ge-
ometry for instance), and reinjecting the mean-field parti-
tion function of a core isolated from any magnetic field (see
[18] for a complete expression) in Eq. (9), the mean-field
internal energy is found to be:

Ē ≈ EMF(m,T ) = E0

(
m2

2
− m tanh

(
mTc

T

))
. (10)

In Eq. (10), the energy E0 = NJq, with q the (constant)
number of nearest neighbours of each moment, relates to
the minimal possible energy of the core: EMF(±1,0) =
−E0/2.

A similar operation in Eq. (8) gives the mean-field ther-
modynamic entropy:

S ≈SMF(m,T ) = S0 f
(

mTc

T

)
,

f (χ) = ln
(
2cosh(χ)

)
− χ tanh(χ) , χ ∈ R.

(11)

In Eq. (11), the entropy S0 = Nkb relates to the maximal
possible entropy of the core: SMF(0,+∞) = S0 ln(2).

The ratio E0/S0 := Tc gives the critical temperature,
above which the core behavior becomes paramagnetic.

Simultaneously, we introduce the (extensive) core total
magnetic flux BVcore , defined as:

BVcore = m µ0 Ms V, (12)

where the constant µ0 = 4π × 10−7 H.m−1 is the vacuum
magnetic permeability, the quantity Ms is the core satura-
tion magnetization, and V is the core volume. The term
µ0MsV , corresponding to the core saturation total magnetic
flux, is denoted BVs in the following for simplicity.

Finally, the core macroscopic state is chosen to be ex-
pressed as:

xxxcore =
[
BVcore ,S

]ᵀ
. (13)

Noting that f is smooth, even on R and strictly monotonic1

(so invertible) on R+, we obtain the expression of the core
internal energy:

Ecore(xxxcore) = E0

1
2

(
BVcore

BVs

)2

−

∣∣∣∣∣BVcore

BVs

∣∣∣∣∣g(S)
 , (14)

where g(S) = tanh
(

f−1
(

S
S0

))
, S ∈ R+. The effort is:

∇Ecore(xxxcore) =

[
∂ Ecore

∂BVcore

(xxxcore),
∂ Ecore

∂S
(xxxcore)

]ᵀ
:= [Hcore,Tcore]

ᵀ ,

(15)

1Indeed, f ′(χ) = −χ/cosh2
χ ≤ 0 ∀χ ∈ R+.

Figure 2: Energy function of the core.

Hin

ḂVin

core
ḂVcore

Hcore

(a) Flow-controlled core.
∇E(xxx) uuu

Tcore Hcore − δeS
dt ḂVin


ẋxx Ṡ . . −1 .

ḂVcore . . . −1
yyy Text 1 . . .

Hin . 1 . .

(b) Corresponding PHS. Dots represent zeros.

Figure 3: Equivalent circuit and PHS for the flow-
controlled core.

where Hcore and Tcore denote the core internal magnetic
field and the core temperature, respectively. The quantity
Tcore defined in Eq. (15) coincides exactly with the temper-
ature T used in Eq. (7), thus ensuring the thermodynamic
consistency of the model (proof in Appendix A.1).

Figure 2 shows how as the entropy S increases, the
core goes from two ordered (aligned moments) meta-stable
equilibrium states to one non-ordered (no alignment) stable
equilibrium state: it exhibits a phase transition (from ferro-
magnetic to paramagnetic). Note that all non-linearities of
the core are intrinsically encoded into its energy. Therefore
any PHS comprising a core will exhibit a non-linear behav-
ior, regardless of its interconnection matrix.

2.4 Flow-controlled conservative PHS
We suppose that the core is flow-controlled. The out-

going total magnetic flux and incoming entropy variation
from the exterior are denoted BVin and δeS, respectively2.
Figure 3a shows the equivalent circuit. Kirchhoff’s laws in
receptor convention, as well as Eq. (14), yield the PHS for-
mulation in Fig. 3b.

2The symbol δ stands for an inexact differential [21].
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2.5 Effort-controlled dissipative PHS
We suppose now that the core is effort-controlled. In this

case, the exterior magnetic field Hin constrains the core
magnetic field:

Hcore = Hin. (16)

Below the critical temperature, this constraint causes
jumps between meta-stable states (called Barkhausen
jumps [26], Fig. 4a). The subsequent relaxation is respon-
sible for hysteresis, similarly to a relaxation oscillator [27].
In real ferromagnetic cores however, domain structure and
non-homogeneities [28] generate an energy function with
not two but multiple local minima. Therefore, on a macro-
scopic scale, the trajectory followed by the magnetic flux
during jumps is damped (Fig. 4b). The damping is mod-
eled with a linear magnetic resistor rcore connected in
series with the core.

Above the critical temperature, there is no meta-stability,
and the remaining hysteresis is mainly due to eddy cur-
rents.

As the difference of energy before and after a jump is
entirely dissipated as heat [26], the Barkhausen jumps are
also responsible for the variation of entropy creation δiS in
the core. The associated thermal power TcoreδiS/dt is equal
to the magnetic power dissipated through rcore, so that

rcoreH2
rcore − Tcore

δiS
dt

= 0. (17)

We deduce the dissipative flow and effort:

www =
[
−Tcore,Hrcore

]ᵀ
z(www) =

[
rcoreH2

rcore

Tcore
,rcoreHrcore

]ᵀ
=

[
δiS
dt

, ḂVrcore

]ᵀ
.

(18)

Finally, the second law of thermodynamics [21] states:

Ṡ =
δiS
dt

+
δeS
dt

. (19)

Figure 5a shows the equivalent circuit. Kirchhoff’s laws in
receptor convention, as well as Eqs. (14)-(18)-(19), yield
the PHS formulation in Fig. 5b.

3 CONNECTION TO COIL

3.1 Coil model
The coil is a (considered linear here) component which

can be described either in the electrical domain or the mag-
netic domain.

In the electrical domain, its state is the magnetic flux
linkage Φcoil and its energy is:

Eelec
coil (Φcoil) =

Φ2
coil

2L
, (20)

with L the coil inductance. Its energy derivative w.r.t. Φcoil
is the coil current icoil = Φcoil/L.

In the magnetic domain, its state is BVcoil and its energy
is:

Emag
coil (BVcoil) =

B2
Vcoil

2µ0Vcoil
, (21)

(a) Barkhausen jumps without damping.

(b) Barkhausen jumps with damping.

Figure 4: Barkhausen jumps and resulting hysteresis during
a cycle, with and without damping. The red curve is the
theoretical core internal magnetic field, the blue curve is
the real trajectory followed by the core total magnetic flux
constrained by an external magnetic field.

with Vcoil the coil volume. Its energy derivative w.r.t. BVcoil
is the coil magnetic field Hcoil = BVcoil/(µ0Vcoil).

Obviously, Eelec
coil (Φcoil) = Emag

coil (BVcoil). Moreover, de-
noting n the number of turns and ` the length of the coil, the
coil flows and efforts in both domains are related through:[

Hcoil
Φ̇coil

]
=

[
0 n

`
n
` 0

][
ḂVcoil
icoil

]
. (22)

The coil can therefore be seen as an interface between
the electric and magnetic domains. This leads to the equiv-
alent quadripole representations shown in Fig. 6. In the
following, the coil will therefore be represented as such a
quadripole, to account for its double nature.

3.2 Coupling between the core and the coil
A ferromagnetic coil is formed when a core and a coil

are connected (in series in the electrical domain, in parallel
in the magnetic domain). As such, the magnetic flux of the
coupled system is the sum of the magnetic fluxes:

BVcoupled = BVcoil + BVcore , (23)

and they share their magnetic field:

Hcoupled = Hcore = Hcoil. (24)

Therefore, the coil acts as an effort-controller for the core,
and the core dynamics is that described in section 2.5.

J. Audio Eng. Sco., Vol. , No. , 5
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Hin

ḂVin core
ḂVcore

rcore

ḂVrcore

Hrcore

Hcore

(a) Effort-controlled core with dissipation.

∇E(xxx) z(www) uuu
Tcore Hcore

δiS
dt ḂVrcore

− δeS
dt Hin


ẋxx Ṡ . . 1 . −1 .

ḂVcore . . . 1 . .
www −Tcore −1 . . . . .

Hrcore . −1 . . . 1
yyy Text 1 . . . . .

ḂVin . . . −1 . .

(b) Corresponding PHS. Dots represent zeros.

Figure 5: Equivalent circuit and PHS for the effort-controlled core.

iin

vin

ḂVin

Hin
coil

≡

coil

vcoil

i

v H

n/`
ḂViin

vin

ḂVin

Hin

≡
v

i

coil
ḂVcoil

ḂV

Hcoil

n/`
iin

vin

ḂVin

Hin

Figure 6: Coil equivalent representations as interfaces between electric (red) and magnetic (blue) domains.

3.3 Complete ferromagnetic coil model
The losses due to Joule heating in the coil are modeled

with a linear resistor rcoil in series (in the electrical domain)
with the coil, so that for the ferromagnetic coil, the dissi-
pative flows and efforts are:

www =
[
−Tcore,Hrcore , ircoil

]ᵀ
z(www) =

[
rcoreH2

rcore

Tcore
,rcoreHrcore ,rcoilircoil

]ᵀ
=

[
δiS
dt

, ḂVrcore ,vrcoil

]ᵀ
.

(25)

The ferromagnetic coil equivalent circuit is shown on
Fig. 7a. Kirchhoff’s laws on the equivalent circuit, as well
as Eqs. (14)-(19)-(21)-(22)-(25), allow the PHS formula-
tion on Fig. 7b.

3.4 Isothermal transformations
In the case of interactions with a ferromagnetic coil at

constant temperature, one may use an alternate formula-
tion. The entropy is removed from the state, which be-
comes:

xxx =
[
BVcore ,BVcoil

]ᵀ
. (26)

The core internal energy becomes the free energy:

E free
core(BVcore) = E0

1
2

(
BVcore

BVs

)2

− θ lncosh

(
BVcore

BVs θ

) ,

(27)
where θ = T/Tc is now a parameter of the model. The dis-
sipative flow becomes:

www =
[
Hrcore , ircoil

]ᵀ
, (28)

and the only input is vin. The PHS of the ferromagnetic coil
is otherwise unchanged.

Nonetheless, the applications presented in the next sec-
tion will rely on the formulation given in section 3.3, as it
is more general.

4 COMPARISON TO MEASUREMENTS

To assess the accuracy of the model, measurements are
performed on a Fasel Red inductor. The inductor is con-
nected in series with a resistor R = 100 Ω and driven
with a sinusoidal voltage source (Fig. 8a). The voltage
across the inductor vout is measured, and the inductor mag-
netic flux linkage is obtained through the relation ΦL(t) =∫ t

0 vout(τ)dτ . The current iL is obtained through the rela-
tion iL = (vin − vout)/R. Assuming that T = 303 K, ` =
0.016 m, and n = 150, a least-squares minimization be-
tween the model and the measurements, as well as Eq. 22,
yield the values of rcoil, rcore, E0, S0 and BVs in Table 1. Fig-
ures 8b-8c show that the simulations obtained with these
parameters match the measurements quite well for several
input amplitudes (see also [29]).

5 ILLUSTRATIVE EXAMPLES

In this section, we illustrate a possible use of our ferro-
magnetic coil model with two examples: a band-pass fil-
ter, and a transformer. In order to specifically highlight the
effect of magnetic non-linearities, both examples are kept
minimal. For the band-pass filter, we consider the passive
sub-circuit only, and ignore transistors and feedback. For
the transformer, the input stage (typically, an amplifier) is
not considered.

5.1 Band-pass filter
We consider the passive band-pass filter of a well-known

wah-wah pedal circuit (Fig. 9a), for which the influence of
the core non-linearities on the resulting sound are proemi-
nent.

6 J. Audio Eng. Sco., Vol. , No. ,
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vin

iin
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(a) Voltage-controlled ferromagnetic coil.
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(b) Corresponding PHS. Dots represent zeros.

Figure 7: Equivalent circuit and PHS for the voltage-controlled ferromagnetic coil.

r1&r2&rcoil (Ω) rcore (Ω) L1&L2 (H) R (Ω) V R1 (Ω) E0 (J) S0 (J.K−1) BVs (J.A−1.m) fs (Hz)

15 3.3e−6 5e−3 1 k 5 k 13.09 4.32e−2 6.61e−6 192 k

Table 1: Simulation parameters for the band-pass and transformer.

For this band-pass filter, the input is the Q2 transistor
emitter voltage, and the output is the V R1 potentiometer
voltage (Fig. 9b, where the component L1 represents the
entire ferromagnetic coil equivalent circuit). Resistors are
linear and obey Ohm’s law vR = RiR. Capacitors are linear,
of state qC and energy EC(qC) = q2

C/(2C). These relations,
associated with Kirchhoff’s laws and Eqs. (14)-(19)-(21)-
(22)-(25), allow a PHS formulation of the band-pass.

The complete PHS is given on Fig. 9c.
A simulation is performed using a Newton-Raphson al-

gorithm on the discretized PHS (see e.g. [29, 30] for more
details on the discretization and integration), with vin =
U0 sin(2π f0 t). For the parameters given in Table 1, and
component values on Fig. 9a, the center frequency is fc ≈
2 kHz, and the bandwith is ∆ f ≈ 1 kHz. Figures 9d-9f show
the simulation results for different input frequencies f0 and
U0 = 25 V. The core saturation and hysteresis are mostly
observed for input frequencies in the filter bandwidth.

Sound examples are available at https://github.
com/JNaj/jaes_ferromag.

5.2 Transformer with ferromagnetic core
Output transformers are generally present in amplifiers,

to reduce the load impedance seen by the loudspeaker [31,
2]. Transformers with a ferromagnetic core are considered
particularly interesting because of the core high magnetic
permeability, which reduces the leakage flux [32].

We build a non-linear transformer model by coupling
two ferromagnetic coils, that is, letting them share the same
core (Fig. 10a). The primary (resp. secondary) coil induc-
tor and associated resistor are denoted L1 and r1 (resp. L2
and r2), with number of turns n1 (resp. n2). To simplify the
interconnection matrix, we define for the magnetic domain
the flow f = ḂV/` and effort e = H`. Figure 10b shows

the corresponding circuit, with gyrators defined by:[
e1
v1

]
=

[
0 n1
−n1 0

][
f1
i1

]
,[

v2
e2

]
=

[
0 n2
−n2 0

][
i2
f2

]
.

(29)

Kirchhoff’s laws and Eqs. (14)-(19)-(20)-(25)-(29) allow a
PHS formulation of the transformer.

The complete PHS is shown on Fig. 10c.
A simulation is performed (same technique as for the

band-pass) with vin = U0 sin(2π f0 t), and parameters in
Table 1. Figures 10d-10e show simulation results for dif-
ferent input voltages and f0 = 100 Hz. It can bee seen
that saturation and hysteresis arise for large input voltages,
while the transformer’s behavior for small input voltages is
quasi-linear. This corresponds qualitatively to observations
on real transformers.

It is worth noting that the modularity of the model would
allow for more complex transformer topologies (multiple
primaries, multiple secondaries, air-gaps ...) without diffi-
culty.

6 CONCLUSION

In this paper, a new macroscopic model of ferromagnetic
coil has been developed. It is based upon a component-
wise, energetic approach. Characteristics like saturation
and hysteresis are well reproduced, as well as the influence
of thermodynamics. This explicit influence is an improve-
ment with respect to other models. Moreover, the modular-
ity of the model makes it particularly versatile, as the com-
ponent approach can be applied to multiple combinations
of cores and coils.

As an illustration, the model has been used to simulate
two representative audio sub-circuits: a band-pass filter,
and a transformer. Due to the reduced number of param-
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vin

R

L vout

(a) Experimental setup for measurements on an
inductor.

(b) Measurements versus model for a voltage
input amplitude of 400 mV.

(c) Measurements versus model for a voltage in-
put amplitude of 800 mV.

Figure 8: Experimental setup and comparison to measure-
ments for a Fasel Red inductor.

eters and variables, these simulations can be performed in
real-time.

Nonetheless, even if the model has been successfully
identified with real components, and exhibits a satisfactory
qualitative behavior for audio applications, extensive mea-
surements should be conducted to assess the model rele-
vance more quantitatively. This shall be the object of future
work.
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(b) Simplified passive band-pass filter of the Vox V847 circuit.
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dt ḂVrcore

vrcoil iVR1 iR6 vR7 − δeS
dt vin
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(b) Equivalent gyrator-capacitor representation.
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Figure 10: Circuit, PHS and simulation results for the transformer.
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APPENDIX
A.1 Energy derivative w.r.t the entropy

From Eq. (14), we deduce:

∂ Ecore

∂S
(xxxcore)

1
= −E0

S0

∣∣∣∣∣BVcore

BVs

∣∣∣∣∣ f−1′
(

S
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)
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(
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(

S
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2
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(
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))
f−1
(

S
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)
3
=

E0

S0

∣∣∣∣∣BVcore

BVs

∣∣∣∣∣ 1

f−1
(

S
S0

) 4
= T

(1)

using 1. tanh′ u = u′/cosh2 u, 2. f−1′ = 1/( f ′ ◦ f−1) and
f ′(u) = −u/cosh2(u), 4. E0/S0 = Tc and f−1(S/S0) =
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∣∣Tc/T , where the symbol ◦ stands for function
composition.
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