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Abstract
In this paper, we address the problem of handling inconsistent data in Temporal Description

Logic (TDL) knowledge bases. Considering the data part of the knowledge base as the source of
inconsistency over time, we propose an ABox repair approach. This is the first work handling the
repair in TDL Knowledge bases. To do so, our goal is twofold: 1) detect temporal inconsistencies
and 2) propose a data temporal reparation. For the inconsistency detection, we propose a reduction
approach from TDL to DL which allows to provide a tight NP-complete upper bound for TDL
concept satisfiability and to use highly optimised DL reasoners that can bring precise explanation
(the set of inconsistent data assertions). Thereafter, from the obtained explanation, we propose a
method for automatically computing the best repair in the temporal setting based on the allowed
rigid predicates and the time order of assertions.
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1 Introduction

The Ontology Web Language (OWL) is the ontology language recommended by the W3C
that can be used to model knowledge domains. OWL is derived from the well known
Description Logics (DLs) [6] which provide the basic representation features of OWL. Despite
the expressiveness power of OWL, it cannot fully express the temporal knowledge needed in
many applications. Beyond allowing data values to be typed as basic XML Schema dates,
times or durations 1, OWL has a very limited support for temporal information modeling
and reasoning. Time is crucial because events occur at specific points in time and also the
relationships among objects exist over time. The ability to model this temporal dimension is
therefore crucial in real- world applications such as banking, medical records and geographical
information systems. Thus, the temporalization of DL (TDL) has been studied in [3, 20]
but for reasoning tasks such as satisfiability, it is known to be hard. Temporal extensions of
the lightweight DL «DL-Lite» [5, 12] are therefore considered for their low complexity for
many reasoning problems. As TDL-Lite language we here consider the TNDL-Lite fragment
[25] allowing for: full Boolean connectives, LTL operators [23] interpreted over N in the
construction of concepts, inverse roles, distinction between local and global roles (aka. rigid
roles). And we restrict ourselves to using the two future operators (3F : eventually in the
future and 2F : always in the future) and to specifying functionality on roles or their inverses.

1 https://www.w3.org/TR/xmlschema11-1/
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Note that, TNDL-Lite is the simpler logic of TF P XDL-LiteN
boolfragment, the most expressive

combination of the tractable DL-Lite family logics with LTL and which is known to be
NP-complete [5].

TDL-Lite ontologies, also called temporal knowledge bases (TKBs), are expressed as a finite
set of general concept inclusions GCIs TBox, which is expressed with temporalized concepts,
paired with a timestamped factual knowledge ABox that represents data at different time
points. Therefore, one of the most important challenges in TDL is to deal with inconsistent
ontologies where the ABox is inconsistent with a satisfiable TBox: a subset of the assertions
in the ABox contradicts one or more TBox assertions.

Then, the ABox is not reliable and must be repaired. The problem of handling inconsistent
data in TKBs has not been fully addressed and only focused so far on satisfiability checking
[25]. The reparation of the inconsistent data assertions in the ABox has not however been
addressed yet. To the best of our knowledge, we propose the first approach to automatically
repair ABox over TDL KBs based on the maximal repair semantic. The obtained repair is a
maximal subset of the ABox that is consistent with the TBox. More precisely, we make the
following contributions:

We present a linear equisatisfiable translation of TDL-Lite knowledge bases KBs into DL
KBs which allows to provide a tight NP-complete upper bound for TDL-Lite concept
satisfiability and to use highly optimized DL reasoners that can bring precise inconsistency
explanations (the set of inconsistent data assertions).
We adapt the existing automatic repairing approach of an inconsistent DL ontology, based
on the maximal repair semantic [8], for temporal ABoxes and we show that this semantic
is preserved.
We extend the maximal repair semantic in DL to the temporal setting by associating the
detected inconsistent assertions with a temporal weight. This weighting is based on the
defined rigid predicates in the TBox and the timestamp order of the ABox assertions.
The repair is computed by removing inconsistent assertions with the lowest weight.

In the following, we present our running example to provide an intuitive overview of the
inconsistency detection and the repair over TDL-Lite KBs.

▶ Example 1. Let’s consider the following KB K = (T , A) where T is a TDL-Lite TBox
stating that minors and adults are persons, but they are disjoint. Moreover, the concepts
person, adult and the role hasMother are rigid. The ABox A = A1 ∪ A2 reports John′s
status in A1 and his mother in A2, at different timestamps:

T = {Adult ⊑ Person, Minor ⊑ Person, Person ⊑ 2F Person, Adult ⊑ 2F Adult
Minor ⊓ Adult ⊑ ⊥, Person ⊑ ∃hasMother, Funct(hasMother)}

A1 = {Person(John, 0), Minor(John, 1), Adult(John, 2), Minor(John, 3), Minor(John, 4)}
A2 = {hasMother(John, Ana, 0), hasMother(John, Eva, 1), hasMother(John, Maria, 2)}

Both A1 and A2 are inconsistent w.r.t T . In A1, the assertions: Adult(John, 2), Minor(John, 3)
and Minor(John, 4) with the rigidity of adult violate the disjointness between adult and minor.
Similarly in A2, John has multiple mothers at different time points which violates the
properties (functional and global) of the role hasMother. Then A1 has a maximal repair
A′

1 = {Person(John, 0), Minor(John, 1), Minor(John, 3), Minor(John, 4)} and A2 has three possible
maximal repairs as follows:

A′
2 = {hasMother(John, Ana, 0)} A′′

2 = {hasMother(John, Eva, 1)}
A′′′

2 = {hasMother(John, Maria, 2)}

This paper is structured as follows. In the next section, we sketch works that have been
conducted in the context of inconsistent data reparation in knowledge base fields. In section
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3, we introduce the syntax and semantics of the temporal DL TDL-Lite that formalise our
running example. In section 4, we propose a translation to reduce TDL KBs to DL KBs.
Based on the obtained DL KBs, in section 5, we perform inconsistency detection and compute
the best temporal data repair. Section 6 concludes this paper and presents some future
works.

2 Related Work

The problem of inconsistencies appearing in KBs can be tackled either by repairing the
KB, which leads to a consistent version of it [15], or by providing the ability to query
inconsistent data and get consistent answers (Consistent Query Answering - CQA) [2]. These
two approaches were applied initially in the context of relational databases and, later, in
the context of KBs as well. The repair approaches share the same principle of performing
a minimal set of actions (insertions, deletions, updates) over the KB, in order to render it
valid with respect to a given set of integrity constraints. They differ in the type of integrity
constraints and in the applied actions. However, CQA approaches take into account, at query
execution time, all the possible repairs without materializing a repair of the inconsistent KB.
They differ in the repair semantics, the type of integrity constraints and ways of computing
the repairs. In the following, we will refer to the most notable related works, dealing with the
problems of CQA or repairing, that have been proposed for atemporal and temporal KBs.

2.1 Atemporal KBs Repair
The most well-known, and arguably the most natural approach for Consistent Query Answer-
ing is the ABox Repair (AR) semantics [18]. It consists of finding all the maximal subsets of
the ABox that are consistent with the TBox and thus showing that inconsistency-tolerant
instance checking is already intractable. For this reason, the Intersection ABox Repair (IAR)
semantics was proposed which is the intersection of all AR-repairs, and is polynomially
tractable. Few implemented systems [10] designing practically efficient consistent query
answering systems, that could scale up to billions of data, is still largely open. There has been
few implementations regarding ABox inconsistency checking. The reasoner QuOnto [1] allows
to only check the satisfiability of DL-LiteA KBs the simplest fragment of DL-Lite which is
at the bases of OWL 2 QL 2. A preliminary ABox cleaner system QuAC implemented within
QuOnto is reported by [21] over DL-LiteA KBs. It is based on the semantics discussed in [19]
where each inconsistency is resolved by removing all data assertions that take part in it and
the evaluation was conducted for datasets of few thousand assertions. On the contrary, in [8]
the repair is processed on big RDF KBs by only removing one triple from the interdependent
inconsistent triples.

2.2 Temporal KBs Repair
Very few works have investigated the repairing of inconsistent temporal knowledge base. So
far, query answering has been extended to the temporal setting in light-weight DLs over
inconsistent data, allowing both rigid concepts and roles whose interpretations do not change
over time and different types of repair semantics [11]. In this work, temporal operators are
only used in the definition of queries which are applied to static ontologies together with

2 https://www.w3.org/TR/owl2-profiles/
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sequences of datasets at time points. The ontology along with the sequence of datasets
constitute the temporal knowledge base. Unlike the quoted work, we here use dynamic
ontologies that allow temporal operators in the definition of concepts. A recent work tackled
this issue by translating TDL-Lite KBs into LTL formulas where LTL reasoners can be
applied to check their satisfiability [25]. However, root causes of unsatisfiability, when it exits,
are not identified. In this paper, we extend existing approaches of detecting the minimal
inconsistent subset in Description Logic (DL) knowledge bases to the temporal setting. We
make the assumption that ABox assertions are reliable over time and we focus on repairing
the data in the ABox based on the TBox specifications and under the best temporal repair
semantic.

3 Temporal Description Logic

We now provide details about the syntax and the semantics of the temporal description logic
TDL-Lite. In our study as TDL-Lite we consider the TNDL-Lite fragment, that allows only
future operators interpreted over N to concepts. We further impose the only use of the two
future temporal operators: 3F (eventually in the future) and 2F (always in the future) and
applied only in the right-hand side of inclusions.

▶ Definition 2. Let NC, NI and NR be countable sets of concept, individual names and roles
respectively. NR is the union NG ∪ NL where NG and NL are countable and disjoint sets of
global and local role names, respectively. TDL-Lite basic concepts B, concepts C,(temporal)
concepts D, and roles R, are formed according to the following grammar:

R ::= L | L− | G | G−, B ::= ⊥ | ⊤ | A |, ∃R,

C ::= B | ¬C | C1 ⊓ C2, D ::= C | 3F D | 2F D | ¬D | D1 ⊓ D2.

where L ∈ NL, G ∈ NG, A ∈ NC. we called disjointness, inclusions of the form C ⊓ D ⊑ ⊥.
We also add the ability to specify functional roles (funct R).

A TDL-Lite knowledge base, K, is a pair K = (T , A), where T is a TBox and A is an ABox.
A TBox is a finite set of general concept inclusions (GCI) of the form C ⊑ D where C, D

are TDL-Lite concepts, and an ABox is a finite set of concept assertion of the form #nA(a)
or #n¬A(a), or a role assertion of the form #nR(a, b) or #n¬R(a, b), A ∈ NC, R ∈ NR,
a, b ∈ NI, and n ∈ N. Here we assume that there is no time point before 0 or after n and we
use abbreviations for assertions A(a, n) = #nA(a) and R(a, b, n) = #nR(a, b).

▶ Definition 3. A TDL-Lite interpretation is a structure M = (∆M, (In)n∈N), where each
In is a classical DL interpretation with non-empty domain ∆M (or simply ∆). We have
that AIn ⊆ ∆M and SIn ⊆ ∆M × ∆M, for all A ∈ NC and S ∈ NR. In particular, Rigid
predicates are elements from the set of rigid concepts NRC ⊆ NC or of rigid roles NG and for all
X ∈ NRC ∪ NG and i, j ∈ N, XIi = XIj (denoted simply by XI). Moreover, aIi = aIj ∈ ∆M

for all a ∈ NI and i, j ∈ N, i.e., constants are rigid designators (with fixed interpretation,
denoted simply by aI). We assume that all interpretations M satisfy the unique name
assumption UNA and the constant domain assumption (meaning that objects are not created
nor destroyed over time). The interpretation of roles and concepts at instant n ∈ N is defined
as follows (where S ∈ NR):

(S−)In = {(d′, d) ∈ ∆M × ∆M | (d, d′) ∈ SIn}, ⊥In = ∅,

(∃R.D)In = {d ∈ ∆M | ∃d′ ∈ DIn : (d, d′) ∈ RIn}, (¬D)In = ∆M \ DIn ,

(D1 ⊓ D2)In = DIn
1 ∩ DIn

2 , (D1 ⊔ D2)In = DIn
1 ∪ DIn

2 ,

(3F D)In =
⋃

k>n DIk , (2F D)In =
⋂

k>n DIk ,
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▶ Definition 4. We say that a concept D is satisfied in M if there is n ∈ N such that
DIn ̸= ∅. The satisfaction of an axiom in M is defined as follows:

M |= D1 ⊑ D2 iff DIn
1 ⊆ DIn

2 for all n ∈ N,

M |= #
nA(a) iff aI ∈ AIn , M |= #

nR(a, b) iff (aI , bI) ∈ RIn .

M |= #
n¬A(a) iff aI ̸∈ AIn , M |= #

n¬R(a, b) iff (aI , bI) ̸∈ RIn .

A KB K = (T , A) is satisfiable if it exists a model M that satisfies every axiom of T and A,
and written M |= K.

▶ Definition 5. An ABox A is T -consistent if the KB K = (T , A) is satisfiable.

4 Reducing Temporal DL-Lite to DL-Lite

This section contains the reduction of TDL-Lite KBs, into DL-Lite KBs. This allows to
provide a tight NP-complete upper bound for TDL-Lite concept satisfiability checking (as
shown in section 4.1) and to use highly optimized DL reasoners that can identify the precise
set of inconsistent data assertions. The translation is applied on both TBox and ABox levels
in sections 4.2 and 4.3 respectively.

4.1 The Upper Bound
The temporal component of our TNDL-Lite fragment, as described in section 3, is based
on the propositional LTL, more particularly LTL(F,G) using only the two modal operators
3F ≡ F : sometime in the future and 2F ≡ G: always in the future. The main idea is to
consider two separate satisfiability problems, one in LTL and the other in DL-Lite, that
together imply satisfiability of K in TNDL-Lite.

For the LTL part, it was shown in [14] that LTL(F,G) is the modal logic S4.3.1 (also
called S4.3.Dum or D). Moreover, according to [22], the satisfiability of a S4.3.1 formula ϕ

with a maximum nesting depth of modal operators equal to m (maximum temporal depth)
is NP-complete and there exists a S4.3.1-model which satisfies ϕ with at most m + 1 worlds.
Furthermore, there exist an algorithm of a polynomial time complexity for transforming the
LTL(F,G)-SAT problem into the SAT problem. As a consequence, a TNDL-Lite satisfiability
problem, being NP-complete, can be reduced into a DL-Lite satisfiability problem since m + 1
is an upper bound of the number of worlds in the model. The reduction is consequently
equi-satisfiable to the original TNDL-Lite language. This is confirmed by the case of the
upper bound shown by Ladner [22].

4.2 TBox Reduction to DL-Lite
Based on the temporal interpretation (In)n∈N of a TDL KB which is a standard DL inter-
pretation I for each time instant (world) n ∈ N as described in definitions 3 and 4, we define
the translation in the same way in the interval [0,m]. Given TDL-Lite concepts C, D and a
role R, we inductively define the DL-Lite translation of concepts C, D and a role R at time
point i ∈ [0, m] denoted by tr(C,i,m), tr(D,i,m) and tr(R,i,m) as:

tr(⊤, i, m) = ⊤, tr(⊥, i, m) = ⊥,

tr(C, i, m) = Ci, tr(¬C, i, m) = ¬tr(C, i, m),
tr(C ⊓ D, i, m) = tr(C, i, m) ⊓ tr(D, i, m), tr(C ⊔ D, i, m) = tr(C, i, m) ⊔ tr(D, i, m),
tr(2F D, i, m) = ⊓m

i tr(D, i, m), tr(3F D, i, m) = ⊔m
i tr(D, i, m),

tr(R, i, m) = Ri, tr(∃R, i, m) = (∃Ri).

TIME 2021
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The translation creates fresh concepts Ci, Di and roles Ri in the DL-Lite TBox denoting
respectively the interpretation Ii of C, D and R at time point i. Now, the translation T † of
a TBox T is the conjunction of:

∧
C⊑D∈T

m∧
i=0

(tr(C, i, m) ⊑ tr(D, i, m)), (1)

∧
R∈NG

m∧
i=0

(
tr(R, i, m) ⊑ ⊓m

i tr(R, i, m)
)
, (2)

∧
F unct(R)

m∧
i=0

(Funct(Ri)). (3)

Note that due the translation of rigid roles (2), the resulting T † includes role inclusions.
We restrict rigid roles to functional roles in this paper. This extension of DL-Lite with
role inclusions and functional roles is denoted by DL-Lite(N H)

bool . Its satisfiability problem is
NP and matches that of the language without role inclusions. However, Local roles are not
translated to role inclusions because their semantic is maintained in the resulting DL-Lite
language.

▶ Example 6. We show the translation of the TBox T of example 1 where the maximum
temporal depth over T formulas is m = 1. The resulting DL-Lite T † is:

T † = {Adult0 ⊑ Person0, Adult1 ⊑ Person1, Minor0 ⊑ Person0, Minor1 ⊑ Person1

Person0 ⊑ Person0 ⊓ Person1, Adult0 ⊑ Adult0 ⊓ Adult1,

Minor0 ⊓ Adult0 ⊑ ⊥, Minor1 ⊓ Adult1 ⊑ ⊥,

Person0 ⊑ ∃hasMother0, Person1 ⊑ ∃hasMother1,

Funct(hasMother0), Funct(hasMother1)}

4.3 ABox Reduction to DL-Lite
Now, we explain how an ABox A is translated to A†. For each n ∈ N, each concept A, B ∈ NC
and each role R, S ∈ NR , we define:

A† =
∧

⃝nA(a)∈A

An(a) ∧
∧

⃝nR(a,b)∈A

Rn(a, b),
∧

⃝n¬B(a)∈A

¬Bn(a) ∧
∧

⃝n¬S(a,b)∈A

¬Sn(a, b), (4)

A† is composed of four conjuncts, the first is the conjunction of the translation of all
concept assertions in A and the second is the conjunction of the translation of all role
assertions (global and local) occurring in A. The last two conjunctions are equivalent to the
first two conjunctions respectively when assertions are negated .

▶ Example 7. We show the translation of the ABox A = A1 ∪ A2 in example 1. The
resulting DL-Lite A† = A†

1 ∪ A†
2 is:

A†
1 = {Person0(John), Minor1(John), Adult2(John), Minor3(John), Minor4(John)}

A†
2 = {hasMother0(John, Ana), hasMother1(John, Eva), hasMother2(John, Maria)}

It is immediate to verify the satisfiability of the resulting K† = (T †, A†). However,
concepts Adult2, Minor3, Minor4 and hasMother2 created in A† do not occur in T † as computed
in example 6. To overcome the above problem, the translated T † in the presence of an ABox
A which is defined over a time interval [l, n] should be computed in the interval [l, n + m].
The translation of K = (T , A) into K† = T † ∧ A† is computed in polynomial time.



Tahrat et. al XX:7

▶ Example 8. Giving the ABox A defined over the interval [1,4], the translation of the
TDL-Lite TBox T in example 1 into DL-Lite is computed over the interval [1,5]:

T † = {
∧5

i=1 Adulti ⊑ Personi,
∧5

i=1 Minori ⊑ Personi,
∧5

i=1 Minori ⊓ Adulti ⊑ ⊥,∧5
i=1 Personi ⊑ (⊓5

i Personi),
∧5

i=1 Adulti ⊑ (⊓5
i Adulti),∧5

i=1 Personi ⊑ ∃hasMotheri,
∧5

i=1(hasMotheri ⊑ ⊓5
i hasMotheri),∧5

i=1 Funct(hasMotheri)}

▶ Theorem 9. A TNDL-Lite KB K is satisfiable iff the DL-Lite(N H)
bool -formula K† is satisfiable.

Moreover, K† can be constructed in polynomial time w.r.t. the size of K.

Proof. Theorem 9 is proved in the same way as the standard translation to FOL plus
Theorem 6 in [22] . ◀

5 Inconsistency Detection and Repair in TKBs

Once TDL-Lite KBs are mapped into DL KBs as defined in the previous section, the following
step is to detect the inconsistent data assertions using DL reasoners. In this section, we first
recall the essentials of the DL inconsistency detection and then present the core procedure of
computing the minimal inconsistent subset and the best repair in TDL-Lite.

5.1 Inconsistency Detection in KBs
The Web Ontology Language OWL is a logic-based language of knowledge representation
intended to be used to verify the consistency of a dataset with the semantics of the underlying
knowledge representation formalism. This task is usually handled by what we call OWL
reasoners such as RacerPro3, Pellet4, FaCT++5 and others. In FaCT++, nominals are
unavailable and ABox reasoning is not supported. Nominals are also unvailable in RacerPro.
Therefore, we use Pellet as our OWL reasoner: it is the first sound and complete tableau-
based reasoner for the OWL-DL sublanguage (a syntactic variant of the Description Logic
SHOIN (D) [24] which is much more expressive than the tractable DL-Lite(N H)

bool ). Pellet is
written in Java, open source and efficient when the number of instances is large. Moreover, It
also offers a specific service for computing inconsistency explanations on the TBox terminology
and the assertional ABox levels. Moreover, Pellet outperforms RacerPro when reasoning on
a large number of instances [24].

Before describing the inconsistency detection approach, we should explain what "in-
consistent data assertion" means in the context of DL-Lite(N H)

bool . We can distinguish three
different types of DL-Lite(N H)

bool TBox constraints: disjointness which are GCIs of the form
(C ⊓ D ⊑ ⊥), functionality assertions of the form (funct R) and rigid predicates.

▶ Definition 10. Let K† = (T †, A†) be a DL-Lite(N H)
bool KB and let c be a disjointness

inclusion or a functionality assertion or a rigid predicate of T †. A set of data assertions
I = ⟨a1, a2, ...⟩ ∈ A†, is called inconsistent, iff there is some c ∈ T †, such that I ⊭ c.

3 https://github.com/ha-mo-we/Racer
4 http://pellet.owldl.com/
5 http://owl.cs.manchester.ac.uk/tools/fact/
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Figure 1 Inconsistency detection and explanation over example 1 giving by Pellet via the Protegé
6 Ontology editor. We give the corresponding Inconsistency Graph to show conflicts between the
inconsistent assertions. We report the number of conflicts (number of edges) of each inconsistent
assertion in the Inconsistency degree Id.

Our approach starts by checking the satisfiability of the translated TBox T † then checks
the consistency of the translated ABox A† according to T † using Pellet. If A† is inconsistent,
the explanation support of Pellet points the inconsistent set of data assertions without a
resolution strategy. However, this explanation support is an axiom tracing service which
allows to extract, from the TBox and the ABox, the relevant axioms responsible for the
inconsistency which can directly be used for reparation.

Based on the resulting DL-Lite(N H)
bool KB K† in section 4.3 of the motivating example, all

the inconsistency explanations provided by Pellet are shown in figure 1. First, we can observe
inconsistency due to conflicts in axioms: (John Type Adult2) with (John Type Minor3) and again
(John Type Adult2) with (John Type Minor4) according to the disjointness CIs (Adult⊓Minor ⊑ ⊥)
translated to (Adult3 DisjointWith Minor3) and to (Adult4 DisjointWith Minor4) respectively at
time point 3 in explanation 1 and at time point 4 in explanation 2. We also notice that
axioms can be responsible for multiple conflicts according to the constraints in T †. The axiom
(JohnType Adult2) which corresponds to the assertion Adult(John,2) in A has two conflicts
according to explanations 1 and 2 in the left of figure 1. Formally, we define an Inconsistency
degree Id as the number of T † constraints (conflicts) on which an assertion is involved. Second,
considering the rigid role HasMother, we can observe from the Pellet explanation, on the
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right-side of figure 1, inconsistencies due to conflicts between axioms: (John hasMother0 Ana),
(John hasMother1 Eva) and (John hasMother2 Maria) according to the functional and rigid role
hasMother. Consequently, each of these assertions has an Id = 2. To report these inconsistent
assertions in an intuitive way, we use an Inconsistency graph which is similar to the conflict-
hypergraph used to represent constraint violations in databases [13] or in inconsistency DL
setting [9, 8].

▶ Definition 11. Let K† = (T †, A†) be a DL-Lite(N H)
bool KB and let Im = ⟨ai, aj , ...⟩ ⊭ ck be

sets of inconsistent data assertion where ck ∈ T †-constraints. An Inconsistency Graph of K†

is an edge-labeled graph denoted by IG(K) = (V, E) such that for all Im, V = {ai|ai ∈ Im}
and E = {(ai, aj)|⟨ai, aj⟩ ⊭ ck, ck ∈ T †}

This graph is built by iterating over all Pellet explanations Im as follows:
for every assertion ai of the form (a Type Di) or (a Ri b), we add the vertice (D(a,i)) or
(R(a,b,i));
for every pair of vertices in Im , we add an edge connecting them which we label with
the broken constraint.

The inconsistency graph of the motivated example is shown in figure 1. Note that we can
easily determine how many conflicts in which each inconsistent assertion is involved. This
graph is used as an input for the repair phase which provides graph theories and tools useful
for repair purposes.

5.2 Best Repair in KBs

After building the inconsistency graph which encodes the inconsistent data assertions, the
next step is to repair them. An extreme solution would be to simply throw away all the
detected inconsistent assertions from A. This would certainly not meet the expected repair
requirement which consists of applying a minimal set of changes that restore consistency.
Typically, minimality is defined by a set of inclusion yielding:

▶ Definition 12. Consider a TNDL-Lite KB K = (T , A). A temporal ABox repair of T is a
set A′ of assertions such that: (i) A′ ⊆ A; (ii) K = (T , A′) is consistent; (iii) A′ ⊂ A′′ ⊆ A
where K = (T , A′′) is consistent and A′′ does not exist.

In other words, A′ is a maximal consistent subset of A that is obtained by throwing
away a minimal set of inconsistent assertions (aka the Minimal Unsatisfiable Set MUS).
This is performed by the removal of one of the two inconsistent data assertions involved
in the conflict. In the inconsistency graph, this corresponds to removing one of the two
vertices that are connected by the edge representing this conflict. A complete repair is in
fact the well-known problem of finding the minimum vertex cover [17] which computes a set
of vertices (a MUS) whose removal leads to the removal of all the edges (all the conflicts) of
the inconsistency graph.

Recall that the computation of the minimum vertex cover is a classical NP-complete
problem. However, an approximation algorithm, such as the 2-approximation algorithm in
[17] can be applied in a greedy manner until there are no more edges in each connected
component of the inconsistency graph as follows:

for each step we select the vertex cover which is the vertex having a higher inconsistency
degree Id (the most inconsistent assertions are those involved in most conflicts) ;
If more than one vertice have the same degree, one is randomly selected as vertex cover.

TIME 2021
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(a) case where the recent assertion is removed (b) case where the rigid assertion is removed

Figure 2 Best temporal repair in TKBs

The union of vertex cover sets of the connected components of the graph forms a vertex
cover (a MUS) of the entire inconsistency graph.

For instance, let’s consider the inconsistency graph of figure 1. The minimum vertex
cover algorithm will compute the repairs in the first connected component of the graph
labeled by the constraint (Adult DisjointWith Minor) by removing the assertion Adult(John,2)
because it has the highest Id. In the second connected component labeled by the constraint
(Rigid&Fuctional : hasMother), the repair will be computed by removing randomly two of the
three assertions in the graph as they have the same Id.

Let us note that there might be several possible MUSs for the same inconsistency graph,
since some vertices can have the same degree of inconsistency. Therefore, by randomly
removing one of the two vertices, we obtain a different MUS but all possible MUSs are
minimal. The repair is then always maximal and is obtained by removing the resulting MUS
from the ABox.

5.3 Best Temporal Repair in TKBs
Clearly, not just any repair is useful or interesting in the temporal setting. For instance,
repairs that return only ancient assertions might be unwanted. However, in the light of
temporal knowledge bases, we are interested in defining a strong notion of temporal repair.
For such a purpose, we associate for each inconsistent assertion a temporal weight by taking
the defining rigid axioms and the freshness of the assertion into consideration. Our aim is to
guide the repair algorithm to remove assertions with the lowest temporal weight when they
have the same degree of inconsistency.

▶ Definition 13. We assign a temporal weight wt = ti + σ for each inconsistent assertion
ai associated with the timestamp ti. If ai is an instance of a rigid predicate, σ expresses a
duration for this rigid predicate. Otherwise, the temporal weight of ai is based only on the
timestamp ti (σ = 0), so expresses the freshness of the assertion, as follow:

wt(ai, ti) =
{

ti + σ if ai ∈ NRC ∪ NG
ti otherwise

The intuition behind using a time range σ for each rigid predicate in repair phase is to set a
maximum time threshold after which the assertion of this rigid predicate is discriminated
or weakened. Figure 2 shows that the classic maximal repair in cases 2a and 2b could be
the same because they share the same Id. However, it is easy to see on a timeline that it
is better to remove Minor(John, 2) in (2a) and Adult(John, 0) in (2b): the notion of temporal
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weight is intended to capture situations where a maximal repair is temporally better than an
other. At this level, we are considering a semi-automatic approach, which is guided by a user
who will fix the value of σ by giving a duration to each defined rigid predicate according to
his preferences, thus providing a repair that is as close as possible to the user needs.

6 Conclusion and Future Work

This paper provides a first exploration of repairing the ABox w.r.t a TBox defined over
Temporal DL-Lite. The temporal language considered so far is the TNDL-Lite with which we
can express and check several useful types of temporal constraints, such as defining temporal
concepts in GCIs and rigid predicates, while maintaining good computational features. The
first step in the reparation process is the detection of inconsistencies in TDL-Lite KBs. To do
so, we proposed an equisatisfiable translation from TDL-Lite into DL-Lite KBs in order to
use well optimized DL reasoners that include an axiom tracing service which allows extracting,
from the TBox and the ABox, the relevant axioms involved in the inconsistency. This allows,
in the second step, to perform a reparation based on the best repair semantic over DL-Lite
ABoxes. We extended this semantic to the temporal setting by defining a temporal weight
to guide the repair by removing, from the ABox, assertions with the highest inconsistency
degree and the lowest temporal weight. Repair computation can be performed in polynomial
time with respect to the number of inconsistent data assertions that appear in the ABox.

As a direction for our future work, we aim to enrich the definition of the TBox with
General Concept Inclusions GCIs having temporal past operators on the right-hand side
of the GCI. This could be equivalent to having future temporal operators on the left hand
side of the GCI like {D ⊑ C, where D is a temporal concept}. Let us note that in LTL
some future temporal operators when expressed in the left hand side of an inclusion such
as (3F q → p) can be expressed as (q → 2P p) using a past operator on the right-hand
side of the inclusion. More generally, we plan to investigate in practice repairing KBs based
on multiple combinations of LTL with DL-Lite logics which are First Order rewritable [4].
Also, in the same spirit of the proposed temporal weight σ in section 5.3, which we defined
as a temporal range for rigid predicates, we are considering adding metric operators to
the TDL-Lite language [16, 7] that augment LTL temporal operators with time interval.
Finally, it would be interesting to implement a repair framework and evaluate the scalability
properties of our approach based on the temporal best repair semantics against temporal
query answering under other semantics.
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