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ABSTRACT
This work reports results on the simultaneous spectroscopy of the specific heat and thermal expansivity of glycerol by making use of a
wideband time-resolved thermal lens (TL) technique. An analytical model is presented which describes TL transients in a relaxing system
subjected to impulsive laser heating. Experimentally, a set of TL waveforms, from 1 ns to 20 ms, has been recorded for a glycerol sample
upon supercooling, from 300 to 200 K. The satisfactory fitting of the TL signals to the model allows the assessment of relaxation strength
and relaxation frequency of the two quantities up to sub-100 MHz, extending the specific heat and thermal expansion spectroscopy by nearly
three and eight decades, respectively. Fragility values, extracted from the relaxation behavior of the specific heat and the thermal expansion
coefficient, are found to be similar, despite a substantial difference in relaxation strength.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060310

I. INTRODUCTION

Upon cooling below the freezing point, most liquids can avoid
crystallization,1,2 provided the cooling takes place sufficiently
fast, and reach a metastable glassy state. This phenomenon,
i.e., supercooling or undercooling, has been at the forefront of
condensed matter research for decades3–6 owing to its impact on
various branches of science and technology, e.g., energy storage,7
food manufacturing,8 and pharmaceutical development.9 Super-
cooled materials exhibit a frequency-dependent response to dif-
ferent kinds of stimuli.10–12 The most direct manifestation of this
feature is expressed in the frequency dependence of the elastic
moduli of such relaxing systems, which behave more rigidly upon
faster stimulation due to a decreasing number of possibilities for
cooperative molecular motions within an oscillation period. The

characteristic relaxation frequency, i.e., the frequency below which
the system behaves substantially more softly than in the high-
frequency limit, drastically decreases with decreasing tempera-
ture.13,14 In the so-called strong glasses, the temperature depen-
dence of the relaxation frequency follows an Arrhenius law. In
the so-called fragile systems, the Arrhenius plot is curved. The
degree of temperature variation of its slope, which is proportional
to the activation energy of the related process (e.g., mechanical
compression), is quantified by the so-called fragility.15 As the
temperature dependence of the relaxation dynamics is strong,3
many attempts have been made to develop and combine differ-
ent experimental approaches to address the relaxation dynamics
in a broad frequency range. Dielectric spectroscopy and mechani-
cal spectroscopy13 are the most frequently used techniques owing
to their extraordinary bandwidth, covering 1816 and 13 decades,17
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respectively, and enabling the test of several key predictions and
models developed in glass physics across a wide temperature range,
e.g., time–temperature superposition,18,19 power law,20 or mode-
coupling theory.21–23 Along with dielectric and mechanical relax-
ation, thermal relaxation19,24,25 has also proven to be valuable to
investigate as it is closely tied with the thermodynamics of the
system. Specifically, thermal relaxation is believed to couple all
degrees of freedom equally, which is not the case for dielectric
or mechanical relaxation that couples mainly rotational or trans-
lational motions, respectively.26,27 In practice, thermal relaxation
has been observed as a frequency dependence of the specific heat
capacity C(ω) through the 3-ω technique,27,28 photopyroelectric
spectroscopy (PPE),29,30 and AC-chip nano-calorimetry,31 and of
the thermal expansion coefficient γ(ω) through capacitive scan-
ning dilatometry.32,33 However, until now, the possibility of ther-
mal relaxation has been comparatively much less exploited because
of the narrow frequency range that could be experimentally cov-
ered by thermal response techniques, about 100 kHz for specific
heat spectroscopy29,30 and only 1 Hz for thermal expansivity spec-
troscopy.32,33 Interestingly, it has been observed in some glass for-
mers that the rotational motion slows down more dramatically than
the translational motion,34,35 namely, the so-called time-scale decou-
pling.19,36 Thermal relaxation couples all motions and weights all
degrees of freedom in the liquid equally, which raises the ques-
tion of whether such features are also manifest in the thermal
relaxation dynamics, which reflect the combined energetic impact
of all motional (translational, shear, rotational, and vibrational)
degrees of freedom. In particular, it would be interesting to ver-
ify whether the fragility and the temperature dependence of the
relaxation frequency (see below for the quantitative definition) of
the heat capacity are consistent with the ones measured via other
susceptibilities.

In this work, we report on the broadband spectroscopy of
C(ω) and γ(ω) all the way to sub-100 MHz exploiting time-resolved
thermal lens (TL) spectroscopy in which the transient density or
strain response of a relaxing sample, triggered by a short pulse
laser heating, is exploited to investigate the structural relaxation
behavior. The detailed theoretical modeling of the time-resolved
TL signals in a relaxing system is presented. An experimental TL
spectroscopy of the thermal relaxation dynamics, C(ω) and γ(ω),
in supercooled glycerol is illustrated. Key relaxation features, e.g.,
low/high-frequency limit response, relaxation strength, and char-
acteristic frequencies, are determined and compared with those
of mechanical and dielectric relaxation as determined by other
techniques.

This article is structured as follows: In Sec. II, we present
the modeling of the TL response in a glassy system, starting
with the calculation of the temperature response, initiated by the
impulsive photothermal excitation, to the derivation of thermoe-
lastic coupling in a relaxing system. Finally, an analytical expres-
sion to describe the time-resolved TL response based on Fourier
optics is proposed. Section III shows the experimental TL spec-
troscopy of the slowing glassy dynamics in supercooled glyc-
erol. The model developed in this work is deployed to extract
C(ω) and γ(ω) in a board frequency range, from sub-kilohertz
to tens of MHz, and in a wide temperature range from 200 to
300 K. Conclusions and perspectives of the approach are given in
Sec. IV.

II. MODELING OF THE TL RESPONSE IN A RELAXING
SYSTEM

TL spectroscopy is a photothermal method that detects the
temperature variation in a sample due to heat generated from non-
radiative relaxation processes resulting from the optical absorption
of light.37 It has been widely used for the thermo-optical character-
ization of materials, spectrometry of photochemical reactions, and
trace analyses of gas and liquids.38–42 This work extends its applica-
tion to the spectroscopy of glassy dynamics, focusing on the relax-
ation of specific heat and thermal expansivity. We start with the
theoretical modeling of the time-resolved TL response in a relaxing
system.

Figure 1 shows a typical beam geometry in TL experiments, in
which coaxially aligned pump (red) and probe (green) laser beams
are focused into the bulk of a weakly absorbing sample that is sealed
in a cuvette. Local photothermal heating near the pump beam waist
produces a transverse temperature gradient and gives rise to a refrac-
tive index gradient and hence a TL (gradient-index). The TL may
behave like a concave or a convex lens, depending on the thermo-
optical coefficient of the sample, which perturbs the wavefront of the
propagating probe beam, e.g., beam divergence. The rationalization
of the experiments can be achieved with the following three steps:
In the first step (A), the temperature distribution in the sample is
calculated; in the second step (B), the strain response, caused by the
thermally induced radial strain, namely, a combination of the ther-
mal strain and acoustic strain, is derived; and in the third step (C),
the optical far-field variation is calculated based on Fourier optics.

A. Photothermally induced temperature field
in a relaxing system

Given a weakly absorbing material, in a TL experiment scheme,
the heat distribution along the (collinear) pump and probe beam
direction or the z-direction can be considered uniform since the
axial distance over which the probe beam interacts with the sample
is much shorter than the optical penetration depth. The temperature
field then depends only on the radial direction. The heat diffusion
equation can be written in cylindrical coordinates as43,44

1
r
∂

∂r
(r

∂ΔT(r, t)
∂r

) − 1
α
∂ΔT(r, t)

∂t
= −Q(r, t)

κ
, (1)

FIG. 1. A schematic diagram of the geometric arrangement of the pump–probe
beams in a TL experiment. The position of the probe beam waist, ωop, is taken as
the origin (z = 0) along the z-axis. The sample is located at z1. A focused pump
beam of spot size (radius) ωe is used to photothermally excite the sample, causing
the thermal lens effect that perturbs the optical field at the detection plane located
at the distance of z2 from the sample center.
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where ΔT (r = R, t) = 0 is the boundary condition, with R (mm)
being the radius of the sample, which also defines the calculation
(cylindrical) domain with an artificial boundary condition; α = κ/ρC
(m2 s−1) is the thermal diffusivity; and κ (W m−1 K−1), ρ (kg m−3),
and C (J kg−1 K−1) are the thermal conductivity, density, and specific
heat capacity, respectively. Q(r, t) (J s−1 m−3) is the absorbed power
density, which, in the case of the TEM00 Gaussian excitation beam,
can be expressed, within the paraxial approximation, as43

Q(r, t) = Q0 exp(−2r2

ω2
e
)δ(t), (2)

where Q0 (J m−3) is the supplied heat density. The Dirac delta func-
tion in time δ(t) (s−1) accounts for the impulsive excitation. The
physical meaning of this condition is that the system is initially
at equilibrium, i.e., ΔT (r, t) = 0 for t < 0, and at time t = 0, an
ultrashort pulse excites the system. After the Fourier transform, the
temperature distribution in the frequency domain can be written as

1
r
∂

∂r
(r

∂ΔT̃(r,ω)
∂r

) − iω
α
ΔT̃(r,ω) = − Q0

2πκ
exp(−2r2

ω2
e
), (3)

with i2 = −1. Functions defined on a finite interval can be expanded
in terms of a Fourier Bessel series.45 Thus, the solution of Eq. (3) can
be written as

ΔT̃(r,ω) =
∞
∑
n=1

J0(qnr)θn(ω), (4)

where qn = j0n/R, with j0n denoting the nth root of the zero-order
Bessel function of the first kind J0(x), and θn(ω) is the correspond-
ing Fourier Bessel coefficients. Inserting Eq. (4) into Eq. (3) (see
supplementary material for detailed calculation) yields

∞
∑
n=1

J0(qnr)θn(ω)(κq2
n + iωρC) = Q0

2π
exp(−2r2

ω2
e
). (5)

Then, the unknown Fourier Bessel coefficients θn(ω) can be deter-
mined by using the orthogonality properties of the Bessel function.46

Multiplying rJ0(qn′r) on both sides of Eq. (5) and integrating over r
from 0 to R, we obtain

θn(ω) =
Q0In

πJ2
1( j0n)R2 ×

1
κq2

n + iωρC
, (6)

where J1(x) is the 1st order Bessel function of the first kind. In can
be approximated as

In =
R

∫
0

exp(−2r2

ω2
e
)J0(qnr)rdr

≈
∞

∫
0

exp(−2r2

ω2
e
)J0(qnr)rdr = ω

2
e

4
exp(−ω

2
e q2

n

8
). (7)

This approximation is reasonable as the radius of the sample far
exceeds the excitation beam waist (R = 5 mm and ωe ≈ 30 μm in our
experiment). The last equality arises using the Hankel transform of

the Gaussian function. In the impulsive stimulated TL experiment of
glassy systems, complex frequency-dependent behavior is found for
the specific heat capacity. We assume that the thermal conductivity
is frequency independent, which has been validated up to kilohertz
frequencies,27,30 although it is unclear to what extent the assumption
can still hold. Following the Debye relaxation model, we use

C(ω) = C∞ +
ΔC

1 + iω/ωC
, (8)

where ΔC = C0 − C∞, with C∞ being the high-frequency limit and
C0 the low-frequency (or static) limit of specific heat capacity, and
ωC (s−1) is the characteristic relaxation (angular) frequency, which
strongly depends on temperature. Thus, the final temperature dis-
tribution in the frequency domain is obtained by combining the
aforementioned relations as follows:

ΔT̃(r,ω) =
∞
∑
n=1

J0(qnr) Q0In

πρC∞J2
1( j0n)R2 ×

−i(ω − iωC)
(ω − ω1n)(ω − ω2n)

, (9)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1n =
i
2
⎛
⎝

q2
nα + ωC/(1 − ΔC

C0
)

−
√
−4q2

nαωC + (q2
nα + ωC/(1 − ΔC

C0
))

2⎞
⎠

,

ω2n =
i
2
⎛
⎝

q2
nα + ωC/(1 − ΔC

C0
)

+
√
−4q2

nαωC + (q2
nα + ωC/(1 − ΔC

C0
))

2⎞
⎠

,

(10)

where α = α0/(1 − ΔC/C0), with α0 = κ/ρC0. The advantage of the
notation in Eq. (9) is that it is easily transformed back to the time
domain by making use of the residue theorem (see supplementary
material B for detailed expression), yielding ΔT (r, t) in terms of the
sum of two exponentially damped contributions as follows:

ΔT(r, t) =
∞
∑
n=1

J0(qnr) 2Q0In

ρC∞J2
1( j0n)R2

× ((ω1n − iωC)
ω1n −ω2n

exp(iω1nt)+ (ω2n − iωC)
ω2n −ω1n

exp(iω2nt))H(t),
(11)

where H(t) is the Heaviside step function. If the specific heat capac-
ity is independent of frequency (i.e., ΔC = 0), ω1n and ω2n reduce
to iωC and iq2

nα0, respectively. Then, the expression for temperature
reduces to the well-known thermal diffusion equation with q2

nα0 as
the thermal diffusion coefficient as follows:

ΔT(r, t) =
∞
∑
n=1

J0(qnr) 2Q0In

ρC∞J2
1( j0n)R2 × exp(−q2

nα0t)H(t). (12)

Equation (11) calculates the temperature response induced by Dirac
delta laser pulses. By calculating (numerically) the convolution
between Eq. (11) and a Gaussian function or rectangular function,
one can simulate the temperature response induced by laser pulses
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of finite width. The advantage of using the Dirac delta function to
describe the laser pulse is that it makes it possible to model the TL
response in a completely analytical way, which significantly reduces
the computation power in the fitting process. However, the width of
laser pulses does pose an upper limit of the experimental accessible
bandwidth, as illustrated in Fig. 2, which was simulated based on the
parameters listed in Table I.

Note that, in the absence of the diffusion term or by setting
t = 0 in Eq. (12), the Bessel series corresponds to the Bessel expan-
sion of the spatial part of the heat source. In other words, at t = 0,
the temperature profile corresponds to the heat source profile. In the
presence of thermal diffusion, every Bessel wavenumber component
diffuses exponentially with thermal diffusion time 1/q2

nα0.
In the case of a non-relaxing material or a material in which

the relaxation time is much shorter or much longer than the time
needed for the photothermally deposited heat to diffuse away from
the excitation region to the surrounding medium, the two expo-
nentials in Eq. (11) decay with the classical thermal diffusion time
τTD = 1/(q2D). D denotes the thermal diffusivity, D = k/ρCeff , with
k the thermal conductivity, ρ the density, q the wavenumber of the
involved spatial Fourier component of the temperature profile, and
Ceff an effective value of the specific heat capacity, which is either the
low- or high-frequency limit for τTD ≫ τC or τTD ≪ τC. When the
heat capacity relaxation occurs on the time scale of the thermal dif-
fusion, the wash out the deposited heat can only be described by two
exponentials with different decay times, expressing the combined
effect of two processes: thermal diffusion and material relaxation.
Figure 2 illustrates the effect of relaxation in the time domain via the
temperature evolution of glycerol after a single laser pulse stimula-
tion in the center of the pump laser beam (r = 0). The evolution of
the impulse response can be intuitively explained as follows: Initially,
the photothermally supplied heat only contributes to the vibrational
degrees of freedom, resulting in a large initial temperature rise. In
the assumed model, this temperature rise is instantaneous. Note
that in reality, the photothermally induced temperature increase
occurs on time scales determined by the laser pulse dynamics (in our
case: nanosecond range) and by optical phonons (picosecond range).
As time increases beyond the relaxation time of cooperative con-
figurational network rearrangements, some of the thermal energy
is transferred to irreversible rearrangements of the amorphous
network. This goes along with a decrease in energy in the vibrational
states and thus a decrease in the experimentally observed tempera-
ture. Mathematically, this evolution can be described by an effective,

FIG. 2. Simulated normalized temperature response at the focal point of the pump
beam (r = 0), with input parameters from glycerol summarized in Table I, plotted
on a logarithmic time scale. The normalization was done by dividing the temper-
ature response to its maximum. Two scenarios of simulations are presented: the
dashed lines depict the temperature response induced by Dirac delta excitation
calculated using Eq. (11), and the solid lines represent the response induced
by Gaussian excitation calculated by taking the convolution of Eq. (11) and a
Gaussian pulse function, QGaussian(t) = exp(−2.77[(t − t0)/τp]

2
). τp is the full-

width-at-half-maximum (10 ns here) of the laser pulse, and t0 is the peak position
of the laser pulse (10 ns). Comparison of the two scenarios suggests a mask effect
of the finite width of the laser pulse on the relaxation process at a very short time
scale (<20 ns), implying that the upper limit of the experimental bandwidth is about
sub-100 MHz when using a 10-ns laser as the pump.

instantaneous heat capacity, i.e., the inverse of the temperature rise
per unit of supplied energy, evolving from a small to a high value
around the relaxation time. In the case of a non-uniform light pat-
tern, such as a Gaussian laser beam, the heat in the illuminated area
finally diffuses to colder zones, resulting in a decrease in temper-
ature. Finally, the temperature variation decreases to zero in the
probed laser beam center.

For the simulations in Fig. 2, we have assumed the characteristic
relaxation frequency ωC to follow Vogel–Fulcher–Tammann (VFT)
behavior,47

ωC = ωC,0 exp(− B
T − TVFT

), (13)

where ωC,0 (s−1) is a constant, T (K) is the temperature, and B (K)
and TVFT (K) are VFT parameters. The lower the DC temperature,
the longer it takes for the temperature to decrease, i.e., for the effec-
tive instantaneous heat capacity to evolve from its instantaneous

TABLE I. Thermal parameters of glycerol, as determined from the literature,30,48 used for the simulations in Fig. 2.

Quantity and symbol Values Unit

High-frequency limit of specific heat capacity (C∞) 1180 J kg−1 K−1

Low-frequency limit of specific heat capacity (C0) 2100 J kg−1 K−1

Relaxation frequency of specific heat capacity (ωC,0) 5.75 ⋅ 1014 s−1

B 2210 K
TVFT 133 K
Thermal conductivity (κ) 0.29 W m−1 K−1

Density (ρ) 1260 Kg m−3

Peak position of the laser pulse (t0) 10 ns
Full width at half maximum of laser pulse (FWHM) 10 ns
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value C∞ to its long term limit C0. In other words, the channeling
of vibrational energy to the configurational network rearrangement
(volume increasing) would occur around τC, which is the reciprocal
of the relaxation frequency in Eq. (13) . At 200 K, the onset of this
relaxation process is preceded by the thermal diffusion-driven wash
out of the photothermally deposited heat and temperature gradient.

B. Photothermally induced displacement
and strain response in a relaxing system

In this part, we focus on the relaxation behavior of thermoe-
lastic transients triggered by the nonuniform temperature variation.
To this end, we combine Newton’s equation with the stress–strain
relation for an anisotropic material (Hooke’s law). In cylindrical
coordinates (r, θ), this yields49,50

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ
∂2ur

∂t2 =
1
r
∂

∂r
(rσrr) +

1
r
∂σrθ

∂θ
− σθθ

r
− (3λ + 2μ)γ∂T

∂r
,

ρ
∂2uθ
∂θ2 =

1
r2

∂

∂r
(r2σrθ) +

1
r
∂σθθ
∂θ
− (3λ + 2μ)γ∂T

∂θ

(14)

with
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σrr = (λ + 2μ)∂ur

∂r
+ λ

r
∂uθ
∂θ
+ λ

r
ur ,

σθθ = λ
∂ur

∂r
+ (λ + 2μ)1

r
∂uθ
∂θ
+ (λ + 2μ)ur

r
,

σrθ =
μ
r
∂ur

∂θ
+ μ∂uθ

∂r
− μ

r
uθ,

(15)

where ur (m) and uθ (m) are the displacements in r and θ directions,
respectively; λ (Pa) and μ (Pa) are the rigidity and shear modulus,
respectively; σrr (Pa), σθθ (Pa), and σrθ (Pa) represent the stress com-
ponents; and γ (K−1) is the linear expansion coefficient. In our case,
due to symmetry consideration, the displacement component in the
θ direction vanishes. Thus, inserting Eq. (15) into Eq. (14), we obtain
for ur ≡ u(r, t)

∂2u
∂r2 +

1
r
∂u
∂r
− u

r2 −
ρ

λ + 2μ
∂2u
∂t2 =

3λ + 2μ
λ + 2μ

γ
∂ΔT
∂r

. (16)

Fourier transforming Eq. (16) yields for ũ(r,ω)

∂2ũ
∂r2 +

1
r
∂ũ
∂r
− ũ

r2 +
ρω2

λ + 2μ
ũ = 3λ + 2μ

λ + 2μ
γ
∂ΔT̃
∂r

. (17)

Similarly, ũ can also be expanded in terms of a Fourier Bessel series
as follows:

ũ(r,ω) =
∞
∑
m=1

J1(qmr)φm(ω), (18)

where qm = j0m/R, j1m is the mth root of the first-order Bessel func-
tion J1(x), and φm(ω) is the corresponding Fourier Bessel coeffi-
cients. Inserting Eq. (18) into Eq. (17) and using the orthogonality

properties of the Bessel function (see supplementary material C for a
detailed calculation), the unknown Fourier Bessel coefficient φm(ω)
can be solved as

φm(ω) =
2

R2J2
2( j1m)

γ(3λ + 2μ)/ρ
ω2 − q2

m(λ + 2μ)/ρ

R

∫
0

∂T̃
∂r

J1(qmr)rdr. (19)

From Eq. (9), we have

∂ΔT̃
∂r
=
∞
∑
n=1

J1(qnr) Q0Inqn

πρC∞J2
1( j0n)R2 ×

i(ω − iωC)
(ω − ω1n)(ω − ω2n)

. (20)

By defining Fmn(qm, qn) =
R

∫
0

J1(qnr)J1(qmr)rdr, the displacement

vector in the frequency domain can be written as

ũ(r,ω) =
∞
∑
m=1

∞
∑
n=1

⎛
⎜⎜⎜⎜
⎝

J1(qmr) 2iQ0Inqn

πρC∞R4J2
1( j0n)J2

2( j1m)
Fmn(qm, qn)

× (ω − iωC)
(ω − ω1n)(ω − ω2n)

× γ(3λ + 2μ)/ρ
ω2 − q2

m(λ + 2μ)/ρ

⎞
⎟⎟⎟⎟
⎠

,

(21)

where λ + 2μ is called the longitudinal modulus (M). M/ρ is equal to
the square of the complex longitudinal velocity cL (m s−1), and μ/ρ
is equal to the square of the shear velocity cT (m s−1). Thus, Eq. (21)
can be rewritten as

ũ(r,ω) =
∞
∑
m=1

∞
∑
n=1

⎛
⎜⎜⎜⎜
⎝

J1(qmr) 2iQ0Inqn

πρC∞R4J2
1( j0n)J2

2( j1m)
Fmn(qm, qn)

× (ω − iωC)
(ω − ω1n)(ω − ω2n)

×
γ(3c2

L − 4c2
T)

ω2 − q2
mc2

L

⎞
⎟⎟⎟⎟
⎠

.

(22)

The linear thermal expansion coefficient, longitudinal bulk wave
velocity, and shear wave velocity are all relaxing physical quanti-
ties.33,51,52 To a reasonable approximation, these can be described by
the Debye model as follows:

γ(ω) = γ∞ +
Δγ

1 + iω/ωγ
,

cL = cL,∞ +
ΔcL

1 + iω/ωcL

,

cT = cT,∞ +
ΔcT

1 + iω/ωcT

,

(23)

where Δγ = γ0 − γ∞; ΔcL = cL,0 − cL,∞; ΔcT = cT,0 − cT,∞; γ0, cL,0,
and cT,0 and γ∞, cL,∞, and cT,∞ are the low-frequency and high-
frequency limits of the thermal expansion coefficients, longitudinal
bulk wave velocity, and shear wave velocity, respectively. ωγ, ωcL,
and ωcT are characteristic (angular) frequencies, which are tempera-
ture dependent. Upon the substitution of Eq. (23) into Eq. (22) and
assuming ωcL = ωcT , we find for ũ(r,ω)

ũ(r,ω) =
∞
∑
m=1

∞
∑
n=1

⎛
⎜⎜⎜⎜
⎝

J1(qmr)
2iQ0Inqnγ∞(3c2

L,∞ − 4c2
T,∞)

πρC∞R4J2
1( j0n)J2

2( j1m)
Fmn(qm, qn)

× (ω − ω8)(ω − ω9)(ω − ω10)(ω − ω11)
(ω − ω1n)(ω − ω2n)(ω − ω3)(ω − ω4m)(ω − ω5m)(ω − ω6m)(ω − ω7m)

⎞
⎟⎟⎟⎟
⎠

(24)

J. Chem. Phys. 155, 074503 (2021); doi: 10.1063/5.0060310 155, 074503-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0060310


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

with
ω3 = iωγ,

ω4m =
1
2
(−qmcL,∞ + iωcL −

√
(qmcL,∞ − iωcL)2 + 4iqmωcL cL,0),

ω5m =
1
2
(−qmcL,∞ + iωcL +

√
(qmcL,∞ − iωcL)2 + 4iqmωcL cL,0),

ω6m =
1
2
(qmcL,∞ + iωcL −

√
(qmcL,∞ + iωcL)2 − 4iqmωcL cL,0),

ω7m =
1
2
(qmcL,∞ + iωcL +

√
(qmcL,∞ + iωcL)2 − 4iqmωcL cL,0), (25)

ω8 = iωC,

ω9 = iωγ/(1 − Δγ
γ0
),

ω10 = iωcL

√
3cL,0 + 2cT,0√

3cL,∞ + 2cT,∞
,

ω11 = iωcL

√
3cL,0 − 2cT,0√

3cL,∞ − 2cT,∞
.

Since for all qm values, Im(ω3) > 0, Im(ω4m) > 0, Im(ω5m) > 0,
Im(ω6m) > 0, and Im(ω7m) > 0, ũ(r,ω) gains five additional singu-
larities at ω = ω3, ω = ω4m, ω = ω5m, ω = ω6m, and ω = ω7m (see
supplementary material B). Similar to Sec. II A, by applying the
residue theorem, we transform Eq. (24) back to time domain,

u(r, t) = −
∞
∑
m=1

∞
∑
n=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

J1(qmr)
4Q0Inqnγ∞(3c2

L,∞ − 4c2
T,∞)

ρC∞R4J2
1( j0n)J2

2( j1m)

×Fmn(qm, qn)(
2

∑
i=1

Ain exp(iωint)

+ A3 exp(iω3t) +
7

∑
j=4

Aim exp(iωimt)
⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

H(t),

(26)
with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1n =
(ω1n − ω8)(ω1n − ω9)(ω1n − ω10)(ω1n − ω11)

(ω1n − ω2n)(ω1n − ω3)
7
∏
i=4
(ω1n − ωim)

,

A2n =
(ω2n − ω8)(ω2n − ω9)(ω2n − ω10)(ω2n − ω11)

(ω2n − ω1n)(ω2n − ω3)
7
∏
i=4
(ω2n − ωim)

,

A3 =
(ω3 − ω8)(ω3 − ω9)(ω3 − ω10)(ω3 − ω11)

(ω3 − ω1n)(ω3 − ω2n)
7
∏
i=4
(ω3 − ωim)

,

A4m =
(ω4m − ω8)(ω4m − ω9)(ω4m − ω10)(ω4m − ω11)

(ω4m − ω1n)(ω4m − ω2n)(ω4m − ω3)
7
∏
i=5
(ω4m − ωim)

,

A5m =
(ω5m − ω8)(ω5m − ω9)(ω5m − ω10)(ω5m − ω11)

(ω5m − ω1n)(ω5m − ω2n)(ω5m − ω3)
7
∏

i=4≠5
(ω5m − ωim)

,

A6m =
(ω6m − ω8)(ω6m − ω9)(ω6m − ω10)(ω6m − ω11)

(ω6m − ω1n)(ω6m − ω2n)(ω6m − ω3)
7
∏

i=4≠6
(ω6m − ωim)

,

A7m =
(ω7m − ω8)(ω7m − ω9)(ω7m − ω10)(ω7m − ω11)

(ω7m − ω1n)(ω7m − ω2n)(ω7m − ω3)
6
∏
i=4
(ω7m − ωim)

.

(27)

The refractive index variations that are responsible for the ther-
mal lens signal are essentially proportional to the radial density
or strain variations resulting from the varying temperature and
pressure fields, which are given as

ε(r, t) = −∂u(r, t)
∂r

=
∞
∑
m=1

∞
∑
n=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(J0(qmr) − J2(qmr))

×
2Q0Inqmqnγ∞(3c2

L,∞ − 4c2
T,∞)

ρC∞R4J2
1( j0n)J2

2( j1m)

× Fmn(qm, qn)(
2

∑
i=1

Ain exp(iωint)

+ A3 exp(iω3t) +
7

∑
i=4

Aim exp(iωimt))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

H(t).

(28)

The first term of Eq. (28) contains the thermal damping parame-
ters ω1n and ω2n, which are related to the thermal diffusion constant
q2

nα0 and the relaxation parameters of specific heat capacity. The sec-
ond term (i.e., ω3) represents the thermal expansion relaxation with
relaxation time 1/ωγ. The angular frequencies ω4m, ω5m, ω6m, and
ω7m in the last term are related to the longitudinal bulk wave velocity
and absorption coefficient, so the last term governs the contributions
of acoustic waves to the strain response. The infinite sums over n and
m indices in Eq. (28) can be truncated to n = N and m = N. It was
found that N = 500 provides a good approximation to the infinite
sum. The higher values of N substantially do not vary the result.

Figure 3 illustrates the normalized strain response to pho-
tothermal heating at a radius of ∼30 μm and a duration pump beam
laser pulse of ∼10 ns, which is Gaussian in space and in time, in the
x–y plane in the axial focus of the pump beam (z = z1) at different
times. Clear radial patterns in the strain, and thus in the refractive
index, the radial gradient of which evokes a (thermal and acous-
tic) lens effect for the trespassing probe beam, can be observed upon
the absorption of the laser pulse. Shortly after the deposition of the
optical energy [between 0 and 15 ns, Figs. 3(a)–3(c)], due to the
impulsiveness and localized character of the thermal expansion, a
pressure wave radially leaves the excitation region, with a speed of
about 70 μm per 25 ns. Interestingly, for the simulated temperature,
the configurational part of the thermal expansion, which is substan-
tially larger than the initial, short time limit of the thermal expan-
sion, occurs only after about 10 μs, i.e., the respective relaxation time,
explaining the maximum strain in Fig. 3(e). The following decay is
related to the thermal diffusion-driven wash out of the hotspot and
thus of the strain gradient. The simulation also shows that the ther-
mal part of the strain pattern is characterized by a central peak, with
a radially monotonically decaying pattern, somewhat comparable
with a regular diverging lens. However, the acoustic wave induced
strain pattern has a ring shape, for which a non-trivial lens effect can
be expected.

Accompanied by the local and transient thermal expansion,
acoustic waves will also contribute to the TL signals on a short time
scale [(b) and (c)], determined by the probe beam size and the group
sound velocity. Thus, the TL effect can be considered as the superpo-
sition of the temperature lens and the acoustic lens, thereby altering
the propagating probe wavefront. Tables II and III summarize all the
involved parameters for simulating Fig. 3.
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FIG. 3. Simulated evolution of the nor-
malized radial strain response of glycerol
at 230 K at the beam center (z1) at dif-
ferent times: (a) t = 1 ns, (b) t = 10 ns,
(c) t = 30 ns, (d) t = 1 μs, (e) t = 10
μs, and (f) t = 10 ms (Multimedia view).
The depicted x–y plane is perpendicular
to the pump laser beam axis. The laser-
induced acoustic pulses (ring), marked
with white arrows, travel about 70 μm
in 25 ns. Parameters in Tables II and III
were used for the simulation. Movies of
the full trajectories are available in the
supplementary material.

TABLE II. Thermoelastic parameters of glycerol, determined from the literature,51,53,54 used in the simulation of Fig. 3.

Quantity and symbol Values Unit

High-frequency limit of thermal expansion (γ∞) 10–4 K–1

Low-frequency limit of thermal expansion (γ0) 6 ⋅ 10−4 K–1

Relaxation frequency of thermal expansion (ωγ) 1.96 ⋅ 105 s–1

Low-frequency limit of longitudinal wave velocity (cL,0) 2050 m s–1

High-frequency limit of longitudinal wave velocity (cL,∞) 3370 m s–1

Relaxation frequency of longitudinal wave velocity (ωcL) 2.38 ⋅ 105 s–1

Low-frequency limit of shear wave velocity (cT,0) 0 m s–1

High-frequency limit of shear wave velocity (cT,∞) 1400 m s–1

C. TL signals
The TL detection is typically performed by analyzing the on-

axis intensity variation of the central part of the probe beam in the
far-field, where the photodetector is located. The TL effect is based
on the radially non-uniform optical phase delay that acts on the light
beam propagation in the same way as a lens. The phase shift can be
expressed as

Δψ(r, t) = kpΔnL
= kpnχε(r, t)L, (29)

where kp = 2π/λp (m–1) is the wavenumber, with λp (nm) the wave-
length of the probe beam; L (mm) is the thickness of the sample;
and χ is the scale factor, which is a constant. The TL formed in the
sample has a transmission function defined as exp(–iΔψ (r, t)). Thus,

TABLE III. Experimental parameters of the beam configuration for the geometry
shown in Fig. 1.

Quantity and symbol Values Unit

Pump laser radius at the sample (ωe) 30 μm
Probe laser waist radius (ω0p) 100 μm
Thickness of the sample cell (L) 2 mm
Distance z2 1.5 m

the TEM00 Gaussian probe beam in the proximity of the sample can
be expressed as43

Up(r, z1, t) =
√

2Pp

π
1
ω1p

exp(−ikpz1)

× exp
⎡⎢⎢⎢⎣
−i( kpr2

2R1p
+ Δψ(r, t)) − r2

ω2
1p

⎤⎥⎥⎥⎦
, (30)

where Pp (W) is the total probe beam power and R1p (m) is the radius
of curvature of the probe beam wavefronts at z1. The probe beam
propagating out of the sample to the detector plane can be obtained
by applying Fresnel diffraction theory55,56 to Eq. (30). As only the
center point of the probe beam, which passes through the pinhole,
is detected in our experiment, using cylindrical coordinates, Fresnel
integration gives43

Up(z1 + z2, t) = ikp

z2
exp(−ikpz2)

∞

∫
0

Up(r, z1, t) exp(−i
kpr2

2z2
)rdr.

(31)

For the Gaussian probe beam,43

ω2
1p = ω2

0p[1 + (z1/zR)2],
R1p = (z2

1 + z2
R)/z1,

(32)
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where zR = πω2
0p/λp. Thus, by inserting Eq. (30) into Eq. (31), we can

get

Up(z1 + z2, t) = A
∞

∫
0

exp(−iΔψ(r, t)) exp
⎛
⎝
−(iV + 1) r2

ω2
1p

⎞
⎠

rdr,

(33)

where A = ikp
z2ω1p

√
2Pp
π exp(−ikp(z1 + z2)) and V = z1

zR
+ zR

z2
(1 + z2

1
z2

R
).

Due to the low optical absorption of the sample, the phase shift is
very small [Δψ (r, t) ≪ 1]. Thus, an approximation can be made,
exp(−iΔψ (r, t)) ≈ 1 − iΔψ (r, t).39 Substituting Eqs. (28) and (29)
into Eq. (33), we can get

Up(z1 + z2, t) ≈ A
∞

∫
0

(1 − iΔψ(r, t)) exp
⎛
⎝
−(iV + 1) r2

ω2
1p

⎞
⎠

rdr

= A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2
1p

2(1 + iV) −
∞
∑
m=1

∞
∑
n=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2iQ0Inqmqnγ∞kpnχL(3c2
L,∞ − 4c2

T,∞)
ρC∞R4J2

1( j0n)J2
2( j1m)

Fmn(qm, qn)

×

⎛
⎜⎜⎜⎜⎜
⎝

2

∑
i=1

Ain exp(iωint) + A3 exp(iω3t)

+
7

∑
i=4

Aim exp(iωimt)

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(F0(qm) − F2(qm))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

H(t), (34)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0(qm) =
∞

∫
0

exp
⎛
⎝
−(iV + 1) r2

ω2
1p

⎞
⎠

J0(qmr)rdr,

F2(qm) =
∞

∫
0

exp
⎛
⎝
−(iV + 1) r2

ω2
1p

⎞
⎠

J2(qmr)rdr,

(35)

where F0(qm) and F2(qm) are the zero-order and second-order Han-

kel transforms of exp(−(iV + 1) r2

ω2
1p
), respectively. The final probe

beam intensity (W m−2) at the center of the detector plane can be
expressed as

I(z1 + z2, t) = cε0

2
∣Up(z1 + z2, t)∣2, (36)

where c (m s−1) is the speed of light and ε0 (F m−1) is the permittivity
of free space.

III. EXPERIMENTAL TL SPECTROSCOPY
OF GLASSY DYNAMICS

A. Experimental setup
Heretofore, we have presented the modeling of the TL tran-

sients in relaxing systems. We now illustrate an experimental
investigation of the glassy dynamics in supercooled glycerol, a
well-characterized molecular glass former,57–60 using time-resolved
TL spectroscopy and the model developed above. Figure 4 depicts
the experimental setup. A pulsed ND: YAG laser (Model Lab-130-10,
Quanta-Ray®) operating at 1064 nm with a pulse width of 10 ns
was used to excite the glycerol sample (>99% purity). The excitation
laser was focused inside the sample using a focal length lens (L) of

125 mm. A continuous 532-nm TEM00 probe laser (Model Samba
100, Cobolt®), inserted through a dichroic mirror coaxially with an
excitation laser and focused by the same lens, was used to probe the
global strain response to impulsive heating. The sample was sealed
in a cuvette [optical path: 2 mm, 45 mm (H) × 12 mm (L) × 12 mm
(W)] and attached to the cold finger of an optical cryostat (Model
Optistat-DN-V, Oxford Instruments®), allowing DC temperature
control and/or scan over the sample.

In this experiment, the focal waist of the probe laser (green)
and pump laser (red) is displaced with respect to each other inside
the sample due to the aberration of the focusing lens,61 yielding
the so-called mode-mismatched configuration43 (see the geometry
in Fig. 1). After passing through the sample, the intensity of the
probe beam was detected using a homemade photodetector (PD,
bandwidth: ∼100 MHz) in the far-field. A pinhole with a diameter
of 1 mm was placed in front of the detector to enhance the detec-
tion of TL signals. Furthermore, an interference filter (IF) was placed
in front of the pinhole to block the transmitted excitation light.
The output of the PD was coupled to a fast oscilloscope (LC564A,
Lecroy®). In our experiment, the excitation laser repetition rate was
10 Hz, and 500 TL cycles were recorded and averaged using the oscil-
loscope to reduce the noise. Table III summarizes the experimental
parameters of optics.

FIG. 4. Experimental setup of ns TL spectroscopy: DM, dichroic mirror; L, lens;
PH, pinhole; and PD, photodetector.
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B. Results and discussion
We recorded TL waveforms in a time window of about 20 ms

at 12 selected temperatures from 300 to 200 K. Figure 5 summarizes
all the waveforms (symbols) and the best fits (solid lines) with the
model developed in this work, namely, via Eq. (36). Three subse-
quent processes can be observed: (1) a rapid increase in amplitude
(0.5–80 ns), corresponding to the fast part of the temperature rise
and the resulting thermal expansion response to the sudden heat
input; (2) a slow rise due to the slow part of the thermal expansion
and underlying temperature dynamic time span; (3) an exponential
thermal dissipation back to zero, with a characteristic thermal dif-
fusion decay time determined by the width of the pump laser beam
at the focal point. With decreasing DC temperature, the process (3)
occurs at later times until it is quenched by the thermal diffusion
decay of the signal. With increasing DC temperature, it occurs at
earlier times until it overlaps with the initial, fast part of the ther-
mal expansion. On a longer time scale, because more energy flows to
evoke cooperative rearrangements of the amorphous network, the
heat capacity increases toward C0, dominating the thermal diffu-
sion part. It is worth to mention that, in a TL scheme, the measured
global strain response to impulsive heating can be considered as a
convolution between the temperature response to impulsive heat-
ing (with the specific heat as the response parameter) and the strain
response to a sudden temperature rise (with the thermal expansion
coefficient as the response parameter). Due to its time-varying and
often spatially non-uniform character, the local thermal expansion
response is unavoidably accompanied by the launching of acoustic

waves, which carry information on the (relaxation behavior of the)
elastic modulus.

In addition, in many respects, the pulsed TL scheme is sim-
ilar to that of the transient grating (TG) or impulsive stimulated
thermal scattering (ISTS).48,62 The main difference between the two
approaches lies in the geometry of the optical excitation pattern:
while in TG, the light pattern is spatially periodic and characterized
by a single wavenumber, the Gaussian pattern used in a TL con-
figuration results in a wide spectrum in the wavenumber domain.
This difference in the spectral content has consequences mainly
concerning the following: (1) the thermal diffusion tail, which is
purely exponential for TG signals and more complicated for TL sig-
nals, and (2) the initial acoustic signals, which are a set of damped
sinusoid oscillations for TG signals and a bipolar acoustic pulse
in TL signals. Interesting to mention is also the modeling of the
ISTS response, in which the relaxation of heat capacity and thermal
expansion are not envisaged as two separate processes. Instead, this
combined effect of temperature change and thermal expansion has
been modeled by making use ad hoc of a single stretched exponential
function, e(−t/ fR)β , with fR the structural relaxation frequency and β
the stretching exponent (<1). Given indications that the two relax-
ing quantities may indeed be characterized by different time scales19

at least for some glass formers and given an increasing interest in
the field of glass transition research in comparing the time scale of
different relaxation quantities,36,63 in this work, we have tackled the
challenge to model the density response that explicitly treats the two
as independent relaxation quantities. An apparent benefit is that it

FIG. 5. Normalized TL signals of glycerol at a selection of temperatures (symbol, black) and best fits (solid line, magenta) via Eq. (36). A strongly (DC) temperature-
dependent double-step-like strain response can be observed at intermediate times [area (2)]. The discrepancy between experimental data and best fits is mainly found at
the very short time scale, namely, fitting of the acoustic part, which will be discussed in the Appendix.
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makes it possible to simultaneously assess the relaxation of C(ω) and
γ(ω).

Figure 5 shows that satisfactory fitting quality has overall been
achieved at all temperatures, suggesting that the model developed
in this work can describe well the experimental data. To take into
account the possible covariance of the involved multiple fitting vari-
ables, we have implemented a most squares error (MSE) analysis64

to determine the fitting uncertainty, as shown in Fig. 6. For each fit-
ting parameter, the MSE analysis is performed by evaluating the cost
function, which is defined as the sum of the squared residuals (SSR)
corresponding to the time vector t [Eq. (37)] over a broad range
centered around the best-fitting values, P0, without fixing the other
fitting parameters. On the contrary, in a least-squares error (LSE)
analysis, the rest fitting parameters are fixed at their best-fitting val-
ues, and only the parameter to be evaluated is varied in a region
around its best-fitting value,

χ2 = 1
N

N

∑
i=1
(TLexp(ti) − TL fit(ti, P0))

2. (37)

As an example, Fig. 6 illustrates the MSE (circles) and LSE (squares)
evaluation of the four best-fit parameters for the fitting of the TL
waveforms at 233.2 K. Each curve shows a parabolic behavior of the
SSR around the best-fitting value, suggesting good convergence of
the fitting/minimization procedure. The opening of the MSE curve
is generally wider than that of the LSE curve since the former takes
into account the covariance of the involved multiple fitting vari-
ables, namely, different combinations of fitting parameters, yielding
a statistically indistinguishable cost function value (SSR). The finite
width of the SSR parabola shows that the inverse problem of extract-
ing the four fitting parameters from the TL signal is feasible. Hence,
TL spectroscopy and the model developed in this work allow us
to determine the thermal relaxation of specific heat capacity and
thermal expansion coefficient. Here, we underline that in our mod-
eling, we have approximated the relaxation with the Debye model,
although the Havriliak–Negami (HN) relaxation model65 has been

FIG. 7. The fitting values of ΔC/C0 (left, black) and Δγ/γ0 (right, magenta) vs DC
temperature. The error bar was obtained by most squares error analysis.

shown to be reflecting better reality and although the HN model
is more commonly used for the description of relaxation processes.
We have chosen the Debye model mainly for the sake of feasibility
to achieve an analytical solution, which is appealing. Interestingly,
looking at the already very satisfactory fitting quality of our Debye-
relaxation-based model to the experimental TL traces (Fig. 5), we
can foresee that using the HN model would not improve consider-
ably the fitting quality. Instead, it would increase significantly the
complexity of model fitting (degeneracy) due to the involved four
extra fitting parameters (covariance), which, in turn, would make
it difficult to accurately extract the relaxation characteristics, with a
reliable analysis of margins of uncertainty, as obtained in Fig. 6.

Figure 7 shows the fitted values of ΔC/C0 (left, black) and Δγ/γ0
(right, magenta) at different temperatures. Within the uncertainty
margin, no temperature dependence is observed. The average fit-
ting value of ΔC/C0 and Δγ/γ0, which is also termed the relaxation
strength, is 0.53 ± 0.04 for specific heat capacity and 0.82 ± 0.02 for
thermal expansivity. These values comply with literature values, 0.48
by 3-ω26,27 and 0.44 by PPE29,30 for specific heat capacity and 0.80 by
DC dilatometry for expansivity.53 C0 is well defined in the thermal
diffusion tail with the average fitting value of 2160 ± 200 J kg−1 K−1,

FIG. 6. Parabolic evolution of the least-
squares (magenta circles) and most
squares (black stars) cost function on the
fitting parameters of (a) ωC, (b) ωγ, (c)
ΔC/C0, and (d) Δγ/γ0 for the TL signal
at 233.2 K.
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FIG. 8. VFT plot of the relaxation frequency (RF) of specific heat and thermal
expansivity determined (symbols) and the best fit (solid line).

again in line with the literature values, 2100 by PPE and 2250 by 3-ω.
We can then calculate C∞ with the ratio shown in Fig. 7, yielding
1010 ± 90 J kg−1 K−1, which agrees well with the results from PPE
and 3-ω, 1180 and 1160, respectively. In our fitting, γ∞ is fixed at
10−4 K−1,53 and the average fitting value of γ0 is 5.5 ± 0.6 10−4 K−1.

Figure 8 shows the fitted relaxation frequency entering the spe-
cific heat capacity (ωC) and thermal expansion (ωγ) in the form
of the Debye model. The fitting uncertainties (error bar) are also
obtained by most squares analysis. Larger fitting uncertainties are
found at high temperatures (>260 K) when the relaxation frequency
approaches 100 MHz. This suggests that the finite linewidth of the
pump laser pulse, around 10 ns, has limited access to higher fre-
quencies, which can be extended by using shorter laser pulses, e.g.,
sourced from picosecond or femtosecond lasers. It should be under-
lined that the clear deviations in the VFT plot for 1000/T < 3.5
may be related to the so-called crossover temperature (285 K for
glycerol66), where the faster Johari–Goldstein β relaxation tends to
merge into the slower α relaxation.67 The temperature dependence
of relaxation frequency was fitted by the VFT equation (solid line)
[Eq. (13)] with ω0, B, and TVFT as fitting parameters. Table IV
summarizes the VFT parameters for the two relaxing quantities
investigated in this work using the TL and their comparisons with
the ones determined by other techniques, i.e., structural behavior
by ISTS,48 specific heat capacity by 3-ω26,27 and PPE,29,30 dielec-
tric permittivity by broadband dielectric spectroscopy,16 and com-
pliance by heterodyne ultrasonic spectroscopy.52 The fragility m is
defined as1

m = d log⟨τ⟩
d(Tg/T)

∣T=Tg , (38)

with τ the relaxation time and Tg the glass transition temperature.
Equation (38) an be approximated as68

m = 16 + 590
B/TVFT

. (39)

Table IV shows that the fragility values for the heat capacity and
thermal expansion extracted from the TL experiments are consis-
tent with the values in the literature, with each other, and with the
fragility values of mechanical and rotational relaxation from ultra-
sonic and dielectric spectroscopy. This further confirms the earlier
observations of the universality of relaxation features (fragility and
shape features of the relaxation spectrum19) across different physical
responses in the considered temperature range. From the values in
Table IV, it can be extracted that for glycerol, the different relaxation
frequencies vary within one decade, showing that in the consid-
ered temperature range, the respective processes are not decoupled.
For a detailed discussion about time-scale decoupling, we refer to
the study by Niss and Heckscher.19 In an accompanying article,62

we also show that, because of mathematical reasons, the relaxation
time of a susceptibility probing a relaxation process can be quite
different between the quantity and its inverse (e.g., elastic modulus
and compressibility) and that this difference increases as the relative
relaxation strength increases.

Table IV further shows that the relaxation strength of the ther-
mal expansion coefficient and dielectric susceptibility16 is substan-
tially larger than that of the specific heat capacity and mechanical
compliance.52 This seems to reflect that thermally driven config-
urational volume changes related to molecular bond rotations are
energetically less stringent than thermally driven volume changes
due to increased anharmonic molecular vibrations. The relaxation
strengths found using the TL technique, for both specific heat and
thermal expansion, are somewhat different from those previously
reported values by using other techniques. The discrepancy may also
partially arise from the approximation of the Debye model in our
modeling, whereas the HN model has been used in other techniques.
One can numerically verify that for the same low and high-frequency
limits of the real part of C(ω), the height of the relaxation peak in the
imaginary part of C(ω) is substantially different between the Debye
and HN models.

TABLE IV. Comparison of the VFT behavior and relaxation strength of glycerol probed by thermal, mechanical, and dielectric susceptibilities (f0 = ω0/2π).

Relaxation dynamics Measurement technique log10 (f0/1 Hz) B (K) TVFT (K) Fragility Relaxation strength

Specific heat capacity TL 13.40 ± 0.18 2220 ± 50 120 ± 2 47.8 ± 1.2 0.53 ± 0.04
Thermal expansivity TL 13.00 ± 0.15 2160 ± 50 121 ± 2 49.1 ± 1.3 0.82 ± 0.02
Structure behavior48 ISTS 14.7 2210 133 51.5 0.66
Specific heat capacity29,30 PPE 11.9 1593 142 68.5 0.44
Specific heat capacity27,28 3-ω 14.6 2500 128 46.2 0.48
Compliance52 Ultrasonic spectroscopy 14.4 2310 129 48.9 0.60
Dielectric16 Dielectric spectroscopy 14.0 2309 129 49.0 0.92
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IV. CONCLUSIONS AND OUTLOOK
In this paper, we have investigated the thermal relaxation

dynamics in supercooled systems by making use of high bandwidth
time-resolved thermal lens (TL) spectroscopy. We developed an ana-
lytical model to describe the time-resolved TL response in a relax-
ing system by taking into account the relaxation of specific heat
(C) and thermal expansivity (γ). TL waveforms were experimentally
acquired on supercooled glycerol in a broad time window, from 1 ns
to 20 ms, in a wide temperature range, 200–300 K. The developed
model was used to fit the experimental waveforms, allowing the eval-
uation of several key relaxation features of C and γ. The obtained
low/high-frequency limit response, 2160 ± 200/1010 ± 90 J kg−1 K−1

for C and 10−4/5.5 ± 0.6 10−4 K−1 for γ, and the respective relax-
ation strengths, 0.53 ± 0.04 and 0.82 ± 0.02, comply well with the
ones determined by 3-ω,26,27 PPE,29,30 and DC dilatometry.53 This
confirms the reliability of the theoretical model and its adequate
application to investigate glassy dynamics. The followed approach
has allowed us to assess the slowing down process of the two pro-
cesses involved in structural relaxation, i.e., the response of tem-
perature and volume to heating. The obtained VFT behavior of the
relaxation frequency in the sub-kHz to sub-100 MHz range largely
extends the upper limit of the previously existing spectroscopy of C
and γ, 100 kHz and 1 Hz, achieved by PPE and capacitive scanning
dilatometry.32,33 It should be mentioned that the bandwidth may be
further extended by making use of shorter laser pulses. The obtained
VFT plots of C and γ are found to be parallel in the probed tem-
perature range. The respective fragilities are comparable to those of
dielectric and mechanical susceptibilities, confirming the universal
relaxation behavior between the different response functions. This
work extends the application of TL spectroscopy to the determina-
tion of glassy dynamics. Although this work illustrated time-domain
transient experiments based on pulsed-laser excitation, one could
implement the concept in the frequency domain that involves CW
excitation with a modulated intensity.

SUPPLEMENTARY MATERIAL

See the supplementary material for (1) the technical details of
the derivation and (2) the movie of the full temporal evolution of
the laser-induced TL effect in a relaxing system, illustrated in Fig. 3
(Multimedia view).
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APPENDIX: DETERMINATION OF ACOUSTIC
RELAXATION

The main body of this work has focused on thermal relaxation
dynamics, namely, C(ω) and γ(ω). The TL signals on the short time
scale (<100 ns, Fig. 5) also contain acoustic signals, which are also
undergoing substantial changes upon cooling due to the acoustic
relaxation. The model developed in this work [Eq. (28)] took into
account the Debye behavior [Eq. (23)] of the acoustic relaxation.
In this Appendix, we discuss the possibility to extract the acoustic
relaxation dynamics based on model fitting. This simply involves the
longitudinal wave parameters as fitting variables only, as the contri-
bution of the shear wave to the TL signal in our geometry is small.
Figure 9 (left) shows the fitted values of cL,0 (1740 ± 250 m/s) and
cL,∞ (3350 ± 180 m/s), which are consistent with the results reported
in Refs. 48 and 62 (about 1800 and 3600 m/s). Figure 9 (right) shows
the obtained acoustic relaxation frequencies, from which we only
see a very weak slowing down process upon cooling. This does not
comply with results in the literature (Fig. 4 of Ref. 52) and neither
reflects the physical process one would expect, i.e., a much stronger
slowing down process similar to C and γ (Fig. 8). However, this dis-
crepancy does not invalidate the modeling, as it is a consequence
from the limited acoustic bandwidth/dynamic range in the TL, about
15–20 MHz, which does not cover the entire frequency scale that
characterizes the acoustic relaxation in such a broad temperature
range. This argumentation is further supported by the fitting qual-
ity of the acoustic signals: satisfactory fitting was only achieved
at very high (>270 K) and low (<220 K) temperatures, where

FIG. 9. Temperature dependence of the longitudinal sound speed (left) and acoustic relaxation frequency (right).
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acoustic relaxation is either too fast or too slow to act on TL signals,
while not at intermediate temperatures, where acoustic relaxation
is expected to be pronounced. The acoustic bandwidth in the TL is
essentially determined by the size of the pump–probe beams and the
pulse width. One way to extend the dynamic range could be to play
with the pump–probe beam size by introducing an optical zooming
system to enable the automatic tuning. In conclusion, the TL geom-
etry used in this work allows extracting the acoustic relaxation in a
limited (temperature) dynamic range. To study acoustic relaxation
in a broad range, transient grating spectroscopy48 and nanosecond
acoustic interferometry17 based on a phase mask interferometer69

are more tangible techniques.

DATA AVAILABILITY

The data that support the findings of this study are available
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