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ABSTRACT

An essential step of the reverse transcription of the
HIV-1 genome is the first strand transfer that
requires the annealing of the TAR RNA hairpin to
the cTAR DNA hairpin. HIV-1 nucleocapsid protein
(NC) plays a crucial role by facilitating annealing
of the complementary hairpins. Using nuclear
magnetic resonance and gel retardation assays,
we investigated the interaction between NC and
the top half of the cTAR DNA (mini-cTAR). We
show that NC(11-55) binds the TGG sequence in
the lower stem that is destabilized by the adjacent
internal loop. The 50 thymine interacts with residues
of the N-terminal zinc knuckle and the 30 guanine
is inserted in the hydrophobic plateau of the
C-terminal zinc knuckle. The TGG sequence is
preferred relative to the apical and internal loops
containing unpaired guanines. Investigation of the
DNA–protein contacts shows the major role of
hydrophobic interactions involving nucleobases
and deoxyribose sugars. A similar network of hydro-
phobic contacts is observed in the published
NC:DNA complexes, whereas NC contacts ribose
differently in NC:RNA complexes. We propose that
the binding polarity of NC is related to these
contacts that could be responsible for the preferen-
tial binding to single-stranded nucleic acids.

INTRODUCTION

Strand transfer events occurring during the reverse tran-
scription of the human immunodeficiency virus-1 (HIV-1)

genome are intimately connected to the dimeric nature of
the genome (1–3) and play an important role in the recom-
bination process that allows the virus to escape the host
immunological and cellular defenses as well as the anti-
retroviral therapies (4–7). Two obligatory strand transfers
are required for reverse transcription of the HIV-1 genome
(8). During the first strand transfer, the minus-strand
strong-stop DNA (ss-cDNA), the first product of reverse
transcription, is transferred to the 30-end of the viral RNA
in a reaction mediated by base pairing of the complemen-
tary R sequences at the 30-ends of the RNA and DNA
molecules. The R RNA sequence folds into secondary
structures corresponding to the transactivator response
element (TAR) hairpin and the upper part of the
poly(A) hairpin (9,10). Similarly, the R sequence of
ss-cDNA is predicted to fold into hairpins that are com-
plementary to the TAR and poly(A) RNA sequences and
are therefore named cTAR and cpoly(A), respectively.
The TAR structure is far more important than the
poly(A) hairpin in the first strand transfer (11–13). The
first strand transfer is greatly enhanced by HIV-1 nucleo-
capsid protein (NC) (14,15). This enhancement is due at
least in part to the ability of NC to increase the TAR
RNA–DNA annealing process by �105-fold (16). NC is
a short and basic protein that contains two zinc knuckles,
each of them possessing a conserved CCHC metal-ion
binding motif. Besides its role in the first strand transfer,
NC displays multiple functions during the viral replication
cycle in both the early and late steps, due to its nucleic acid
chaperone activity (14,17). This activity facilitates the re-
arrangement of nucleic acids into conformations that are
thermodynamically more stable (14,18). This chaperone
function is based on two independent components,
namely the destabilization of nucleic acid duplexes by
the zinc knuckles (19–25) and the aggregation of
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nucleic acids, mainly by the basic N-terminal domain
(26–29).
The full-length TAR and cTAR form stem–loops with

complementary apical loops of six residues and a series of
conserved bulges/internal loops (16,22,30). The TAR
RNA–DNA annealing process was shown to proceed
either through a ‘kissing’ pathway involving the apical
loops of TAR and cTAR or through a ‘zipper’ pathway
involving the 30/50 termini (16,22,29,31–33). While the
‘kissing’ mechanism appears clearly dominant in the
absence of NC or at sub-saturating NC concentrations
(9,16), a switch to the ‘zipper’ pathway is observed at
saturating NC concentrations (16,22). Similarly, annealing
of the mini-TAR and mini-cTAR sequences, correspond-
ing to the top half of TAR and cTAR hairpins (Figure 1),
was shown to proceed mainly through loop–loop inter-
action, while alternative pathways, such as annealing
through the stem ends, also contribute at saturating NC
concentrations (29).
In the present study, we investigated the binding of NC

to mini-cTAR using gel retardation assays and nuclear
magnetic resonance (NMR) methods. In a previous
study, fluorescence methods showed that up to four
NC(12-55) (a truncated form of NC) molecules could
bind to mini-cTAR under low ionic strength conditions
(20) and that the internal loop rather than the apical
loop constituted a preferential binding site for NC (20).
In contrast to previous NC:nucleic acid complexes
determined by NMR (34–38) that contain a single

binding site with unpaired guanines, the mini-cTAR
hairpin contains two loops and an unstable lower stem
with unpaired guanines (39) that are potential binding
sites for NC. This DNA hairpin is therefore well suited
for an NMR study of nucleic acid recognition by NC.

Here, we determined by NMR the structure of the
NC(11-55):mini-cTAR complex. The structural features
of the complex were well identified due to a clear prefer-
ence of NC(11-55) for a single site in mini-cTAR and a
large number of intermolecular NOEs between the peptide
and DNA. Data clearly show that the lower stem, but not
the apical loop of mini-cTAR, constitutes a strong binding
site for NC. Moreover, comparison with the five available
structures of NC:nucleic acid complexes (34–38) allows to
get a better understanding of the structural basis of nucleic
acid recognition by NC.

MATERIALS AND METHODS

Protein and oligonucleotide preparation

The NC(11-55) peptide was synthesized by the stepwise
solid-phase method with Fmoc amino acids as described
(40). Peptide purity was >98%. An extinction coefficient
of 5700M�1 cm�1 was used to determine the peptide con-
centration. The peptide was prepared with 3 eq. of ZnCl2
to ensure saturation of the finger motifs and it was
dissolved in 90% H2O/10% D2O. Unlabeled mini-cTAR
DNA (26 nt) was obtained from Eurogentec (Belgium)
and prepared at a 1mM mini-cTAR (26 nt) concentration
in 90% H2O/10% D2O. For complex formation, to avoid
aggregation, we cooled the mini-cTAR DNA solution on
ice prior addition of NC(11-55). The concentrations of the
NMR samples of NC(11-55):mini-cTAR complexes were
around 1mM at a 1:1 molar ratio in 90% H2O/10%D2O
solutions in the absence of NaCl or MgCl2 at pH 6.5.

NMR experiments

NMR data were collected with Bruker AVANCE
500MHz spectrometer (Bruker BioSpin S.A.,
Wissembourg, France). The proton assignments were
obtained from 2D NOESY (tm=50, 100, 150, 200 and
300ms) and 2D TOCSY (41) (tm=60, 80 and 100ms)
that were recorded at 283, 288, 293 and 298K. For the
NC(11-55):mini-cTAR DNA complex, proton resonance
assignments were obtained from 2D NOESY (tm =50,
100, 150, 200 and 300ms) and 2D TOCSY (tm =60, 80
and 100ms) that were recorded at 283, 293, 298 and
303K. The NOESY and TOCSY were acquired under
the following experimental conditions: a total of 64
scans, 2048 data points and 512 t1 increments with
spectral widths of 6000Hz [mini-cTAR (26 nt) and
NC(11-55)]; for the NC(11-55):mini-cTAR complex, a
total of 128 scans, 2048 real t2 points with spectral
widths of 6000 and 10 000Hz for experiments in H2O,
512 t1 time proportional phase increments, and a relax-
ation delay of 2 s between scans. The water signal was
suppressed with a WATERGATE sequence (42).

Figure 1. (A) Secondary structures for the mini-cTAR sequences (39).
The single base addition in mini-cTARIN2 is boxed. (B) Sequences of
proteins used in this study.
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Structure calculations for NC(11-55) and the
NC(11-55):mini cTAR DNA complex

All structures were calculated using XPLOR NIH (version
2.23) (43,44). For the free peptide, distance restraints of
1.8–2.5, 1.8–3.5, 1.8–4.5 and 1.8–6.0 Å were used to rep-
resent qualitatively observed strong, medium, weak and
very weak cross-peak intensities, respectively. Three-
hundred and six distance constraints were used in
XPLOR to generate 50 conformers.

For the complex, NOE cross-peak volumes were
estimated from 2D NOE spectra at 298 and 303K and
recorded at several mixing times. Distance restraints
were classified into five categories based on the NOE
intensities observed with upper limit distance restraints
from a strong NOE (2.5 Å), medium (3.5 Å), medium
weak (4 Å), weak (4.5 Å) to a very weak NOE (6 Å).
These distances were calibrated with respect to the
aromatic protons of Trp37 and H5–H6 cross- peak for
the mini-cTAR. A force constant of 50 kcalmol�1 Å�2

was applied to the NOE-derived constraints.
Two sets of calculations were performed: (i) one

including the whole molecule mini-cTAR and NC(11-55)
with restraints involving the 26 residues of DNA and
those of the protein and (ii) another one including only
the C23–G26 residues and NC(11-55) with restraints
involving only these residues and those of the protein.
The second set of calculations was motivated by the fact
that only T24, G25 and G26 residues presented intermolecu-
lar NOEs with protein residues. In addition, no
inter-residues NOES are detected between the C23–G26

residues and any other residue of the mini-cTAR
molecule. As we are interested first by the protein–DNA
interface, the second set of calculations allowed us to
select the best energy molecules on the basis of this inter-
face and not of those of the whole complex. The first set of
calculations was used to ensure that no bias was
introduced by the procedure. Dihedral angle restraints
and hydrogen bonds restraints were used only for the
upper stem.

Structures of the complex were obtained using a
protocol in which the two folded partners, calculated
using NMR restraints measured for isolated molecules,
have been positioned relatively to each other in five dif-
ferent orientations. At this point, NMR restraints
measured for the complex were introduced as to dock
protein on DNA molecules. For each of the five initial
orientations, 10 structures were calculated and the two
lowest-energy structures of each set were retained for
subsequent analysis. Therefore, 10 structures were finally
selected. These 10 final structures show a minimal number
of NOEs violations >0.2 Å and good Ramachandran
values. These 10 structures were used for the final struc-
tural analysis (Table 1).

Isothermal titration calorimetry experiments

The interaction between mini cTAR and NC(11-55)
was investigated at 20�C in 50mM Tris HCl, 30mM
NaCl, 0.2mM MgCl2, pH 7.5 using a VP-ITC
Microcalorimeter (Microcal Corp. Northampton, MA,
USA). A typical titration experiment was done by

monitoring under constant stirring (310 r.p.m.) the heat
flow generated by repeated injections of 7 ml (in 14 s) of
a concentrated peptide solution into the oligonucleotide
solution contained in the 1.4ml sample cell of the instru-
ment. The quantity of heat accompanying each injection
of titrant was calculated as the integral versus time of
the experimental signal. A control experiment in which
NC(11-55) was titrated into the buffer alone was per-
formed in the same conditions to determine the heat of
dilution. This latter was subtracted from the heats
observed for the binding reaction. Instrument control,
data acquisition and analysis were done with the
VPViewer and the Origin software provided by the
manufacturer.

Gel retardation assays

Mini-cTAR DNA was 50-end labeled using T4 polynucleo-
tide kinase (New England Biolabs, Ipswich, MA, USA)
and [g-32P] ATP (Perkin Elmer, Waltham, MA, USA).
The 50-end labeled mini-cTAR was purified by electro-
phoresis on a 15% denaturing polyacrylamide gel and
isolated by elution followed by ethanol precipitation.
Assays were carried out in a final volume of 10 ml.
Mini-cTAR 32P-DNA (10 pmol) at 2� 103 cpm/pmol
was dissolved in 6 ml of water, heated at 90�C for 2min
and chilled for 2min on ice. Then, 2 ml of renaturation
buffer was added (final concentrations: 30mM NaCl,
0.2mM MgCl2 and 25mM Tris–HCl pH 7.5) and the
sample was incubated for 15min at 20�C in the absence
or presence of protein at various concentrations. Gel
loading buffer (final concentrations: 10% w/v glycerol,
0.01% w/v bromophenol blue, 0.01% w/v xylene cyanol)

Table 1. Experimental constraints and structural statistics for

NC(11-55):mini-cTAR

NMR-derived distance restraints
Total distance restraints 459

NC(11-55) d(23CTGG26)

Intra-residue 132 22
Sequential ( | i – j |=1) 137 3
Medium range (1< | i – j |<=4) 51
Long range (|i – j |> 4) 73
Intermolecular
NOE-derived restraints 41

Rmsd from idealized geometry (Å)
Bonds (Å) 0.0045±0.0003
Angles (deg) 0.70±0.03

X-Plor potential energies (kcal/mol)
E total �296±52

Ramachandran analysis of residues (%)
In most favorable region 70.85
In additionally allowed regions 25.02
In generously allowed regions 3.23
In disallowed regions 0.54

Backbone atoms Heavy atoms
Pairwise rmsd deviations (Å)
NC(15-28) 0.40±0.17 1.16±0.29
NC(36-49) 0.36±0.19 0.84±0.20
NC(15-49) 0.65±0.16 1.19±0.27
NC(15-49) & C23TGG26 1.41±0.29
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was added and the samples were analyzed by electro-
phoresis on a 14% polyacrylamide gel (Acrylamide:Bis-
acrylamide=29:1) at 4�C in 0.5� TBE buffer (45mM
Tris-borate pH 8.3, 1mM EDTA). After electrophoresis,
the gel was fixed, dried and autoradiographed. Free DNA
and protein-DNA complexes were quantified using
a PhosphorImager and ImageQuant software (Molecular
Dynamics, GE Healthcare Bio-Sciences Corp.,
Piscataway, NJ, USA). The fraction of bound mini-
cTAR DNA (FR) was determined using the formula
FR=1-(IF/IB+IF), where IF and IB are the band
intensities of free and bound mini-cTAR DNAs,
respectively.

RESULTS

Structures of the free partners

Analysis of interactions between NC(11-55) and mini-
cTAR has been preceded by the determination of struc-
tural and dynamic features of the free partners. Recently,
using NMR and probing methods, we investigated the
structural and dynamic properties of mini-cTAR (39).
We showed that the internal loop is responsible for the
asymmetric destabilization of mini-cTAR and that the
internal dynamics of the different parts of the molecule
occurred on a large range of time scales. The destabiliza-
tion of the lower stem by the internal loop strongly affects
its double-strand character (39). By contrast, the upper
stem is not destabilized by the internal loop.
The three-dimensional structure of NC(11-55) has been

determined using NMR experimental restraints in the
presence of 1.5 eq. zinc atoms for each zinc knuckle.
The strong tendency of the native NC to aggregate in
the presence of nucleic acids led us to use NC(11-55), a
truncated form of NC which lacks the basic N-terminal
domain (Figure 1B) (20–22). Our structural data indicate
that the folding of the two zinc knuckles around zinc ions
is well resolved, while the linker between them is poorly
defined. As a consequence, the relative positions and
orientations of the two zinc knuckles are not well
defined. The peptide structure is close to that reported
by Morellet et al. (45) under similar conditions but with
a lower pH (5.5 instead of 6.5 in the present study; the
r.m.s.d. between the two structures is 0.75 Å with residues
15–49 including the linker residues). As reported by
Morellet et al. (45), two inter zinc-knuckle NOEs are
observed between Phe16 and Trp37 and Ala25 and
Trp37, indicating that the two aromatic rings Phe16 and
Trp37 are close in space.

Characterization of the binding of NC(11-55) to
mini-cTAR

We used isothermal titration calorimetry (ITC) to deter-
mine the binding parameters for the NC(11-55):
mini-cTAR interaction. Figure 2A shows the pattern for
the titration of mini-cTAR by NC(11-55). The reaction
appears exothermic, as each aliquot of NC(11-55) causes
a negative peak of thermal power. Moreover, the figure
shows that the heat effect decreases upon incremental
additions of peptide due to saturation of mini-cTAR.

When mini-cTAR saturation was achieved, further
peptide injections were accompanied by a constant heat
effect due to dilution, as independently verified.
Integration of the area under each peak yielded the
quantity of heat released per aliquot of peptide. Figure
2B depicts the heat release as a function of the molar
ratio of peptide to oligonucleotide. A fit to a 1:1 binding
model did not adequately describe the peptide con-
centration dependence of the calorimetric signal
(X2=1.56� 105), suggesting that one molecule of mini-
cTAR binds more than one molecule of NC(11-55) in
the tested conditions. The titration data were more satis-
factorily fitted to a binding model with two independent
and identical sites for the peptide on mini-cTAR
(X2=2.61� 104), and values of 1.6±0.1mM and
�7.1±0.1 kcal mol�1 for Kd the equilibrium dissociation
constant and �H the reaction enthalpy, respectively.
However, this model was clearly inconsistent with the

Figure 2. Isothermal titration calorimetry data obtained for the
reaction of NC(11-55) with mini-cTAR at 20�C in 50mM Tris–HCl,
30mM NaCl, 0.2mM MgCl2. (A) Thermal power produced by the
successive 7 ml injections of the peptide solution (109 mM) into the oligo-
nucleotide solution (3.7 mM). The red line represents the baseline.
(B) Quantities of heat accompanying the successive injections (open
rectangle), calculated by integration of the peaks shown in (A) and
corrected for the heat of dilution. The theoretical curve (in red) repre-
sents the least square fit of these data to a 2:1 binding model with
independent sites of different affinities calculated with the best esti-
mates of Kd1, Kd2, �H1 and �H2 given in the text.
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NMR data showing a preferential binding site (see below).
In fact, 2:1 binding model with independent but different
sites appeared to be the simplest model to describe the
calorimetric data (X2=1.9� 104). The best theoretical
curve shown at figure 2B was obtained with Kd1=
0.25±0.01mM and Kd2=3.4±0.4mM, respectively,
and �H1=�5.4±0.15 kcal mol�1 and DH2=�9.2±
0.3 kcal mol�1, respectively.

In NMR studies, the complex was obtained by mixing
1mM NC(11-55) with 1mM mini-cTAR. A slight broad-
ening of both the protein and DNA resonances was
observed. As expected from the high concentrations used
and the strong binding constants, we detected only one set
of signals for the protein resonances, suggesting that all
proteins were in the bound state (data not shown).
Assignment of the DNA proton resonances allowed to
identify, for residues C22, C23, T24, G25 and G26, two sets
of distinct resonances in the H5/H10 region
(Supplementary Figure S1). For each residue, the
chemical shifts of one of the two species were very close
to the chemical shifts of free DNA, suggesting that the two
sets correspond to the free and bound forms of
mini-cTAR in chemical exchange. This is confirmed by
the observation of exchange peaks in NOESY and
TOCSY spectra connecting the two forms, and therefore
consistent with a slow exchange process (Supplementary
Figure S1). These exchange peaks are also very useful to
assign DNA resonances since those of the free form are
already known (39). From the equilibrium dissociation
constants determined by ITC, assuming two different

and independent binding sites, we calculated that �80%
of the strong binding sites and �20% of the weak binding
sites are occupied under the NMR conditions (46).
Consequently, at a 1:1 ratio of peptide to mini-cTAR,
20% of the stronger binding sites of mini-cTAR are
expected to be free of peptide due to the interaction of
�20 % of the protein bulk with the weaker binding
sites. This calculated distribution of NC(11-55) between
its two binding sites is in agreement with the NMR
data, indicating a slow exchange process between the
bound and free forms, as well as with the resonance
intensities in 1D spectra indicating a ratio 8:2 or 7:3
between the two binding sites (data not shown).
Similarly, the presence of secondary binding sites besides
a major one has also been observed for the
NC(12-55):�P(–) PBS complex (34).

NMR signal assignments for the NC(11-55):mini-cTAR
complex and analysis of NOE data

Nearly complete proton resonance assignment of the
NC(11-55):mini-cTAR complex was obtained from 2D
homonuclear TOCSY and NOESY spectra and using
the previously assigned resonances for the free forms of
mini-cTAR (39) and NC(11-55). Although formation of
the 1:1 complex generates line broadening of the peptide
resonances, the main resonances of both partners could be
assigned in the complex, due to the high quality of the 2D
NMR spectra. An illustrative example is the NH-Ha/Ha0

correlation region of the complex that is presented in
Figure 3. Comparison of the chemical shifts between

Figure 3. Selected region of the 2D NOESY spectrum obtained at 25�C in H20 (pH 6.5) for the NC(11-55):mini-cTAR complex. Most of the
intra-residues and inter-residues Ha/Ha0-NH cross-peaks of NC(11-55) are indicated with the name of the residue for the intra-residue and the names
of the two residues for the inter-residue cross-peaks.

Nucleic Acids Research, 2011, Vol. 39, No. 9 3907
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free and bound forms of NH and Ha/Ha0 protons shows
large and selective variations that help to identify the
peptide residues involved in the binding to mini-cTAR
(Figure 4A and B). Strongest shifts were identified for
Val13, Phe16, Thr24, Ala25, Cys36, Trp37, Gln45
(>0.35 p.p.m.) and Met46 residues (Figure 4A and B).
Noticeably, most of the largest variations were observed
for the residues of the C-terminal zinc knuckle (Trp37,
Gln45 and Met46).
The CH3/H5/H6/H8 aromatic and H10/H20/H200 sugar

resonances of mini-cTAR have been assigned using
the assigned free resonances (39) and the exchange
cross-peaks described above that connect the free and
bound forms of DNA (34). The four families of protons
(Figure 4C and Supplementary Figure S2) converge to

indicate that residues T24, G26 and, to a lesser degree,
G25 are the most affected residues in the complex. The
weak perturbations observed for the other residues
suggest that mini-cTAR exhibits a major binding site, in
agreement with the ITC data.

Analysis of the intra-molecular NOE cross-peaks for
DNA resonances in the imino to amino regions showed
that the four Watson–Crick base pairs detected in the
upper stem of mini-cTAR alone (39) are not destabilized,
indicating that its double-stranded structure is maintained
in the complex. Interestingly, a new imino proton signal is
detected near 10 p.p.m. Most of the inter-molecular NOE
data described below suggest that this signal is that of H1
G26. Indeed, this chemical shift is close to that of the imino
proton of H1 guanine that forms a hydrogen bond with
the NC hydrophobic platform in the NC(12-55):
�P(–)PBS complex (34). NOE cross-peak patterns of the
upper stem and apical loop were not perturbed by
NC(11-55) whereas those of the C23TGG26 sequence in
the lower stem (H6/H8-H10/H20/H200) were decreased in
the bound mini-cTAR.

Analysis of the intra-molecular cross-peaks for
NC(11-55) indicates that the folding of both zinc
knuckles in bound peptide is similar to those of the free
peptide. By contrast, a large difference is observed in the
number of inter-knuckle NOEs in the free and bound
forms. In the free form, only two NOEs involving
residues of two different zinc knuckles are observed:
(Phe16-Trp37 and Ala25-Trp37) while, in the complex,
many residues of the two zinc knuckles are observed
to be in contact: Phe16-Trp37 (with five different inter-
molecular NOEs), Phe16-Met46, Asn17-Trp37 and
Ala25-Trp37. This relatively large number of NOEs dem-
onstrates that the N and C-terminal zinc knuckles interact
strongly with each other upon binding to mini-cTAR and
that their interface is well defined.

In the NOESY spectra, 41 inter-molecular NOEs have
been identified between NC(11-55) and the T24, G25 and
G26 residues. The main NOEs are observed between T24

and Val13, Phe16, Thr24 and Ala25; between G25 and
Phe16, Thr24, Ala25 and Met46; and between G26 and
Cys36, Trp37 and Gln45 (Figure 5).

Taken together, the chemical shifts and NOE data
converge to show that NC(11-55) binds preferentially the
T24GG26 sequence located at the 30-end of mini-cTAR.
The NC(11-55) residues involved in the binding inter-
actions within our complex suggest that the NC(11-55)
mode of binding to mini-cTAR is close to that observed
in the other NC:oligonucleotide complexes with solved
structures (34–37).

Structure calculations

From the NOESY spectra, 459 NOE-derived interproton
distance restraints were obtained. They consist of 393
intra-protein NOEs, 22 intra-DNA NOEs [involving
only the four terminal residues C23–G26 residues of the
30 region that interact with NC(11-55)] and 41
inter-molecular restraints NOEs (Table 1). No dihedral
angle restraints were used for the C23–G26 residues. Fifty
structures were calculated using a protocol in which the

Figure 4. Chemical shifts changes due to complex formation between
mini-cTAR and NC(11-55). Chemical shifts changes of NH (A) and Ha
(B) of NC(11-55) upon mini-cTAR binding. Chemical shifts changes of
H10 proton of mini-cTAR upon NC(11-55) binding (C). The chemical
shift differences (in ppm) are obtained by taking the difference between
the bound (1:1 complex) and the free form.
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two folded partners have been positioned relatively to
each other in five different orientations before running
the calculations. For each of these five different initial
configurations, 10 structures were calculated and the two
lowest-energy structures of each set were kept for
analysis, resulting in 10 final structures (Figure 6).
These structures, present a minimal number of NOEs
violations >0.2 Å and good Ramachandran values
(Table 1). The superimposition for 15–49 residues of
the protein shows a pairwise r.m.s.d. of 0.65± 0.16 Å.
When the four terminal residues C23–G26 are included
the r.m.s.d is 1.41 Å (Table 1). It is important to
compare these results to those of the calculations per-
formed with all the residues of mini-cTAR: these latter
calculations indicate an r.m.s.d. for the same region of
1.45 Å (see ‘Materials and Methods’ section). Moreover,
close comparison of the best structures show an r.m.s.d.
of 1.38 Å between the two families of structures (the ones
calculated with C23–G26 residues opposed to the ones
calculated with all the residues). These data indicate

that there is no impact of the other residues of
mini-cTAR on the NCp7(11-55):C23TGG26 complex.

Description of the structure

Both zinc knuckles of NC(11-55) are characterized by a
hydrophobic cleft formed by Val13, Phe16, Thr24 and
Ala25 for the N-terminal knuckle and Trp37, Gln45 and
Met46 for the C-terminal knuckle (Figure 6A). In the
NC(11-55):mini-cTAR complex, the nucleobase of G26 is
inserted deeply in the C-terminal knuckle while the
nucleobase of T24 is partly inserted in the N-terminal
knuckle (Figure 6B). The nucleobase of T24 is involved
in stacking interactions with the Phe16 and Val13 side
chains (Figure 6B and C). The aromatic ring of G26

stacks with the Trp37 and Gln45 side chains (Figure 6B
and C). In addition, the nucleobase of G26 is stabilized by
four hydrogen bonds, namely GH1 with backbone
carbonyl group of Gly35, H22 of G26 with backbone
carbonyl group of Lys33, O6 of G26 with NH of Trp37,
and NH of Met46 with N7 of G26 (Figure 7). The

Figure 5. Portion of the NOESY spectrum recorded at 30�C in H2O (pH 6.5) for 1mM of the NC(11-55):mini-cTAR complex. The spectrum shows
some important intermolecular NOEs between the peptide and mini-cTAR: H10 T24-Hb A25 (1); CH3 T24-Hd F16 (2); H20 T24-Hd F16 (3); H20

T24-He F16 (4); H20, H20 0 G25-Hd F16 (5); H20, H20 0 G25-He F16 (6); H20 G26-dNH1 Q45 (7); H20 0 G26-dNH1 Q45 (8). Amino acid residues and
nucleotides are in black and red, respectively. Note that T24 designates both the threonine 24 residue of NC(11-55) and the thymine 24 residue of
mini-cTAR.
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phosphodiester backbone of G26 makes electrostatic
contacts with Arg26 (Figure 7). Although the nucleobase
of G25 is not involved in interactions with NC(11-55), the
ribose moiety of G25 makes hydrophobic contacts with
Met46. Moreover, Lys38 and Lys47 form two salt-bridges
(electrostatic contacts) with the phosphodiester backbone
of G25 (Figure 7).

Numerous packing interactions involving not only the
nucleobases of T24 and G26 but also the ribose moieties
and phosphodiester backbones of T24, G25 and G26 char-
acterize the NC(11-55):mini-cTAR complex. Contacts
were identified by measuring the distances between the
protein and DNA atoms following an approach
followed in others studies (47). In DNA, the C10 and C20

carbons are mainly involved in contacts with protein
hydrophobic groups, namely the aromatic side chain of
Phe16 and Trp37, and the methyl groups of Thr24,
Met46 and Val13. It is interesting to note that for the
three residues T24, G25 and G26, hydrophobic contacts
occur with the same ‘side’ of sugars. Indeed, if we define
two sides for the deoxyribose sugars: one containing the
C10, C20 and O40 atoms (‘side’ 1), and another with the C40

and C50 atoms (‘side’ 2), we observe that hydrophobic
contacts are made always with the ‘side’ 1. This is
exemplified in Figures 8 and 9, where the violet spheres
corresponding to ‘side’ 1 are clearly closer to the protein
hydrophobic groups than the green spheres representing
the ‘side’ 2. The contacts have been quantified following
the approach depicted in Tolstorukov et al. (47) that
consists to measure the close distance between atoms
involved in van der Waals interactions and the results
are reported in Figure 9B. Such a protein–DNA recogni-
tion involving deoxyribose sugars appears therefore as a

Figure 6. Views showing the best structures of the NC(11-55):
mini-cTAR complex (A). Superimposition of the 10 best structures of
NC(11-55) in its bound form (backbone atoms from residues 15 to 49).
Only side chains of protein residues interacting with DNA are repre-
sented. Residues are color coded as follows: Phe16 and Trp37, red;
Val13, Thr24, Ala25, Gln45, Met46 and Lys47, green; Arg26, Arg32
and Lys38, purple. (B) View of a representative structure of
NC(11-55):mini-cTAR complex showing amino-acid residues and nu-
cleotides involved in the binding site. Residues are color coded as
follows: Phe16 and Trp37, red; Val13, Thr24, Ala25, Arg26, Arg32,
Lys38, Gln45, Met46 and Lys47, blue; T24, G25 and G26, orange. The
zinc atoms are displayed as white spheres. (C) View of the 10 best
structures of NC(11-55):T24GG26 interaction. T24, G25 and G26 are in
orange; for the protein only Phe16 and Trp37 residues are shown (in
red). The picture underlines the stacking interactions and the insertion
of Phe16 and Trp37 between the nucleobases of T24 and G26.

Figure 7. View showing the electrostatic contacts and hydrogen bonds
between NC(11-55) and mini-cTAR. Only the side-chain residues
involved in the electrostatic contacts (Arg26, Lys38 and Lys47) and
hydrogen bonds (Lys33, Gly35, Trp37 and Met46) are indicated in
cyan and red, respectively. Electrostatic interactions are between:
Arg26 and G26, Lys38 and G25, Lys47 and G25. Hydrogen bonds are
between G26 and Lys33, Gly35, Trp37 and Met46.
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possible means to stabilize the complex through contacts
involving hydrophobic side chains.

Gel retardation analysis of the interaction between
mini-cTAR DNA and NC(11-55)

To confirm that the T24GG26 sequence is accessible to NC
and the apical loop of mini-cTAR is not a strong binding
site for NC, we carried out gel retardation assays with
mini-cTAR and the mini-cTARIN2 mutant (Figure 10).
In the mutant, the internal loop was deleted, while the
apical loop was preserved (Figure 1A). As a consequence
of the deletion of the internal loop, the T24GG26 sequence
of mini-cTARIN2 is predicted to be included in a stable
double-stranded stem. Heat-denatured mini-cTAR DNAs
(Figure 10A and B, lanes 2 and 1, respectively) were used
to locate the position of monomeric mini-cTAR DNAs.
To identify the positions of bands corresponding to
dimeric mini-cTAR DNAs, the proteins were removed
before gel analysis (Figure 10A and B, lanes 1 and 7, re-
spectively). After renaturation and incubation at a protein
to nucleotide molar ratio of 1:1, the majority of
mini-cTAR DNAs remained monomeric (Figure 10A
and B, lanes 1 and 7, respectively). Addition of increasing
amounts of NC(11-55) resulted in the appearance of band
CI migrating at a rate expected for the NC(11-55):
mini-cTAR complex (Figure 10A). Interestingly, the
amount of protein-RNA complexes was barely detectable
with the IN2 mutant, showing that the apical loop is not

responsible for tight binding of NC(11-55) to mini-cTAR.
Addition of increasing amounts of NC resulted in two
bands (Figure 10B), namely the band CI migrating at
a rate expected for the NC:mini-cTAR complex and
the band CII corresponding to high-molecular-weight
protein:mini-cTAR complexes (aggregates) that
remained at the top of wells. Deletion of the internal

Figure 9. Hydrophobic contacts associated with the deoxyribose
rings in the NC(11-55):mini-cTAR. (A) Two different views of the
NC(11-55):mini-cTAR complex displaying the hydrophobic contacts
involving the deoxyribose rings. Protein side chains in close contacts
with deoxyriboses are displayed as spheres. For a better visualization
of the contacts, the nucleobases of the nucleotide residues are not
represented. In the deoxyriboses, C20 and C50 atoms are indicated by
violet and green spheres, respectively. (B) Cumulative numbers of
protein-DNA contacts involving sugar atoms in the NC(11-55):
mini-cTAR complex. Contacts with sugars involve atoms C10, C20,
O40, C30, C40 and C50 for the three residues T24, G25 and G26. The
contacts were counted within three cutoff distances: 3.5 Å (black areas
in the bars), 4.0 Å (hatched areas) and 4.5 Å (white areas).

Figure 8. View of the NC(11-55):mini-cTAR complex displaying the
hydrophobic contacts between the two partners. Hydrophobic side
chains of Thr24, Phe16, Met46 Trp37, Gln45 residues of NC(11-55)
are indicated by spheres of various colors. For the oligonucleotide,
the C20 and C50 atoms are indicated by violet and green spheres,
respectively.
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loop significantly reduced the binding of NC to the IN2
mutant (Figure 10B and C).

DISCUSSION

Nucleic acid sequence recognition by NC

NC preferentially binds single-stranded nucleic acids con-
taining unpaired guanine residues (14,17). Structural and
kinetic studies reported that the RNA apical loops
displaying the GNG sequences constitute high-affinity-
binding sites for NC (36–38). Moreover, studies per-
formed with DNA oligonucleotides showed that NC
binds with high affinity the TG, GNG and TNG se-
quences (23,48,49). Thus, similar preferences rules
appear to be applicable to DNA and RNA sequences.
Structural studies showed that three or four nucleic acid
residues are involved in the protein binding and that in all
cases a guanine residue is inserted deeply in a hydrophobic
pocket located in the C-terminal zinc knuckle (34–38).

Most of the structures of NC:nucleic acid complexes
reported to date were determined with stem–loop struc-
tures containing only one binding site for HIV-1 NC in the
apical loop (35,37,50). The only exception is �P(–)PBS
where two NC binding sites were reported: a high
affinity site in the apical loop and a low affinity site (the
CGG sequence) in the short stem (34). Mini-cTAR is
thought to possess three potential NC binding sites,
since it contains (Figure 1) two unpaired guanine
residues in the apical loop, one unpaired guanine residue
in the internal loop and a TG dinucleotide in the lower
stem, which has been shown to alternate between
single-stranded and double-stranded states (39).
Therefore, mini-cTAR constitutes a good model to
provide insights into the mechanisms of NC:DNA recog-
nition and NC ability to discriminate between different
putative binding sites. Our data show that NC(11-55)
binds specifically to the T24GG26 sequence located in the
unstable lower stem of mini-cTAR. A low-affinity-binding
site was detected by ITC, but could not be further
characterized by NMR experiments. Interestingly,
chemical shift perturbations and inter-molecular NOEs
showed that there is no significant NC binding to both
the apical loop and the internal loop. Gel retardation ex-
periments confirmed that the binding of NC(11-55) to the
apical loop is very low since the amount of protein-RNA
complexes was barely detectable with the mini-cTARIN2
mutant, where the internal loop is deleted but the apical
loop is preserved (Figure 10). The apical loop is probably
not a high affinity site for NC since its two unpaired
guanine residues are involved in stacking interactions
with neighbor residues, so that their availability to
contact protein residues is limited (39). A similar conclu-
sion could be reached with the G20 nucleobase in the
internal loop, which was shown to be involved in a con-
formational exchange with neighbor nucleobases in the
free form of mini-cTAR, so that residue G20 could pair
with residue A5 or stack with residues A5 and A21 (39). In
contrast, the G26 residue at the 3

0 end is probably the most
accessible unpaired guanine residue since the lower stem is
strongly destabilized by the internal loop.

Figure 10. Gel retardation assays of protein:mini-cTAR DNA
complexes formed in vitro. Mini-cTAR 32P-DNAs were incubated in
presence of NC(11-55) (A) or NC (B) and analyzed by electrophoresis
on a 14 % polyacrylamide gel as described in ‘Materials and Methods’
section. (A) Lane 1, controls mini-cTAR dimerization induced by
NC(11-55) at a protein to nucleotide molar ratio of 1:1 (NC(11-55)
was removed by phenol/chloroform before gel electrophoresis); lane
2, heat-denatured mini-cTAR DNAs; lanes 3, controls without
protein; lanes 4–7, protein to nucleotide molar ratios were 1:8, 1:4,
1:2 and 1:1. (B) Lane 1, heat-denatured mini-cTAR DNAs; lane 2,
controls without protein; lanes 3–6, protein to nucleotide molar ratios
were 1:8, 1:4, 1:2 and 1:1; lane 7, controls mini-cTAR dimerization
induced by NC at a protein to nucleotide molar ratio of 1:1 (NC
was removed by phenol/chloroform before gel electrophoresis).
Monomeric and dimeric forms of free mini-cTAR DNAs are indicated
by fm and fd, respectively. CI indicates the protein:mini-cTAR
complexes. CII indicates the high-molecular-mass protein:mini-cTAR
complexes (aggregates). (C) Fraction of bound mini-cTAR as a
function of the protein/oligonucleotide (expressed in nt) ratio. The
graph was derived from the experiments shown in (A) and (B).
Continuous line, mini-cTAR; broken lines, mini-cTARIN2; triangles,
NC(11-55); circles, NC.
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Interestingly, the binding site that we identified in
mini-cTAR could be written as TNG, T24 and G26 being
the two nucleobases making stacking interactions with
Phe16 and Trp37, respectively. By contrast, the G25

nucleobase (N) does not make strong stacking interactions
with NC(11-55) amino acids, suggesting that the T24G25

dinucleotide does not constitute a high-affinity-binding
motif in mini-cTAR. Moreover, comparison of the
NC(11-55):mini-cTAR complex with the NC(12-55):
�P(–)PBS complex (34) indicates that residues T24 and
G26 in mini-cTAR and the TG dinucleotide in the apical
loop of �P(–)PBS play a similar role in the binding to NC.
However, in contrast to the known NC:DNA complexes
(34,35), a third residue (G25) makes electrostatic and
hydrophobic contacts with NC(11-55). This is also the
case in the NC:RNA complexes (37,50).

Our results underline that NC is able to discriminate
between different guanine-containing motifs in
single-stranded DNAs. The NC binding strength appears
to depend on (i) the accessibility of the guanine residue
and (ii) the presence of a thymine residue that can form
specific hydrophobic interactions. These two factors
converge toward the selection of the TNG site in the
mini-cTAR hairpin. These data confirm the ability of
NC to recognize specific sequences among various sites
(48,49).

NC binds to DNAs and RNAs with opposite polarities

The interaction of the G26 residue in mini-cTAR with the
C-terminal zinc knuckle through stacking interactions and
numerous hydrogen bonds is highly similar to that
observed with the guanine residues in other NC:nucleic
acid complexes (35,36). Moreover, the binding mode of
T24 with Phe16 located in the N-terminal zinc knuckle is
close to that reported for the T6 residue of �(–)PBS (34).
The binding mode of NC(11-55) to mini-cTAR could be
considered to be intermediate between the two alternatives
modes of NC binding already known. In the first mode
characterized with DNA oligonucleotides (34,35), the
C-terminal zinc knuckle (designated F2) interacts with a
guanine residue and the N-terminal zinc knuckle
(designated F1) interacts with the residue (C or T) imme-
diately upstream to the guanine residue. In the second
mode characterized in the three NC:RNA complexes
(37,38,50), F1 and F2 interact (through both hydrogen
bonding and stacking interactions) with two guanine
residues separated by a third residue, i.e. the recognized
sequence is GNG (36–38); in this latter mode F1 interacts
with the nucleobase located at the 30 side of the nucleobase
interacting with F2. In the complex presented here, G26

interacts with F2 and T24 interacts with F1 like in the first
mode but a third residue, G25, interacts with F2 which is a
feature only found in the second mode. Note that in all the
solved structures of NC:nucleic acid complexes (six with
this study), Trp37 interacts with a guanine residue.

The binding polarity of NC complexed to mini-cTAR
is similar to that observed in the two previously NMR-
solved structures of NC:DNA complexes (34,35) but
opposite to that observed in the NC:RNA complexes
(37,50), where F1 recognizes a residue located

downstream (30) to the G residue recognized by F2.
Thus, our data support the notion that the N to
C-terminal chain of the protein is parallel to the 50 to
30 direction of DNA strand but antiparallel to the 50 to 30

direction of RNA strand.

Role of the sugars in the nucleic acid binding polarity
of NC

As underlined in recent studies (34,51), the NC:nucleic
acids complexes are stabilized by hydrophobic, electrostat-
ic and hydrogen bonding interactions. Most hydrophobic
stacking interactions involve the G and T nucleobases and
the Phe16 and Trp37 aromatic side chains. However, the
NC(11-55):mini-cTAR complex shows also numerous
hydrophobic contacts involving deoxyribose sugars. To
obtain a clear view of the DNA atoms involved in these
contacts, we measured the distances between the carbons/
oxygen atoms of the deoxyribose sugars and the carbons/
oxygens/nitrogen atoms of NC(11-55) (Figure 9). Our
analysis allowed to identify hydrophobic contacts
between the side chains of hydrophobic residues (Phe16,
Thr24, Trp37, Gln45 and Met46) and carbons C10 and C20

of the sugar ring of the T24, G25, G26 residues whereas
only few hydrophobic contacts with carbons C40 and C50

were observed (Figures 8 and 9). Hydrophobic contacts
are well identified between: (i) Phe16 and C20 of T24, (ii)
Met46 and C20 of G25, (iii) Trp37 and O40 and C10 of G26.
This network of interactions indicate that the ‘side’ of the
deoxyribose sugar bearing C10 and C20 atoms is positioned
in close proximity with the protein residues while the other
‘side’ with C40 and C50 atoms is directed towards the
outside of the complex (see the differences between green
(C50) and violet (C20) in Figures 8 and 9A). Interestingly,
a similar set of contacts involving the same ‘side’ of
the sugars was observed for the two other available
NC:DNA complexes (34,35) (Figure 11), suggesting that
these hydrophobic interactions with the deoxyribose
sugars are a hallmark of the binding of NC to DNA
sequences.
As mentioned above, the orientation of the RNA chain

in the NC:RNA complexes is opposite to that of the DNA
chain in the NC:DNA complexes. Investigation of the
sugar ribose contacts with the hydrophobic groups of
the protein in the NC:RNA complexes indicates strong
differences with those observed for the deoxyribose
sugars in NC:DNA complexes. In the NC:SL3 complex,
atoms O40, C40 and C50 of G210 and A211 sugars are in
close contacts with Phe16 while C20 atoms bearing the
polar OH, is far from the protein residues
(Supplementary Figure S3). Similarly, in the NC:SL2
complex only the sugar atoms C40 and C50 of U210 are
in close contact with Phe16 aromatic side chain (data
not shown). Note also for these two complexes and par-
ticularly for the NC:SL3 complex the strong contacts
between the O40 and Phe16 that are not observed in the
NC(11-55):DNA complexes (Supplementary Figure S3).
Thus, in the NC:RNA complexes, the C20 atoms bearing
the polar OH group do not participate to the hydro-
phobic interface of the complex, while it is strongly
involved in the DNA–protein interaction (Figure 8 and
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Supplementary Figure S3). We suggest that, due to the
additional hydroxyl group at the C20 position riboses as
compared to deoxyriboses, the hydrophobic contacts of
the sugars with the protein strongly differ in the two
types of complexes. While the C20, C10 ‘side’ of the deoxy-
ribose sugar is largely hydrophobic and is therefore
involved in contacts with hydrophobic side chains of the
protein, the same ‘side’ in RNA sugars is hydrophilic and
does not participate in NC binding.
Therefore, we propose that the different sugar–protein

contacts in the two kinds of complexes play an important
role in the determination of the nucleic acid binding
polarity of NC. Investigation of inter-molecular contacts
in a great number of RNA:proteins complexes under-
scores the fact that although many researchers frequently
focus their analysis on interactions between nucleobases
and amino acid side chains, contacts involving nucleotide
sugar constitute a significant and underestimated part of
protein–nucleic acid interactions (52,53). Concerning
contacts involving DNA sugars, statistical studies show
that their contribution is minor in double-stranded
nucleic acids except when the protein interacts mainly
with the minor groove, (47,52,53). This is expected since
the sugar deoxyriboses are hardly accessible in the major
groove of double-stranded nucleic acids. The situation is
very different when the protein contacts single-stranded in
which sugar deoxyriboses are not buried in double helix,
as it is probably the case for the lower stem of mini-cTAR.
Indeed, the lower stem is not formed or the base pairing
interaction between nucleotides C1CAG4 and C23TGG26

is only transient (39). The ability of NC to contact sugars

through hydrophobic contacts could be critical for the
selection of single stranded versus double-stranded
nucleic acids. NC also recognizes single-stranded nucleic
acids by interacting with unpaired nucleobases and
more specifically with guanine residues. It is therefore
likely that NC discriminates single-stranded from
double-stranded nucleic acids recognizing unpaired
nucleobases (guanines) and accessible sugars.

CONCLUSIONS

An important property of NC, which has been
characterized by our study and the analysis of the avail-
able structural data, is its ability to recognize the polarity
of the nucleic acid chain. This property is probably im-
portant for the strand transfer events occurring during
reverse transcription and responsible for recombination.
Interestingly, this property is shared by the family of
proteins possessing an OB-fold (oligosaccharide/oligo-
nucleotide binding fold). Most of the members of this
family (RPA, EcSSB and BRCA2) are proteins involved
in the DNA recombination (54–56).

Besides structural information, the present work under-
lines the ability of NC to select the TGG sequence among
three putative regions possessing unpaired guanines.
The reasons for this preferential binding, mobility and
accessibility of residues and role of the context sequence
will be investigated in future studies. Additional experi-
ments will be necessary to demonstrate that the TGG
sequence is really a strong binding site for NC in the
full-length cTAR hairpin or in an extended version of

Figure 11. Views of the NC(12-55):PBS complex (A) (34) and the NC(12-53):d(ACGCC) complex (B) (35) displaying the hydrophobic contacts with
the deoxyribose rings. The color code is similar to those of Figure 9.
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mini-cTAR. Identification of preferred binding sites in the
TAR and cTAR molecules is necessary to propose models
for the annealing mechanism mediated by NC. However,
to get a real insight into this mechanism, experiments
involving the three partners TAR, cTAR and NC are
required.
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