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ProMeSCT: a Proximal Metric Algorithm for
Spectral CT

Souhil Tairi, Sandrine Anthoine, Yannick Boursier, Mathieu Dupont and Christian Morel

Abstract—The acquisition of a set of spectral Photon-Counting
Computed Tomography (spectral PC-CT) measurements aims
at uncovering both the spatial and energetic characteristics of
the imaged body, which widens the potential of tomography
compared to classical Computed Tomography (CT). In the pre-
clinical context, the use of polychromatic beams induces spectral
mixing and, as a consequence, the reconstruction procedure
requires specific algorithmic tools more complex than the stan-
dard ones used in CT. In this paper, we propose a one-step
inversion method to simultaneously separate and reconstruct
the physical materials of an object observed in the context of
spectral PC-CT. To do so, we carefully consider the underlying
polychromatic model of the X-ray beam and combine it with
a priori on the materials of the object to reconstruct. The
simultaneous separation and reconstruction of materials is done
by minimizing the resulting non-convex ill-posed inverse problem.
The dimensionality of the data and object materials worsens the
computational complexity of the problem. We propose an efficient
optimization algorithm based on a proximal forward-backward
algorithm that is accelerated by a metric, which is specifically
designed for spectral PC-CT. The efficiency of our method called
ProMeSCT is demonstrated on results obtained on 3D synthetic
data with a simple regularization that encompasses the positivity
of the quantities of interest.

Index Terms—Photon-Counting CT, spectral CT, one-step
inversion, proximal algorithm.

I. INTRODUCTION

X-ray Computed Tomography (CT) is an imaging modality
that is widely used today in the medical context. A set of
measurements called “projections” are acquired by rotating a
couple X-ray source / detector array around the patient. This
set of measurements is subsequently fed to a reconstruction
process that allows to uncover a spatial map of the mass
attenuation coefficient in the patient. This map reveals the
internal structure of the patient and depending on the exam
can be used to uncover e.g. bone trauma, calcification, tumors
or hemorrhage.

Spectral Photon-Counting Computed Tomography (spec-
tral PC-CT) is a new imaging modality that enhances the
classical tomographic measurements (which give only spatial
information) with energy-dependent (i.e. spectral) attenuation
properties. The advantage is that this spectral information can
be used to discriminate different physical phenomena such as
Compton or photo-electric effect, or different materials in the
patient such as soft-tissues, bones or contrast agents. This
technology opens the way for using X-ray tomography as
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a functional imaging tool, which can naturally improve for
example the study of biomedical or clinical data.

The principles of spectral tomography have been demon-
strated by Alvarez and Macovsky [1] in the seventies but the
technology to make the acquisitions has been developed more
recently. First, Dual Energy CT scanners (DECT) were de-
ployed, they enable to acquire two sets of measurements using
two different spectral bands [2] and offer the possibility to
estimate two different materials without segmentation [3], [4].
In the last decade the advent of detectors working in Photon-
Counting (PC) mode [5], [6], [7] has once more boosted the
field, making it possible to acquire more than two sets of
measurements with different spectral information by tuning the
detectors to count photons in different energy bands. Current
PC detectors may have one or several energetic thresholds that
are tuned to acquire the information. Exploiting these spectral
measurements allows to estimate more than two materials
at the same time. The core concept is to view the material
attenuation coefficient of the object as a linear combination
of basis functions corresponding to known materials. With
this assumption, any change in spectral measurements can
be represented as a combination of material concentrations
or lengths that cause it. By applying an adapted algorithm, we
get a material distribution in the reconstructed volume.

Once a set of spectral PC-CT measurements is acquired,
the challenges in the reconstruction process are twofold. i)
As in classical CT one needs to reconstruct spatial properties
from tomographic projections. Depending on the acquisition
set-up or if one simply wants to reduce the radiation dose,
one may acquire low-dose projections thus having a poor
signal-to-noise ratio (SNR) or a reduced set of projections
which may lead to an incomplete set. Generally speaking the
tomographic reconstruction problem is by itself a difficult
one, but it benefits from a large and solid literature from
direct inversions method (e.g. FDK algorithm [8]) to more
sophisticated regularized iterative ones [9], [10]. ii) One needs
to exploit the spectral diversity in the different projections to
disentangle the different materials one seeks. The fact that the
contribution of each material changes according to the spectral
configuration of the measure is what makes it possible to
disentangle them. However the contribution of the materials
typically mix in a non-linear fashion in the spectral PC-CT
measurements. This non-linearity is one of the main reasons
why the separation problem is difficult.

Both problems, the tomographic reconstruction and the
spectral separation, are separately non-trivial by essence: they
raise questions pertaining to the class of ill-posed inverse prob-
lems. In the literature, one can roughly separate the proposed
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methods into those that treat the reconstruction and separation
problem sequentially (and thus separately) and those that treat
both problems jointly, which are also referred to as “one-step
inversion” methods. One-step inversion methods involve treat-
ing all the data and producing all the maps together, leading to
a large dimensional problem that is computationally difficult.
Treating the problems sequentially lightens the computational
burden by breaking the problem into smaller pieces. The price
to pay for this is that errors in the first step of the estimation
process are propagated to the next, which may result in a
lower robustness of the results. It also enables to rely on well-
established tomographic reconstruction methods to treat the
spatial reconstruction problem.

Sequential methods have been proposed first. Among these,
some first handle the reconstruction problem and then pro-
ceed to the separation in the object space. This is the case
for example for the pioneering K-edge methods [11], [12],
[13], [14]. They leverage on the spectral profile of high-Z
elements such as contrast agents, which have a characteristic
spectral discontinuity (K-edge), to approximate the spectral
separation by simple addition/subtraction. Currently, a number
of methods are dedicated to reconstructing an attenuation
map for each energy band that is acquired while enhancing
the methods described above by jointly reconstructing those
maps [15], [16], [4], [17]. In all the former cases, the non-
linear spectral mixing is not taken into account: one rather
uses an approximate linear model. In order to use a model that
is closer to the physics of the acquisition, others considered
the spectral separation first, estimating thus the contribution
of each material in measurement space (sinograms), and then
proceeding to the spatial reconstruction of each map [18], [19],
[20].

One-step inversion methods perform the separation and
reconstruction simultaneously ( [3], [21], [22], [23], [24], [25],
[26], [27]). They generally do so by setting-up a single inverse
problem that takes into account all measurements and outputs
all the material maps. The estimation is obtained by solving a
minimization problem, which is done in an iterative fashion.
As in the former cases however, a number of such methods
are based on simplifying the non-linear mixing model. The ap-
proximation of the non-linear mixing usually appears when the
authors design separable quadratic surrogates (SQS) [21], [22],
[23]. In [21], several successive quadratic approximations are
used while in [22], the authors rather use a predefined model
of finite sums of exponentials that is calibrated beforehand.
In [23], [3], [24], one remains closer to the physics of the
acquisition, thus treating the non-linear mixing model. This is
also the point of view adopted in this work. Solving a one-step
inversion problem is computationally demanding. To alleviate
this problem, different strategies are used. In [21], [22] and
[23] the authors resort to SQS, which are easy to minimize at
each iteration. Each iteration has thus a low computational cost
but the non-convexity of the problem sometimes prevents from
guaranteeing the global convergence of the procedure [21],
[22]. Most of these methods regularize the problem, using a
priori on the reconstructed maps. While the choice of smooth
regularizers as in [3] and [23] allows one to use classical
optimization based on gradients, the choice of non-smooth

regularizers, as those used in [24] renders the optimization
problem more difficult but allows to sharpen the contrast
of the objects contours. A very interesting practical work
comparing the computational efficiency of different one-step
inversion methods on two-dimensional synthetic data can be
found in [26].

In this work, we present a one-step inversion method which
is based on the minimization of a functional that seeks
a balance between a fit-to-data term and a regularizer. As
in [3], the fit-to-data is a direct transcription of the physics
of the acquisition. It integrates the non-linear mixing effect
described above. The a priori or regularizer is non-smooth
as in [24]. The global optimization problem is non-smooth,
non-convex and involves large-dimensional objects. As in [24],
our method is based on the proximal operator [28], which is
a tool used instead of the gradient when dealing with non-
smooth functions. The algorithm proposed in [24] is based
on re-writing the functional to be minimized as a difference
of convex functions and belongs to the family of “primal-
dual” algorithms. The algorithm consists in two nested loops
and the convergence is guaranteed. In practice, the authors
perform only one inner iteration, thus losing the convergence
guarantee, and this procedure remains rather slow. By contrast,
our method is based on a primal scheme that leverages on
the use of a metric (which is similar to a preconditioner) to
accelerate the convergence and that is provably convergent.
This scheme, called VMILAn [29] belongs to the family of
variable-metric forward-backward algorithms [30]. We design
a metric tailored to the spectral PC-CT problem and show
the efficiency on simulated and real data of resulting method
called ProMeSCT.

The paper is organized as follows. In Section II, we derive
the discretized model that links the measurements to the
imaged object. It is based on the Beer-Lambert equation
and a decomposition of the object into its basis materials.
Section III is dedicated to the method proposed to perform
the one-step inversion. We detail the minimization problem
and the algorithm, with an emphasis on the design of the
metric tailored to the problem. The last section is dedicated
to experiments. We assess the performances of the proposed
method on controlled synthetic data.

II. THE PROBLEM OF SEPARATION AND RECONSTRUCTION
IN SPECTRAL PC-CT

In this section we define a mathematical framework that
describes the links between the quantities we want to estimate
and a generic set of spectral PC-CT measurements. In the
formal model we establish here, the Beer-Lambert law is the
fundamental link between the object and the measurements
(see Section II-A). We also rely on a decomposition of the
object as the sum of its materials (see Section II-B) and
discretize the model in Section II-C.

A. The forward model

Let us start with the model linking the measurements to the
object. Let E be the X-ray photon energy and x the spatial
coordinate within the object space, and let us assume that:



3

• The X-ray source is modulated by the presence of a filter
(e.g. a metal), the resulting spectral profile is I0(E);

• The illuminated object is characterized by its attenuation
coefficient µ(x,E);

• The detector has the spectral efficiency η(E) and counts
photons between the thresholds Emin and Emax;

• L is the line of sight between the source and the detector.
Then a PC-CT detector ideally measures (Beer-Lambert law):∫ Emax

Emin

I0(E)η(E) e−
∫
L µ(x,E)dx dE.

In spectral PC-CT, one acquires several sets of measurements
- say M - that differ by their spectral inputs. Each set consists
of P measurements corresponding to all the detector pixels
and source/object positions. For each set m = 1 · · ·M , one
chooses a specific spectral configuration by setting: the source
voltage and filter (Im0 ), and the energy thresholds (Emmin,
Emmax). Defining Fp,m(E) = Im0 (E)ηp(E)χ[Em

min,E
m
max](E)

where χ stands for the indicator function, a full set of ideal
spectral-PC-CT data is:

yp,m =

∫
R
Fp,m(E) e

−
∫
Lp

µ(x,E)dx
dE, 1≤p≤P, 1≤m≤M.

(1)

B. The spatio-spectral map model of the object

Naturally, one cannot recover a full spatial and spectral
content of the object (i.e. the function µ(x,E) for every x
and E) with only MP measurements. One needs additional
assumptions. Here we assume that the object is made of
different materials (tissues, bones, etc.), say K such materials
and that for each of them, the attenuation coefficient is
simply the product of its interaction cross-section σk(E) by
its concentration at location x, ak(x):

µ(x,E) =

K∑
k=1

ak(x)σk(E). (2)

In this work, we assume that we know beforehand which
K materials (soft tissues, bones, contrast agents) constitute the
object and that we have access to their interaction cross-section
σk(E). The goal is to recover the K spatial maps ak(x) from
the set of MP measurements in (1), and the knowledge of the
spectral inputs for each configuration.

C. Discretization

The object is divided into L voxels and the spectral axis into
N energy bins. Each spatial map ak is thus discretized as a
vector of length L. These vectors are stored column-wise into
the matrix A of size L×K. The discretized interaction-cross
sections σk of length N are stored row-wise into the matrix Σ
of size K×N . Here, we assume that the detectors efficiencies
are identical (Fp,m does not depend on p), reducing the
spectral inputs to a vector of length N for each configuration
m. They form the columns of the matrix F of size N×M .

The discretized tomographic projection operator is stored
in the matrix S of size P ×L, and the integral with respect
to energy is discretized as a Riemanian sum. The MP ideal

measurements described in Eq. (1) are altered in practice by
noise (instrumental or of other type). Denoting by B all the
possible perturbations, the full forward model reads:

Y = B
(
e−SAΣ F

)
(3)

where Y is a matrix of size P × M and eZ stands for the
matrix of the same size as Z whose entries are the exponential
of the entries of Z.

III. PROMESCT, A FAST PROXIMAL ALGORITHM FOR
SPECTRAL PC-CT

A. Inverse Problem

Our goal in this paper is to recover the spatial maps of
the K materials stored in the matrix A from the M sets of
measurements in Y , the spectral profiles of the materials stored
in the matrix Σ, the spectral inputs stored in the matrix F and
a noise model B, all of this taking into account the forward
model in Eq. (3).

We tackle this inverse problem by minimizing a functional
J that seeks a balance between a discrepancy term G(A) that
measures how much the estimated maps A explain the data Y
and a regularization term R(A). We consider the discrepancy
terms G(A) of the form G(A) = D(Y, e−SAΣF ) with D a
function linked to the noise model B. If B denotes a statistical
noise model, D corresponds to its negative log-likelihood.
Here we will develop the cases of
• independent identically distributed Gaussian noise of un-

known variance which leads to the mean squared error

GG(A) =
∑
p,m

(
Y − e−SAΣF

)2
p,m

, (4)

• Poisson noise on each measure
(
e−SAΣF

)
p,m

which
leads to the Kullback-Leibler divergence

GP (A) =
∑
p,m

(
e−SAΣF

)
p,m
− Yp,m log

(
e−SAΣF

)
p,m

. (5)

Minimizing only the discrepancy term (which corresponds
to finding the maximum-likelihood estimator in the above
cases) usually leads to unstable solutions with respect to the
perturbation of the measurements. This is well-known even
when the forward model is linear and it is true also here where
the forward model includes strong non-linearities. Adding a
regularization term R(A) is a classical solution to alleviate
this problem. When it has good mathematical properties, R
reduces the set of minimizers of J and forces robustness. The
preferred solutions are those reproducing well the data and
having a low value of R. By encoding in R a priori we have
on the spatial maps, we force the solutions to be both stable
and realistic. Here we consider R of the form:

R(A) = R+(A) +R′(A) (6)

where the first term enforces the non-negativity of the con-
centration values in A (R+(A) = 0 if Al,k ≥ 0 for all (l, k)
and R+(A) = +∞ otherwise) and R′ forces spatial properties
like smoothness or sparsity of each of the maps.

Let us note that the two discrepancy terms GG(A) and
GP (A) are smooth (twice continuously differentiable) but not
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convex. This will be the case for most functions of the form
G(A) = D(Y, e−SAΣF ). On the other hand, the examples of
R given above are convex but not smooth. More generally,
the methodology we develop afterwards is tailored to handle
a functional of the form J(A) = G(A) + R(A) with G a
smooth (at least once continuously differentiable) function that
is not necessarily convex and R a convex but not necessarily
differentiable function.

B. A proximal metric algorithm: VMILAn

The minimization of non-differentiable but convex function-
als has received quite a lot of attention in the last two decades.
Proximal algorithms in particular are a class of methods
that have been developed successfully, with strong theoretical
guarantees including convergence and optimal convergence
rates along with various strategies to split and exploit the
different parts of a convex functionals (see [31] for a survey).
Lately, a subset of these proximal methods have been shown
to preserve their mathematical properties when applied to non-
convex functionals. This is the case for example when the non-
convex part has the Kurdyka-Łojasiewicz (KŁ) property [32],
[33], which essentially means that it can be re-parameterized
to be steep around its minima. In this paper, we use one such
proximal algorithm, VMILAn [29], to solve our problem.

1) Proximal algorithms on convex functionals: Let us first
examine the case of convex functionals. A classical algorithm
to minimize a convex functional J = G + R with G smooth
and convex and R non-smooth and convex is the Forward-
Backward [34] algorithm that proceeds in two steps at each
iteration:
• Forward step: gradient descent on G

xi+1/2 = xi − γi∇G(xi),
• Backward step: proximal descent on R

xi+1 = proxR(xi+1/2),

where the proximal operator is defined by:

proxR(x) = argminz
1
2 ||z − x||

2
2 +R(z). (7)

Note that the proximal operator is defined on convex func-
tions only. The Forward-Backward scheme (FB) is quite easy
to implement when the proximal operator is explicit, which is
the case for a number of classical terms such as box constraints
or the l2, Thikonov and l1 (or sparse) regularizations. For other
terms such as the Total-Variation (TV) norm, efficient schemes
have been derived. However the convergence rate is slow and
has been sped up with two strategies: one is the multi-step
strategy [35], [36] (also called Nesterov’s momentum), and
the other one is to introduce variable metrics [30], [29].

The multi-step strategy consists in choosing a point that will
go a bit further away than the proximal point in the Backward
step of the FB scheme using the previous iterates. Choosing
carefully the amount of deviation, one can guarantee a fast
convergence of the objective values (limi J(xi) = min J) [36]
and sometimes the iterates (limi x

i ∈ argmin J where argmin
denotes the set of global minimizers) [37] for convex function-
als only, that is when J , G and R are convex. Several such
schemes exist, the classical FISTA [36] is described in Algo. 1.

Algorithm 1 FISTA
Require: G, R, γ, x0, N

1: t0 ← 1, z0 ← x0

2: for i← 0, N − 1 do
3: xi+1/2 ← xi − γ∇G(xi) . Forward step
4: zi+1 ← proxR(xi+1/2) . Backward step

5: ti+1 ← 1+
√

1+4(ti)2

2

6: xi+1 ← zi+1 + ti−1
ti+1 (zi+1 − zi) . Acceleration

7: end for
8: return xN . Minimizer of G+R

A variable metric proximal scheme preconditions the gradi-
ent descent on G at each iteration by a definite-positive matrix
Ξi and accordingly modifies the proximal step:
• Forward step: xi+1/2 = xi − γiΞ−1

i ∇G(xi),
• Backward step: xi+1 = proxΞi,R(xi+1/2),

where the metric proximal operator is defined by:

proxΞ,R(x) = argmin
z

1
2 ||z − x||

2
Ξ +R(z)

= argmin
z

1
2 〈z − x,Ξ(z − x)〉+R(z). (8)

In the convex case, that is when J , G and R are convex,
the convergence of the variable metrics scheme holds both in
terms of objective values (limi J(xi) = min J) and iterates
(limi x

i ∈ argmin J). Notice that the variable metrics scheme
reduces to FB when Ξi is the identity. Hence the acceleration
that is obtained depends naturally on the metrics that are
chosen.

2) Proximal algorithms on non-convex functionals: Let us
now turn to the case of non-convex functionals as the one
of interest here. Non-convex functional may have local and
global minima. The proximal method described above are first
order algorithms (i.e. they depend only on the first differential).
One can generally not ensure that such an algorithm reaches
a global minimizer. Nevertheless, one can ensure that the
sequence of iterates converges to a critical point - which is
a point that zeroes the first differential.

Proximal methods were originally designed for convex
functionals. Seeing their success, scientists naturally tried them
in practice on non-convex functionals obtaining sometimes
results of good quality. This is what we show also here with
the multi-step strategies (or Nesterov’s momentum) in the
experimental section. However, the convergence of multi-step
strategies cannot be mathematically proved neither in terms
of iterates nor in terms of objective values. One is thus not
able to guarantee their good behavior: the sequence of iterates
could diverge (coordinate blowing to infinity or cycling on a
subspace), and the sequence of objective values is also not
monotonic and could diverge, etc.

FB and variable metric schemes on the other hand are
provably convergent on a class of non-convex functionals
including that of interest here, which means that both the
objective values and the iterates converge to a limit, and that
the limit point of the iterates is a critical point. Moreover,
the sequence of objective values is non-increasing, which
maximizes the chances to reach a global minimizer. This is
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the reason why we advocate to use them here. More precisely,
the convergence is guaranteed if J is a non-convex functional
that can be written as J = G + R with R convex (but
non-smooth) and G smooth (but non-convex) and having
the Kurdyka-Łojasiewicz (KŁ) property [32], [33]. The KŁ
property essentially means that one can control the function
growth with its differential. The set of functions having this
property is quite large, including for example the set of real-
analytic functions. Notice that in the variable metrics scheme,
the proximal operator is computed on the convex part of the
functional R.

3) VMILAn in practice: The increase of speed introduced
by the metric compared to FB has to be balanced with the
increase of complexity of the proximal point computation.
VMILAn provides an implementation of the variable metrics
scheme when only an approximation of the solution of the
proximal problem xi+1 = proxΞi,R(xi+1/2) is available.
The precision of the approximation is quantified and can be
computed in practice. VMILAn is guaranteed to converge to
a critical point of J when this precision is reached and under
technical conditions1 [29]. The complete VMILAn algorithm
is described in Algo. 2. After the initialization of various
quantities; Line 3 shows the choice of the gradient step at
each iteration, bounded above and below by quantities defined
above; Line 4 shows the choice of the metric (positive-
definite matrix) at each iteration, its spectral norm (maximal
eigenvalue) must also be bounded by predefined quantities;
Line 5 proceeds to the modified gradient step on G and Line
6 to the proximal step, the Approx operator denoting the fact
that only an approximation of the proximal point is required.

Algorithm 2 VMILAn
Require: G, R, 0 < γm < γM , ν > 0, x0, N

1: t0 ← 1, z0 ← x0

2: for i← 0, N − 1 do
3: Choose γ s.t. γm ≤ γ ≤ γM
4: Choose Ξ s.t. ν−1 ≤ ‖Ξ‖ ≤ ν
5: xi+1/2 ← xi − γΞ−1∇G(xi) . Forward step
6: xi+1 ← Approx

(
proxΞ,R(xi+1/2)

)
. Inexact

backward step
7: end for
8: return xN . Minimizer of G+R

C. ProMeSCT

We show how VMILAn may be used for the spectral PC-
CT problem (3) which defines the ProMeSCT algorithm. In the
process we verify the conditions of convergence stated above.

1) Fit to data-term: For every (p,m), the function: A ∈
[0,+∞)L×K →

(
e−SAΣF

)
p,m
∈ (0,+∞) is real-analytic,

so are the square function and the logarithm on its domain
and thereby so are each terms of GG and GP . Hence GG and
GP both have the KŁ property since they are real-analytic.

1G is smooth and has the KŁ property, R is non-smooth but convex proper
lower semi-continuous, and the steps γi and the spectra of the metric Ξi are
uniformly bounded above and below.

We will need the gradients of these functions:

∇GG(A) = 2ST
([
Y − e−SAΣF

]
FT � e−SAΣ

)
ΣT , (9)

∇GP (A) = −ST
([

1− Y � e−SAΣF
]
FT � e−SAΣ

)
ΣT ,

(10)

where � stands for the pointwise division and � the pointwise
(or Hadamard) product.

2) Regularization: The regularization term R must encode
that knowledge we have a priori on the concentration maps ak.
First one needs to ensure the non-negativity of all the entries
as they are concentrations. The convex (but non-differentiable)
corresponding indicator function R+ reads

R+(A) =

{
0, if Al,k ≤ 0 ∀l, k,
+∞, otherwise.

(11)

Without metric, the proximal operator of R+ is simply the
projection on non-negative values:

proxR+
(A)l,k =

{
Al,k, if Al,k ≥ 0,

0, otherwise.
(12)

Since the proximal operator does not have an analytic expres-
sion with a metric, we compute it with a fast proximal iterative
scheme FISTA [36] and implement the stopping criterion in
VMILAn [29].
One can easily add additional a priori on the spatial concentra-
tion maps ak by adding on top of R+ other convex regularizers
and following the exact same procedure. In particular, one
can add a TV regularization that will output maps with sharp
contours separating smooth parts, or one can also enforce
sparsity of the maps (only few points in the maps have non-
zero concentrations). This can be done by adding a term on
the l1-norm of each map as this was done in [38].

3) Choice of the metric: At each iteration of VMILAn, we
apply the inverse metric Ξ−1

i and compute a metric proximal
point proxΞi,R. To lighten the computational burden, we
choose here to keep the metric constant Ξi = Ξ. Its norm
is thus uniformly bounded above and below.

A natural choice for the metric is to include information
about the second order derivatives of G, while making sure
that the metric is positive-definite. The Gauss-Newton approx-
imation of the Hessians of GG and GC are good candidates,
but they depend on the current estimate of A. However they
share a common structure and may both be bounded by the
same positive-definite matrix:

Ξ = ΣFFTΣT ⊗ STS (13)

(corresponding to the case where A = 0) where ⊗ denotes
the Kronecker product. This metric separates into two parts.
ΣFFTΣT preconditions the spectral separation problem and
acts on the columns of A. It is small (K × K) and thus
easily invertible. STS is the composition of CT projection and
backprojection. It preconditions the reconstruction problem
(from sinogram to object space). As noted in [39], it is easily
invertible using the conic filter for parallel-beam and fan-beam
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tomography. For the real case of cone-beam tomography, we
find that using the conic filter still provides an efficient metric2.

4) Gradient step γ: We keep the gradient step γ constant,
which, together with the previous choices, guarantees that the
VMILAn converges to a critical point of J . Specifically we
chose γ with respect to the preconditionned vector Ξ−1∇G(A)
i.e. γ ∝ 1

||Ξ−1||β with β a Lipschitz constant of ∇G. Incorpo-
rating the metric designed above (see Eq. (13)) and simplifying
leads to γ = c

||ΣFFT ΣT || where c is estimated empirically.
The ProMesCT algorithm is thus the special case of the

VMILAn with the specific parameters described above. In the
following, the inexact proximal point at step 6 of Algo. 2 is
computed using a FISTA scheme and the stopping criterion en-
sures the convergence of the whole procedure. To demonstrate
the efficiency of ProMesCT, we compare it against i) Forward-
Backward (whose convergence is also guaranteed but is slow)
and ii) FISTA which is applied on J and is not guaranteed to
converge in this case.

IV. RESULTS ON SIMULATED DATA

In this section, we assess ProMeSCT on synthetic data. We
compare its performances to FB and FISTA in a first part,
then compare its performances to five one-step algorithms
of the state of the art in a second part. The performance
metric we use is either the value of the concentration of ma-
terials, or the Contrast-to-Noise Ratio (CNR) computed from
two Regions-Of-Interest (ROI), inside and outside areas with
contrast agents, as follows: CNR = |āin− āout|/

√
σ2
in + σ2

out

with ā the mean of a. We simulate pure Poisson noise and
consequently use the discrepancy term GP everywhere.

A. Material

A cylindrical phantom of size 128 × 16 × 128 with six
inserts containing two different contrast agents at different
concentrations has been simulated. The contrast agents are
iodine (at concentrations 11, 20 and 40 mg/mL, which are bio-
logically relevant for angiography [40], obtained from dilution
of IOMERON 400) and silver (at concentrations 11, 20 and
40 mg/mL obtained from dilution of silver nitrate). Note that
the presented setup lies in the context of preclinical imaging.
The developed methodology is theoretically compatible with
clinical imaging provided that the spectral measurements (with
harder beams than in preclinical) captures enough information
on the materials of interest, e.g. the contrast agents. The K-
edges of silver and iodine are however too low to be considered
as contrast agents for clinical imaging. Monochromatic projec-
tions of size 186×16 with 65 µm× 65 µm pixel size have been
simulated for a range of energy from 10 to 50 keV with a step
of 0.1 keV. For each energy, a total number of 720 projections
covering a 360 degrees span angle has been computed in
a parallel-beam geometry. Finally, five polychromatic scans
have been computed according to Eq. (3), which mimic an
energy spectrum generated by a tungsten anode X-ray tube

2In practice, the filter is applied slice by slice in Fourier space. A classical
trick to avoid artefacts due to its infinite support is to increase the size of all
the data by zero-padding. We neglect this point since the purpose here is to
accelerate the process and not to provide an exact invert of the STS operator.

operated at 50 kVp with a filtration with 0.6 mm of Al. Each
acquisition differs from the others according to the minimum
energy threshold, i.e. 22, 25.5, 29, 33.2 and 36.7 keV.

In this benchmark, the Σ matrix has been filled with the
spectral signatures of a solution of iodine at 40 mg/mL, a
solution of silver at 40 mg/mL and the spectral signature
of water. The F matrix has been computed with exactly the
same spectral responses used for simulating each scan. Fig. 1
displays the lines of the spectral signatures dictionary Σ and
the columns of the spectral responses of the system matrix F .
We have assessed FB, FISTA and ProMeSCT (the latter using
the metric given in Eq. (13)) on this set of simulated data. We
ran 1000 iterations of each algorithm. For the computation of
the approximated proximal point in the main ProMeSCT loop
(step 6 in Algo. 2), 200 to 1000 iterations of FISTA have been
run (to fulfill the stopping condition described in [29]). For all
the following simulated and real experiments, the initialization
point is x0 = 0 ∈ RL×K and we use the positivity constraints
R+ as the regularization term.
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Fig. 1. Left: lines of the Σ matrix corresponding to the linear attenuation
coefficient of iodine in solution at 40 mg/mL, silver in solution at 40 mg/mL
and water. Right: Normalized columns of the F matrix corresponding to the
5 spectral responses of the 5 simulated tomographic acquisitions.

B. Results on 3D data

Fig. 2 presents the results obtained in a noisy case with a
pure Poisson noise on data with 10000 counts in flat fields for
every acquisition. It exhibits first the acceleration that FISTA
and ProMeSCT provide with respect to FB. We however
recall here that our problem is non convex and does not
provide any guarantee of convergence for FISTA. In the case of
ProMeSCT, the objective function J decreases monotonically
and significantly faster than FB due to the second order
information of the objective function carried out by the metric.
The estimation of the concentration of iodine balls along the
iterations (Fig. 2) shows that ProMeSCT is more efficient than
FISTA and can provide a rough estimation of the concentration
very early during the minimization process (this is also true
for silver balls although not shown here). In Fig. 2, the error
bars show the standard deviation of the pixels values in the
ROI. The ROI is a ball inside the iodine ball of radius smaller
by three pixels to avoid partial volume effects.

Table I gathers quantitative results at 300 and 1000 itera-
tions. FB remains far from convergence after 1000 iterations,
which is quite unsatisfactory. The concentration maps obtained
at 1000 iterations reveal that the separation of each of the 3
materials is made almost perfectly and without ambiguity for
FISTA and ProMeSCT. No crosstalk can be seen and all the
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Fig. 2. Objective function J (left) and estimated concentration of the iodine
ball at 40 mg/mL (right) w.r.t. the number of iterations for FB, FISTA and
ProMeSCT.

quantities are correctly estimated. Despite the non-convexity of
the problem, it seems that in this case both algorithms converge
to the same critical point.

An interesting point is to focus on intermediate results
displayed on Fig. 3 at 300 iterations. Even if the objective
values for FISTA and ProMeSCT are close, the separation
of iodine and silver is significantly better with ProMeSCT
than with FISTA. Except the most concentrated silver ball,
the concentrations of all the other balls are already correctly
estimated in the correct material concentration map (iodine
or silver) with ProMeSCT. The computation times of each
algorithm (in Table I) reveals that despite its apparent higher
complexity with respect to FB and FISTA, ProMeSCT is the
fastest on this example. It can be explained by the following
facts: i) step 6 in Algo. 2 has been implemented on a NVIDIA
K20 GPU and ii) an early good quality estimation of sparse
iodine and silver concentration maps speeds up computations
based on sparse-encoded matrix-vector multiplications.

TABLE I
ESTIMATED CONCENTRATIONS OF CONTRAST AGENTS BY THE THREE

PROPOSED METHODS ON SIMULATED DATA AT 300 AND 1000 ITERATIONS
AND COMPUTATION TIME.

silver balls
Concentration (mg/mL) 11 20 40

FB 300 iter. 6.45 ± 0.20 8.09 ± 0.32 10.91 ± 0.57
FB 1000 iter. 7.47 ± 0.18 9.74 ± 0.26 14.16 ± 0.46

FISTA 300 iter. 10.87 ± 0.51 14.52 ± 0.65 19.58 ± 0.81
FISTA 1000 iter. 11.80 ± 0.71 19.62 ± 0.85 32.52 ± 1.38

ProMeSCT 300 iter. 11.76 ± 1.89 20.54 ± 2.89 28.78 ± 7.09
ProMeSCT 1000 iter. 11.57 ± 2.85 21.71 ± 2.11 42.43 ± 0.94

iodine balls
Concentration (mg/mL) 11 20 40

FB 300 iter. 7.26 ± 0.17 9.41 ± 0.25 12.68 ± 0.64
FB 1000 iter. 7.87 ± 0.15 10.93 ± 0.23 14.15 ± 0.46

FISTA 300 iter. 10.93 ± 0.88 17.31 ± 1.30 30.41 ± 2.01
FISTA 1000 iter. 11.89 ± 0.99 24.27 ± 1.11 32.52 ± 1.38

ProMeSCT 300 iter. 12.27 ± 1.21 23.60 ± 1.37 40.75 ± 0.93
ProMeSCT 1000 iter. 12.35 ± 1.23 22.12 ± 2.03 41.43± 0.94

Computation time in seconds
Algorithm FB FISTA ProMeSCT

300 iterations 5764 5325 3437
1000 iterations 18442 17597 11350

C. Results on 2D data

In this section, we compare the results of ProMeSCT with
five one-step algorithms of the state of the art ([22], [24],

[21], [23], [3]). A comparative study of these algorithms
is presented in [26] together with the open-source Matlab
toolbox ’OneStepSpectralCT’ that can be downloaded online3.
We refer to this paper for a detailed description of the
implementation of each algorithm, and we use a contraction
of the first author’s name and publication year (e.g. Cai2013)
to refer to each method. The ’OneStepSpectralCT’ toolbox
partly relies on the AIR toolbox4 presented in [41] to compute
the projection and backprojection operators. Note that the
projection operator is computed and stored as a sparse matrix,
the backprojection being its transpose. This matrix becomes
too large to be computed for 3D volume of size of the one
presented in the previous section (128×16×128). This is the
reason why we have performed some tests in 2D for a slice
of 128× 128 pixels of the same object that the one presented
in the previous section.

Note that all the algorithms implemented in ’OneStepSpec-
tralCT’ are using a spatial regularization term designed to
enforce the sparsity of the gradients of solutions, whereas
our implementation of ProMeSCT encompasses a positivity
constraint. For a fair comparison of performances, we did not
activate the positivity constraint in ProMeSCT and vanishes
the spatial regularization terms in the other algorithms by
setting the regularizations parameter to 0. The code of the
Barber2016 method has been modified according the equations
47 to 52 in [24] to remove the Total Variation constraint and
minimize the data fidelity. The rest of the parameters are
the same as those described in [26]. We have incorporated
our algorithm within the ’OneStepSpectralCT’ toolbox and
ran 5000 iterations of each algorithm except for Barber2016,
reported to be slower, for which 20000 iterations have been
run. All the methods are initialized with zero-filled material
slices. Fig. 5 shows the last iterate computed for each of the
methods presented here. Due to the fact that the data fidelity
term is not the same for all the algorithms, we will not compare
the decreasing of objective functions but rather the normalized
`2 difference relatively to the last iterate computed as in [26]:

Normalized `2(xn) =

K∑
k=1

∑Nv

v=1 (xn,v,k − xNit,v,k)
2

K
∑Nv

v=1 GroundTruth2
v,k

where k, v, and n are respectively the indices for material,
voxel and iteration, Nv stands for the number of voxels in
one reconstructed material map (Nv = D/K) and Nit is
the number of iterations. This quantity is displayed in Fig. 4
and illustrates the good behavior and the convergence of the
iterates xn over the iterations for each algorithm.

Finally, we display in Fig. 6 the evolution of the concentra-
tion of the silver and iodine contrast agents over the course of
the iterations with a logarithmic scale on the abscissa. These
figures illustrate the good behavior of ProMeSCT, which is
among the fastest algorithms together with Mechlem2018 and
Long2014 on this test. Note in Fig. 5 the strong improvement
of quality of images when taking into account the simple
positivity constraint in ProMeSCT that does not require any
tuning of parameters.

3https://github.com/SimonRit/OneStepSpectralCT
4https://github.com/jakobsj/AIRToolsII
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Fig. 3. Concentration maps obtained at 1000 iterations. Top row: FB, middle: FISTA, bottom: ProMeSCT. Left column: iodine, middle: silver, right: water.
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positivity constraint.

V. CONCLUSION

In this paper, we proposed a mathematical framework for the
one-step inversion in spectral PC-CT together with an iterative
algorithm that is tailored to it. The difficulty of the forward
problem lies in its non-linearity, which results in a non-convex
inverse problem. The algorithm that is proposed, ProMeSCT,
belongs to the family of proximal algorithms. Its specificities
are its convergence guarantee for this non-convex problem
and its convergence speed, which we were able to exploit
by designing a metric that is tailored to the PC-CT. These
properties are illustrated on simulated data and compared with
state of the art algorithms. On the theoretical side, we plan to

investigate further the possible existence of local minima and
if they exist, the ability to avoid them by using a particular
metric. A nice addition would also be to use ordered subsets
to further speed up the process, which raises both theoretical
and implementation issues that would be worth pursuing.
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methods for Poisson intensity CBCT and PET,” Inverse Probl. Imag.,
vol. 6, no. 4, pp. 565–598, nov 2012.

[11] S. J. Riederer and C. A. Mistretta, “Selective iodine imaging using K-
edge energies in computerized X-ray tomography,” Med. Phys., vol. 4,
no. 6, pp. 474–481, 1977.

[12] F. Cassol et al., “First K-Edge Imaging with a Micro-CT based on the
XPAD3 Hybrid Pixel Detector,” IEEE Trans. Nucl. Sci., vol. 60, no. 1,
pp. 103–108, 2013.

[13] C. T. Badea, S. M. Johnston, Y. Qi, K. Ghaghada, and G. A.
Johnson, “Dual-energy micro-CT imaging for differentiation of iodine-
and gold-based nanoparticles,” in Proc. SPIE 7961, Medical Imaging
2011: Physics of Medical Imaging, mar 2011, pp. 555 – 564. [Online].
Available: https://doi.org/10.1117/12.878043

[14] Y. Yuan, Y. Zhang, and H. Yu, “Optimization of energy combination
for gold-based contrast agents below k-edges in dual-energy micro-ct,”
IEEE Trans. Rad. Plasma Med. Science, vol. 2, no. 3, pp. 187–193, may
2018.

[15] H. Gao, H. Yu, S. Osher, and G. Wang, “Multi-energy CT based on
a prior rank, intensity and sparsity model (PRISM),” Inverse Probl.,
vol. 27, no. 11, p. 115012, oct 2011.

[16] D. S. Rigie and P. J. L. Rivière, “Joint reconstruction of multi-channel,
spectral CT data via constrained total nuclear variation minimization,”
Phys. Med. Biol., vol. 60, no. 5, pp. 1741–1762, feb 2015.

[17] J. Toivanen, A. Meaney, S. Siltanen, and V. Kolehmainen,
“Joint reconstruction in low dose multi-energy ct,” Inverse Probl.
Imag., vol. 14, no. 4, pp. 607 – 629, aug 2020. [Online].
Available: http://aimsciences.org//article/id/424dbcfa-3088-4585-8f64-
f2551fa70d0c

[18] J. P. Schlomka et al., “Experimental feasibility of multi-energy photon-
counting K-edge imaging in pre-clinical computed tomography,” Phys.
Med. Biol., vol. 53, no. 15, pp. 4031–404, jul 2008.

[19] M. Dupont et al., “Component Separation for Spectral X-Ray Imaging
Using the XPAD3 Hybrid Pixel Camera,” in Conf. Rec. IEEE Nucl. Sci.
Symp. & Med. Imag. Conf. 2013, oct 2013, pp. 1–5.

[20] N. Ducros et al., “Regularization of nonlinear decomposition of spectral
X-ray projection images.” Med. Phys., vol. 44, no. 9, pp. 174–187, sep
2017.

[21] T. Weidinger et al., “Polychromatic iterative statistical material image re-
construction for photon-counting computed tomography,” Int. J. Biomed.
Imaging, mar 2016.

[22] K. Mechlem et al., “Joint statistical iterative material image reconstruc-
tion for spectral computed tomography using a semi-empirical forward
model,” IEEE Trans. Med. Imaging, vol. 37, no. 1, pp. 68–80, jan 2018.

[23] Y. Long and J. A. Fessler, “Multi-material decomposition using statisti-
cal image reconstruction for spectral CT,” IEEE Trans. Med. Imaging,
vol. 33, no. 8, pp. 1614–1626, aug 2014.

[24] R. F. Barber, E. Y. Sidky, T. G. Schmidt, and X. Pan, “An algorithm for
constrained one-step inversion of spectral CT data,” Phys. Med. Biol.,
vol. 61, no. 10, pp. 3784–3818, apr 2016.

[25] B. Chen, Z. Zhang, E. Y. Sidky, D. Xia, and X. Pan, “Image reconstruc-
tion and scan configurations enabled by optimization-based algorithms
in multispectral CT,” Phys. Med. Biol., vol. 62, no. 22, pp. 8763–8793,
nov 2017.

[26] C. Mory et al., “Comparison of five one-step reconstruction algorithms
for spectral CT,” Phys. Med. Biol., vol. 63, no. 23, p. 235001, nov 2018.

[27] S. Tilley, W. Zbijewski, and J. Webster Stayman, “Model-based material
decomposition with a penalized nonlinear least-squares CT reconstruc-
tion algorithm,” Phys. Med. Biol., vol. 64, no. 3, p. 035005, jan 2019.

[28] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, jan 2014.

[29] S. Bonettini et al., “On the convergence of a linesearch based proximal-
gradient method for nonconvex optimization,” Inverse Probl., vol. 33,
no. 5, p. 055005, mar 2017.

[30] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “Variable metric forward-
backward algorithm for minimizing the sum of a differentiable function
and a convex function,” J Optim Theory Appl, vol. 162, no. 1, pp. 107–
132, 2014.

[31] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal
processing,” in Fixed-Point Algorithms for Inverse Problems in Science
and Engineering, H. H. Bauschke, R. S. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, and H. Wolkowicz, Eds. New York, NY: Springer
New York, 2011, ch. 10, pp. 185–212.

[32] K. Kurdyka, “On gradients of functions definable in o-minimal struc-
tures,” Annales de l’institut Fourier, vol. 48, no. 3, pp. 769–783, 1998.
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Fig. 6. ROI concentrations of silver (left) and iodine (right) over the course of iterations for the five methods references in [26] and for ProMeSCT without
positivity constraint.


