Sentinel-2 RGB and NIR bands simulation after fire events using a multi-temporal conditional generative adversarial network - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2021

Sentinel-2 RGB and NIR bands simulation after fire events using a multi-temporal conditional generative adversarial network

Résumé

In remote sensing applications, optical images are widely used to monitor land changes. However, clouds, haze, or smoke hide the area below and, therefore, limit the use of optical data to favorable weather conditions. Since the SAR signal can penetrate through clouds, haze, or smoke, it has been recently proposed to combine optical images and SAR data to overcome this limitation. In this report, we investigate a deep-learning model based on a multi-temporal conditional generative adversarial neural network that generates optical images from SAR data, based on optical cloudfree images and SAR data previously acquired. Quantitative and qualitative results over the region of Goulburn, Australia, are also provided to evaluate the effectiveness of this multi-temporal approach in monitoring vegetation changes after fire events. Software code is publicly available.
Fichier principal
Vignette du fichier
dumeur21sentinel.pdf (15.88 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03327421 , version 1 (27-08-2021)

Identifiants

  • HAL Id : hal-03327421 , version 1

Citer

Iris Dumeur, Yang Chen, Frédéric Sur, Zheng-Shu Zhou. Sentinel-2 RGB and NIR bands simulation after fire events using a multi-temporal conditional generative adversarial network. [Research Report] LORIA (Université de Lorraine, CNRS, INRIA). 2021. ⟨hal-03327421⟩
243 Consultations
75 Téléchargements

Partager

More