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Contact Dynamics modeling of viscoelastic granular materials using irregular

polyhedral particles

Juan Carlos Quezada'>* and Cyrille Chazallon'

'ICUBE, UMR 7357, CNRS, INSA de Strasbourg, Strasbourg, France

Abstract. Viscoelastic granular materials are present in several disciplines. One example is asphalt mixture
employed in road construction. In the last three decades, discrete element modeling has been positioned as a
valid tool for the analysis of this multiphase material at the grain-scale. All this despite the simplification of the
shape of the particles used in these studies. In this work, it is proposed a simplified procedure for the generation
of viscoelastic granular samples composed of irregular polyhedra. The numerical aggregates were generated
by a Poisson-Voronoi tessellation based on the particle size distribution (PSD) and statistic data of aggregates,
without using complex imaging technics. This procedure set the porosity of the packing, while controlling the
PSD. Using this procedure implies a significant computational-time reduction by skipping several preparation
stages for polyhedral samples, such as deposition by gravity and compaction. This approach can be used for the
study granular materials as inclusion in a solid matrix as concrete or asphalt mixtures, particle breaking, and

fatigue damage of viscoelastic materials.

1 Introduction

Granular materials are present in different disciplines such
as agriculture, the pharmaceutical industry and civil en-
gineering, among many others. In construction, crushed
rock aggregates are used as filling materials, and for man-
ufacturing concrete and asphalt mixtures. For the latter,
solid grains are surrounded by a viscoelastic matrix com-
posed of mastic of bitumen and filler. The mechanical be-
havior of this multiphase material is highly dependent on
the properties of its individual components in interaction.

Laboratory experiments are able to quantify the vis-
coelastic properties of these materials, but struggle to get
a micromechanical insight. To study the properties of
these materials at the particle-scale, the discrete element
approach was employed over the last 30 years. In most
of these studies, the particles were modeled as spheres or
clumps composed of spheres [1-4], neglecting the cru-
cial role of particle shape on granular fabric properties
such as porosity, contact anisotropy, force chains network,
etc. [5-9]. On the other hand, the preparation of numeri-
cal samples composed of polyhedral particles is a partic-
ularly time-consuming process. Complex algorithms are
used in contact detection and repulsive force computation,
during the preparation stages such as gravity deposition,
compaction and stabilization of numerical samples.

In this work, a simple methodology is proposed for
the preparation of viscoelastic granular samples composed
of irregular polyhedral particles, generated as standard
Voronoi tessellations. This approach reduces the compu-
tational time spent during the preparation process, while
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controlling the particle size distribution (PSD) and the
porosity of the packing.

2 Numerical protocol

To identify the mechanical properties of viscoelastic ma-
terials such as asphalt mixtures, a common practice is to
perform a complex modulus test in a two point bending
(2PB) configuration [10]. To validate the proposed nu-
merical procedure, in this study we propose to confront
the experimental and numerical data of complex modulus
tests obtained for frequencies ranging from 3 up to 40 Hz,
and temperatures varying between -10 and 30 °C. The vis-
coelastic properties to analyze will be the dynamic modu-
lus |E*| and phase angle @ obtained from these trials.

2.1 Particles generation

The numerical samples are composed of rigid irregu-
lar polyhedral particles generated by a standard Poisson-
Voronoi tessellation of the trapezoidal prism for a 2PB
test, using the NEPER software [11], which generates ran-
domly polycrystals as tessellations. About 3,800 tessel-
lations are created following the experimental PSD (fig-
ure 1) cut at 2 mm, in order to reduce the total quantity
of elements in the sample, where the fines are included in
the mortar phase. Figure 2a displays the generated tes-
sellations using the Poisson-Voronoi method. Then, the
vertices of each tessellation are recuperated to build con-
vex polyhedrons, generating triangular faces placed on the
convex hull. The created particles have an average num-
ber of vertices equals to 14.81 and an average face number
of 25.62. These quantities of vertices and faces are quite



similar to those identified from digitalized crushed aggre-
gates [9, 12]. This protocol creates convex polyhedrons,
based on simplified shapes of actual aggregates, without
using complex imaging technics. A snapshot of the gener-
ated numerical sample with this approach is displayed in
figure 2b.
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Figure 1. Particle size distribution for the BBSG 0/10 Bréfauchet
asphalt
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Figure 2. (a) Tessellations generated using the standard Poisson-
Voronoi method. (b) Snapshot of a resulting numerical sample
composed of convex polyhedrons.

After the numerical generation stage, each sample is
fixed to a bottom and a top plate. The latter simulates
the mobile plate in the experimental set-up for a 2PB test.

To take in account the void content of 4.7%, the particle
volumes are decreased, to generate voids between them.
Then, the density of particles is set to 3556 kg.m™3, to
reach the total sample mass of 0.6 kg, concentrating the
mass of the aggregates and the mortar phase within the par-
ticles. The particle-particle and particle-wall coefficient of
friction is set to 0.7, which is a typical value for crushed
aggregates.

2.2 Contact Dynamics method

The numerical simulations were performed using the
LMGC90 software, which handles the interaction of rigid
polyhedral particles [9, 13—17] . This software is based on
the Contact Dynamics (CD), which is a discrete element
approach for the simulation of non-smooth granular dy-
namics [18-20]. In this method, the equations of motion
for each particle are formulated as differential inclusions in
which velocity jumps replace accelerations [21, 22]. The
principal difference between this method and classic DEM
approaches lies in the expression of the contact laws as
complementary relations between the contact forces and
velocities. This approach ensures basically the mutual ex-
clusion between particles without introducing regularized
laws often used in explicit methods such as the distinct
element method [23-25] or molecular dynamics [26-29].
The unilateral contact interactions and Coulomb friction
law are treated as complementarity relations or set-valued
contact laws.

The determination of the contact set for polyhedral
particles is obtained by a "bounding box" method used to
sort a list of neighboring particle pairs. Then, for each
pair, the overlaps are calculated using the "common-plane
method" [25]. In the case of an overlap, the contact plane
is determined by means of the intersection between the
two particles. This detection procedure is fairly quick and
allows simulating large samples composed of polyhedral
particles [12].

2.3 Viscoelastic contact model

To simulate a viscoelastic granular material, two condi-
tions are employed for particles at contact. For rigid parti-
cles, to respect the mutual exclusion criterion, a Coulomb
friction law together with the Signorini condition are ap-
plied. On the other hand, to model the mastic phase sur-
rounding the particles, a viscoelastic model is used for
distant contacts, creating a viscoelastic rod between two
particles at contact. This viscoelastic model is based on
the Burgers model, which is composed by a Maxwell
model putted in series with a Kelvin-Voigt model (fig-
ure 3). At the macroscale, the stiffness and viscosities
for the Maxwell and the Kelvin-Voigt parts correspond to
K., Cn, K, and Cy respectively. At the particle-scale, the
normal contact components are calculated as the product
of the macroscale parameters by the contact cross-section
over the initial gap value. Here, the cross-section is as-
sessed taking the minimum radius of two particles at con-
tact. More details about the numerical implementation for



Table 1. Best fit parameters for the Burgers contact model.

TCC) K, (Pa) C,(Pas) K (Pa) Cr (Pa.s)
10 1.47x10° 1.22x10° 1.82x10™ 2.40x10°
0 138108 7.75x107  1.02x10°  1.08x107
10 1.16x108  2.03x107  3.02x10%8  3.33x10°
15 1.12x108  1.02x107  1.82x10%8  1.69x10°
20 1.03x108  5.12x10°  1.10x10%  9.54x10°
30 9.74x107  1.05x10° 3.64x107  3.09x10°

this contact model can be found in [30]. The best fit pa-
rameters for this contact model are displayed in table 1.
These values are obtained from the experimental master
curves for the dynamic modulus and the phase angle.

(a)

Figure 3. Schema representation of the Burgers model: (a) Nor-
mal components; (b) Tangential components.

3 Validation of the numerical approach

Figure 4 displays the comparison between the experimen-
tal and numerical master curves for the dynamic modulus
|E*| and phase angle ® respectively. Experimental and nu-
merical tests were performed using the same sample over-
all properties, such as geometry, mass and density, where
the employed PSD is displayed in figure 2. The dynamic
modulus is obtained as the absolute value of the ratio be-
tween the peak stress to peak strain for a complex modulus
test. The phase angle ® can be described as the time lag
between the sinusoidal stress and strain signals.

To build each master curve, a reference temperature
T,.s equals to 15 °C was chosen. Then the translation of
all isotherm values is performed by calculating the reduced
frequency as: ar f = fx10%, where f corresponds to each
frequency value in each curve and ar is the shift factor,

which translates the data applying the time—temperature
superposition principle. These values are obtained from
the fit with the temperatures ones using the Williams-
Landel-Ferry (WLF) equation (Eq. 1):

e
B C2+T

where C and C; are 28 °C and 206.8 °C respectively,
and T is the temperature. As expected, experimental and
numerical data of |E*| collapse in the same curve. On the
other hand, numerical ® values follow the trend of experi-
mental ones, despite some fluctuations around the average
values.
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Figure 4. (a) Dynamic modulus master curve for experimental
tests and numerical simulations. (b) Phase angle master curve for
experimental tests and numerical simulations.

4 Concluding remarks

In this work contact dynamic simulations of a viscoelastic
granular material composed of irregular polyhedrons were
presented. The particle-generation procedure was based
on a Poisson-Voronoi tessellation using statistic criteria to
reproduce the number of vertices and faces identified from



digitalized aggregates, without using a 3D scan or other
complex imaging technics. In these numerical samples,
the particle size distribution and the porosity were con-
trolled.

This procedure reduces significantly the computational
time during the preparation stages. To validate this numer-
ical approach, the dynamics modulus and the phase angle
were calculated to analyze the viscoelastic behavior during
a 2PB test. Regarding the master curves, the numerical re-
sults of these simulations were in a good agreement with
experimental data.

In conclusion, the generation procedure presented in
this work can be seen as an interesting alternative to the
classic procedures for generating polyhedral samples. Fu-
ture works will focus on the improvement of the tessella-
tion process for particle generation, to consider the prop-
erties of granular fabric, and on the effect of void content
on the mechanical response.

5 Acknowledgments

The work presented in this paper was financially supported
by the French National Research Agency (ANR - Sol-
DuGri project ANR-14-CE22-0019). The authors want
also to acknowledge CST Colas France for providing the
experimental data.

References

[1] A.C. Collop, G.R. McDowell, Y.W. Lee, Granular
Matter 8, 175 (2006)

[2] S. Adhikari, Z.P. You, International Journal of Pave-
ment Research and Technology 1, 94 (2008)

[3] Y. Liu, Z. You, Journal of Computing in Civil Engi-
neering 23, 340 (2009)

[4] W. Cai, G. McDowell, G. Airey, Soils and Founda-
tions 54, 12 (2014)

[5] F. Alonso-Marroquin, H. Herrmann, Physical Re-
view E 66, 021301 (2002)

[6] M. Lu, G. McDowell, Granular matter 9, 69 (2007)

[7] E. Azéma, F. Radjai, G. Saussine, Mechanics of Ma-
terials 41, 729 (2009)

[8] B. Saint-Cyr, K. Szarf, C. Voivret, E. Azéma,
V. Richefeu, J.Y. Delenne, G. Combe, C. Nouguier-
Lehon, P. Villard, P. Sornay et al., EPL (Europhysics
Letters) 98, 44008 (2012)

[9] E. Azéma, F. Radjai, F. Dubois, Physical Review E
87, 062203 (2013)

[10] EN 12697-26: Bituminous mixtures. Test methods for
hot mix asphalt. Part 26: Stiffness., afnor edn. (2012)

[11] R. Quey, P. Dawson, F. Barbe, Computer Methods
in Applied Mechanics and Engineering 200, 1729
(2011)

[12] J.C. Quezada, P. Breul, G. Saussine, F. Radjai, Phys-
ical Review E 86, 031308 (2012)

[13] E. Dubois, M. Jean, LMGC90, in Actes du sixieme
colloque national en calcul des structures (2003),

Vol. 1, pp. 111-118
[14] F. Perales, F. Dubois, Y. Monerie, B. Piar, L. Stainier,

European Journal of Computational Mechan-
ics/Revue Européenne de Mécanique Numérique 19,
389 (2010)

[15] V. Topin, F. Dubois, Y. Monerie, F. Perales,
A. Wachs, Journal of Non-Newtonian Fluid Mechan-
ics 166, 63 (2011)

[16] A. Rafiie, M. Vinches, F. Dubois, The Non-Smooth
Contact Dynamics method applied to the mechani-
cal simulation of a jointed rock mass, in ENOC 2011
(2011)

[17] D. Cantor, E. Azéma, P. Sornay, F. Radjai, Numeri-
cal simulation of the compaction of crushable grains
in 3D, in EPJ Web of Conferences (EDP Sciences,
2017), Vol. 140, p. 07016

[18] J. Moreau, European Journal of Mechanics A/Solids
supp., 93 (1994)

[19] M. Jean, Computer Methods in Applied Mechanic
and Engineering 177, 235 (1999)

[20] F. Radjai, V. Richefeu, Mechanics of Materials 41,
715 (2009)

[21] J.J. Moreau, Unilateral contact and dry friction in
finite freedom dynamics, in CISM (1988), pp. 1-82

[22] B. Brogliato, Nonsmooth mechanics (Springer, Lon-
don, 1999)

[23] P.A. Cundall, A computer model for simulating pro-
gressive, large scale movement in blocky rock sys-
tems, in Symp. ISRM, Nancy, France, Proc. (1971),
Vol. 2, pp. 129-136

[24] P.A. Cundall, O.D. Strack, Geotechnique 29, 47
(1979)

[25] P.A. Cundall, Formulation of a three-dimensional
distinct element model—Part 1. A scheme to detect
and represent contacts in a system composed of many
polyhedral blocks, in International Journal of Rock
Mechanics and Mining Sciences & Geomechanics
Abstracts (Elsevier, 1988), Vol. 25, pp. 107-116

[26] T. Poschel, V. Buchholtz, J. Phys. I France 5, 1431
(1995)

[27] N.V.Brilliantov, F. Spahn, J.M. Hertzsch, T. Poschel,
Physical review E 53, 5382 (1996)

[28] H. Herrmann, S. Luding, Continuum Mechanics and
Thermodynamics 10, 189 (1998)

[29] F. Radjai, F. Dubois, Discrete-element modeling of
granular materials (Wiley-Iste, 2011)

[30] J.C. Quezada, C. Chazallon, Computers and
Geotechnics 117, 103255 (2020)



