N

N

Saturated signals in spectroscopic imaging: why and
how should we deal with this regularly observed
phenomenon?

Alessandro Nardecchia, Vincent Motto-Ros, Ludovic Duponchel

» To cite this version:

Alessandro Nardecchia, Vincent Motto-Ros, Ludovic Duponchel. Saturated signals in spectroscopic
imaging: why and how should we deal with this regularly observed phenomenon?. Analytica Chimica
Acta, 2021, 1157, pp.338389. 10.1016/j.aca.2021.338389 . hal-03327228

HAL Id: hal-03327228
https://hal.science/hal-03327228
Submitted on 22 Mar 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License


https://hal.science/hal-03327228
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S0003267021002154
Manuscript_b8e0f2566588ac9978f27a8e¢d248f07f

Saturated signals in spectroscopic imaging: why and how should we
deal with this regularly observed phenomenon?

Alessandro Nardecchia, T Vincent Motto-Ros,* Ludovic Duponchel™*

TUniv. Lille, CNRS, UMR 8516 — LASIRE — LAboratoire de Spectroscopie pour Les Interactions, La

Réactivité et L'Environnement, Lille, F-59000.

#Institut Lumiere Matiere, UMR 5306, Université Lyon 1 - CNRS, Université de Lyon, Villeurbanne,
69622, France.

ABSTRACT: We have all been confronted one day by saturated signals observed on acquired spectra,
whatever the technique considered. A saturation, also known as clipping in signal processing, is a form
of distortion that limits a signal once it exceeds a threshold. As a consequence, clipped or saturated
bands with their characteristic plateau present numerical values that do not correspond to the analytical
reality of the analyzed sample. Of course, analysts know that they cannot consider these erroneous val-
ues and therefore reconsider either sample preparation or instrument settings. Unfortunately, there are
many experiments today (and this is the case in spectroscopic imaging) for which we will not be able to
fight against the saturation effect that will undeniably be observed on the acquired spectra. The aim of
this article is first to show why it is important to correct these saturation effects at the risk of having a
biased view of the sample and more specifically in the context of multivariate data analysis. In a second
step, we will look at strategies for managing saturated bands. An original concept will then be presented
by considering saturated values as missing ones. A statistical imputation strategy will then be imple-

mented in order to recover the information lost during the measurement.

Keywords: saturated signal, imaging spectroscopy, statistical imputation

INTRODUCTION

Saturation is a phenomenon regularly observed in spectroscopy. Its presence can be linked to various
factors such as sample preparation, specific photon-matter interactions or even instrumental limitations
in the detection chain. For example, too high extinction coefficients and/or too high pathlengths in the
mid-infrared spectral range reduce so much the number of non-absorbed photons arriving at the detector

that the absorbance levels are infinitely high, values that cannot of course be transcribed in a spectrum,
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or by default in the form of a plateau. On the other hand, in the case of scattering or emission measure-
ments as in Raman, fluorescence or LIBS (laser-induced breakdown spectroscopy), the number of pho-
tons collected by the measurement chain can be sometimes so important that it cannot be transcribed
into the spectrum. Again in this case, a clipping effect is observed which does not allow to observe the
real values to be measured. Generally speaking, we can say that a saturation may occur when a signal is
recorded by a detector that has constraints on the range of data it can measure. This can therefore be the
case when a signal is digitized using an analog-to-digital converter, or any other time an analog or digi-

tal signal is transformed, particularly in the presence of gain.

When a saturation phenomenon is observed on a spectrum acquired for bulk analysis of a single
sample, the analysts know that they have has to reconsider the preparation of their samples or the acqui-
sition parameters depending of course on the constraints related to the experiment under consideration.
The newly acquired spectrum then has every chance this time to present values that are representative of
the analytical reality of the sample. The situation is quite different when we have to do bulk analyses on
a set of samples with the final objective of comparing their spectra. For this specific purpose, we must
then set unique experimental conditions that will be applied to all samples. We could then easily observe
perfectly exploitable spectra next to others that are potentially saturated. This is a situation that often
occurs in spectroscopic imaging when exploring a single and complex heterogeneous sample. Indeed,
for given acquisition conditions, hundreds, thousands or even hundreds of thousands of spectra are ac-
quired in a region of interest of the sample. Since each spectrum corresponds to a specific micro-surface
of the sample with a potentially different molecular distribution, it is quite likely that some of them are
saturated. If we are lucky we might be able to find experimental conditions that remove these satura-
tions. Nevertheless, we must not lose sight of the fact that it is not always possible to reproduce the ex-

periment a second time, for example when the technique is destructive as in LIBS.

In general, we can say that we always try to avoid the saturation phenomenon as much as possible.
Unfortunately, it is observed in many cases and it is necessary to deal with these data as they are. The
question that then arises is the following: what should we do with saturated values that we know to be
systematically erroneous? Figure la gives a schematic representation of a dataset with six spectra of
which three contain saturations highlighted in red. We can notice first that it is not always the same
bands that are saturated in this dataset used as a toy example. Second, the number of saturations in a
given spectrum is quite variable. Figure 1b presents the two strategies typically used to manage potential
spectral saturation in a dataset. The idea is finally very simple since knowing that saturated values do
not represent the true values, it seems logical to remove them from the acquired dataset. We then have a
first possibility which is to remove all the spectra as soon as they contain at least one saturated spectral

variable also known as row-wise deletion. This strategy might seem satisfactory because it is simple to
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implement, but it is not flawless. Indeed, we could then remove a spectrum made up of several hundreds
of spectral variables and thus potentially a very large amount of molecular/atomic information just be-
cause a single variable would be saturated, for example. We would then have a significant loss of chem-
ical information as in the present case study where only 50% of the spectra would be kept for multivari-
ate analysis. In the specific case of spectroscopic imaging, we would then end up with areas of the im-
age without defined chemical information. From a more statistical point of view, we would also have a
biased analysis since we would no longer have the initial population of acquired spectra. In a second
strategy known as column-wise deletion, we could suppress a spectral variable in the data set as soon as
at least one of the spectra of the dataset presents a saturation on this same variable. This strategy is no
more satisfactory because a significant loss of information would still be observed. In the case of the
presented example, we notice that such a strategy would remove almost all the spectral information
from the dataset. Thus even if these two strategies are regularly exploited in spectroscopy, we see that

they are unsatisfactory on different aspects.

Starting from the observation that a saturated value in a spectrum is an erroneous one, we propose in
this work to consider it as a missing value. It is indeed more relevant to say that a value could not be
measured than to exploit a value that finally does not represent a reality. Thus in the matrix representa-
tion of the data set in Figure 1b, red boxes that were initially saturated values will become missing ones.
In statistics, the art of dealing with missing values in a matrix is called imputation [1]. It is in fact the
process of replacing missing data with substituted values. By approaching the problem of saturation in
this way, we see that we can then work on a data set while keeping its initial dimensions, i.e. with the
initial number of spectra and spectral variables resulting from the acquisition. Thus in this work, three
different spectroscopic imaging datasets will first be used to show the need to manage saturations pre-
sent in the spectra at the risk of seeing many artifacts during multivariate analyses generating biased
chemical images and extracted spectral profiles. The principle of imputation will of course be explained
and the analysis of the corrected datasets will allow us to demonstrate the benefits of this concept to find
chemical images and corresponding spectroscopic information representative of the analytical reality of

complex samples.

MATERIAL AND METHODS
Imputation

Imputation is a field of statistics. The great idea in imputation is to fill gaps in the data with plausible
values, the uncertainty of which is coded in the data itself. There are many ways of doing data imputa-
tion today [1]. However, we will use in this work the so-called ‘multiple imputation’ now considered as

the best general method to deal with incomplete data (i.e. containing missing values) in many scientific
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domains [2—4]. Our goal here is of course not to redo a whole development of the theory of imputation
but to explain some general principles in order to understand the results presented in this work. Readers
who would nevertheless like to have all the details on this topic are invited to read other works specifi-
cally dedicated to statistic [1,3]. The two main approaches for imputing multivariate data are called joint
modeling [5] (JM) and fully conditional specification (FCS), also known as multivariate imputation by
chained equations (MICE) [6]. As the JM approach is often more constraining from a statistical point of
view to be applied, the MICE method has been considered in this work. MICE specifies the multivariate
imputation model on a variable-by-variable basis by a set of conditional densities, one for each incom-
plete variable (i.e. containing missing values). In this work, a regression model is developed using the
complete variables of the matrix as input and a given incomplete variable as output. Once this model is
established, we can then use it to predict missing values of spectra at this specific spectral variable based
on known values in the matrix. We will thus have as many regression models developed as spectral var-
iables containing missing values in the considered dataset. At the end of this imputation procedure, we
then find a full matrix free of missing values that we can then explore with usual multivariate methods.
In this work, all imputation calculations have been done under the R environment using MICE, an open

source R package. Source code and documentation can be found at https://github.com/amices/mice.

Multivariate data analysis

Principal component analysis (PCA) is one of the most flexible and effective chemometric method
for exploratory data analysis applied to hyperspectral imaging [7]. It is indeed very sensitive and thus
allows the detection of very low variance levels. Its use will first of all allow to see artifacts generated
during a direct use of saturated spectral datasets but also to estimate in a second time the efficiency of
the corrections brought by our imputation strategy. All PCA calculations were performed under the

Matlab 2016b environment.
Dataset #1: a simulated sample

The first hyperspectral imaging dataset consists of synthetic spectra that could have been acquired
using LIBS. The advantage of using such simulations lies in the fact that all the parameters potentially
influencing a given problem are under controlled. In this way, we often have a less biased view of the
phenomena and a real generalization is possible. As we will see further on, it will also be a way to vary
the importance of the saturation phenomenon. On the basis of the spectroscopic information given by
the Kurucz database [8], we first simulated the emission spectra of silver, aluminum and arsenic by con-
sidering a typical plasma temperature and electron density (9000 K and 5.1016 cm™ respectively). In
order to be the most faithful with the spectral reality, we then applied a Lorentzian profile with a lin-

ewidth of 0.15 nm to each emission line, corresponding to the resolution of classical spectrometer used



in LIBS [9]. In the considered spectral range (250-350 nm), several emission lines of Ag, Al, and As
were observed with various intensity ranges. On the basis of these three pure spectra, it was then possi-
ble to generate by linear combination 62880 spectra of mixtures in percentages ranging from 100 to O
for each of them. A white noise of 5 % has also been added to each spectrum. In this way, we obtained a
hyperspectral data cube defined by 131 pixels x 480 pixels x 2018 wavelengths. Figure 1S in supple-
mentary material presents the three element spectra, all the generated spectra of mixtures in overlay

mode as well as the spatial distribution of the different elements in this synthetic sample.
Dataset #2: a lung biopsy

The second dataset used in this work corresponds to a LIBS imaging experiment conducted on a lung
biopsy of a patient with severe emphysema [10]. Note that the patient signed informed consent, and the
clinical procedure was approved by the local ethics committee. The LIBS imaging has been conducted
with a protocol dedicated to paraffin-embedded tissues, as described in a previous work [11]. The aim of
such application was to characterize the distribution of metallic particles (from nanometric to micromet-
ric size) in tissue biopsies, which represent a precious help for clinicians to diagnose the cause of the
exposition (i.e. environmental and/or occupational). This spectroscopic experiment is a good example of
a case where saturated spectra cannot be avoided. Since the concentration, composition, location and
size of the particles are not known prior the experiment, the measurement system requires an extremely
large dynamic in term of detection, typically from few ppm to a few percent in mass. Despite our efforts
to set up the experimental parameters as optimized as possible, it is not uncommon to have a significant
number of spectra showing saturations on a LIBS image as in this case. The size of the analyzed area of
the biopsy was 5.42 mm long by 3.18 mm wide with a spatial resolution of 20 pm. We have thus ac-
quired 43089 spectra over a spectral range from 282.01 to 310.03 nm and an approximate spectral reso-
lution of 0.04 nm. The hyperspectral data cube was therefore defined by 271 pixels x 159 pixels x 644

wavelengths.
Dataset #3: a rock section

The third dataset was also acquired using a LIBS imaging instrument on a banded iron formation
rock consisting of alternating layers of iron oxides and silicates. We selected this sample because it
somehow allowed us to find approximately the same chemical distributions for two contiguous zones of
the sample on which we could set different acquisition parameters. This procedure of selection of analy-
sis area was necessary because we must not forget that LIBS is a destructive technique. Therefore, we
could not analyze the same area several times. As a consequence, two successive zones each having a
size of 20 mm long and 2 mm wide were analyzed following the protocol already used for other work

[12]. A spatial resolution of 20 um and a spectral range from 245.85 to 334.03 nm were considered for



these acquisitions generating two hyperspectral datasets defined each by 1000 pixels x 100 pixels x
2048 wavelengths. The laser pulse energy and the detection gate were adjusted for these two sub-zones
in order to control the saturation level. Indeed, our aim was to obtain no saturated lines on the first zone
of the sample (gate: 1 ps; energy: 1.2 mJ) and saturation of Si emission lines on the second zone (gate: 5
us; energy: 1.2 mJ). All the other acquisition parameters such as the delay and detector gain was kept

constant.

RESULTS AND DISCUSSION

Before tackling the problem of correcting saturation in the spectra, it is important to understand how
this is necessary to manage it, at the risk of giving a completely biased vision of the analyzed sample.
For this purpose, we will use the first dataset of simulated spectra. Figure 2a thus presents the results of
a first principal component analysis applied to the raw data (i.e. without saturated signals). Unsurpris-
ingly, we note first of all that there are three significant eigenvalues in the scree plot that correspond to
three spectral contributions. More specifically, the first three principal components respectively extract
the spectra of the three pure elements Ag, Al and As. This is quite logical since there is no correlation
between these elements in the considered dataset. The scores images then perfectly reproduce the distri-
butions of the three elements given in SI Figure 1S. In a natural way, the fourth principal component
extracts the noise variance. From the raw data, we then simulate a first level of saturation by clipping all
emissions above 30, knowing that the maximum emission observed on the initial spectra is around 43.
SI Figure 2S gives the location of the saturated signals at the spatial and spectral levels. 5047 spectra
thus present saturations, i.e. 8% of all the spectra. We notice that saturations are present in areas where
silver is the most concentrated with a percentage higher than 80%. From a spectral point of view, it is
the most intense line of silver which is naturally saturated. Figure 2b shows again the PCA results on
these new saturated data. The consequences are not long in coming since a fourth significant component
is already detected in the eigenvalues scree plot. Of course, this is not normal because we know that
only three elements are present. Compared to the initial results (in Figure 2a), both the first principal
component and the first scores map are no different. Nevertheless, there is a small decrease in the ex-
pressed variance from 21.42 to 20.44%. As far as the second and third scores maps are concerned, they
are quite comparable to those observed from the non-saturated dataset. On the other hand, the corre-
sponding principal components show small artifacts in the spectral region of the saturated Ag band
(highlighted by red boxes in the corresponding figure). Finally, the fourth principal component specifi-
cally reflects the saturation phenomenon observed on silver for an expressed variance of 0.08%. We see
many structures in the corresponding scores map but we know that they do not reflect any analytical

reality. We observe even more the typical W-shaped artifact in this principal component. This shape can



be explained quite well. Indeed, when saturations are potentially present at a given wavelength, princi-
pal components have to express the variance precisely at this wavelength for the unsaturated spectra in
the dataset but other ones also have to express variances specifically localized on the feet of this same
peak. In other words, a clipped band at a certain wavelength of a given spectrum is no longer homothet-
ic to an unsaturated band of another spectrum. So if we do not have any prior information about this
dataset, we see that even a limited saturation level can induce the extraction of erroneous information at
the spatial and spectral levels about the sample being explored. It is then interesting to amplify the satu-
ration effect by considering this time a saturation level equal to 20. Under these new conditions, 10119
spectra are saturated, i.e. 16% of all the spectra. Once again, saturations are present in areas where Ag is
the most concentrated, but this time for values higher than 50% (SI Figure 3S). We are also starting to
see saturated spectra for pure Al pixels. Figure 2c show PCA results of this new dataset. Four significant
contributions are still observed, but with an even greater influence of artifacts on all components. We
notice thus on the first principal component which should be specific to Ag that contributions from Al
and As are now easily observed. We note here that the presence of saturations can also create spurious
correlations. The second and third components have even greater expressed variances and ever more
pronounced ‘W-shapes’. While the scores maps are relatively little changed under these new conditions
for the first three principal components, this is not at all the case for the fourth one. This high-contrast,
low-noise scores image could indeed lead us to believe that real chemical compounds are present, which
is of course not the case. In a final step, the saturation is further increased by considering this time a
level equal to 10. This situation is extreme since 27870 spectra are now saturated, i.e. 44% of the da-
taset. What is more, the saturated pixel location map shows that this percentage is even underestimated
since almost all of the areas that should contain the three elements are almost all saturated, the unsatu-
rated areas being mainly the background (SI Figure 4S). At the same time, we observe that almost all
emission lines show saturation over the entire spectral range. PCA results of this new dataset is given in
Figure 2d. Under these conditions where saturation is omnipresent, six significant contributions are now
detected. The first principal components are more and more perturbed. They are now undeniably differ-
ent from pure spectra extracted on unsaturated spectra. As examples, the first principal component con-
tains distinct contributions from all three elements and the following ones, which contain more and
more artifacts, have equally increasing explained variances. Two new principal components 5 and 6 are
also extracted in these conditions with quite singular scores maps. The presence of these additional prin-
cipal components is explained by the fact that the variance of all the saturated peaks must of course be
explained, but also that they are not necessarily saturated at the same time in all the spectra of the da-
taset. Generally speaking, we can say that the more spectral variables containing saturations, the more

parasitic principal components and biased scores maps are extracted. From this first experiment, it is
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obvious that we cannot directly process saturated spectra with multivariate tools at the risk of making
very hazardous exploration of unknown and complex samples for which we have no a priori. Based on
this observation, we know that we must now absolutely manage these saturations. Thus, if we wanted to
implement a row- or a column-wise strategy that is simple to set up in order to eliminate these satura-
tions, we would quickly observe too many deleted pixels or a particularly small explored spectral do-
main. It is in this sense that the proposed imputation strategy makes sense by first considering saturated
signals as missing values and then applying the MICE approach to make statistical estimates of the lat-
ter, i.e. retrieve lost spectral information and consequently a full data matrix. Imputation was therefore
applied to the previous datasets by considering the three levels of saturation. In order to appreciate the
quality of the data reconstruction, we simply reapplied PCA on these three new datasets. Figure 3 shows
the results concerning the intermediate saturation level equal to 20. The results for the other levels are
presented in the supplementary material (SI Figure 5S). By comparing these new extractions with those
obtained on unsaturated data, we observe rather spectacular results. First of all, we recover the three
significant components on the eigenvalues scree plot, which is consistent with the initial results. Moreo-
ver, principal components and corresponding scores maps are also very comparable to the initial ones.
These good results can be explained by the fact that the multivariate regressions used in the MICE ap-
proach predict missing values rather well. By way of illustration, Figure 4 shows the emission predicted
by the imputation model as a function of known values at the wavelength 323.96 nm from non-saturated
data, this silver emission line being the most often saturated for a saturation level equal to 20. Looking
specifically at the results concerning the most saturated dataset (SI Figure S5, saturation level equal 10),
some readers might say that despite the three significant contributions detected on the scree plot, it is
possible to observe information related to a fourth component at both spectral and spatial levels. This
would be quite commendable but we must not lose sight of the fact that these contributions are very
close to the noise level. Moreover, these results were obtained from a dataset for which almost all the

spectra were saturated, which could not be more challenging.

In this second part, we propose to explore a lung biopsy sample. This sample is particularly interest-
ing because the analyzed area of lung presents a certain diversity of materials since we have naturally
biological tissues but also mineral phases and metal particles localized in specific sub-areas. In these
conditions, we quickly understand that it is almost impossible to find acquisition conditions allowing us
to avoid saturation over the entire surface analyzed. In a way, one always make a bet before such an
analysis because the considered spectroscopy is destructive and it is not possible to return to this sample
area with new acquisition parameters. Location of the spectra containing saturations on the surface of
this sample is shown in SI Figure 6S. Although only 1014 spectra out of the 43089 in total are saturated

(i.e. 2.35%), this phenomenon is finally observable almost everywhere, mainly on two well-localized
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areas (denoted A and B in this figure) but also in the form of single pixels scattered over almost the en-
tire surface of the sample. Additionally, Figure 6S shows that saturations are observed for almost all
emission bands in the considered spectral range. Figure 5a and b shows PCA results on raw spectral
data and spectra corrected with imputation respectively. Differences are noticed very quickly if we look
at the contributions of each principal component in these two conditions two by two. So even though the
first principal component is quite comparable in both cases with the main spectral contributions ob-
served for Mg and Si but also smaller ones for Al and Fe, the associated scores maps are very different.
Indeed, there is an overestimation of this first contribution for raw data on zones A and B of the sample
but also widely around zone B. For its part, the first scores map associated with the corrected data main-
ly locates this contribution on the periphery of zones A and B or on specific pixels scattered outside
these zones. Another way to observe these differences is to compare the histograms of positive scores
for this first component in the two conditions (SI Figure 7S). The saturation effect thus limits the range
of scores values that should be observed and profoundly changes the structure of the distribution and
therefore the visual perception one might have of it. For the second component, we are in much the
same situation as before. We therefore have very comparable second principal components on the raw
and imputed data. The Mg contribution is now anticorrelated to the Si, Fe and Al ones. On the other
hand, once again there are differences on the scores maps for this component in the two conditions.
Negative scores (blue color scale) are thus distributed more homogeneously in areas A and B when the
spectral data are imputed. It is from the third principal components that we observe the largest spectral
differences between the two conditions. Thus for raw data, typical W-shaped artifacts are observed (in
red in Figure 5) around the Mg contribution with correlations or anticorrelations with other elements.
We observe on this occasion that the third and fourth principal components are extracted from raw data
to express the saturation of pixels mainly located in the B zone of the sample. Even more specifically,
we can see on the third principal component that the W-shaped artifact on Mg is positively correlated
with another Ca contribution around 300 nm. This component thus just testifies to the simultaneous sat-
uration of emission bands associated with the Mg and Ca elements on specific pixels according to the
information given in SI Figure 6S. This example shows a very good example of spurious correlation
created by the saturation phenomenon, which no longer exists once the data are corrected by imputation.
Finally, the imputation strategy allows the appearance of dispersed particles opposing the Si and Al ele-
ments for the third principal component and the Ti et Al elements for the fourth one. It is obvious that
such potentially less biased observations of particles represent a precious help for clinicians to diagnose
the causes of the patient's exposure. From a general point of view, it is very interesting to see how a
small percentage of saturated spectra can have an influence on a multivariate exploration method as

sensitive as principal component analysis. This experience shows again here the necessity not to neglect
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the saturation phenomenon by setting up an adapted correction method such as imputation prior any

chemometric analysis.

This last part of this work is dedicated to the analysis of the rock sample. As a reminder, two contig-
uous regions of the sample were analyzed considering two acquisition settings. In this way, we ana-
lyzed the sample by ensuring the absence of saturation for a first area but also its presence in the second
one. Figure 8S shows the location of pixels containing saturations on the surface of the second sample
area. It can be said that in this case saturation is omnipresent since it is observed on 32.5 percent of the
analyzed surface. On the other hand, the same figure shows that this time these saturations are only
found on the specific contribution of an element, namely silicon around 288 nm. Figure 6 presents the
three principal component analysis calculated on the first sample area (i.e. with no saturation), on the
raw data of the second sample area (i.e. with saturations) and on the imputed data (i.e. corrected ones) of
the same area. By comparing the principal components two by two in Figures 6a and 6b, we observe
very quickly the impact of saturation since we find the typical W-shaped artifact around 288 nm for
components 3 and 4. The situation is even more critical for the fifth principal component with complete-
ly different profiles between Figures 6a and 6b. In fact, it is above all the saturation effect that is ex-
pressed here for the second area of the sample. Finally, by comparing the results on the imputed data in
Figure 6¢ and the unsaturated data of the first sample area, we observe a perfect agreement between

extracted profiles demonstrating the capacity of our approach to correct the saturated spectral data.

CONCLUSION

As we have seen in the work, it is crucial to consider the phenomenon of saturation present in the
spectra. Through different datasets we have indeed shown that its presence quickly induces artifacts on
spectral profiles but also on generated images when multivariate tools are used for their exploration.
Make no mistake, even the presence of a limited percentage of saturated spectra in a given dataset can
have an impact on the veracity of the chemometric results. It is obvious that it is absolutely necessary to
avoid the presence of saturation in the acquired spectroscopic data whenever possible by modifying, for
example, the sample preparation or the acquisition parameters. Unfortunately, there are many situations
where this phenomenon is observed as in LIBS imaging and we have to find solutions to exploit these
acquired data anyway. The usual column- or row-wise deletion is not a satisfactory solution because it
can be accompanied by a large loss of spectral information in the dataset. As a consequence, we would
have a partial or even biased view both at the spectral and spatial level of the sample. All the originality
of our work was to consider the saturated signals as values that had not really been measured and by
extension as missing values. The goal being to preserve all the spectral and spatial dimensions of the

dataset, statistical imputation allowed us to retrieve complete data cubes consistent with the analytical
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reality of the samples considered as shown in the results. With this new approach, we will potentially

have a chance to explore all those datasets that we think are being lost due to saturated signals.
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Figure 1. a) A schematic representation of a toy example with six spectra containing saturations high-

lighted in red. b) The two conventional strategies to manage saturated signals in a dataset.
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Figure 2. Principal component analysis on a) raw data, b) on the saturated dataset with a 30 saturation

level, ¢) with a 20 saturation level and, d) with a 10 saturation level.
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Figure 3. Principal component analysis on the imputed dataset with an initial saturation level equal to
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Figure 4. Emission of a silver line predicted by the imputation model as a function of known values at

the wavelength 323.96 nm from non-saturated data.
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Figure 6. Three principal component analysis calculated on, a) the first sample area (i.e. with no satura-
tion), b) the raw data of the second sample area (i.e. with saturations) and c) the imputed data (i.e. cor-

rected ones) of the same area.
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