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Abstract

Let G be an edge-colored graph of order n. The minimum color degree of G, denoted by δc(G),
is the largest integer k such that for every vertex v, there are at least k distinct colors on
edges incident to v. We say that an edge-colored graph is rainbow if all its edges have different
colors. In this paper, we consider vertex-disjoint rainbow triangles in edge-colored graphs. Li
[Rainbow C3’s and C4’s in edge-colored graphs, Discrete Math., 313 (2013), 1893-1896] showed
that if δc(G) ≥ (n + 1)/2, then G contains a rainbow triangle and the lower bound is tight.
Motivated by this result, we prove that if n ≥ 20 and δc(G) ≥ (n + 2)/2, then G contains
two vertex-disjoint rainbow triangles. In particular, we conjecture that if δc(G) ≥ (n + k)/2,
then G contains k vertex-disjoint rainbow triangles. For any integer k ≥ 2, we show that if
n ≥ 16k − 12 and δc(G) ≥ n/2 + k − 1, then G contains k vertex-disjoint rainbow triangles.
Moreover, we provide sufficient conditions for the existence of k edge-disjoint rainbow triangles.

Keywords: Edge-colored graph; Rainbow triangles; Color degree.

1 Introduction

All graphs considered in this paper are simple and finite. All terminology and notation used but

not defined here, please follow [4]. An edge-colored graph G is a graph with an edge coloring c.

For an edge e ∈ E(G), denote by c(e) the color of e. We say that G is properly colored if any

two adjacent edges of G have different colors, and G is rainbow if all edges of G have pairwise

different colors. Given a vertex v ∈ V (G), the color degree dc(v) is the number of distinct colors

appearing on incident edges of v. The minimum color degree δc(G) of an edge-colored graph G

is the minimum dc(v) over all vertices v in G. Let ∆mon(v) be the maximum number of incident

edges of v with the same color. Then the maximum monochromatic degree ∆mon(G) of G is the

maximum ∆mon(v) over all vertices v in G.
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It has been a long and rich history to study the existence of cycles in graphs, digraphs and

edge-colored graphs. For graphs, there is a trivial fact that every graph with minimum degree at

least two contains a cycle. In 1963, Corrádi and Hajnal [6] generalized this fact as follows.

Theorem 1. (Theorem 1 of [6]) For any positive integer k, every graph of order at least 3k and

minimum degree at least 2k contains k vertex-disjoint cycles.

Compared to graphs without edge-colorings, establishing color degree conditions forcing prop-

erly colored or rainbow cycles in edge-colored graphs seems essentially more complicated. Indeed,

Wang and Li (Proposition 2.2 of [18]) proved that for any positive integer l, there exists an edge-

colored graph G with δc(G) ≥ l, but G contains no properly colored cycle. Recently, Fujita, Li and

Zhang [8] obtained a tight minimum color degree condition as follows.

Theorem 2. (Theorem 2 of [8]) For all positive integers n and d with d!
∑d

i=0 1/i! ≥ n+ 1, every

edge-colored graph G of order n with δc(G) ≥ d contains a properly colored cycle.

As an analogy of Theorem 1, it seems more challenging to determine sufficient conditions for

the existence of vertex-disjoint properly colored cycles. Compared to Theorem 2, we first give an

alternative tight color degree condition for a properly colored cycle, which will be of independent

interest. To see this, we say that a star K1,s is nontrivial when s > 1. Given an edge-colored graph

G and a vertex v ∈ V (G), let m(v) be the number of maximal monochromatic nontrivial stars

centred at v. For any positive integer k, let f(k) be the smallest integer such that every digraph of

minimum outdegree at least f(k) contains k vertex-disjoint directed cycles. There has been plenty

of work around f(k). Alon (Theorem 1.1 of [1]) proved that f(k) ≤ 64k. Recently, Bucić (Theorem

4.1 of [5]) improved on this bound to show f(k) ≤ 18k.

Theorem 3. For every positive integer k and every edge-colored graph G, we have the following.

(i) If dc(v) ≥ 2 +m(v) for all vertices v ∈ V (G), with at most one exception v0 satisfying dc(v0) =

1 +m(v0), then G contains a properly colored cycle.

(ii) If dc(v) ≥ 2f(k) +m(v) for each vertex v ∈ V (G), then G contains k vertex-disjoint properly

colored cycles.

It is worth noting that the color degree condition given in Theorem 3 (i) is tight by the following

construction.

Example 1. Let G1 be an edge-colored K2 with color c0. For all i ≥ 1, let Gi+1 be obtained from

2i vertex-disjoint copies {H1, H2, . . . ,H2i} of Gi and a new edge xiyi with color ci as follows. First,

join xi completely to each Hj with 1 ≤ j ≤ i, and yi completely to each Hj with i + 1 ≤ j ≤ 2i.

Then color all the edges between xi (or yi) and Hj with one color cji . Note that all the colors ci
and cji are different.
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By the above construction, we can easily observe that in each Gi+1, dc(xi) = dc(yi) = i + 1,

m(xi) = m(yi) = i, dc(v) ≥ 2 +m(v) for each v ∈ V (Gi+1)\{xi, yi} and Gi+1 contains no properly

colored cycle.

Let Kc
n be an edge-colored complete graph of order n. Li, Broersma and Zhang [14] initiated the

study of vertex-disjoint properly colored short cycles in Kc
n and proposed the following conjecture.

Conjecture 1. (Conjecture 5 of [14]) If ∆mon(Kc
n) ≤ n−3k+1, then Kc

n contains k vertex-disjoint

properly colored cycles of length at most 4.

In the same paper, they confirmed this conjecture for k = 1, 2 (Observation 3 and Theorem 6 of

[14]). Moreover, they constructed some examples to show the tightness of the bound in Conjecture

1.

Closely related questions concern rainbow cycles. For instance, Li and Wang (Theorem 2.1 of

[13]) showed that every edge-colored graph G of order n with δc(G) ≥ (n+1)/2 contains a rainbow

cycle. Furthermore, they conjectured that if δc(G) ≥ (n+1)/2, then G contains a rainbow triangle.

Later on, Li (Theorem 6 of [12]) proved this conjecture. In particular, Li, Ning, Xu and Zhang [11]

generalized this result as follows.

Theorem 4. (Theorem 2 of [11]) Every edge-colored graph G of order n with
∑

v∈V (G) d
c(v) ≥

n(n+ 1)/2 contains a rainbow triangle.

To the end, it is worth mentioning that Czygrinow, Molla, Nagle and Oursler (Theorem 1.2 of

[7]) recently confirmed that the minimum color degree condition δc(G) ≥ (n+ 1)/2 for a graph G

also guarantees a rainbow cycle C` for any given odd integer `, where the order of G is essentially

large with respect to `, and the bound is also tight.

Inspired by Conjecture 1 and the result of Li [12], we study the minimum color degree condition

which guarantees k vertex-disjoint rainbow triangles, where k ≥ 2. Therefore the first open case is

k = 2, and we almost resolve the case as follows.

Theorem 5. For all integers n ≥ 20, every graph G of order n with δc(G) ≥ (n + 2)/2 contains

two vertex-disjoint rainbow triangles.

It has been observed from a result of Hajnal and Szemerédi [10] that for all positive integers

n and k with n ≥ 3k, every graph of order n with minimum degree at least (n + k)/2 contains k

vertex-disjoint triangles. As an edge-colored version, we propose the following conjecture.

Conjecture 2. For all positive integers n and k with n ≥ 3k, every edge-colored graph G of order

n with δc(G) ≥ (n+ k)/2 contains k vertex-disjoint rainbow triangles.

If Conjecture 2 holds, then the lower bound is tight by the following example.
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Example 2. Let H be a properly colored graph where V (H) = X1 ∪X2 ∪ Y with |X1| = d(n− k+

1)/2e, |X2| = b(n− k + 1)/2c and |Y | = k − 1. H[X1 ∪X2] is a balanced complete bipartite graph

and H[Y ] is empty. In addition, each y ∈ Y is complete to X1 ∪X2.

Hence δc(H) = b(n + k − 1)/2c. Since every rainbow triangle in H must contain at least one

vertex from Y and |Y | = k − 1, H contains at most k − 1 vertex-disjoint rainbow triangles.

We say that two rainbow triangles uvw and xyz have totally different colors if {c(uv), c(vw),

c(wu)}∩{c(xy), c(yz), c(zx)} = ∅. Note that when n and k have the same parity, δc(G) ≥ (n+k)/2

cannot guarantee k vertex-disjoint rainbow triangles such that any two of them have totally different

colors. To see this, we obtain the following construction H∗ by modifying H.

Example 3. Let V (H∗) = X1 ∪ X2 ∪ Y and |X1| = |X2| = (n − k)/2, |Y | = k, where n and k

have the same parity. Moreover, H∗[X1 ∪X2] is a balanced complete bipartite graph and H∗[Y ] is

a clique. Also, each y ∈ Y is complete to X1 ∪X2. Arbitrarily take two vertices y1, y2 from Y and

color all the edges in H∗[X1 ∪ {y1}] and H∗[X2 ∪ {y2}] with one color c0. Next we properly color

the remaining edges of H∗ with other colors.

Hence δc(H∗) = (n + k)/2 and among any collection of k vertex-disjoint rainbow triangles in

H∗, the two rainbow triangles containing y1 and y2, respectively, always have a common color c0.

By induction on k, one can easily observe the following fact.

Fact 1. If δc(G) ≥ (n+ 3k)/2, then G contains k vertex-disjoint rainbow triangles.

To provide more evidence for Conjecture 2, we obtain the following extension of Theorem 5.

Theorem 6. For all integers n, k with k ≥ 2 and n ≥ 16k − 12, every edge-colored graph G of

order n with δc(G) ≥ n/2 + k − 1 contains k vertex-disjoint rainbow triangles.

By similar arguments in the proof of Theorem 6, we obtain the following result.

Proposition 1. For all positive integers n, k with n ≥ k + 4, every edge-colored graph G of order

n with δc(G) ≥ (n+ k)/2 contains k edge-disjoint rainbow triangles.

2 Preliminaries

Recall that G is an edge-colored graph of order n. Let δ = δc(G) and ∆ = ∆mon(G). By deleting

edges in G, we may assume that G is edge-minimal, i.e., any additional edge deletion would lead

to a decrease in dc(v) for some vertex v in G. Therefore, every monochromatic subgraph in G is a

disjoint union of stars. For every vertex v ∈ V (G), let NG(v) be the set of neighbors of v in G. We

say xy ∈ E(G) is a good edge for v if vxy is a rainbow triangle, and denote by g(v) the number of

good edges for v.
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Lemma 1. Let v be a vertex of G with ∆mon(v) = ∆. Then g(v) ≥ (2δ − n)(δ + ∆− 1)/2.

Proof. Let A be the maximal subset of NG(v) such that c(vx) = c(vy) for any two vertices x, y ∈ A.
Hence |A| = ∆. Let B be a maximal subset of NG(v) \ A such that c(vx) 6= c(vy) for any two

vertices x, y ∈ B. So we have |B| ≥ δ − 1 and |V (G) \ (A ∪B ∪ {v})| ≤ n− δ −∆.

Now we define a directed graph D on A∪B such that −→xy is an arc in D if and only if xy ∈ E(G)

and c(xy) 6= c(vx). Hence for any two vertices x, y ∈ A, there is either a 2-cycle or no arcs between

x and y. Denote by ea the number of 2-cycles in D[A]. Moreover, if ←→xy is a 2-cycle with at least

one end-vertex in B, then xy is a good edge for v. Let e0 be the number of such 2-cycles in D.

Obviously, g(v) ≥ e0. In the remaining proof, we obtain a lower bound of e0.

For every x ∈ A ∪B, write d+D(x) and d−D(x) for its outdegree and indegree in D, respectively.

We have

d+D(x) ≥ dc(x)− 1− |V (G) \ (A ∪B ∪ {v})| ≥ 2δ + ∆− n− 1.

Therefore, ∑
x∈A∪B

d+D(x) ≥ (∆ + |B|)(2δ + ∆− n− 1).

Next we consider
∑

x∈A∪B
d−D(x). If an arc −→xy is not contained in a 2-cycle, then we have c(xy) =

c(vy). Hence for every vertex x ∈ A∪B, there are at most ∆mon(x)− 1 ≤ ∆− 1 arcs −→zx which are

not contained in 2-cycles. Moreover, the arcs in D[A] and the arcs from B to A are all contained

in 2-cycles. Thus, by double counting, we have∑
x∈A∪B

d−D(x) ≤ |B|(∆− 1) + 2(ea + e0).

Since
∑

x∈A∪B
d−D(x) =

∑
x∈A∪B

d+D(x) and 2ea ≤ ∆(∆− 1), we conclude that

e0 ≥ (2δ − n)(|B|+ ∆)/2 ≥ (2δ − n)(δ + ∆− 1)/2.

The following lemma is due to Li, Ning, Xu and Zhang [11].

Lemma 2. (Theorem 3 of [11]) Let G be an edge-colored graph of order n. If dc(v) ≥ n/2 for

every vertex v ∈ V (G) and G contains no rainbow triangles, then n is even and G is the complete

bipartite graph Kn/2,n/2, unless G = K4 − e or K4 when n = 4.

The rest of the paper is organized as follows. In Section 3, we first prove Theorem 3. Next

we proceed to prove Theorem 6 while the proof of Theorem 5 is included in that of Theorem 6 as

an initial step. The proof of Proposition 1 is presented at the end of this section. Section 4 will

propose some related problems.
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3 Main proofs

Proof of Theorem 3. Let G be given in the statement of (i) (or (ii)) and suppose G contains

no properly colored cycles (or k vertex-disjoint properly colored cycles). We still assume that G is

edge-minimal. Therefore, every monochromatic subgraph of G is a union of vertex-disjoint stars.

Now we define a directed graph D on G in the following way: for every edge xy in G, we have

an arc from x to y in D if there is no z ∈ V (G)\{x, y} with c(xy) = c(xz). Note that since

there is no monochromatic path of length 3 in G, for every edge xy, there is an arc or a directed

2-cycle corresponding to it in D. We can easily observe that every directed cycle of length at least

3 in D is actually a properly colored cycle in G. Moreover, for each vertex v ∈ V (D), we have

d+(v) = dc(v)−m(v). By assumption, we can greedily find a directed cycle of length at least 3 if each

vertex v has d+(v) ≥ 2, even though there exists one exception v0 with d+(v) = dc(v)−m(v) = 1.

We proceed the proof of (ii) by defining an orientation D of G in the same way as above. It

follows that d+(v) = dc(v)−m(v) ≥ 2f(k) for all vertices v ∈ V (D). By the observation that every

directed cycle of length at least 3 in D is indeed a properly colored cycle in G, it remains to prove

that D contains k vertex-disjoint directed cycles of length at least 3.

Claim 3.1. There exists a subdigraph D′ of D such that d+D′(v) ≥ f(k) for each v ∈ V (D) and D′

contains no 2-cycle.

Proof. Let H be a spanning subgraph of G with E(H) = {xy ∈ E(G) | ←→xy ∈ D}. Assume that

H is connected, otherwise we can consider each component separately. We pair up the vertices of

odd degree in H and join each pair with an extra edge to form a multigraph H ′. Hence, H ′ has

an Eulerian circuit C, that is, a walk that begins and ends at the same vertex, and contains each

edge in H ′ exactly once. We can see C as a directed cycle, and split it into a family of directed

walks {W1,W2, . . . ,Wl} by deleting the extra edges added to H to form H ′. Hence each walk Wi

can be treated as a subdigraph of D. Now we obtain D′ from D by deleting all the arcs in Wi for

each i ∈ [l]. It follows that D′ contains no 2-cycle and d+D′(v) ≥ d+D(v)−ddH(v)/2e ≥ f(k) for each

v ∈ V (D).

By the definition of f(k) and Claim 3.1, one can easily obtain k vertex-disjoint properly colored

cycles of length at least 3. This completes the proof of Theorem 3.

Proof of Theorem 6. As an initial step, we first prove Theorem 5. Let v be a vertex of G

with ∆mon(v) = ∆. We assume that ∆ ≥ 2, otherwise G is a properly colored graph with

δ(G) = δc(G) ≥ (n + 2)/2. It follows that one can find two vertex-disjoint triangles by a result

of Hajnal and Szemerédi [10]. Since δc(G − v) ≥ (|G − v| + 1)/2, there is a rainbow triangle, say

xyz, in G − v. For all good edges uw for v, we assume that {u,w} ∩ {x, y, z} 6= ∅, otherwise we
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can find two vertex-disjoint rainbow triangles xyz and uvw in G. So there are at least g(v)/3 good

edges for v which are incident with one vertex, say x, from {x, y, z}. Let N∗(v, x) be the set of

vertices u such that uvx is a rainbow triangle. By Lemma 1, we have |N∗(v, x)| ≥ g(v)/3 ≥ 4. Let

G′ = G− {v, x}, then δc(G′) ≥ |G′|/2. If there exists a rainbow triangle, say x′y′z′ in G′, then we

can find a vertex u ∈ N∗(v, x)\{x′, y′, z′} such that uvx and x′y′z′ are two vertex-disjoint rainbow

triangles in G. Therefore we assume that there is no rainbow triangle in G′. By Lemma 2, we

know that G′ is a properly colored balanced complete bipartite graph. Since δc(G) ≥ (n+ 2)/2, we

have vu, xu ∈ E(G) and dcG(u) = (n + 2)/2 for every vertex u ∈ V (G′). Thus, we can easily find

two vertex-disjoint rainbow triangles containing x and v, respectively. This completes the proof of

Theorem 5.

Now we proceed the proof of Theorem 6 by induction on k. The basic case k = 2 is easily

derived from Theorem 5. Let k ≥ 3 and assume that Theorem 6 is true for k − 1. Similar to

the proof of Theorem 5, let v be a vertex of G with maximum monochromatic degree. Since

δc(G−v) ≥ n/2 +k−2 > (n−1)/2 + (k−1)−1 and n−1 ≥ 16(k−1)−12, there are k−1 vertex-

disjoint rainbow triangles in G−v by induction hypothesis. Let S be the set of vertices of such k−1

rainbow triangles. For any good edge uw for v, we may assume that {u,w} ∩S 6= ∅, otherwise one

can find k vertex-disjoint rainbow triangles in G. By averaging arguments, there is a vertex x ∈ S
which is incident with at least g(v)/(3k−3) good edges for v. We also use N∗(v, x) to denote the set

of vertices u such that uvx is a rainbow triangle. Since δc(G−{v, x}) ≥ (n−2)/2 + (k−1)−1 and

n− 2 ≥ 16(k− 1)− 12, there are k− 1 vertex-disjoint rainbow triangles in G−{v, x} by induction

hypothesis. Since |N∗(v, x)| ≥ g(v)/(3k − 3) and by Lemma 1, we have |N∗(v, x)| ≥ 3k − 2. It

follows that there is a vertex u ∈ N∗(v, x) \S such that uvx together with the k− 1 vertex-disjoint

rainbow triangles in G− {v, x} forms k vertex-disjoint rainbow triangles in G.

Proof of Proposition 1. We prove Proposition 1 by induction on k. The case k = 1 follows from

the result of Li [12]. Let k ≥ 2 and suppose Proposition 1 holds for k − 1. Let v be a vertex of G

with maximum monochromatic degree. Since δc(G− v) ≥ (n+k)/2− 1 = [(n− 1) + (k− 1)]/2 and

n− 1 ≥ (k − 1) + 4, G− v contains k − 1 edge-disjoint rainbow triangles by induction hypothesis.

Since g(v) ≥ k(k+ 2)/2 ≥ 3(k− 1) + 1, there is a good edge uw for v such that uvw and the k− 1

edge-disjoint rainbow triangles in G− v form k edge-disjoint rainbow triangles in G.

4 Concluding Remarks

In this paper, we mainly consider vertex-disjoint rainbow triangles in edge-colored graphs. Theorem

3 concerns vertex-disjoint properly colored cycles. Based on Theorems 2 and 3, it will be interesting

to determine the minimum color degree condition for k vertex-disjoint properly colored cycles.

For digraphs, Henning and Yeo (Conjecture 1 of [9]) conjectured that every digraph of minimum
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out-degree at least 4, contains two vertex-disjoint directed cycles of different lengths. Later on,

Lichiardopol confirmed it (Theorem 1.1 of [15]) and proposed the following conjecture.

Conjecture 3. (Conjecture 3.1 of [15]) For every integer k ≥ 2, there exists an integer g(k) such

that any digraph of minimum out-degree at least g(k) contains k vertex-disjoint cycles of different

lengths.

Recently, Bensmail, Harutyunyan, Le, Li and Lichiardopol [2] proved Conjecture 3 for tourna-

ments, regular digraphs and digraphs of small order. Moreover, for undirected graphs, they proved

that every graph with minimum degree at least (k2 + 5k− 2)/2 contains k vertex-disjoint cycles of

different lengths (Theorem 12 of [2]), where the degree bound is best possible. In particular, using

the same arguments in the proof of Theorem 3, we can easily obtain the following result.

Proposition 2. If Conjecture 3 holds for each positive integer k, then every edge-colored graph

G with dc(v) ≥ 2g(k) + m(v) for all vertices v ∈ V (G) contains k vertex-disjoint properly colored

cycles of different lengths.

It will also be interesting to establish the minimum color degree condition for k vertex-disjoint

properly colored cycles of different lengths, and we will return to this topic in the near future.
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