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The authors report the implementation of a simple one-step method for obtaining an infinite-order
two-component �IOTC� relativistic Hamiltonian using matrix algebra. They apply the IOTC
Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic
properties of the radon atom. The results are compared to corresponding calculations using identical
basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as
Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the
DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians
within the finite basis approximation. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2436882�

I. INTRODUCTION

Whereas it is generally acknowledged that the inclusion
of relativistic effects is crucial for the theoretical description
of the chemistry of heavy elements,1 there is less consensus
as to how to introduce such effects in actual calculations.
Within the Born-Oppenheimer approximation all electronic
Hamiltonians, relativistic or not, have the generic form

Ĥ = �
i

ĥ�i� + 1
2�

i�j

ĝ�i, j� + VNN, �1�

where VNN is the classical repulsion of clamped nuclei and

where ĥ and ĝ are one- and two-electron operators, respec-
tively. This common form is usually sufficient to define and
derive the various electronic structure methods of quantum
chemistry, which implies that they can be extended to the
relativistic domain, although various technical issues may
have to be tackled.2,3

The present most rigorous treatment employed in quan-
tum chemistry is based on the four-component Dirac-
Coulomb-Breit/Gaunt Hamiltonian, which is obtained by se-
lecting the Dirac operator in the molecular field as the one-

electron operator ĥ and the Coulomb term, possibly extended
by the Gaunt or Breit terms, as the two-electron operator ĝ.
The introduction of the complex algebra and the reduced
symmetry associated with the spin-orbit interaction leads
theoretically to a prefactor on the order of 10 compared to
the cost of a nonrelativistic calculation. The introduction of a
separate basis set for small components introduces an addi-
tional factor of 10. These computational bottlenecks limit the

application of four-component Hamiltonians to small- and
medium-sized chemical systems only. There has, however,
been considerable progress in reducing the cost of such cal-
culations, for instance, by integral screening,4 density
fitting,5–7 pseudospectral methods,8 and symmetry schemes
that exploit maximally nonrelativistic symmetry in the pres-
ence of spin-orbit coupling.9 A major breakthrough was the
introduction by Visscher of a simple energy correction that
completely eliminated the two-electron Coulomb integrals
involving the small components only.10 Further progress
along these lines has been reported by Pedersen.11 Recently,
Liu and Peng12 demonstrated how the cost of four-
component relativistic density functional theory �DFT� cal-
culations can be made identical to that of two-component
calculations by the introduction of model atomic densities
for the small components. Beyond a four-index transforma-
tion, e.g., at the coupled cluster �CC� or configuration inter-
action �CI� level, the cost of two- and four-component cal-
culations is strictly identical since the negative-energy
solutions are not included in such calculations.

The high computational cost traditionally associated
with four-component relativistic calculations has motivated
the development of computationally less demanding two-
component Hamiltonians. Two-component relativistic
Hamiltonians, involving only positive-energy orbitals, can be
divided into pseudopotential and all-electron methods. The
latter group consists of a plethora of two-component Hamil-
tonians accurate to various orders in some expansion param-
eter.

On of the most popular two-component Hamiltonians is
the second-order Douglas-Kroll-Hess13–15 �DKH� Hamil-
tonian. Closely related is the Hamiltonian proposed by
Barysz et al.16 Barysz and Sadlej.17 In both cases a free-
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particle Foldy-Wouthuysen �FW� transformation is first ap-
plied to the Dirac operator. The subsequent coupling equa-
tion is then expanded in the external potential and the fine-
structure constant �, giving the DKH and Barysz-Sadlej-
Sniders �BSS� Hamiltonians, respectively.17 Another widely
used Hamiltonian, particularly in a DFT framework, is the
zeroth-order regular approximation �ZORA�
Hamiltonian18–20 and variants hereof. These Hamiltonians
are variationally stable in the sense21 that they have a lower
bound which, however, need not be exactly the lower
positive-energy solution of the corresponding Dirac operator
and may even be slightly below. Spin-free one-component
forms of these Hamiltonians are easily incorporated into
nonrelativistic quantum chemical machinery through a modi-
fication of one-electron atomic integrals. On the other hand,
the rigorous handling of both scalar relativistic and spin-orbit
effects requires a dedicated code.

A scheme for obtaining an arbitrary �including infinite�
order two-component relativistic Hamiltonian was proposed
by Barysz and Sadlej.22 High-order DKH Hamiltonians have,
on the other hand, been proposed by Nakajima and Hirao,23

van Wüllen,24 as well as Reiher and Wolf.25,26 However, all
the above mentioned works share a common feature: Two-
component Hamiltonians are derived at the operator level
and only at a later stage are matrix elements over the final
operator expressions programmed. However, approximate
Hamiltonians can be obtained in a much simpler manner by
matrix manipulations starting directly from the Dirac opera-
tor in the finite basis approximation. Such a scheme was
proposed by Dyall as early as 1997.27 More recently, Jensen
and Iliaš28 have translated the scheme for generating the BSS
Hamiltonian into matrix algebra. The iterative solution of an
operator equation is then replaced by direct diagonalization
followed by the solution of a system of linear equations.
Spectroscopic constants for the PbO molecule and its anion
using this Hamiltonian were reported in Ref. 29. A similar
and more general scheme has been actively pursued by Liu
and Peng12 and by Kutzelnigg and Liu30,31 under the name of
exact quasirelativistic �XQR� theory.

In this paper we report the implementation of a very
simple scheme for obtaining an infinite-order two-
component �IOTC� relativistic Hamiltonian. We will use the
acronym IOTC, introduced by Kȩdziera and Barysz,32 since
it describes precisely the object that we seek a matrix repre-
sentation of. We have employed a development version of
the DIRAC program suite,33 which means that our IOTC
Hamiltonian can be immediately used with a wide range of
methods, including Hartree-Fock �HF�,4,9 DFT,34 second-
order Møller-Plesset perturbation theory �MP2�,35 multicon-
figuration self-consistent field36 �SCF� as well as CI37,38 and
CC39,40 methods. An outstanding advantage of the matrix al-
gebra approach is that an explicit matrix representation of the
decoupling transformation is generated and can be applied
on the fly to property operators such that picture change
errors41–43 are completely avoided. Using DIRAC, we can
therefore calculate expectation values, linear44 and quadratic
response45 functions for a wide range of electric and mag-
netic properties, currently at the HF and DFT levels.

Our paper is organized as follows: In Sec. II we first

show the equivalence of two approaches for the generation
of two-component relativistic Hamiltonians, namely, the
elimination of the small components and Foldy-Wouthuysen
transformations. This allows us to focus exclusively on the
generation of such Hamiltonians by sequences of unitary
transformations. We briefly establish links to various finite-
order schemes and then present our one-step method for ob-
taining the IOTC Hamiltonian. Details concerning the imple-
mentation are found in Sec. III. We report pilot calculations
on the radon atom in Secs. IV and V. It should be stressed,
though, that molecular calculations are perfectly feasible. We
conclude and provide perspectives in Sec. VI.

II. THEORY

Our point of departure is the Dirac equation in a molecu-
lar field,

� V c�� · p�
c�� · p� V − 2mc2���L

�S � = ��L

�S �E , �2�

where V=−��r� describes the interaction of an electron with
the electrostatic potential of the clamped nuclei. This equa-
tion has solutions of both positive and negative energy. It
should be emphasized, since this is repeatedly misunderstood
in the literature, that all solutions are electronic since the
introduction of potential by the principle of minimal electro-
magnetic coupling46 requires a specification of charge.2 For
chemical purposes one chooses the charge of the electron q
=−1 a.u. and not the charge of the positron. This interpreta-
tion is in agreement with Dirac himself,47 who pointed out
that negative-energy positrons would be in conflict with ex-
periment, and is crucial for understanding the extension to
the quantum field theory. The observable positronic solutions
in the same potential are obtained by explicitly choosing
positron charge when coupling to the potential or by charge
conjugation of the negative-energy solutions of the electronic
problem.

In the literature two main approaches have been consid-
ered for the decoupling of the positive and negative-energy
solutions of this equation: �i� elimination of the small com-
ponents �ESC� and �ii� unitary decoupling transformation,
generally referred to as a FW transformation. We will show
that these approaches are equivalent, which then allows us to
focus exclusively on the FW transformation.

A. Elimination of the small components

Consider first the elimination of small components. We
write the Dirac equation as a system of coupled equations,

ĥ11�
L + ĥ12�

S = E�L, �3�

ĥ21�
L + ĥ22�

S = E�S, �4�

in obvious notation. Let the operator R̂ be the exact coupling
of the large and small components

�S = R̂�L. �5�

In the first step we eliminate the small components in
Eq. �3�,
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�ĥ11 + ĥ12R̂��L = E�L. �6�

The second step is renormalization, alternative introduction
of a metric. If the point of departure is a normalized four-
component wave function, the large components are not nor-

malized to unity by themselves. Introducing �= N̂+�L, the

normalization operator N̂+ is extracted from

��	�
 = ��	�
 = ��L	1 + R̂†R̂	�L
 ⇒ N̂+ = �1 + R̂†R̂ , �7�

where we have used the coupling relation �Eq. �5��. The final
Hamiltonian for the two-component wave function � thereby
becomes

ĥ+ = N̂+�ĥ11 + ĥ12R̂�N̂+
−1

= �1 + R̂†R̂�ĥ11 + ĥ12R̂�
1

�1 + R̂†R̂
. �8�

B. Foldy-Wouthuysen transformation

We seek a unitary transformation Û to decouple solu-
tions of positive and of negative energy,

Û†�ĥ11 ĥ12

ĥ21 ĥ22

�Û = �ĥ+ 0

0 ĥ−

� . �9�

The general form of this transformation was first given by
Heully et al.48 Kutzelnigg,49,50 has emphasized the utility of
writing it as the product of two transformations,

Û = Ŵ1Ŵ2: Ŵ1 = �1 − R̂†

R̂ 1
� ,

�10�

Ŵ2 = �N̂+
−1 0

0 N̂−
−1�, N̂+ = �1 + R̂†R̂, N̂− = �1 + R̂R̂†.

The first transformation Ŵ1 provides decoupling, giving

� ĥ11 + ĥ12R̂ + R̂†ĥ21 + R̂†ĥ22R̂ − ĥ11R̂
† + ĥ12 − R̂†ĥ21R + R̂†ĥ22

− R̂ĥ11 − R̂ĥ12R̂ + ĥ21 + ĥ22R R̂ĥ11R̂
† − R̂†ĥ12 − ĥ21R̂

† + ĥ22

� . �11�

The off-diagonal elements are connected by Hermitian con-
jugation and should be zero in the case of exact decoupling.
This implies

ĥ21 + ĥ22R̂ = R̂ĥ11 + R̂ĥ21R̂ , �12�

a relation that is only valid for the exact R̂. The second trans-

formation Ŵ2 introduces renormalization, thus ensuring the
unitarity of the transformation. In this final step we obtain
the Hamiltonian for the positive-energy states

ĥ+ =
1

�1 + R̂†R̂
�ĥ11 + ĥ12R̂ + R̂†�ĥ21 + ĥ22R̂��

1

�1 + R̂†R̂
,

�13�

which is identical to Eq. �8� when we use the coupling equa-
tion �Eq. �12��. We have therefore shown the equivalence of
the elimination of the small components and the Foldy-

Wouthuysen transformation when R̂ is the exact coupling
between the large and small components.

The connection is made even more explicit when we
consider the decoupling transformation �Eq. �10�� of the ma-
trix of eigenvectors, which gives

��̃+
L �̃−

L

�̃+
S �̃−

S � = Ŵ2��+
L + R̂†�+

S �−
L + R̂†�−

S

�+
S − R̂�+

L �+
S − R̂�−

L � . �14�

We seek �̃+
S =0 and �̃−

L =0, which implies

�+
S = R̂�+

L, �−
L = − R̂†�−

S , �15�

from which one sees that R̂ couples the large and small
positive-energy eigenvectors. The final renormalized nonzero
two-component functions read

�̃+
L = �1 + R̂†R̂�+

L, �̃−
S = �1 + R̂R̂†�−

S . �16�

A subtle feature, first discussed by Heully et al.,48 should
be pointed out: the exact coupling of the large and small
components of the Dirac equation �Eq. �2�� can be expressed
as

R̂ =
1

2mc
B̂�E��� · p�, B̂�E� = �1 +

E − V

2mc2 �−1

. �17�

This is, however, an energy-dependent, and thus state-
specific, coupling. Heully et al.48 developed a state-universal
quadratic equation. Repeating this exercise in a kinetically
balanced basis, one obtains the coupling equation that forms
the basis of the iterative XQR scheme proposed by Kut-
zelnigg and Liu.30 Heully et al.48 also pointed out that the

coupling operator R̂ will be different for positive- and
negative-energy solutions, a feature that is seen from Eq.

�15�. In Eq. �5� above we have not specified whether R̂ refers
to the state-specific or state-universal coupling operator. Un-

less explicitly otherwise indicated, R̂ in this paper will refer
to the state-universal coupling operator, in conformity with
the notation used in the paper by Heully et al.48 In practice,
this distinction may not be that crucial since the coupling
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transformations may be carried out starting from the time-
dependent Dirac equation, in which no explicit energy ap-
pears. This is, for instance, shown by Moss,51 who obtains
identical Hamiltonians using the method of elimination of
small components and Foldy-Wouthuysen transformations.

Finally, one may note that the final working equation

ĥ+�̃+
L = E�̃+

L �18�

can be rearranged to

�ĥ11 + ĥ12R̂ + R̂†�ĥ21 + ĥ22R̂���+
L = E�1 + R̂†R̂��+

L . �19�

The above equation corresponds to the normalized elimina-
tion of small components �NESC�.27,52,53 For exact coupling

R̂ the equation reduces to the traditional unnormalized ESC
�UESC� of Eq. �6�. For approximate coupling, however,
NESC provides more accurate energies than UESC.27,53

C. Approximate schemes

The exact coupling operator R̂ in its energy-dependent
form �17� precludes the exact a priori decoupling of the
Dirac Hamiltonian as well as its realization at the basis set
level. Four-component basis set expansions based on “atomic
balance” have been investigated by Dyall and Enevoldsen,54

more recently by Liu and Peng,12 and are routinely done for
atomic cores in DFT calculations �see, for instance, Ref. 5�.
In general, however, large and small component basis func-
tions are coupled by the nonrelativistic limit of Eq. �17�,

lim
c→�

c�S =
1

2m
�� · p��L, �20�

and this coupling is valid only for positive-energy solutions
and finite nuclei.55 The validity of this approximation can be
seen in Fig. 1, where the small component radial function of
the radon atom is plotted along with the radial function ob-
tained by application of the nonrelativistic coupling �Eq.
�20�� to the large component radial function. It can be seen
that marked deviations occur only very close to the nucleus,

well inside the radial expectation value of the 1s1/2 orbital.
Restricted kinetic balance �RKB� is the realization of Eq.
�20� at the basis set level, giving a 1:1 ratio between the sizes
of the large and small component basis sets. Unrestricted
kinetic balance �UKB� only requires the small component
basis set to span the basis functions generated by RKB. UKB
generally leads to larger small component basis sets and pos-
sibly increased linear dependencies. UKB gives, on the other
hand, a more flexible basis which facilitates magnetic bal-
ance in the calculation of magnetic properties.56–58 With suf-
ficient flexibility in the basis set, the exact coupling can then
be obtained during the orbital optimization procedure.59 Fig-
ure 1 clearly shows that a basis that avoids variational col-
lapse for an atom will also work when that atom is placed in
a molecule.

Several two-component relativistic Hamiltonians are ob-
tained using approximate couplings for which Eq. �12� is no
longer valid. The Pauli Hamiltonian is obtained using

R̂ �
1

2mc
�� · p� �21�

and retaining terms to order O�c−2�. It has no lower bound
due to the mass-velocity term and furthermore contains the
singular Darwin term. These difficulties are avoided in the
regular approximations �RAs� based on

R̂ �
c

2mc2 − V
�� · p� , �22�

where the potential V in the denominator is large when the
momentum p is large. The ZORA Hamiltonian is obtained
from decoupling with Eq. �22� and no renormalization,18–20

that is, by the UESC approach �Eq. �6��. Insertion of the
approximate coupling �Eq. �22�� into the NESC equation
�Eq. �19�� gives the IORA �infinite-order RA� equation.60 A
precursor to IORA was the scaled ZORA approach,61 which
is an approximation to IORA obtained by replacing the op-

erator product R̂†R̂ in Eq. �19� by its expectation value. Com-
paring the exact coupling �Eq. �17�� with the regular approxi-
mation �Eq. �22��, one sees that the latter is obtained from
the former simply by setting the energy to zero. This can
formally be done by setting the SS block of the metric in the
Dirac equation, modified or not, to zero. UESC and NESC
then gives ZORA62 and IORA,63 respectively. ZORA and
related Hamiltonians can also be derived starting from the

four-component Hartree-Fock equations.64 The Coulomb Ĵ

and exchange K̂ operators are then formally defined in terms
of four-component orbitals, but Faas et al.64 demonstrated
that replacing the large components by the ZORA two-
component spinors and eliminating all explicit references to
small components constitute a very good approximation.

Another strategy consists of performing first the free-
particle Foldy-Wouthuysen transformation,65 which gives a
two-component kinetic energy operator on a square root
form, ensuring variational stability. Subsequent decoupling
in orders of the external potential V or in the inverse speed
of light in c−1 defines Douglas-Kroll-Hess13–15 and

FIG. 1. The small component radial function of the radon atom, obtained
from a four-component relativistic Hartree-Fock calculation with the atomic
GRASP code �Ref. 82�, compared to the function obtained by the application
of the nonrelativistic coupling �Eq. �20�� on the large radial function. The
root-mean-square radius of the radon nucleus is of the order of 10−4 a.u.
�Ref. 76� and the radial expectation value �r
 of the 1s1/2 orbital is 1.5
�10−2 a.u..
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Barysz-Sadlej-Snijders16 transformations, respectively. Alter-
natively, the small components may be eliminated and the
exact coupling obtained through iterative procedures.66–68

D. The one-step method

The exact coupling in the finite basis approximation can
evidently be obtained by solving the Dirac equation �Eq. �2��
in some suitable basis. This sounds perhaps crazy until one
realizes that this is normally not the problem one wants to
solve. Rather, one seeks the approximate electronic wave
function of some polyatomic molecule. The additional effort
in first finding approximate solutions of the one-electron
Dirac equation in a finite basis is then modest. The algorithm
of Jensen and Iliaš28 proceeds in two steps, basically follow-
ing the program outlined by Barysz et al.16 and Barysz and
Sadlej.17,22 In the first step the free-particle FW transforma-
tion is carried out. The resulting transformed Dirac equation
is solved and the coupling extracted such that the exact de-
coupling transformation can be performed. The second step
allows the construction of finite-order two-component rela-
tivistic Hamiltonians such as the first- and second-order
DKH Hamiltonians.

However, whereas the first step assures variational sta-
bility and regularization of finite-order relativistic Hamilto-
nians, it is not required for an exact decoupling. It is there-
fore possible to carry out the exact decoupling in a single
step starting from a matrix representation of the Dirac opera-
tor in the molecular field.

In a finite basis the coupling relations �Eq. �15�� are
transformed into two systems of linear equations,

Y+
S = RY+

L, Y−
L = − R†Y−

S , �23�

where Y+�−�
L�S� is the block of the eigenvector matrix corre-

sponding to the large �small� components of the positive
�negative� energy solutions of the Dirac equation. The cou-
pling R, now in matrix form, can be obtained directly by
solving the first of systems of equations, but in practice it
turns out to be better to take the Hermite conjugate of the
second system and premultiply with Y−

S, giving

AR = B, A = �Y−
SY−

S†�, B = − �Y−
SY−

L†� . �24�

The A matrix of this system is positive definite and Hermit-
ian, and the system can accordingly be solved by a Cholesky
decomposition. The unitary transformation can now be con-
structed and the Dirac Hamiltonian decoupled in matrix
form.

The decoupling matrix R is used to construct the picture
change transformation matrix U �Eq. �10��, which can be
applied not only for the Dirac operator, but also for any
four-component property operators as well. This enables car-
rying out easily the picture change transformation of any
four-component property operator X4c.

U†X4cU → X++
2c . �25�

It should be stressed, however, that the decoupling transfor-
mation U is constructed to block-diagonalize a specific
Hamiltonian, defined by the external scalar potential � ap-
pearing in Eq. �2�. Hence, the decoupling transformation will

not in general block-diagonalize an arbitrary operator. The
two-component operator X++

2c is obtained by selecting the
���� block of the transformed operator. This corresponds to
projecting the four-component operator onto the space
spanned by the positive-energy solutions of the particular
Hamiltonian defining the decoupling transformation. It is
well known that negative-energy solutions are needed in or-
der to obtain the diamagnetic contribution from magnetic
operators, at least when working with the untransformed
Dirac-Coulomb-�Gaunt/Breit� Hamiltonian �see, however,
Refs. 69 and 70�. We have therefore employed the Sternheim
approximation56,71 for the calculated magnetic properties re-
ported in this paper; that is, we calculate the expectation
value of the corresponding nonrelativistic diamagnetic op-
erator.

Another important point is that in a rigorous construction
of a two-component relativistic Hamiltonian, the decoupling
transformation should be defined with respect to the com-
plete electronic Hamiltonian �Eq. �1��, not only the one-
electron part, as is usually done in the literature. The decou-
pling transformation would then become method dependent.
Our approach allows the straightforward definition of the
decoupling transformation with respect to the mean-field po-
tential of a Hartree-Fock calculation. Such an approach,
which will be computationally more expensive, could be of
interest for a subsequent correlated calculation at the MPn,
CI, or CC level. Evidently, not only the one-electron part, but
the two-electron part as well, should be subject to the picture
change transformation. However, this would bring the com-
putational cost back to the four-component level.72,73 In the
present publication we therefore employed the untrans-
formed two-electron Coulomb term, which implies that two-
electron spin-orbit contributions are neglected. In subsequent
papers we will explore various atomic mean-field approxi-
mations to correct for this.

III. IMPLEMENTATION

In this section we describe the detailed algorithm as
implemented in a development version of the DIRAC04

code.33 Our approach is truly simple: The Dirac equation
�Eq. �2�� is solved in the orthonormal �molecular orbital
�MO�� basis,62 and the IOTC Hamiltonian with positive-
energy solutions only is then projected back onto the large
component atomic orbital �AO� basis. The detailed algorithm
runs as follows:

�1� Set up the Dirac equation in matrix form in the AO
basis,

hAOci
AO = SAOci

AO�i, SAO = �SLL 0

0 SSS� , �26�

where SAO is the overlap matrix. In our implementation
we use �presently uncontracted� Gaussian basis func-
tions and generate the small component bases by the
UKB relation.4

�2� Transform to the orthonormal basis using the nonuni-
tary transformation,
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hMOci
MO = ci

MO�i, V = �VLL 0

0 VSS�, V†SAOV = I .

�27�

In our implementation RKB is enforced in this step by
embedding the transformation to Dyall’s modified
Dirac equation62,74 in the transformation V, as de-
scribed in Refs. 62 and 2.

�3� The eigenvalue problem �Eq. �27��is solved by diago-
nalization, and the coupling matrix R is extracted using
Eq. �24�. The transformation matrix U �Eq. �10�� is
constructed, and subsequently the positive-energy two-
component relativistic Hamiltonian h+

MO �Eq. �13�� is
obtained in the matrix form. It should be noted that
since the transformation to the modified Dirac equation
is embedded in the orthonormalization step, the final
metric will be simply the identity matrix. Thus no
modification of the decoupling transformation, due to a
change of metric, is necessary.

�4� In the final step the Hamiltonian is projected back onto
the large component AO basis,

h+
AO = �VLL;†�−1h+

MO�VLL�−1, �VLL�−1 = VLL;†SLL;AO.

The matrix representation of the IOTC Hamiltonian,
h+

AO, is then written to file with whatever transformed
property operators are needed, and all the subsequent
calculations continue in the two-component mode.

Compared to the scheme proposed by Jensen and Iliaš,28

the preliminary free-particle FW transformation is com-
pletely avoided. Since this transformation was used by
Barysz et al.,16 we will refer to the two-step approach as
BSS. The direct construction of the coupling matrix advo-
cated here was already proposed by Dyall53 as well as by Liu
and Peng12 and Kutzelnigg and Liu,30 although the latter au-
thors seem to favor an iterative approach. A particular aspect
of this work is that we work in an orthonormal kinetically
balanced basis and thus the renormalized modified Dirac
equation, which simplifies operations and allows control of

linear dependencies. The quaternion symmetry scheme9,62

employed in DIRAC furthermore allows a straightforward
separation of scalar and spin-orbit terms. This will be ex-
plored in a subsequent publication.

As already mentioned in Sec. II, it is also possible to
perform the decoupling transformation with respect to a
�converged� four-component Fock operator. Then one itera-
tion in the subsequent two-component HF-SCF cycle repro-
duces exactly the total HF-SCF energy and orbital energies
of the four-component calculation.

IV. COMPUTATIONAL DETAILS

The IOTC Hamiltonian as well as the BSS, DKH, and
ZORA Hamiltonians are all implemented in the DIRAC

program,33 which allows direct comparison, also with calcu-
lations based on the four-component Dirac-Coulomb Hamil-
tonian. We have tested the performance of the IOTC Hamil-
tonian by calculations on the radon atom. We have used
Dyall’s triple-zeta basis 30s26p17d11f �Ref. 75� in uncon-
tracted form since contraction is yet to be implemented for
our two-component approach. The nuclear charge distribu-
tion was modeled by a Gaussian distribution.76

Fock-space coupled cluster �FSCCSD� calculations40

were done with 5d106s26p6 correlated electrons, and 6s26p6

shells were added to the active space �the �1,0� sector�. Vir-
tual spinors with energies higher than 1000 a.u. were deleted.

The static electric dipole polarizability, magnetizability,
and NMR shielding were calculated as linear response
functions44 based on the HF wave function. The ratios of
norms between residual and solution vectors of the linear
response equation were converged to 1.0�10−9. For mag-
netic properties we kept the rotations between positive-
energy orbitals, while the diamagnetic terms were calculated
as an expectation value using the corresponding nonrelativ-
istic diamagnetic operator.56,77

TABLE I. Selected eigenstates of the Rn85+ one-electron system. In parentheses we report the quantity
�1−S� �times 10−4�, where S is the overlap with the renormalized large component of the corresponding
four-component orbital. All values are in a.u.

IOTC BSS DKH2 Scaled ZORA ZORA

1s1/2 −4154.662 453 0 −4142.265 045 −4154.779 786 −4670.480 658
�18.197� �21.602� �20.052�

1p1/2 −1070.029 516 −1069.130 996 −1070.029 629 −1101.405 752
�0.874� �0.987� �0.806�

1p3/2 −948.451 386 −948.434 642 −948.451 386 −973.023 298
�0.813� �0.881� �0.877�

1d3/2 −425.136 259 −425.135 655 −425.136 259 −430.003 698
�0.114� �0.117� �0.117�

1d5/2 −415.485 189 −415.485 075 −415.485 190 −420.132 939
�0.112� �0.115� �0.115�

1f5/2 −234.522 726 −234.522 723 −234.522 727 −235.996 352
�0.027� �0.027� �0.027�

1f7/2 −234.564 803 −232.564 801 −232.564 803 −234.013 854
�0.026� �0.027� �0.027�
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V. RESULTS AND DISCUSSION

We first consider the one-electron system Rn85+. In Table
I we present results for selected orbitals using the one-step
IOTC and two-step BSS Hamiltonians. The eigenvalues are
by construction strictly identical to the original Dirac opera-
tor. However, when we calculate the overlap of eigenvectors
with the corresponding renormalized Dirac large compo-
nents, small differences appear, indicating that the eigenvec-
tors are not identical. The IOTC and BSS transformation
matrices are different, and this will have consequences for
energies in many-electron calculations as well due to the lack
of picture change transformation for the two-electron opera-
tor. We have also compared these results with lower-order
two-component Hamiltonians—DKH2 �Ref. 28� and �scaled�
ZORA �Ref. 62�—calculated with the same code and basis
sets. More pronounced discrepancies now appear, in particu-
lar, for the inner orbitals. The greater precision of the scaled
ZORA compared to normal ZORA is particularly striking.

In Table II we present results of HF calculations of the
ground state of the neutral radon atom. IOTC and BSS or-
bital energies now differ from each other and from the four-
component results due to the lack of picture change transfor-

mation of the Coulomb term: The mean absolute errors
�MAEs� in energies of the complete set of occupied orbitals
are 0.234 and 0.261 a.u. These deviations are clearly smaller
than the results obtained with the DKH2 Hamiltonian for
which a MAE of 0.758 a.u. is observed. Scaled ZORA
shows, on the other hand, deviations closer to the IOTC re-
sults, although a slight degradation is observed when con-
structing the mean-field potential from ZORA two-spinors
�MAE of 0.375 a.u.� rather than four-spinors �MAE of
0.272 a.u.�. Normal ZORA is clearly not satisfying. These
observations can be sharpened by looking at the mean abso-
lute errors of spin-obit �SO� splittings and spin-free �SR�
orbital energies separately, the latter obtained as the
weighted average of spin-orbit components: The scaled
ZORA spin-free orbital energies are clearly less accurate
than the IOTC ones, but the Dirac-Coulomb �DC� spin-orbit
splittings are significantly better reproduced by the scaled
ZORA calculations than by using the IOTC/BSS Hamilto-
nians, since the former Hamiltonian incorporates spin-orbit
corrections to the two-electron interaction. For normal
ZORA the difference in accuracy between spin-free and spin-
orbit values is particularly noteworthy.

TABLE II. Total HF and selected orbital energies of the neutral Rn atom. On the second line of each entry we report the relative error �in %� with respect to
the benchmark DC values as well as the quantity �1−S� �times 10−4�, where S is the overlap with the renormalized large component of the corresponding
four-component orbital; the latter quantity is in parentheses. For ZORA results �2c� and �4c� refer to results using two or four spinors, respectively. The mean
absolute error �MAE� is indicated for the complete set of occupied orbitals. It is also indicated separately for the SR orbital energies, obtained as the weighted
average of spin-orbit components, and the SO splittings.

DC IOTC BSS DKH2
Scaled

ZORA�4c�
Scaled

ZORA�2c� ZORA�4c� ZORA�2c�

SCF
energy

−23 602.103 650 −23 593.210 805 −23 592.127 595 −23 561.975 759 −23 601.711 805 −24 764.526 289 −23 601.711 805 −24 764.526 289

0.038 0.042 0.170 0.002 −4.925 0.002 −4.925

1s1/2 −3641.197 128 −3635.591 512 −3634.923 280 −3622.999 193 −3634.674 542 −3632.202 432 −4079.593 966 −4076.454 181
0.154 �17.565� 0.172 �20.858� 0.500 �19.343� 0.179 0.247 12.040 11.954

3s1/2 −166.833 033 −166.637 744 −166.628 842 −166.328 607 −166.552 452 −166.545 427 −168.000 680 −167.997 062
0.117 �0.147� 0.122 �0.147� 0.302 �0.150� 0.168 0.172 0.700 0.698

6s1/2 −1.071 416 −1.070 457 −1.070 439 −1.067 887 −1.071 252 −1.069 457 −1.071 416 −1.069 621
0.090 �0.020� 0.091 �0.021� 0.329 �0.075� 0.015 0.183 0.000 0.168

2p1/2 −642.329 988 −643.996 448 −643.900 000 −643.235 249 −640.266 300 −641.772 371 −656.971 260 −658.560 461
−0.259 �0.944� −0.244 �1.028� −0.141 �0.854� 0.321 0.087 −2.279 −2.527

2p3/2 −541.102 218 −539.854 596 −539.804 784 −539.863 182 −539.609 004 −540.577 464 −551.780 913 −552.795 587
0.231 �0.538� 0.240 �0.528� 0.229 �0.585� 0.276 0.097 −1.974 −2.161

6p1/2 −0.540 307 −0.544 087 −0.544 022 −0.543 170 −0.539 367 −0.540 330 −0.539 427 −0.540 390
−0.700 �0.094� −0.688 �0.090� −0.530 �0.043� 0.174 −0.004 0.163 −0.015

6p3/2 −0.383 987 −0.382 766 −0.382 761 −0.383 233 −0.383 759 −0.383 983 −0.383 790 −0.384 015
0.318 �0.035� 0.319 �0.036� 0.196 �0.026� 0.059 0.001 0.051 −0.007

5d3/2 −2.189 578 −2.208 340 −2.208 468 −2.210 278 −2.187 899 −2.191 355 −2.188 933 −2.192 393
−0.857 �0.012� −0.863 �0.012� −0.945 �0.014� 0.077 −0.081 0.029 −0.129

5d5/2 −2.016 466 −2.006 421 −2.006 559 −2.008 268 −2.015 487 −2.017 081 −2.016 384 −2.017 980
0.498 �0.006� 0.491 �0.006� 0.407 �0.005� 0.049 −0.030 0.004 −0.075

4f5/2 −9.193 822 −9.275 596 −9.276 245 −9.280 862 −9.189 778 −9.200 166 −9.207 223 −9.217 667
−0.889 �0.009� −0.897 �0.009� −0.947 �0.010� 0.044 −0.069 −0.146 −0.259

4f7/2 −8.928 117 −8.875 701 −8.875 701 −8.876 344 −8.925 095 −8.930 453 −8.941 694 −8.947 090
0.587 �0.002� 0.587 �0.002� 0.580 �0.002� 0.034 −0.026 −0.152 −0.213

MAE
�total�

0.234 0.261 0.758 0.272 0.375 18.267 18.136

MAE
�SR/SO�

0.473/0.543 0.528/0.537 1.455/0.431 0.705/0.085 0.759/0.008 31.271/0.468 31.180/0.557
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Table III contains spectroscopic properties—ionization
energy �IE� of the Rn atom as well as excitation energy �EE�
of its cation—calculated at the FSCCSD level. The two-
component results agree well with the four-component
Dirac-Coulomb values. One may note that the DKH2 Hamil-
tonian can compete with the infinite-order Hamiltonians for
these valence properties. A fair comparison with experiment
would, on the other hand, require a larger basis set, a larger
active space, and more advanced Fock-space coupled cluster
approaches.78

NMR shielding constants, magnetizabilities, and polariz-
abilities calculated using DC, BSS, and IOTC Hamiltonians
are collected in Table IV. We do not report DKH2 or ZORA
data since we have not implemented picture change transfor-
mation of property operators for these finite-order Hamilto-
nians. For magnetic properties we indicate separately the
paramagnetic and diamagnetic parts. It should be noted that
the nonrelativistic paramagnetic contributions are strictly
zero for closed-shell atoms since the magnetic dipole opera-
tor appearing in the corresponding linear response functions
is proportional to the orbital angular momentum operator.
Again, IOTC and BSS results match with each other, and
both follow closely four-component values. Our results ob-
tained for the NMR shielding is furthermore in excellent
agreement with the four-component calculations reported by

Vaara and Pyykkö;79 they obtained 12 410 and 23 350 ppm
for the diamagnetic term and the total shielding constant,
respectively.

VI. CONCLUSION

In this paper we have reported the implementation and
application of the one-step approach to the generation of the
infinite-order two-component relativistic Hamiltonian, based
entirely on matrix algebra. Due to its simplicity, it should be
preferred to the two-step procedure of Jensen and Iliaš.28 Our
test calculations even suggest a slightly better performance
of the IOTC Hamiltonian.

At this point it is natural to ask what has been achieved.
Compared to four-component calculations, our IOTC Hamil-
tonian is expected to give significant speedups, on the order
of 10 or better and independent of system size, at the HF,
DFT, and MP2 levels. Liu and Peng12 have reported identical
costs for two- and four-component calculations using local
density approximation/generalized gradient approximation
functionals, but it remains to be demonstrated whether their
approach can be generalized to hybrid functionals as well as
HF and MP2 calculations. On the other hand, there will be
no computational savings at the CC and CI levels.2 Further-
more, the infinite-order one-electron Hamiltonian should be
supplemented by picture change corrections to the two-
electron part. This can probably be achieved by an atomic/
fragment mean-field approach80 which should preferably be
extensible to response calculations. A possible bottleneck in
the calculations based on the IOTC Hamiltonian will be the
size of the matrix representation of the Dirac operator. This
can probably be circumvented by constructing the decou-
pling transformation from atomic or, more generally, frag-
ment calculations, as already suggested by Liu and Peng.12

A final point is that two-component approaches tend to
lack the simplicity and transparency of four-component op-
erators. As already pointed out by Foldy and Wouthuysen,65

four-component operators refer to the instantaneous position
of electrons whereas two-component ones refer to a mean
position upon which is superimposed the Zitterbewegung of
the electron. This leads to the explicit introduction of Darwin
and spin-orbit terms in two-component Hamiltonians.

The IOTC �and XQR� Hamiltonian is expected to out-
perform existing finite-order Hamiltonians based on the
regular approximation �i.e., ZORA� or DKH/BSS transfor-
mation, but this will strongly depend on the computational
implementation as well. The former Hamiltonians com-
pletely avoid the complexity of generating operator expres-
sions for higher-order contributions or picture changed prop-
erty operators. Further testing and development, the
generation of analytic molecular gradients in particular, is
required, but there is no doubt that the introduction of
infinite-order two-component relativistic Hamiltonians by
matrix algebra has opened up new and exciting perspectives
in relativistic quantum chemistry.
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