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Abstract

In remote sensing applications, optical images are widely used to monitor land
changes. However, clouds, haze, or smoke hide the area below and, therefore, limit
the use of optical data to favorable weather conditions. Since the SAR signal can
penetrate through clouds, haze, or smoke, it has been recently proposed to combine
optical images and SAR data to overcome this limitation. In this report, we investigate
a deep-learning model based on a multi-temporal conditional generative adversarial
neural network that generates optical images from SAR data, based on optical cloud-
free images and SAR data previously acquired. Quantitative and qualitative results
over the region of Goulburn, Australia, are also provided to evaluate the effectiveness
of this multi-temporal approach in monitoring vegetation changes after fire events.
Software code is publicly available.
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1 Introduction

1.1 Context

Satellite remote sensing imagery provides the consistent and regular observation of the
Earth surface with a wide range of the electromagnetic spectrum in time and space. Dif-
ferent objects have different tendencies to selectively absorb, reflect or transmit light or
electromagnetic waves at certain frequencies. Optical satellite remote sensing technologies
have been used for climate change assessment, landcover, and land-use change detection,
deforestation and urbanisation mapping, monitoring natural hazards, and assessing their
impact on the environment and the community. Optical imagery using passive sensors can
only be used to detect and measure the reflected energy when the natural energy sources
are available (i.e. the sun). The common limitation that persists in optical imagery for
Earth surface observation activities is the presence of thick clouds and smoke [16]. They
appear opaque in the optical frequency bands and contaminate the reflectance signal and
ultimately obstruct the detection of the objects underneath.

Various methods for temporal gap-filling [19], spatial filtering [17], and multi optical
sensor data blending [4, 5] were introduced to address the missing data issue in historical
satellite images caused by clouds and smoke contamination, but they are unable to capture
true events (e.g., floods and bushfires) that rapidly evolve, especially when factoring in
the potential clouds. Consequently, they fail to provide information to predict the severity
and the impact areas. The disaster and emergency management agencies share a common
challenge in providing instant assistance to the community and the stakeholders, due to a
lack of information for assessing damaged properties, land, and ecosystems in real-time.

Diverging imaging capabilities can be reconciled by blending optical images from high-
temporal-frequency (HTF) and high-spatial-resolution (HSR) sensors (e.g., Sentinel-2, ab-
breviated as S2 here) with radar or Lidar data from active sensors (e.g., Sentinel-1, ab-
breviated as S1, or GEDI) to produce images that possess the HTF and HSR charac-
teristics across large areas regardless of the weather conditions [3, 16]. Radars work in
the microwave frequency range with wavelengths longer than the optical bands which can
penetrate through clouds to sense the objects underneath. They are also proven to be
sensitive to vegetation changes[1, 14]. Blending active and passive remote sensing images
to overcome the challenge in monitoring Earth surface in near real-time is an emerging
field in the remote sensing domain given the accessibility of supercomputing systems and
powerful data-driven supervised and unsupervised learning algorithms.

To this end, a deep learning model is trained to learn the correlations between S1 and
S2 images at a time t1 when the optical S2 image is not occluded, in order to subsequently
infer the S2 image from the radar S1 image at a different time t2. The model used here is a
Generative Adversarial Network (GAN) [7] which, from a recent study [10], looks promising
in such an application.

More specifically, the region of interest for this study is located in the east of Goulburn,
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New South Wale (Australia). It is imaged in a map of size 5389 × 7851 pixels with a
resolution of 10 meters (one pixel covers 10 square meters). The majority of this area is
covered by state forests and agricultural crops, as illustrated in Figure 1. The Wingello
State Forest in the southeast of the region of interest was affected by a bushfire that
occurred in December 2019, the fire front line being clearly visible in the right bottom
corner of the shortwave infrared (SWIR) band.

Figure 1: Region of interest imaged by Sentinel-2 satellite on the December 31st 2019.
From left to right, true color (RGB), false color (NIR,R,G) and SWIR band. The smoke is
visible in the R,G,B,NIR bands, and the fire front line is visible in the right bottom corner
of the SWIR band.

Figure 2 shows the area of interest before and after this fire, namely at dates t1 corre-
sponding to November 6th 2019 and t2 to January 29th 2020. Many vegetation changes
can be seen in the forest area (framed in blue in Figure 2) and in the cropping land as
well (framed in red in Figure 2), this latter area being affected by inter-seasonal changes
due to the plant phenology and the management strategies. Our aim is to demonstrate
that such a multi-temporal conditional generative adversarial network is able to generate
relevant optical images at t2 from optical images at t1 and SAR data at t1 and t2. This is
especially challenging after a fire effect as the reflectance dramatically changes.
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Figure 2: Region of interest in the true color images before and after the bushfire in the
upper row, and close-up views of the framed areas in the lower row (forest region framed in
blue, and agricultural crop area in red). On the left: data from t1 (November 6th, 2019).
On the right:data from t2 (January 29th, 2020).

1.2 Related work: deep learning for cloud and smoke removal from op-
tical images

While merging data from different sources or acquisition modalities is a keystone of several
remote sensing applications, recent years have seen a shift from traditional image processing
methods (see for instance [11, 23]) to machine learning approaches. A popular application
is to digitally remove clouds, haze, or smoke impairing optical images by making use of
SAR data. In particular, generative adversarial networks (GAN) [7] and methods derive
from it as conditional GAN (cGAN) [12] or cycleGAN [25] have been recently introduced to
solve this problem. GANs and related methods are popular approaches in image processing
to transfer the style of an image to another one. In the present study, the goal is not only
to transfer the style of optical images to SAR data, but also to reproduce actual details in
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synthetic optical images from SAR data, in spite of the presence of clouds, haze, or smoke.
For instance, a cycleGAN is trained in [20] to reconstruct optical S2 information hidden

by clouds from unpaired images from S1 images in cloudy and uncloudy situations. In [6],
a GAN architecture is used to reconstruct an optical S2-like image from S1 data. Since
cloudy images together with the corresponding cloud-free versions are required for the
learning step, clouds are manually added to S2 images with a photo-editing software. In
order to realistically remove clouds, it is indeed possible to take into account information
from SAR data, which is not impaired by clouds, at a very near date, instead of inferring
information from optical images taken without clouds, potentially at a very different date.
As suggested by several authors, a correlation can be shown between optical and SAR
data: it has been demonstrated [8, 15] that SAR-like data can be rendered from optical
images (and vice versa). In order to go beyond the single-temporal method described
in [6], a promising approach is thus to consider information from SAR and optical data
at a time t1 where no clouds impair the optical images, together with SAR data acquired
when the zone of interest is covered by clouds at a time t2: the correlation between SAR
and optical data at t1 permits to render a cloud-free optical image at t2 from SAR data
at the same time. The rendered image is expected to reproduce details present in SAR
data. Such an approach is investigated in [10]: a multi-temporal conditional generative
adversarial network (MTcGAN) is designed to generate S2 data from S1 and S2 data at
time t1 and S1 data at time t2. A very recent paper [24] elaborates on this approach and
proposes a so-called multi-channel conditional generative adversarial network (MCcGAN).
Compared to MTcGAN, the main difference is the architecture of the generator network.
It is shown that such a multitemporal approach does not only successfully transfer the
style of optical data to SAR images, but is also able to recover actual details and to track
vegetation changes in spite of clouds. The authors of [24] show that MCcGAN is better
than MTcGAN in cropland and not as effective in mountain or town areas.

While these recent papers address cloud or smoke removal through conditional gener-
ative adversarial networks, they do not explicitly address cropland changes. To the best
of our knowledge, a study such as the one we propose, dedicated to the situation where
croplands have changed between both acquisition times, for example because of a fire event,
is still to be done.

1.3 Organization of the report and contribution

Section 2 describes the methods. First, we detail data processing, which is an important
matter both in machine learning algorithms and in remote sensing applications. While
we reproduce the main lines of the conditional generative adversarial network introduced
in [10], we also incorporate some tricks from the recent literature in image-to-image transla-
tion. The experimental setting and the metrics on which assessment relies are also detailed.
Section 3 shows illustrative and quantitative results. We conclude with Section 4. Addi-
tional results are available in Appendix A.
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The generated images turn out to be comparable to the results of other studies [6, 10] in
similar, yet different, application contexts. The cGAN model is shown to provide valuable
optical images in regions affected by changes between times t1 and t2. To the best of our
knowledge, software implementation of the model of [10] is not publicly available. The
present study confirms that the results of this paper can be reproduced. Software code is
publicly available at the following URL: https://github.com/irisdum/cGAN_sent2_sim

2 Methods

2.1 Data preprocessing

Preprocessing of the Sentinel-1 images corresponding to the region shown in Figure 2 was
done using the GPT tool of the SNAP software1 distributed by the European Space Agency.
It consists in the following operations: Apply Orbit File, Thermal Noise Removal, Remove
GRD Border Noise, Calibration, Terrain Flattening, Speckle Filter, Multilook and Terrain
Correction. With the ”Terrain Correction” operation, the S1 images are projected onto
the WGS84 UTM 55S, same as the datum and projection of the S2 data. After Sentinel-1
preprocessing with SNAP, the advanced interpolation methods used during the processing
may conduct some spurious negative values in the image. Negative SAR data are replaced
by the average value of the neighboring pixels. Satellite data used in this study are the
Sentinel-1 IW VV and VH polarization data and the R, G, B and NIR bands of Sentinel-
2 imagery. We do not consider SWIR band in Sentinel-2 data since they have a lower
resolution (20 meters) than R, G, B and NIR bands (10 meters).

Eventually, the preprocessed Sentinel images are split into 623 patches (called tiles
here) of size 256 × 256 pixels using GDAL/OGR2, a licensed translator library for raster
and vector geospatial data formats. These tiles are randomly divided into three datasets
as shown in Table 1, namely train (80% of the data), validation (5%), and test (15%)
datasets, which will be used respectively to train the cGAN, to tune the hyper-parameter
and to assess the model performance.

train validation test

number of tiles 496 32 95

Table 1: Number of tiles in the train, validation, and test datasets.

Input features were standardized, as it is a common practice in machine learning.
Standardization parameters is computed on the training dataset and used afterwards on
validation and test datasets. We have noticed that red, green, and blue bands have similar

1https://step.esa.int/main/toolboxes/snap/
2https://gdal.org
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statistical distributions. In order to keep the relationship between these bands, the mean
and standard deviation used to rescale those data were computed over all these bands.
Because NIR band, as well as VV and VH polarization channels, have different statistical
distributions, the mean and the standard deviation were computed on each band separately.
The resulting distributions showing heavy tails, the values of optical bands and radar data
were divided by constants, equal to 7 and 5 respectively, in order to rescale data and ensure
the numerical stability of the training process.

2.2 Conditional generative adversarial network

A generator is used to render a 256×256 optical image at t2 from S1 (SAR) and S2 (optical)
data at time t1, together with S1 data at time t2. We adopt the general approach proposed
by the authors of [10] in which a conditional generative adversarial network (cGAN) is used
to generate optical images from multi-temporal SAR and optical data. A GAN [7] consists
of the combination of two convolutional neural networks (CNN), namely a generator and
a discriminator, which are simultaneously trained. While in a traditional GAN the input
of the generator is simply noise, additional information (such as one or several images)
is provided in a cGAN, which makes it a successful approach in many image-to-image
translation problems [12, 18, 25]. Here, the generator network G simulates an S2 image at
time t2 from S1 and S2 data at t1 (denoted by xS1t1 and xS2t1 , respectively) and S1 data at t2
(denoted by xS1t2 ). The output image of the generator is denoted by G

(
xS1t1 , x

S1
t2 , x

S2
t1

)
. The

discriminator network takes a pair (x, y) of optical images of the same geographic area at
time t1 and t2, respectively, and estimates the probability D(x, y) that both x and y images
are real S2 data and the probability 1−D(x, y) that y comes from the generator. Training
consists in successively and alternatively adapting the weights of the discriminator D to
improve its classification performance, and then the weights of the generator G so that its
output is misclassified by the discriminator. This is achieved by considering the following
loss function:

LcGAN (G,D) = E log
(
D
(
xS2t1 , x

S2
t2

))
+ E log

(
1−D

(
xS2t1 , G

(
xS1t1 , x

S1
t2 , x

S2
t1

)))
(1)

where E denotes the expectation (average value), and xSitj (i, j ∈ {1, 2}) are the images
from Sentinel Si at time tj of a given location.

Training consists in alternating the following steps.

• Sample a batch of image 4-tuples (xS1t1 , x
S1
t2 , x

S2
t1 , x

S2
t2 ) from the training dataset, that

is, Sentinel-1 (S1) and Sentinel-2 (S2) image pairs of the very same location at time
t1 and t2.

• For each location, generate a S2 image at t2 from the S2 image at t1 and S1 images
at t1 and t2, that is, compute G

(
xS1t1 , x

S1
t2 , x

S2
t1

)
.
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Figure 3: Description of the interactions between the discriminator and the generator
during the training stage.

• Train the discriminator by modifying its weights in order to maximize LcGAN (G,D),
so that its classification performance improves.

• Train the generator by modifying the weights of G in order to minimize the loss
function, so that the ability of the generator to fool the discriminator improves. This
is simply achieved by minimizing

E log
(
1−D

(
xS2t1 , G

(
xS1t1 , x

S1
t2 , x

S2
t1

)))
with respect to the weights of G, since the loss function only depends on this latter
term in this case.

After training, the generator is therefore able to produce an optical image at t2 that is
likely indistinguishable from a real one, and hopefully makes use of the correlation between
S1 and S2 data at time t1 to output an optical image from S1 data at time t2

It is a common practice to add to LcGAN a so-called L1 loss to avoid reconstruction
artifacts and to obtain sharper images from the generator. The considered loss function is
thus actually given by:

LcGAN (G,D) + λE
∥∥xS2t2 −G (xS1t1 , xS1t2 , xS2t1 )∥∥1 (2)
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where ‖·‖1 is the L1 norm, and λ > 0 is an hyperparameter of the model.
Figure 3 describes the cGAN architecture. Although this architecture is close to the one

proposed in [10], we shortly describe the generator and the discriminator in the following
sections for the sake of completeness. Figure 4 gives a comprehensive overview of the
model.

Figure 4: Conditional generative adversarial model. From left to right: generator architec-
ture, ResNet block, and discriminator architecture.

2.2.1 Generator

The generator is a convolutional neural network which takes as input the stack of S1 and S2
data at time t1 and S1 data at time t2, and generates an optical image. Since S2 data have
four bands (R,G,B,NIR) and S1 data have two channels (VV,VH), the size of the input
is 256 × 256 × 8 pixels and the size of the output is 256 × 256 × 4 pixels. The generator
is mainly composed of the succession of nine ResNet blocks. A ResNet block is made
up of the succession of convolution, batch normalisation, activation, and dropout layers,
with a residual connection. Residual connections are known to increase the performance
of the neural network and to shorten the training time, see [9]. Before entering the ResNet
blocks, the input goes through three Convolution - Activation - BatchNorm modules. After
ResNets, three convolution layers are used to progressively reduce the number of channels
to four. Zero-padding is used in each convolution layer to keep the 256× 256 dimension of
the input tile.
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2.2.2 Discriminator

The discriminator is a convolutional neural network admitting a stack of two 4-channel
images as input and giving the probability that it corresponds to a true pair of S2 im-
ages as output. We use a PatchGAN discriminator [12] with a 30 × 30 array as output.
Compared to a traditional image classifier, PatchGAN has fewer parameters and a faster
computation time; it has been also proved to make the generator give sharper image in
cGAN applications.

2.2.3 Changes to [10] and hyper-parameter setting

The dropout rate in the generator is fixed to 0.5 as in [10]. Following the guidelines of [18],
the last activation function is the hyperbolic tangent function which ensures that the
generated data is bounded, like real optical images. In order to avoid gradient saturation
during training caused by minimizing log

(
1−D

(
xS2t1 , G

(
xS1t1 , x

S1
t2 , x

S2
t1

)))
, we maximize

log
(
D
(
xS2t1 , G

(
xS1t1 , x

S1
t2 , x

S2
t1

)))
as advised in [7].

Concerning the discriminator, the standard ReLU activation used in [10] is changed to
a Leaky ReLU activation function as recommended in [18], defined by f(x) = max(εx, x)
with ε = 0.2 in our implementation. In addition, we also make use of symmetric padding
instead of zero-padding to prevent spurious artifacts on the image borders.

Loss optimization is performed with Adam optimizer with a constant learning rate equal
to 10−4. Batch normalization (BN) with momentum equal to 0.99 was used to normalize
inputs to zero mean and unit variance. It solves both poor initialization issues and helps
the gradient propagation through the layers. BN is not applied to the output layer of the
generator and the input layer of the discriminator to avoid numerical instabilities [18], as
in [10]. The weight λ of the L1 loss in LcGAN is set to 100. Learning is performed with a
batch size of 8. The cGAN model was trained for 690 epochs (instead of 200 epochs in [10])
during 19 hours on four Nvidia RTX2080Ti GPUs on a Grid5000 cluster3.

3 Results and discussion

3.1 Assessment method

The generated optical images are assessed by comparing them with the corresponding S2
tile at time t2 which plays the role of ground-truth data. To this end, we use metrics
commonly used in the remote sensing literature [6, 10] and also with a metric dedicated to
the task of interest, namely monitoring of vegetation changes.

3https://www.grid5000.fr/w/Nancy:Hardware
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3.1.1 Common metrics

Three common similarity indices are computed: peak signal to noise ratio (PSNR), struc-
tural similarity measure (SSIM) [22], and mean spectral angle (MSA). The mean spectral
angle is a popular method to compare multiband spectral images [21]. It consists in com-
puting the average over the whole field of the spectral angle θ at each pixel, defined by:

θ = arccos

( ∑4
i=1 b

GEN
i bGT

i

‖bGEN‖2 ‖bGT‖2

)
(3)

where the four bands of the generated and ground truth optical images are given at each
pixel by (bGEN

i )1≤i≤4 and (bRTi )1≤i≤4 respectively, and || · ||2 is the Euclidean norm. While
similar images give large values for PSNR and SSIM, they give low values for MSA.

3.1.2 Specifying the metrics on vegetation changes

In order to assess the proposed model in near-real-time land monitoring, we estimate the
preceding metrics in areas affected by changes (either fire, seasonal variations, or other
changes as human interference) between times t1 and t2. To this end, we use the un-
supervised change detection algorithm described in [2]. It consists in three steps: first,
computing the difference between corresponding image patches in two images; second, re-
ducing the dimensionality of these differences by PCA (in the present application, the PCA
matrix is computed over all tiles of the training dataset to make it more robust) to obtain
a feature vector; and third, classify a pixel as ”changed” or ”unchanged” depending on the
nearest centroid defined by K-means (K = 2) when clustering the training feature vectors.

This procedure is applied independently on each (R,G,B,NIR) band of the optical im-
ages. Each band has therefore its own change map.

3.2 Metrics over the datasets

The values of PSNR, SSIM and MSA between ground-truth data and generated data are
shown in Table 2.

metric name
Datasets

train validation test

PSNR 41.8 40.4 41.8
SSIM 0.983 0.975 0.982
MSA in rad 0.054 0.067 0.0548

Table 2: Similarity indices

First, comparing these values between the train and test/validation datasets shows
that training does not give overfitting, since the similarity indices are within the same
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range. Second, although it is difficult to compare results across papers because datasets
are different and data pre-processing is not always clearly described, it should be noted
that SSIM values are consistent with the results mentioned in [10] with a similar cGAN
approach. While we obtain an SSIM value of 0.98 on our test dataset, the best SSIM value
in [10] is 0.95. Concerning the MSA value, we have a value in the range of values obtained
in [6]. We obtain an MSA value on the test dataset at 0.0548 radian or 3.13 degrees; the
MSA is between 3.12 and 5 degrees in [6].

3.3 Output visualization

Figure 5: From the left to the right: S2 image at time t1, ground-truth at t2, and GAN-
simulated tile at t2, both in true (first row) and false (second row) colors. We can see that
most vegetation changes are correctly reproduced, in the sense that the simulated image
shows details that are present in ground-truth data but not in t1 data. However, some
parts are not correctly reproduced, as in the area circled in blue.

Figure 5 shows, for one typical tile from the test dataset, the input S2 data, the output
of the generator, and the ground-truth data to be compared with the output. We can see
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that the generated tile has the same general aspect as the ground truth tile. While some
changes are correctly generated, it turns out that all changes are not mapped correctly. For
instance, the area circled in blue shows a field with higher NIR band values in the generated
tile than in the ground truth one. However, the other part of the image correctly reproduce
vegetation changes. This representative example illustrates that the cGAN approach does
not only transfer the style (i.e., the overall aspect) of the SAR data to optical bands, but
also reproduces details that are present in the SAR band at time t2.

3.4 Vegetation changes for land monitoring

In this section, we focus on changes detected by the unsupervised clustering algorithm of
Section 3.1.2.

3.4.1 Visual assessment

Figure 6 shows, for each of the optical bands of a representative tile, the images at time t1,
at time t2 (ground truth), the output of the generator, and the map of the pixels marked
as ”changed” superposed to the ground truth. We can see that most changes are detected
in the upper right corner of the tile, which indeed seems consistent. We can also notice
that intensity changes over the whole image domain do not mark all pixels as ”changed”:
the procedure is robust to these intensity variations.

3.4.2 Metric-based assessment

We now discuss PSNR results by bands on changed and unchanged pixels. MSA and SSIM
are not suited for this task as MSA is a band-wise average and SSIM is not adapted to
non-rectangular areas such as changed and unchanged areas. We compute, for each band,
both the PSNR of the difference between the ground truth (considered band at time t2)
and the generated image, denoted by PSNR(I2,G), and the PSNR of the difference between
the considered band and at time t1 and the generated image, denoted by PSNR(I1,I2). The
higher the PSNR, the more similar the two images are. All PSNR are averaged over train
and test datasets, in order to verify the absence of overfitting.

As a reference, Table 3 gives results for the whole image domains (all pixels are taken
into account in the differences). Table 4 shows PSNR computed over changed and un-
changed pixels.

PSNR computed over train and test datasets are similar, which confirms that the cGAN
does not overfit the training data. In all bands, PSNR(I2,G) is larger than PSNR(I1,I2).
This means that the generated image at t2 is closer to the ground truth than to the image
at date t1, change between t1 and t2 is therefore well accounted in the generated image.

We can notice that these tables confirm the effectiveness of the change detection algo-
rithm in the R,G,B bands. Except for the NIR band, PSNR(I1,I2) is indeed higher in the
unchanged pixels group than in the changed one.
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Figure 6: From top to bottom lines: red, green, blue, NIR bands. From left to right: band
at time t1, at time t2 (ground truth), generated band at t2, change map superposed with
ground truth.
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data Train Test

red band
PSNR(I2,G) 39.8 39.9
PSNR(I1,I2) 22.6 22.6

green band
PSNR(I2,G) 43.2 43.3
PSNR(I1,I2) 35.7 35.6

blue band
PSNR(I2,G) 43.6 44.6
PSNR(I1,I2) 38.9 39.0

NIR band
PSNR(I2,G) 34.6 35.0
PSNR(I1,I2) 19.0 19.1

Table 3: PSNR over the whole image domain (changed and unchanged pixels).

changed pixels data Train Test

red band
PSNR(I2,G) 36.2 36.0
PSNR(I1,I2) 21.4 21.7

green band
PSNR(I2,G) 38.3 38.2
PSNR(I1,I2) 32.9 32.9

blue band
PSNR(I2,G) 40.8 40.8
PSNR(I1,I2) 37.0 37.0

NIR band
PSNR(I2,G) 32.0 31.3
PSNR(I1,I2) 20.3 20.7

unchanged pixels data Train Test

red band
PSNR(I2,G) 41.0 41.4
PSNR(I1,I2) 22.9 23.0

green band
PSNR(I2,G) 44.7 44.8
PSNR(I1,I2) 36.3 36.2

blue band
PSNR(I2,G) 44.5 46.2
PSNR(I1,I2) 39.5 39.6

NIR band
PSNR(I2,G) 35.6 36.8
PSNR(I1,I2) 18.8 18.8

Table 4: PSNR averaged over changed pixels (on the left) and unchanged pixels (on the
right).

PSNR(I2,G) has a larger value than PSNR(I1,I2) in unchanged pixels because of the
effect of intensity variations not detected as changes, as discussed in the illustrative example
of Figure 6.

Moreover PSNR(I2,G) for the NIR band is always significantly lower than in the other
bands. However, PSNR(I1,I2) is also much lower in NIR than in other bands. This means
that NIR is affected by a strong variation between t1 and t2. The reason is simply that the
region of interest shows significant vegetation changes between these two dates. Besides, it
can be noted that NIR band is not standardized with the same process than RGB bands,
as explained in Section 2.1. Both temporal variation and standardization method may
explain this lower value of PSNR(I2,G).

4 Conclusion

This study was dedicated to a multi-temporal conditional generative adversarial network
able to render optical images at a given time, based on SAR data at this time and both SAR
data and optical images at an earlier time. Metrics-based and visual assessments show that
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this approach permits to render optical images that correctly map the vegetation changes,
which is of great interest for near-real-time monitoring of agricultural crop areas and forests,
especially after fire events.

Future works include the use of SAR and optical information at more than two dates in
order to enhance the generalization ability of the cGAN, and possibly to generate valuable
images at times not included in the learning database. Using 3D convolution seems also a
promising improvement, as pointed out in [13].
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A Appendix

This appendix gives additional illustrations of the rendering of S2 data in several areas.
In Figure 7, false color representation shows that there is a significant decrease of the

intensity of the NIR band between date 1 and 2, especially in the bottom of the image.
The resulting false color image is indeed darker at t2 than at t1. We can see that this
decrease is properly reflected in the simulated false color image. However, the simulation
of the NIR band shows small differences with ground truth, especially in the center part
of the simulated tile. Indeed, this region shows low amplitude variations of the NIR bands
that are not retrieved by simulation. For example, the GAN overestimate the NIR band
values in the hillsides.

The multitemporal GAN approach is able to recreate major changes in different kinds
of landscapes, either croplands (Figures 9, 11, 5) or areas not affected by human activites
(Figures 7, 13). This is confirmed by a band-by-band comparison between the ground

Figure 7: Comparison of the ground truth tile (S2 at t2) and the simulated tile in true and
false color.
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Figure 8: From top to bottom lines: red, green, blue, NIR bands. From left to right: band
at time t1, at time t2 (ground truth), generated band at t2, change map superposed with
ground truth.

truth and the simulated tile (Figures 8, 10, 12, 14, 15). However, some differences can be
noted between the simulated red band and the ground truth one. For example in Figure 8,
the simulated red band values are not as large as expected from the ground truth images,
which is reflected by a slightly clearer simulated red band than the ground truth red band.
On the contrary, Figure 12 shows some area with a larger value of the red band than
expected. Visually, we notice wide dark areas in the simulated tile on both sides of a thin
structure which likely corresponds to a wooded path. These remarks are in accordance
with the results in Table 3 where the PSNR values between ground truth and simulation
PNSR(I2,G) for red band and NIR band are lower than the blue and green ones.
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Figure 9: Comparison of the ground truth tile (S2 at t2) and the simulated tile in true and
false color.

In Figures 9 and 11, we see that the simulated tile are slightly blurred compared to
the ground truth. However as in Figure 7, significant variations in the NIR band are well
recreated by the GAN.
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Figure 10: From top to bottom lines: red, green, blue, NIR bands. From left to right:
band at time t1, at time t2 (ground truth), generated band at t2, change map superposed
with ground truth.

22



Figure 11: Comparison of the ground truth tile (S2 at t2) and the simulated tile in true
and false color.
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Figure 12: From top to bottom lines: red, green, blue, NIR bands. From left to right:
band at time t1, at time t2 (ground truth), generated band at t2, change map superposed
with ground truth.
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Figure 13: Comparison of the ground truth tile (S2 at t2) and the simulated tile in true
and false color.
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Figure 14: From top to bottom lines: red, green, blue, NIR bands. From left to right:
band at time t1, at time t2 (ground truth), generated band at t2, change map superposed
with ground truth.
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Figure 15: From top to bottom lines: red, green, blue, NIR bands. From left to right:
band at time t1, at time t2 (ground truth), generated band at t2, change map superposed
with ground truth.
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