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Abstract The Estrada index of a graph/network is de�ned as the trace of the ad-
jacency matrix exponential. It has been extended to other graph-theoretic matrices,
such as the Laplacian, distance, Seidel adjacency, Harary, etc. Here, we describe many
of these extensions, including new ones, such as Gaussian, Mittag-Le�er and Onsager
ones. More importantly, we contextualize all of these indices in physico-mathematical
frameworks which allow their interpretations and facilitate their extensions and fur-
ther studies. We also describe several of the bounds and estimations of these indices
reported in the literature and analyze many of them computationally for small graphs
as well as large complex networks. This article is intended to formalize many of the
Estrada indices proposed and studied in the mathematical literature serving as a guide
for their further studies.

Keywords Estrada indices, matrix functions, algebraic graph theory, eigenvalues
of graphs, complex networks

Mathematics Subject Classi�cation 05C12, 05C22, 05C35, 05C50, 05C80,
05C82, 05C92, 15A16, 15A42

1 Introduction

At the dawn of the XXI century the current author proposed an index to quantify the
�degree of folding� of a linear chain in a three-dimensional space [70]. The motivation
of this work came from the fact that many scienti�c articles make claims like that the
structure A �is more folded than� the structure B (see examples at: [44, 67, 128, 237]),
or that certain structure is �highly folded � (see for instance: [42, 129, 142, 246]), etc.
These expressions could be referring to protein or polymer structures, but also to brain
regions or even geological structures (see previous refs.). However, in neither of these
works there was an index that quanti�es how folded a linear chain is. Thus, the author
proposed the index I3 =

∑n
j=1 exp (λj (W )), where λj (W ) are the eigenvalues of
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certain tridiagonal matrix W whose diagonal entries are related to the cosines of the
dihedral angles between adjacent planes and Wi,i+1 and Wi+1,i are equal to one. This
index characterizes very well the degree of folding of a geometric chain and it has
been mainly applied to the study of the degree of folding of proteins (see for instance
[71, 73, 211]), although it can be applied to the folding of any linear chain.

Five years after the publication of the �folding degree� paper, the authors of [88]
proposed the �subgraph centrality� as a way to characterize the importance of the nodes
in a complex network. �Complex networks� are large graphs representing the skeleton
of complex systems in social, ecological, cellular, molecular, infrastructural, semantic
and other scenarios [78]. The subgraph centrality of a node v in a network is de�ned as
SCv =

∑n
j=1 ψ

2
jv exp (λj (A)), where λj = λj (A) are the eigenvalues of the adjacency

matrix of the graph and ψjv is the vth entry of its jth normalized eigenvector. Then,
the so-called subgraph centralization of the network is

∑
v SCv =

∑n
j=1 exp (λj (A))

[88], which is similar to the folding degree I3.
In June 2005 the current author presented the lecture �Topological characterization

of complex networks� at the International Academy of Mathematical Chemistry in
Dubrovnik, Croatia. As a consequence Ivan Gutman proposed to organize a small
seminar at a park near the port of Dubrovnik to discuss some of the mathematical
aspects of the index

∑
v SCv =

∑n
j=1 exp (λj) for general graphs. As a result, a paper

was published in 2006 in Croatica Chemica Acta introducing
∑

v SCv as a molecular
structure descriptor [113]. A year later the paper �Estimating the Estrada index� was
published, where the authors proposed to call EE (G) =

∑n
j=1 exp (λj) the Estrada

index [54]. The same year a statistical mechanics interpretation of EE (G) as the
partition function of a graph [83] appeared. A year later, in 2008, there were more
than 30 papers published in the mathematical literature containing �Estrada index� in
the title.

It seems a priori that EE (G) has emerged in di�erent, apparently unrelated, sce-
narios: folding of linear chains, subgraphs in networks, and partition function in statis-
tical mechanics. This reminds us the story told by Eugene Wigner in the �rst paragraph
of his paper �The unreasonable e�ectiveness of mathematics in the natural sciences�
[233] where a fellow asked a former classmate, now a statistician, about a symbol in
a paper dealing with population trends. The statistician replied that the symbol was
�π� and to clarify the skepticism of the other he added that it is �the ratio of the cir-

cumference of the circle to its diameter.� The fellow then replied more skeptical: �Well,

now you are pushing your joke too far, surely the population has nothing to do with the

circumference of the circle.� The situation of the Estrada index seems murkier than the
one in that story, particularly after the ad hoc de�nition of several other variations of
the index based not on the eigenvalues of the adjacency matrix, but of the graph Lapla-
cian, distance matrix, resolvent of the adjacency matrix, Hadamard pseudo-inverse of
the distance matrix (a.k.a. Harary matrix), Mittag-Le�er matrix functions of A, etc.

The goal of this paper is to make an account of the di�erent facets of the Estrada
indices. In doing so we will provide contextualization of several of these indices, many
of which have been proposed in an ad hoc way. Therefore, we will provide a physical
and/or mathematical context and interpretation of these indices. They include a combi-
natorial interpretation based on counting subgraphs, a statistical mechanics approach,
a probabilistic interpretation in the context of walk-regular graphs, an interpretation
on the basis of oscillations in (quantum and classical) systems of ball-and-springs, a
contextualization on the basis of epidemiological models (normal and fractional) on
graphs, di�usive processes with negative di�usiveness, nonlocal processes on graphs,
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quanti�cation of graph radius of gyration. Although this paper does not intend to de-
scribe all the results published in the literature on this topic we make an account of
many of the di�erent bounds and estimations of the Estrada, Seidel Estrada, Harary
Estrada, Laplacian Estrada, resolvent Estrada, Mittag-Le�er Estrada, and distance
Estrada indices. For this purpose we include some numerical analysis of these bounds
in the set of 11,117 connected graphs with 8 nodes and in �ve real-world networks
representing a variety of complex system scenarios. The paper is written in a way that
intend to be self-contained and make the necessary de�nitions for understanding the
concepts used in it. The paper is then intended as a guide for further studies and
developments in this area of spectral graph theory.

2 General de�nitions

Here we present some de�nitions which are used across the paper and settle down
the notation. We consider here simple, connected graphs G = (V,E) with n nodes
(vertices) and m edges.

De�nition 1 A walk of length k inG is a set of nodes and edges v1, e1,2, v2 · · · vk−1, ek−1,k, vk
such that for all 1 ≤ l ≤ k, (vl, vl+1) ∈ E. A closed walk is a walk for which v1 = vk+1.

De�nition 2 A path of length k in G is a walk in which neither vertices nor edges
are repeated. A cycle is a closed path. The length of the shortest path connecting two
vertices v and w is the (topological) shortest path distance dvw between the two nodes.
The diameter of G is the longest distance between two vertices of G.

De�nition 3 A subgraph G′ = (V ′, E′) of G is a graph such that V ′ ⊆ V and E′ ⊆
E ∩

(
V ′ × V ′). An induced subgraph is a subgraph formed by a subset of the vertices

of the graph and all of the edges connecting pairs of vertices in that subset.

De�nition 4 A graph G = (V,E) is connected if there is a path between every pair of
nodes v, w ∈ V . If the graph is directed we said that it is strongly connected if there is a
directed path between every pair of nodes v, w ∈ V . A (strongly) connected component
in a (directed) graph is a subgraph in which any two vertices are connected to each
other by (directed) paths, and which is connected to no additional vertices in the rest
of the graph.

De�nition 5 The degree of a node v is the number kv of edges incident with that
node. A graph is regular if the degree of all its nodes is the same.

The following matrices will be considered (Table 1):
Other matrices such as the Seidel adjacency matrix and Harary matrix, are de�ned

in situ in the corresponding sections of the paper. The following types of graphs are
used in this work.

� Complete graph of n vertices Kn : the graph having an edge between every pair of
vertices.
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name symbol de�nition spectrum

adjacency A Aij =

{
1 (i, j) ∈ E
0 (i, j) /∈ E

λ1 ≥ · · · ≥ λn

Laplacian L Lij =

−1 (i, j) ∈ E
ki i = j
0 otherwise

0 = µ1 ≤ · · · ≤ µn

distance D Dij =

{
dij i ̸= j
0 i = j

σ1 ≥ · · · ≥ σn

Table 1: De�nition of some matrices used in this paper.

� Empty graph of n vertices K̄n : the graph having n vertices and no edges.
� Complete bipartite graph Kn1,n2 : the graph with n = n1 + n2 vertices in which

the vertex set is partitioned into two disjoint subsets of cardinalities n1 and n2,

respectively, such that every vertex in one set is connected to every vertex in the
other set.

� Star graph Sn: the particular case of Kn1,n2 in which n1 = 1 and n2 = n− 1.
� Path graph of n vertices Pn: the connected graph in which every vertex has degree

2, except two vertices which have degree one.
� Cycle Cn: a connected graph in which every vertex has degree 2.

Finally we consider two kinds of random graphs.

� Erd®s-Rényi (ER) G (n, p) [68] graph with n nodes: constructed by connecting
nodes randomly in such a way that each edge is included in G (n, p) with probability
p independent from every other edge.

� Barabási and Albert (BA) one [21]: created on the basis of a preferential attachment
process. The graph is constructed from an initial seed of m0 vertices connected
randomly like in an Erd®s-RényiG (n, p). Then, new nodes are added to the network
in such a way that each new node is connected to c ≤ m0 of the existing ones with
a probability that is proportional to the degree of these existing nodes.

3 Estrada index and subgraph centralization

The main goal in proposing the Estrada index was for the structural characterization
of networks. This index corresponds to the �centralization�, a global structural index,
derived from the node centrality known as �subgraph centrality. In network theory a
centrality measure (see [78] Chapter 7 and refs. therein) is any graph-theoretic quantity
that captures the relative �importance� of a node in the network. Here �importance�
means a relevant�mainly from applications point of view�structural feature such as
connectivity, closeness to the rest of the nodes, position of a node in relation to the
shortest paths connecting other others, etc. The simplest of these centrality measures
is the degree of a node, which counts the number of connections that a node has. Let
us �rst introduce the following result.

Theorem 1 Let G = (V,E) be a simple graph with adjacency matrix A. Let v, w ∈ V ,

then the number of walks of length k between the nodes v and w is given by
(
Ak
)
vw

.

Remark 1 The roots of Theorem 1 can be traced back to the paper �The analysis
of sociograms by matrix algebra� by Leo Festinger in 1949 [93], although Festinger
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mentioned it only for the case of walks of length three. Then, Leo Katz in his seminal
paper �A new status index derived from sociometric analysis� extended it to longer
walks in 1953 [141]. The result appeared formally in the book of Claude Berge in 1962
in the form of Corollary 1 on page 131 [29].

Then, from a walks perspective, the degree is de�ned as the number of closed walks of
length two starting at the given node. That is, let v ∈ V , then the degree of v is given
by:

kv =
(
A2
)
vv
. (3.1)

The degree of a node can be seen as a �rst order approximation of centrality
measures that accounts for the walks of all length in the graph. That is, in a graph
without self-loops the following measures can be de�ned

Cv − 1 =
∞∑
k=2

ck

(
Ak
)
vv
, (3.2)

where ck are coe�cients which give more weight to the shorter than to the longer
walks. Then, if ck = (k!)−1:

EEv − 1 =
∞∑
k=2

(k!)−1
(
Ak
)
vv

= (exp (A))vv − 1, (3.3)

where EEv is known as the �subgraph centrality� of the node v [88]. The term �sub-
graph� in the name of this centrality is due to the following.

Lemma 1 Let G be a (directed) graph. Then, every closed walk of length k starting at

the node v ∈ V encloses one (strongly) connected subgraph having at most k (directed)

edges and at most k vertices including v.

Proof A (directed) graph G is (strongly) connected is there is a (directed) path con-
necting every pair of vertices G. By the de�nition of walk it is clear that a walk of
length k between two nodes v and w cannot visit more than k+1 vertices. Therefore, a
closed walk, where the initial and �nal nodes coincide, can visit no more than k nodes.
In a closed walk of length k without backtracking the number of edges visited is k,
i.e., in a cycle. For a given length k, backtracking reduces the number of edges that
can be visited. Therefore, a closed walk of length k cannot visit more than k edges.
Obviously, the nodes and edges visited by the closed walk form the sets V ′ ⊆ V and
E′ ⊆ E ∩

(
V ′ × V ′) , which implies that G′ =

(
V ′, E′) is a subgraph of G = (V,E).

Finally, because the walk of length k is a sequence vv, ev,v+1, vv+1 · · · vv−1, ev−1,i, vv
there is a (directed) path connecting every pair of nodes in the subgraph, which means
that G′ is (strongly) connected. ⊓⊔

The previous result implies that we can express EEv as a weighted sum of sub-
graphs, which gives the index its name. However, as we are focused here on the Estrada
index let us move to the fact that the Estrada index is the sum of the subgraph cen-
tralities of all nodes in the graph:

EE (G) =
n∑

v=1

EEv. (3.4)
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The sum of node centralities in a graph is known as the corresponding centralization
of the graph, or simply as a graph-theoretic invariant. Therefore, the Estrada index of
the graph can be seen as its subgraph centralization.

Theorem 2 Let G be a (directed) graph and let F be the set of all (strongly) connected

subgraphs of G, and let us designate the cardinality of the set F by η. Then,

EE (G) =

η∑
l=1

clFl, (3.5)

where Fl ∈ F and cl ∈ Q.

Proof Using Lemma 1 we can show that that Mk = tr
(
Ak
)
can be expressed as

a weighted sum of (strongly) connected subgraphs. The weight of each subgraph is
given by the number of closed walks of length k in the given subgraph. Then, grouping
together all identical subgraphs and summing their weights we obtain the �nal result.
⊓⊔

For instance, let us consider the �rst seven powers of the adjacency matrix. Then,

tr
(
A2
)
= 2F2, (3.6)

tr
(
A3
)
= 6F4, (3.7)

tr
(
A4
)
= 2F2 + 4F3 + 8F7, (3.8)

tr
(
A5
)
= 30F4 + 10F8 + 10F10, (3.9)

tr
(
A6
)
= 2F2 + 12F3 + 24F4 + 6F5 + 12F6 + 48F7

+ 36F9 + 12F12 + 12F16,
(3.10)

tr
(
A7
)
= 126F4 + 84F8 + 112F9 + 70F10 + 28F11 + 14F13

+ 14F14 + 56F15 + 14F17 + 84F18 + 28F19 + 14F20,
(3.11)

where the subgraphs are illustrated in Fig. 3.1.
Then, we have the following result.

Lemma 2 Let G be a simple graph. Then, the Estrada index of G is bounded as

EE (G) ≥ F1 +
391

360
F2 +

11

60
F3 +

157

126
F4 +

1

120
F5 +

1

60
F6 +

2

5
F7 +

1

10
F8+

+
13

180
F9 +

7

72
F10 +

1

180
F11 +

1

60
F12 +

1

360
F13 +

1

360
F14+

+
1

90
F15 +

1

60
F16 +

1

360
F17 +

1

60
F18 +

1

180
F19 +

1

360
F20.

(3.12)
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Fig. 3.1: Illustration of the small subgraphs appearing in the �rst seven spectral mo-
ments of the adjacency matrix of simple graphs.

Proof Based on the relations shown before for tr
(
Ak
)
for k ≤ 7 and calling F1 = n

we have that the right-hand-side part of eq. (3.12) is
∑7

k=0

tr(Ak)
k! from which the

inequality follows. ⊓⊔

The expressions for calculating these subgraphs are given in the Appendix as
adapted from [9]. The formula for F20 is given here by the �rst time.

3.1 Some elementary properties of the Estrada index

Before proceeding to more complex properties of the Estrada index let us state a few
elementary ones that could be helpful in understanding the structural nature of this
index. The reader is referred to the following references [54, 57, 112, 116] for details
and references.

Lemma 3 Let G be a simple graph and let G − e the same graph from which edge e

has been removed. Then

EE (G− e) ≤ EE (G) . (3.13)

Corollary 1 Let G be a simple graph and let T be a tree with the same number of

nodes as G. Then

EE (T ) ≤ EE (G) . (3.14)
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Theorem 3 [53, 56] Let G be a simple connected graph with n nodes. Then

EE (Pn) ≤ EE (G) ≤ EE (Kn) . (3.15)

Theorem 4 Let G be a simple graph with n nodes. Then

EE (K̄n) ≤ EE (G) ≤ EE (Kn) . (3.16)

The Estrada indices of some elementary graphs are given below.

� EE (Kn) = en−1 + (n− 1) e−1;
� EE (Kn1,n2) = n1 + n2 − 2 + 2 cosh (

√
n1n2) ;

� EE (Sn) = n− 2 + 2 cosh
(√

n− 1
)
;

� limn→∞EE (Cn) = nI0, where I0 =
1

π

∫ π
0
e2 cos xdx;

� limn→∞EE (Pn) = (n− 1)− 2 cosh (2).

3.2 Numerical analysis

We consider here two datasets which will be used in the rest of the paper for the
numerical evaluation of the di�erent indices and bounds. The �rst one consists of
the 11,117 connected graphs with 8 nodes. The second one is formed by �ve real-world
networks, which correspond to a food web at Stony stream, a network of the neurons in
the worm C. elegans, the protein-protein interaction network of yeast, a representation
of the Internet at the autonomous system (AS) level, and a network of the USA western
power grid system. The number of nodes n, of edges m, the maximum degree of the
nodes kmax, and the diameter dmax of each network are given in Table 2.

n m kmax dmax ref.

Stony 112 830 45 4 [17]
neurons 280 1973 77 6 [232]
yeast 2224 6829 65 11 [224]

Internet 3015 5156 590 9 [90]
Powergrid 4941 6594 19 46 [231]

Table 2: General characteristics, number of nodes n, of edges m, the maximum degree
of the nodes kmax, and the diameter dmax, of the �ve real-world networks analyzed in
this paper.

The main goal of these numerical experiments is to show how close the bounds
reported in the literature are to the actual values of the Estrada index. This is done
because in most of the papers where these bounds are proposed there are no numerical
experiments to illustrate this relation. When possible we will �nd some connection be-
tween structural characteristics of the networks studied and the corresponding bounds
analyzed to understand why are they close or far away the actual values of the Estrada
index.
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First, we consider the deviation of the bound from the actual value as |EEexact − EEbound| /EEexact

expressed as percentage. We do this calculation considering the bound given in Lemma
2 for all the connected graphs with 8 nodes. The histogram illustrating the number
of graphs having a given relative deviation (frequency) among the 11,117 connected
graphs with 8 nodes is illustrated in Fig. 3.2. We should remark that we use here the
terms �good bound� or refer to a bound as �better than� another just on the basis of
the deviation of this bound relative to the actual value of the index. This is used only
as a guide as for many cases there is large room for improvement as some of the bounds
reported are orders of magnitude further from the real values of the indices.

The mean deviation is 5.768 ± 4.169, which indicates that this bound is a good
estimation of the Estrada index for these small graphs. The largest deviation is 40.352
obtained for the complete graph K8. In general, the most densely connected graphs
are richer in small subgraphs than the poorly dense ones, which increases the relative
deviation of this bound for these graphs.
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Fig. 3.2: Histogram of the relative deviation of the bound given in Lemma 2 for all
11,117 connected graphs with 8 nodes.

In Table 3 we illustrate the results for the �ve real-world networks. The largest
deviation occurs for the Internet at AS indicating that in this network there are many
larger subgraphs with important contribution to the Estrada index. On the other hand,
the bound is very close to the actual value for the power grid of western USA, which
points out that the Estrada index of this network is well approximated by counting the
number of the 21 subgraphs described by Lemma 2. These di�erences point out clearly
to the di�erences in the subgraph richness contained in di�erent networks, which is
what the Estrada index characterizes at the structural level.
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Lemma 2 actual

Stony 4.590 · 105 7.234 · 109
neurons 1.095 · 106 1.306 · 1010
yeast 5.057 · 105 3.038 · 108

Internet 7.142 · 106 6.174 · 1013
Powergrid 1.961 · 104 2.135 · 104

Table 3: Values of the bound for the Estrada index in Lemma 2 and the actual values
calculated with Matlab function �expm� for the �ve real-world networks considered in
this work.

4 Estrada index and matrix functions

Soon after the de�nition of the Estrada index and the subgraph centrality several
authors started to be interested in these indices due to their clear relation to functions
of the adjacency matrix. The study of matrix functions is an active area of research in
(numerical) linear algebra [25, 97, 127, 222]. The topic of matrix functions in network
theory has been recently reviewed by the authors of [28]. Therefore, we will not give
too many details here and the interested reader is directed to the excellent review [28].
The goal of this section is then to establish the connection between the Estrada indices
and functions of the corresponding matrices which pave the way for further sections of
the article. Here we will follow the book [127].

Let M be any graph-theoretic matrix, e.g., adjacency, Laplacian, distance, etc.
Then, its Jordan canonical form is given by

Z−1MZ = J = diag (J1, J2, · · · , Jp) , (4.1)

where

Jk = Jk (λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk , (4.2)

where Z is nonsingular and m1 +m2 + · · ·+mp = n.

De�nition 6 Let λ1, · · · , λs be the distinct eigenvalues of M and let and let ni be
the order of the largest Jordan block in which λi appears, which is called the index of
λi. The function f is de�ned on the spectrum of M if the values

f (j) (λi) , j = 0, . . . , ni − 1, i = 1, . . . , s (4.3)

exist, which are called the values of the function f on the spectrum of M . Here f (j)

represents the jth derivative of f .

Then we have a de�nition of matrix function via the Jordan canonical form.

De�nition 7 Let f be de�ned on the spectrum of M and let M have the Jordan
canonical form given before. Then, the matrix function f (M) is given by
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f (M) := Zf (J)Z−1 = Zdiag (f (Jk))Z
−1, (4.4)

where

f (Jk) :=


f (λk) f

′ (λk) · · ·
f (mk−1) (λk)

(mk − 1)!

f (λk)
. . .

...
. . . f ′ (λk)

f (λk)

 . (4.5)

Another, equivalent, de�nition is given via the Cauchy integral.

De�nition 8 Let M ∈ Cn×n, then

f (M) :=
1

2πi

∫
Γ

f (z) (zI −M)−1
dz, (4.6)

here f is analytic on and inside a closed contour Γ that encloses the spectrum of M .

5 Estrada index and spectral graph theory

An obvious connection exists between the Estrada index and the area of algebraic graph
theory. Algebraic graph theory [24, 30, 105] deals with the use of algebraic methods to
solve problems about graphs. Of particular interest is the use of the spectra of graph
theoretic matrices to understand the structure of graphs, which is known as spectral
graph theory [46, 50�52, 213, 214]. This area of research started in an applied context
when Collatz and Sinogowitz published their paper entitled: �Spektren endlicher grafen�
motivated by application problems such as the vibrations of a membrane [223]. Let us
consider a simple example of the connections between structural properties of graphs
and their spectra: counting triangles in a graph. The number of triangles, which is
a combinatorial property of the graph, can be obtained from the spectrum of the

adjacency matrix as:
1

6

∑n
j=1 λ

3
j , where λj are the eigenvalues of the adjacency matrix.

The �eld of spectral graph theory had a tremendous impulse in the 1970's due to its
connection with electronic properties of conjugated molecules [59, 95, 124, 215, 216,
219].

The relation between the trace of a matrix and its eigenvalues immediately implies
that the Estrada index of a graph can be expressed in terms of the eigenvalues of A as
follows:

EE (G) =
n∑

j=1

exp (λj) . (5.1)

In general, the exponentiation of A enlarges the spectral gap λ1 − λ2 and con-
tracts the negative part of the spectrum. On the contrary, exp (−A) largely contracts
the positive part of the spectrum and enlarges its negative part. These simple dila-
tion/contraction e�ects of the main parts of the spectrum of A have important con-
sequences on the Estrada index of a graph as we will see in the next parts of this
review.
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The analysis of the relation between the spectrum of a graph, i.e., the eigenvalues
of its adjacency matrix, and the structure of the graph is the main goal of spectral
graph theory. One of the �rst results on spectral graph theory related to the Estrada
index was the following bounds obtained by the authors of [54].

Theorem 5 Let G be a simple graph with n nodes and m edges. Then, the Estrada

index of G is bounded as√
n2 + 4m ≤ EE (G) ≤ n− 1 + exp

(√
2m
)
, (5.2)

with equality attained if and only if G ∼= K̄n.

These bounds were further improved in [166] where the following was proved.

Theorem 6 Let G be a simple graph with n nodes and m ≥ 1 edges. Then, the Estrada

index of G is bounded as√
n2 +

5

3
m < EE (G) < n− 1 + exp

(√
m
)
. (5.3)

Based on Gauss-Radau quadrature rule the authors of [27] obtained the following
bounds.

Theorem 7 Let G be a simple graph and let a, b ∈ R be such that the spectrum of A

is contained in [a, b]. Then, the Estrada index of G is bounded as

n∑
i=1

b2 exp (ki/b) + ki exp (−b)
b2 + ki

≤ EE (G) ≤
n∑

i=1

a2 exp (ki/a) + ki exp (−a)
a2 + ki

, (5.4)

where ki is the degree of the node i.

Remark 2 Two examples of the use of this bound are (i) considering a = −λ1 and
b = −λn; (b) considering a = −kmax and b = kmax.

Another set of bounds was obtained in 2016 [156] by using the number of triangles
t and tr

(
A4
)
in addition to the number of nodes and edges of the graph.

Theorem 8 Let G be a simple graph with n nodes, m edges, t triangles and let Q =
tr
(
A4
)
. Then, the Estrada index of G is bounded as

m+ n ≤
√
n2 +mn+ 2nt+

1

12
nQ+m2 ≤ EE (G) ≤ n− 1 + exp

(
4
√
Q
)
, (5.5)

with equality attained if and only if G ∼= K̄n.

Other bounds have been proposed, specially lower bounds, for the Estrada index. Some
examples are given below.

Theorem 9 [247] Let G be a simple graph with n nodes and let Z =
∑n

i=1 k
2
i . Then,

the Estrada index of G is bounded as

EE (G) ≥ exp
(√

Z/n
)
+ (n− 1) exp

(
−
(√

Z/n
)
/ (n− 1)

)
, (5.6)

with equality attained if and only if G ∼= Kn or G ∼= K̄n .
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Theorem 10 [110] Let G be a simple graph with n nodes and m edges either without

isolated vertices or having the property 2m/n > 1, then, the Estrada index of G is

bounded as

EE (G) ≥ n cosh
(√

2m/n
)
, (5.7)

with equality if and only if G is a regular graph of degree 1.

Theorem 11 [110] Let G be a simple graph with n nodes and m edges, such that

2m/n < 1. Then, the Estrada index of G is bounded as

EE (G) ≥ n− 2m+ 2m cosh (1) , (5.8)

where equality holds if and only if G consists of n− 2m isolated vertices and m copies

of K2.

Theorem 12 [110, 119] Let G be a simple graph with n nodes, m edges and graph

nullity η0. Then, the Estrada index of G is bounded as

EE (G) ≥ η0 + (n− η0) cosh

(
2m

n− η0

)
, (5.9)

where equality is attained if and only if n − η0 is even, and if G consists of copies of

complete bipartite graphs Kri,si , i = 1, · · · , (n− η0) /2, such that all products ri ·si are
mutually equal.

Theorem 13 [190] Let G be a simple graph with n nodes, m edges and minimum

degree kmin. Then, the Estrada index of G is bounded as

EE (G) ≥ 2 cosh

(
2 (m− kmin)

n− 1

)
+ n− 2, (5.10)

with equality if and only if G ∼= Kp,p ∪K1 with n = 2p+ 1.

Theorem 14 [190] Let G be a simple graph with n nodes, m edges and minimum

degree kmin. Then, the Estrada index of G is bounded as

EE (G) ≥ 2 cosh
(
2 cos

(
π

n+ 1

))
+ n− 2, (5.11)

with equality if and only if G ∼= P2 or G ∼= P4.

Theorem 15 [19] Let G be a simple graph with n nodes, m edges and t triangles.

Then, the Estrada index of G is bounded as

EE (G) ≥
√
n2 +mn+ 2nt, (5.12)

with equality if and only if G ∼= K̄n.

Other bounds reported in the literature are based on di�erent graph-theoretic in-
dices and properties or for speci�c classes of graphs. A non-exhaustive resume is pro-
vided in Table 4.
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type of graphs ref.

general [10, 38, 63, 101, 121, 189, 198, 201, 238]
weighted general [197, 200]

trees [55, 62, 159, 188, 244]
molecular trees [115, 134]

unicyclic [64]
bicyclic [228]
tricyclic [252]
tetracyclic [186]
pentacyclic [185]
bipartite [91, 120, 245, 250]
line graphs [4, 208]

strongly quotients [33]
folded hypercubes [165]

cacti [157]
Cayley [103]

speci�c graphs [104]
Ramanujan [199]
benzenoids [118]
phenylenes [187]
fullerenes [14]
Möbius [96]

Table 4: Examples of studies reported in the literature for some classes of graphs.

5.1 Numerical analysis

We now do some calculations to show how close to the actual values of the Estrada index
are some of the bounds studied in the previous sections. In particular, we consider the
following �ve bounds: Bound 1 (Theorem 5); Bound 2 (Theorem 6; Bound 3 (Theorem
7 using a = −λ1 and b = −λn); Bound 4 (Theorem 7 using a = −kmax and b = kmax);
Bound 5 (Theorem 8). First, we study these bounds for the 11,117 connected graphs
with 8 nodes. The histograms of the relative deviations of these bounds are illustrated
in Fig. 5.1, where the lower bound is always drawn in blue and the upper one in red.
The means and standard deviations of the lower, upper bounds are as follow: Bound 1
(79.672±9.485, 259.948±44.555); Bound 2 (82.588±8.499, 19.205±14.198); Bound
3 (57.915 ± 13.701, 30.466 ± 5.860); Bound 4 (73.741 ± 12.359, 239.249 ± 156.52);
Bound 5 (54.629±14.214, 18.276±8.812). Therefore, the best lower and upper bounds
are Bound 5 (Theorem 8) for these small graphs.

In Fig. 5.2 we illustrate the results for the �ve real-world networks considered in
this work. In general, with the exception of Bound 3, which is based on eigenvalues,
and Bound 5, which uses tr

(
A4
)
, the rest of the bounds are very far from the actual

values for these four networks. With these two exceptions, the upper bounds exaggerate
dramatically the estimation, in particular the Bound 1. Bound 4, performs very badly
when the maximum degree of the network is very high and not close to the spectral
radius, which is the case for instance of Internet, but also of many real-world networks.
All in all, these results point out to the necessity of improving the bounds for the
Estrada index of large graphs.

We then consider simple bounds based on the spectral radius of the adjacency
matrix λ1. That is,
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Fig. 5.1: Histograms of the relative deviations in percentage for: (a) Bound 1 (Theorem
5), (b) Bound 2 (Theorem 6, (c) Bound 3 (Theorem 7 using a = −λ1 and b = −λn),
(d) Bound 4 (Theorem 7 using a = −kmax and b = kmax), (e) Bound 5 (Theorem 8).
In blue we illustrate the histogram for the lower and in red for the upper bounds. As
usual for histograms, frequency stands for the number of graphs in each bin.

eλ1 < EE (G) < neλ1 . (5.13)

The results are given in Table 5. As can be seen the bounds are very close to the
actual values of the Estrada index. This is a consequence of the relatively large values of
the spectral radius and of the spectral gap observed in most of the real-world networks,
which when exponentiated are signi�cantly enlarged. Notice that the largest deviation
is obtained for powergrid, where the spectral radius is signi�cantly smaller than in the
rest of the networks and the spectral gap is very small.

5.2 Random graphs

In the study of real-world networks it is desired to investigate how unique are their
structural and dynamical properties in relation to some null model. For instance, sup-
pose that we have found that certain network displays relatively large Estrada index
in relation to other networks of the same size. Is this a characteristic feature of the
topological organization of this network or just an artifact emerging from a random
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Fig. 5.2: Plot of the estimates of the lower (blue circles) and upper (red squares) for
the bounds: (1) (Theorem 5), (2) (Theorem 6, (3) (Theorem 7 using a = −λ1 and
b = −λn), (4) (Theorem 7 using a = −kmax and b = kmax), (5) (Theorem 8). The
results are for (a) Stony, (b) neurons, (c) yeast, (d) internet and (e) powergrid. The
dashed lines represents the �exact� value of the Estrada index for the networks. Very
large values are obtained by using variable-precision �oating-point arithmetic (vpa) in
Matlab.

network exp (λ1) real n exp (λ1) λ1 λ2

Stony 7.2343 · 109 7.2343 · 109 8.1024 · 1011 22.70 6.38
neurons 1.36061 · 1010 1.3062 · 1010 3.6569 · 1012 23.29 14.06
yeast 2.9021 · 108 3.0383 · 108 6.4542 · 1011 19.49 16.13

Internet 6.1745 · 1013 6.1745 · 1013 1.8616 · 1017 31.75 20.08
Powergrid 1.7777 · 103 2.1347 · 104 8.7834 · 106 7.48 6.61

Table 5: Naive bounds based on the spectral radius of the adjacency matrix for the
Estrada index of real-world networks.

interconnection of their nodes? A way to investigate this is by comparing the Estrada
index of these networks with those of random realizations of such networks with the
same number of nodes and edges. Then, the use of random graphs is frequent in the
analysis of real-world networks [220]. Two classical models, although not the only ones,
to do such studies are the Erd®s-Rényi random graphs [68] and the Barabási-Albert
preferential attachment model [21]. For instance, the Estrada index of the network
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�neurons� studied here is EE (Greal) ≈ 1.3062 · 1010 and that of an Erd®s-Rényi ran-
dom graph with the same number of nodes and edges is EE (GER) ≈ 3.4688 · 106,
which indicates that the large Estrada index of this network is not due to a random
interconnection of the neurons of C. elegans. However, the consideration of a Barabási-
Albert network with the same number of nodes and edges than those in the network
�neurons� gives EE (GBA) ≈ 1.2131 · 1010, which clearly points out that the relatively
large Estrada index of this network may be explained by its skewed degree distribution.

For the Estrada index of random graphs, only the Erd®s-Rényi model has been
considered so far, indicating the necessity of extending these studied to other classes of
random graphs such as the Barabási-Albert one. The following estimates were found
for Erd®s-Rényi random graphs based on the number of nodes and the probability of
connection.

Lemma 4 [196] Let Gn,p be an Erd®s-Rényi random graph with n nodes and proba-

bility

lnn

n
≪ p < 1− lnn

n
. (5.14)

Then, the Estrada index is

EE (Gn,p) = (1 + o (1)) enp, (5.15)

almost surely as n→ ∞.

Theorem 16 [43] Let Gn,p be e an Erd®s-Rényi random graph with n nodes and

probability p. Then, the Estrada index is

EE (Gn,p) =
(
eO(

√
n) + o (1)

)
enp, (5.16)

almost surely (a.s.) if and only if limn→∞ n2/n1 = 1.

In the case of Erd®s-Rényi random bipartite graphs the author of [206] proved the
following bounds for the Estrada index.

Theorem 17 Let Gn1,n2,p be an Erd®s-Rényi random bipartite graph with n = n1+n2
nodes, such that limn→∞ n2/n1 := y ∈ (0, 1], and probability p. Then, the Estrada

index is bounded as

(
eO(

√
n) + o (1)

)
en2p ≤ EE (Gn,p) ≤

(
eO(

√
n) +O (1)

)
en1p, a.s. (5.17)

provided that y = 1.
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6 Estrada index and statistical mechanics

The analogy of the Estrada index EE (G) = tr
(
eA
)
with the partition function of a

quantum system Z = tr
(
e−

ˆτH
)
(see further for de�nitions) is remarkable, and was

noticed soon after the de�nition of this index [83]. The importance of establishing this
connection is twofold. On the one hand, the index can be interpreted in a physical
context which at the same time facilitates its interpretation in other contexts where it
is applied. On the other hand, new tools and techniques from statistical mechanics can
be used to enrich the theory behind this index. Here, we will describe the statistical
mechanics interpretation of the Estrada index.

Let us consider a physical system S that can be represented by a graph G, such that
the total energy E of S can be obtained by the time-independent Schrödinger equation:
ĤΨ = EΨ , where Ψ is the wavefunction and Ĥ is the Hamiltonian describing the
interactions between the elements of S. In certain approaches in physics and chemistry,
it is customary to use an e�ective Hamiltonian which describes the interaction between
nearest-neighbors (NN) in the system

ĤNN = αI + tNNA, (6.1)

where α is a self-energy parameter for the elements of S and tNN is the energy of the
interaction between pairs of adjacent elements. In Chemistry this model is known as the
Hückel Molecular Orbital (HMO) method [154, 239], while in Physics it is better known
as the tight-binding approach [184]. The parameter tNN is negative as it is supposed
to be an attractive interaction. Therefore, it is common to set α = 0 and tNN = −1,
such that Ĥ = −A. Therefore, the energy levels of the system are Ej = −λj and the
wavefunctions correspond to the eigenvectors associated to the eigenvalues of A.

In the statistical mechanics framework [23, 69], the Boltzmann probability pj (τ)
of �nding the system in a state with energy Ej when the inverse temperature of the

system is τ = (kBT )
−1

> 0 with kB being a constant and T being the temperature1

is

pj (τ) =
e−τEj

Z
, (6.2)

where Z = tr
(
e−τĤNN

)
. Therefore, the Boltzmann probability of the system is given

by

pj (τ) =
eτλj

EE (G, τ)
, (6.3)

where the Estrada index plays the role of the partition function of the graph.
We now can de�ne the entropy of the graph as [83]

S (G, τ) = −kB
∑
j

pj (τ) ln pj (τ) = − 1

T

∑
j

(pj (τ)λj) + kB lnEE (G, τ) , (6.4)

which in general is bounded as follows.

1 τ is typically represented by β in statistical physics, but this letter is already reserved here
for a di�erent variable
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Lemma 5 Let G be a simple graph. Then, the free energy of G is bounded as

0 ≤
(
ln (exp (n) + n− 1)−

n exp (n)

exp (n) + n− 1

)
≤ S (G, τ) ≤ lnn, (6.5)

where the upper bound is attained for the null graph Kn and the lower bound is reached

for the complete graph Kn.

From the general expression of the entropy one can obtain the graph �enthalpy� H (G, τ) =
−
∑

j pjλj and the graph free energy, which is sometimes named the natural connec-
tivity of the network [83]:

F (G, τ) = −τ−1 lnEE (G, τ) . (6.6)

We can write the logarithm of the Estrada index as follows,

lnEE (G, τ) = τλ1 + ln
∑
j

eτ(λj−λ1), (6.7)

which implies that

lnEE (G, τ) ≤ τλ1 + ln
(
1 + e−τ△

)
, (6.8)

where △ = λ1 − λ2 is the spectral gap. Therefore, we have proved the following.

Lemma 6 Let G be a simple graph. Then, the free energy of G is bounded as

F (G, τ) ≤ −
[
λ1 + τ−1 ln

(
1 + e−τ△

)]
. (6.9)

More generally, the free energy of a graph can be bounded by using the many bounds
obtained for the Estrada index which have been previously reported in the literature.
One important example is the following [83].

Lemma 7 Let G be a simple graph. Then, the free energy of G is bounded as

(n− 1) < 1− τ−1 ln (eτn + n− 1) ≤ F (G, τ) ≤ −τ−1 lnn, (6.10)

where the lower bound is obtained for the complete graph Kn and the upper bound for

the null graph Kn.

6.1 Numerical analysis

We consider here numerical experiments to illustrate some general characteristics of
the indices described in the previous section. We report the change of the entropy,
enthalpy and free energy of all connected graphs with the increase of the number of
edges in the connected graphs with 8 nodes, i.e., its edge density. It can be seen in
Fig. 6.1, as expected, that the three parameters decay with the increase in the edge
density. However, it should be noticed that for graphs with exactly the same number
of edges there is a wide variability in these parameters, particularly for the entropy.
The readers interested in more details about the implications of these parameters on
the structure of graphs are referred to [83].
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Fig. 6.1: Plots of the entropy (a), enthalpy (b) and free energy (c) versus the number
of edges in all connected graphs with 8 nodes.

We then computed the three statistical mechanics parameters for the �ve networks
studied here. The results are in Table 6 where we also give the values of the edge
density of these graphs: δ (G) = 2m/ (n (n− 1)) where n and m are the number of
nodes and edges of the graph. The most densely connected network, Stony, displays
the lowest entropy and the least dense, powergrid, displays the largest one. However,
as can be seen for the intermediate values of δ (G) this trend is not always followed as
there are other structural factors in�uencing these statistical mechanics parameters.
For instance, the network of Internet at AS displays the second smaller entropy of all
the networks and the lowest free energy of all, although it is not very dense.

S (G) H (G) F (G) δ (G)

Stony 4.447 · 10−6 -22.704 -22.704 0.134
neurons 0.0011 -23.292 -23.293 0.0505
yeast 0.227 -19.304 -19.532 0.0028

Internet 1.149 · 10−4 -31.754 -31.754 0.0011
Powergrid 6.806 -3.162 -9.969 5.403 · 10−4

Table 6: Values of the entropy, enthalpy and free energy of the �ve real-world networks
analyzed here.

7 Marginal probability, walk entropy and walk regularity

Having in mind the importance that the probability pj (τ) has in the de�nition of sta-
tistical mechanics properties of networks we propose to explore it further in this section.
That is, we consider here the role of the Estrada index in de�ning some probability-
based measures for graphs. Let us start with two de�nitions from basic statistics (see
for instance Ch. 2 [49]).

De�nition 9 The conditional probability P (A |B ) is the probability that the event
A occurs given that the event B occurs.
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De�nition 10 The marginal probability is the unconditional probability of one event
A. That is, the probability that A occurs regardless of whether B occurs or not.

To obtain the marginal probability of an event A one should sum all possible con�gu-
rations of the other event to obtain a weighted average probability

P (A) =
∑
B

P (A |B ) · P (B) . (7.1)

Let us then return to the time-independent Schrödinger equation:

Ĥψj = Ejψj , (7.2)

where Ej are the energy levels of the system and ψj are the corresponding eigenfunc-

tions. As usual,
∣∣ψj,v

∣∣2 represents the probability of �nding a quantum particle at a
given vertex v and time conditional to the system to be at the energy level described
by the wave function ψj . That is,

∣∣ψj,v

∣∣2 = P (v |j ) using the notation de�ned before.
On the other hand, pj (τ) which was de�ned in the previous section accounts for

the probability that the system is at the jth energy level for a given τ . Then, �xing τ ,
pj (τ) = P (j) . Therefore, the marginal probability that the node v is occupied by the
quantum particle independently of the energy level in which the system is, is given by:

P (v) =
∑
j

P (v |j ) · P (j) =
∑
j

∣∣ψj,v

∣∣2 · pj (τ) , (7.3)

which can be expressed as [86]:

P (v, τ) =

∑
j ψ

2
j,ve

τλj

EE (G, τ)
=

EEv (τ)

EE (G, τ)
. (7.4)

The corresponding entropy, known as the walk-entropy of the graph [86], is de�ned
using Shannon formula:

Sw (τ) = −
∑
v

P (v, τ) lnP (v, τ) . (7.5)

We now consider a graph property known as walk-regularity and the role that
the walk entropy play in its characterization. Let us introduce the concept of walk
regularity �rst (see for instance [106]).

De�nition 11 A graph is walk-regular if ∀i, j ∈ V and for every nonnegative integer
r, [Ar]ii = [Ar]jj .

The following conjecture was formulated in [86] as an extension of the conjecture
related to the subgraph centrality which had been previously stated in [88].

Conjecture 1 A graph is walk-regular if and only if Sw (τ) = lnn for all τ > 0.

Let us then introduce some necessary concepts for the further developments in the
proof of this conjecture.

De�nition 12 Two vertices i, j of G are τ -subgraph equivalent if [eτA]ii = [eτA]jj .
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De�nition 13 A graph is τ -subgraph regular if all pairs of vertices are τ -subgraph
equivalent.

The following result was a step forwards the proof of Conjecture 1.

Theorem 18 [26] A graph G is walk-regular if and only if G is τ -subgraph regular for

all τ ∈ I ⊆ R, where I is any set of real numbers containing an accumulation point.

In the saga, in [151] the authors found some counterexamples to a new conjecture
proposed in [26] and stated a new conjecture. The �nal proof of Conjecture 1 came from
an elegant Theorem in 2021 [18] where the authors used results from the Lindemann-
Weierstrass Theorem.

Theorem 19 [18] Let τ > 0 be an algebraic number and let G be a connected undi-

rected graph with adjacency matrix A.

1. G is τ -subgraph regular if and only if G is walk-regular.

2. If two vertices i, j are τ -subgraph equivalent, then the degree and eigenvector

centralities of i and j are equal.

3. If G is τ -subgraph regular, then the degree and eigenvector centralities are also

identical for all nodes.

Walk regular graphs can be constructed by using Kronecker product of the adjacency
matrices of two walk-regular graphs [106]. That is, if G1 and G2 are walk regular
graphs, then G1 ⊗G2 is also walk regular. Therefore, we have the following result.

Proposition 1 [86] Let G1 and G2 be two simple graphs with n1 and n2 vertices,

respectively. Then,

Sw (G1 ⊗G2, τ) = lnn1 + lnn2, (7.6)

for all τ > 0 if G1 and G2 are walk-regular.

8 Bipartivity, signed graphs and Seidel Estrada index

A graph G = (V,E) is bipartite if its set of nodes V can be split into two subsets V1 and
V2 such that there are edges only between the two sets but no edge connects vertices
in neither V1 nor V2 . Therefore, a graph is or is not bipartite. However, in certain
real-world situations a graph can be �close to bipartite�, meaning that by removing
very few edges the graph become bipartite. This is the case, for instance, of human
sexual contact networks and human romance or partnership networks as remarked in
[130]. In 2003 the authors of [130] proposed to quantify the �bipartivity� of a graph.
The �rst of their measures is de�ned by

bH = 1−
mf

m
, (8.1)

where mf is the number of edges that if removed the network becomes bipartite2.
The calculation of this index is computationally intractable as it is NP complete. The
authors [130] then proposed another index in which mf is assessed computationally.
Here we will show how the use of the Estrada index of graphs allows the calculation of
an index of bipartivity which depends only on the eigenvalues of the graph. The �rst of

2 Physicists call these edges �frustrating� edges
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these approaches was published in [87] and will not be discussed here. Instead we will
consider the index studied in [82]. Another measure of bipartivity was also proposed
in [180]. We will start with some basic de�nitions for the sake of completeness of this
section.

A bipartite graph is characterized by the following result proved by Konig in 1916
[153] (see also [15]).

Theorem 20 A graph is bipartite if and only if G has no cycles of odd length.

Corollary 2 A graph G is bipartite if and only if it contains no closed walks of odd

length.

The Estrada index of a graph can be expressed in terms of the hyperbolic matrix
functions as

EE (G) = tr (cosh (A)) + tr (sinh (A)) . (8.2)

The tr (sinh (A)) counts the odd-length closed walks in the graph:

tr (sinh (A)) =
∞∑
k=0

1

(2k + 1)!
tr
(
A2k+1

)
. (8.3)

Similarly, tr (cosh (A)) counts the even-length closed walks. An odd closed walk of any
length in the graph exists if and only if the graph contains at least one odd-length
cycle. Therefore, we can reformulate the previous Corollary as.

Corollary 3 A graph G is bipartite if and only if tr (sinh (A)) = 0.

Based on this result the authors of [82] proposed the following.

De�nition 14 The bipartivity of a graph is de�ned as the relative di�erence between
the number of closed walks of even and odd length,

b (G) =
tr (cosh (A))− tr (sinh (A))
tr (cosh (A)) + tr (sinh (A))

=
tr (exp (−A))
tr (exp (A))

=
EE

(
G−)

EE (G)
, (8.4)

where G− is the graph in which all the edges are weighted by −1.

It is easy to see that tr (exp (−A)) reaches its minimum for the complete graph, which
is also the graph for which EE (G) is maximum (see an example in Fig. 8.1). In this
�gure the reader can also visualize how the bipartivity index changes monotonically
with the increase of the number of edges �frustrating� the bipartition.

Then, we have the following result.

Lemma 8 Let G be a simple graph. Then, its bipartivity is bounded as

e2−n

(
nen − en + 1

en + n− 1

)
≤ b (G) ≤ 1, (8.5)

where the upper bound is attained for any bipartite graph and the lower bound is reached

for G ∼= Kn.

Therefore, we have that

lim
n→∞

b (Kn) = 0. (8.6)



24 Ernesto Estrada

Fig. 8.1: Illustration of the change in the bipartivity index with the increase in the
number of edges in a complete bipartite graph.

8.1 Signed graphs

In order to understand why the index b (G) quanti�es the bipartivity of a graph we
should start by recognizing that the numerator of b (G) is the trace of the adjacency
matrix of a fully-negative signed graph. For an exhaustive compilation of mathematical
results about signed graphs the reader is referred to [241]. Let us introduce here the
necessary concepts for understanding the connections between bipartivity and signed
graphs. We will start with the following.

De�nition 15 A signed graph is the 4-tupleG+− = (V,E,Σ, φ), where V = {v1, . . . , vn}
is the set of nodes or vertices representing individual social entities, E ⊆ V × V is the
set of edges formed by (ordered or unordered) pairs of nodes, Σ = {+,−} is a set of
signs, positive and negative relations3, and φ : E → Σ is a mapping assigning one sign
to each edge.

Therefore, the numerator of b (G) counts the number of negative cycles in G, where a
negative cycle is any cycle in which the product of the sign of its edges is negative. In
a fully-negative graph, the negative cycles are the odd-length cycles, which are indeed
those that break the bipartivity of the graph. In the theory of signed graphs we have
the following important concept (for a list of references and some critical account see
[79]).

De�nition 16 A signed graph G+− is balanced if all its cycles are positive.
Then, it is obvious that a fully-negative graph is balanced if and only if it is bipar-

tite. In the general case of any signed graph the following result is well-known.

Theorem 21 A signed graph G+− is balanced if and only if its nodes can be separated

into two mutually disjoint sets, such that positive edges joint nodes only inside the

subsets and negative edges joint nodes from di�erent subsets.

3 In the study of social signed networks, positive edges are used for friendship relations and
negative ones for enmities.
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The adjacency matrix of a signed graph can be expressed as: A = A+−A−, where
A+ represents the adjacency between pairs of nodes connected by positive edges, and
A− represents the adjacency between pairs of nodes connected by negative edges.

De�nition 17 [79, 81] The balance of a signed network with adjacency matrix A =
A+ −A− can be quanti�ed by

K
(
G+−

)
=

tr
(
exp

(
A+ −A−))

tr (exp (|A+ −A−|))
=

EE
(
G+−)

EE (|G+−|)
, (8.7)

where |·| represents the entrywise absolute of the corresponding matrix.

The following result was proved in 1980 [2].

Theorem 22 For any signed graph, the matrices A+−A− and
∣∣A+ −A−∣∣ are isospec-

tral (cospectral) if and only if the signed graph is balanced.

Then, we have the following.

Theorem 23 Let G+− be a signed graph with adjacency matrix A+ −A−. Then,

e2−n

(
nen − en + 1

en + n− 1

)
≤ K

(
G+−

)
≤ 1, (8.8)

where the upper bound is attained for any balanced graph and the lower bound is reached

for a fully-negative complete graph.

Then, we also have that

lim
n→∞

K
(
K−

n

)
= 0, (8.9)

which is a maximally unbalanced graph.

8.2 Seidel Estrada index

Let us focus now on a particular kind of signed graph. Let J and I be the all-ones and
identity matrices, respectively. The following matrix was introduced in [221] and it is
nowadays known as the Seidel matrix.

De�nition 18 The Seidel matrix of a simple graph G with adjacency matrix A is
de�ned as

S (G) = J − I − 2A. (8.10)

Obviously, S (G) = A+−A− is the adjacency matrix of a signed graph G+−, where
A+=J − I −A and A−=−A. Therefore, we have the following result.

Theorem 24 Let G+− be a signed graph with adjacency matrix S (G). Then, G is

balanced if and only if S (G) is isospectral to A (Kn).

Proof The balance index of a signed graph with adjacency matrix S (G) is

K
(
G+−

)
=

tr (exp (J − I − 2A))

tr (exp (J − I))
=

tr (exp (S (G)))

EE (Kn)
, (8.11)

which immediately implies the result. ⊓⊔
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Remark 3 The term tr (exp (S (G))) =: SEE (G) was denoted in [122] as the Seidel
Estrada index of the graph. The name Seidel honors mathematician Johan Jacob Seidel
(1919-2001)4.

We can prove here the following result.

Theorem 25 Let Kn1,n2 be a complete bipartite graph. Let S (Kn1,n2) be the Seidel

matrix of Kn1,n2 . Then, S (Kn1,n2) and A (Kn1+n2) are cospectral.

Proof Using the structural balance theorem we can show that the signed graph whose
adjacency matrix is S (Kn1,n2) is balanced. That is, we can split the set of nodes into
two disjoint sets containing n1 and n2 nodes, respectively, in which the inter-set edges
are negative and all intra-set edges are positive. Then, using Theorem 24 we prove the
result. ⊓⊔

Remark 4 The previous result implies that any signed graph with adjacency matrix

A =

(
A (Kn1) −J

−J A (Kn1)

)
, (8.12)

is balanced. Also that SEE (Kn1,n2) = EE (Kn1+n2) = exp (n) + (n− 1) e−1.

In [122] it was proved the following results for the Seidel Estrada index.

Theorem 26 Let G be a simple graph with n ≥ 2 nodes, m edges, t triangles and

Z =
∑

i k
2
i . Then,

SEE (G) >

√
n

3

(
n3 − n+ 12

(
Z + 4t− nm+

1

2

))
. (8.13)

Theorem 27 Let G be a simple k-regular graph. Then,

SEE (G) ≥ en−1−2k + (n− 1) exp

(
2k

n− 1
− 1

)
. (8.14)

Theorem 28 Let G be a simple k-regular bipartite graph. Then,

SEE (G) < en−1−2k +
1

e

(
EE (G)− e−k

)2
. (8.15)

In this subsection we have shown that although the so-called Seidel Estrada index was
proposed and studied in a completely ad hoc way, it can be connected with the theory of
signed graphs. This may facilitate further studies of this index, its extension to consider
statistical mechanics parameters and its applications to the study of real-world signed
graphs.

4 A biography of Johan Jacob Seidel can be found at: https://mathshistory.st-
andrews.ac.uk/Biographies/Seidel_Jaap/
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8.3 Negative absolute temperatures and the Onsager Estrada index

In the de�nition of the bipartivity index we have considered in the numerator of Eq.
(8.4) the term EE

(
G−) =tr (exp (−A)) . In the context of statistical mechanics which

we have analyzed in Section 6 this corresponds to consider the inverse temperature
τ = −1. So far, we have considered the inverse temperature τ to be positive. So,
what a negative inverse temperature could mean? Let us �rst analyze what is the
physical de�nition of τ . Let S be the statistical entropy, which is a function of the
possible microstates of the system, and let E be the system's energy. Then, the absolute
temperature is de�ned as:

τ :=
1

T

dS

dE
. (8.16)

Graphically, it corresponds to the slope of the curve of entropy versus energy at
a given point. Therefore, as can be seen in Fig. 8.2 the inverse temperature can be
negative. In a system at negative temperature the high-energy states are more occupied
than low-energy states. Such systems have been created by physicists in the real-world
[35].

Fig. 8.2: Sketch of the plot of entropy versus energy used to illustrate the de�nition of
the inverse temperature which is given by the slope of the curve in a given point. The
scale of inverse temperature is given on top of this plot.

From a graph-theory perspective what it means that �the high-energy states are

more occupied than low-energy states�? In the Section 6 we have considered that the
Hamiltonian describing the graph as a quantum system is given by the negative of the
adjacency matrix ĤNN = −A, such that the energy levels of the system are Ej = −λj
and the wavefunctions are the eigenvectors associated to the eigenvalues of A. In this

case the partition function of the graph is given by Z =
∑n

j=1

(
eτλj

)
with τ > 0.

Therefore, for τ → ∞, we have that Z = eτλ1 . In the current case, where τ < 0, we
have that when τ → −∞, the partition function is: Z = eτλn . This means that we have
changed the �importance� given to the di�erent eigenvalues in the Estrada index, giving
now more weight to the contributions of the smallest ones. Because Lars Onsager (1903-
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1976) was the scientist who �rst study the negative absolute temperatures in [178] we
propose to name the following index in his honor5.

De�nition 19 The Onsager Estrada index of G is de�ned as

OEE (G) = tr [exp (−A)] . (8.17)

First let us consider some elementary results, which are presented here by the �rst
time. First, because tr [exp (−A)] = tr [cosh (A)] − tr [sinh (A)] , and due to the fact
that a graph is bipartite if and only if it has no odd cycles, we have the following result.

Lemma 9 Let G be a simple graph. Then, OEE (G) = tr [cosh (A)] if and only if G

is bipartite. In this case OEE (G) = EE (G).

Remark 5 Some graphs for which OEE (G) = EE (G) for which we can write explicitly
the indices are

� OEE (Kn1,n2) = EE (Kn1,n2) = n1 + n2 − 2 + 2 cosh (
√
n1n2) ;

� OEE (Sn) = EE (Sn) = n− 2 + 2 cosh
(√

n− 1
)
;

� limn→∞EE (Cn) = nI0, n even, where I0 =
1

π

∫ π
0
e2 cos xdx;

� limn→∞EE (Pn) = (n− 1)− 2 cosh (2).

Lemma 10 Let G be a simple graph and let λn be the least eigenvalue of A. Then,

e−λn ≤ OEE (G) ≤ ne−λn . (8.18)

The following result allows us to compare OEE (G) with EE (G) using Eq. (3.12).

Lemma 11 Let G be a simple graph. Then, the Onsager Estrada index of G is bounded

as

OEE (G) ≥ F1 +
391

360
F2 +

11

60
F3 +

1

120
F5 +

1

60
F6 +

2

5
F7 +

1

36
F9 +

1

60
F12 +

1

60
F16

−
(
149

120
F4 +

1

10
F8 +

7

72
F10 +

1

180
F11 +

1

360
F13 +

1

360
F14

+
1

90
F15 +

1

360
F17 +

1

60
F18 +

1

180
F19 +

1

360
F20

)
.

(8.19)

As we can see only bipartite subgraphs make a positive contribution to the Onsager
Estrada index.

5 A biography of Lars Onsager can be found at: https://www.nobelprize.org/prizes/chemistry/1968/onsager/biographical/
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8.4 Numerical analysis

Here we compute the bipartivity index for all connected graphs with 8 nodes. We
select two other network parameters to compare with the bipartivity. The �rst is the
edge density δ (G) = 2m/ (n (n− 1)) where m is the number of edges. The reason for
selecting this parameter is that as the density of the graph increases the number of
cycles of any length will also increase. For instance, in Erd®s-Rényi random graphs we
can �nd that the number of triangles F4 (see Fig. 3.1) is bounded as

F4 ≥ 1

6
λ31 ≥ 1

6
(np)3 =

1

6
n3δ3. (8.20)

The second parameter is the clustering coe�cient C (G), which is de�ned as C (G) =
3F4/F3, where F3 is the number of paths of length 2 in the graph (see [78]). Here again
we would expect that the bipartivity and the clustering coe�cient are negatively cor-
related due to the fact that the increase in clustering means the relative increase in
the number of triangles. However, bipartivity is also related to other odd-cycles in the
graphs and we want to investigate their in�uence of this network parameter.

In Fig. 8.3 we plot the results of the bipartivity vs. the clustering coe�cient where
the points are colored according to the number of edges that the graph has. As can be
seen the most dense graphs also have the highest clustering and lowest bipartivity, as
expected. Although there is a decaying trend between the bipartivity and the clustering
coe�cient, it is clear that even for these small graphs, the contribution of longer cycles
to the bipartivity is very important.
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Fig. 8.3: Scatter plot of the bipartivity and the clustering coe�cient of all connected
graphs with 8 nodes. The points in the plot are colored by the number of edges that
the corresponding graph has.
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In Table 7 we give the values of the bipartivity for the �ve networks studied in this
work. The networks of Stony and powergrid have signi�cant bipartivity, while neurons
and yeast are highly non-bipartite. As can be seen in the Table there is not a clear
trend between bipartivity and edge density nor to the clustering coe�cient of these
graphs.

network b (G) C (G) δ (G)

Stony 6.3 · 10−1 2.0 · 10−2 1.3 · 10−1

neurons 1.2 · 10−5 1.9 · 10−1 5.1 · 10−2

yeast 4.9 · 10−4 1.6 · 10−1 2.8 · 10−3

Internet 4.3 · 10−3 1.5 · 10−2 1.1 · 10−3

Powergrid 7.2 · 10−1 1.0 · 10−1 5.4 · 10−4

Table 7: Values of the bipartivity, clustering coe�cient and edge density of the �ve
real-world networks studied in this paper.

In the case of Stony we have obtained a bipartition of the network using a technique
also based on matrix exponentials. The result is illustrated in Fig. 8.4 where the edges
colored in red or in blue are those that frustrate the bipartition of the network, i.e.,
those that, if removed, make the graph bipartite.

Fig. 8.4: Illustration of a bipartition of the network of Stony stream using the method
developed by [82]. The dotted lines joints the two partitions and continuous lines con-
nect vertices inside the same partition, i.e., they frustrate the bipartition of the network.
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9 Gaussian Estrada indices

As we have seen in the previous analysis there are situations in which the Estrada index
of a graph is mainly determined by the spectral radius of the adjacency matrix. That is,
when λ1 ≫ λ2 ≫ 1 the sum

∑
j exp (λj) is approximated very well by exp (λ1) . From

the structural point of view, this means that most of the information contained in the
eigenvalues λj for j > 1 is making almost no contribution to the Estrada index. It is
well-known that structural information encoded by some other eigenvalues other than
λ1 is very important for several kinds of problems [46, 50�52, 213, 214]. For instance, the
nullity of the graph (see [111] for a review), i.e., the multiplicity of the zero eigenvalue
of the adjacency matrix, plays a fundamental role in explaining magnetic properties of
materials [230]. In general, many real-world networks have large multiplicity of λj = 0
(nullity) and of λj = −1 which points to the fact that some important structural
information on these networks is encoded in eigenvalues di�erent from λ1 .

In this section we investigate Estrada indices that give higher weights to the con-
tribution of eigenvalues other than the spectral radius. In particular we use here a
technique known as spectral folding [36, 229] to produce Gaussian Estrada indices
[5, 80]. In the following let λ̃ be a given reference eigenvalue, I (z) be the modi�ed
Bessel function of the �rst kinds, erf (z) be the error function and erfc (z) = 1− erf (z)
be the complimentary error function [5, 80].

De�nition 20 The Gaussian Estrada index of G is de�ned as

GEEλ̃ (G) = tr
{
exp

[
−
(
λ̃I −A

)2]}
. (9.1)

The idea behind this Gaussian Estrada index is explained graphically in Fig. 9.1.
The name Gaussian honors Carl Friedrich Gauss (1777-1855)6.

First we give a few general results for the Gaussian Estrada index (see [5, 80]).

Lemma 12 Let G be any graph. Then,

GEEλ̃ (G) = tr
(
e−λ̃2

e2λ̃Ae−A2
)
= e−λ̃2

tr
(
e2λ̃Ae−A2

)
. (9.2)

Theorem 29 Let G be a graph with n nodes and m edges. Then,

GEEλ̃ (G) ≤


EE

(
Kn, λ̃

)
if λref = 0,

EE
(
K1,n−1, λ̃

)
if λref = −1,

(9.3)

where ki is the degree of the node i in the graph G .

Lemma 13 Let Kn be the complete graph of n nodes. Then

GEEλ̃ (Kn) =


e−(n−1)2 + n−1

e if λ̃ = 0,

e−n2

+ n− 1 if λ̃ = −1.

(9.4)

6 A biography of Carl Friedrich Gauss can be found at: https://mathshistory.st-
andrews.ac.uk/Biographies/Gauss/
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Fig. 9.1: Illustration of the gaussianized spectrum method. The eigenvalues of the

adjacency matrix of the network are folded at λ̃ into the spectrum of
(
λ̃I −A

)2
. Then

they are exponentiated to give more weight to λref.

Lemma 14 Let Pn be a path having n nodes. Then, asymptotically as n→ ∞ and for

some c ∈ (0, π)

GEEλ̃ (Pn) =


e−2I0 (2) (n+ 1)− e−4 if λ̃ = 0,

e−3e−4 cos c
(
(n+ 1) I0 (2)− e−2

)
if λ̃ = −1.

(9.5)

Lemma 15 Let Cn be a cycle having n nodes. Then, asymptotically as n → ∞ and

for some c ∈ (0, π)

GEEλ̃ (Cn) =


e−2nI0 (−2) if λ̃ = 0,

ne−3e−4 cos cI0 (−2) if λ̃ = −1.

(9.6)

Lemma 16 Let Kn1,n2 be the complete bipartite graph of n1 + n2 nodes. Then

GEEλ̃ (Kn1,n2) =


2e−n1n2 + n1 + n2 − 2 if λ̃ = 0,

e−1
(
e−n1n2 cosh(2

√
n1n2) + n1 + n2 − 2

)
if λ̃ = −1.

(9.7)

Corollary 4 Let K1,n−1 be the star graph of n nodes. Then
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GEEλ̃ (K1,n−1) =


2e1−n + n− 2 if λ̃ = 0,

e−1
(
e1−n cosh(2

√
n− 1) + n− 2

)
if λ̃ = −1.

(9.8)

In [210] the authors studied several bounds for the Gaussian Estrada index
when λ̃ = 0 which are resumed below.

Theorem 30 Let G be a simple graph with n nodes and m ≤ n

2
edges and let λ̃ = 0.

Then,

GEEλ̃ (G) ≥ n/2m, (9.9)

with equality if and only if G ∼= K̄n.

Theorem 31 Let G be a simple graph with n nodes andm ≤ n

4
+
n (n− 1)

4
exp (−4m/n)

edges and let λ̃ = 0. Then,

GEEλ̃ (G) ≥
√
n− 4m+ n (n− 1) exp (−4m/n), (9.10)

with equality if and only if G ∼= K̄n.

Remark 6 The previous bound can only be applied for very sparse networks where the
density δ (G) = 2m/ (n (n− 1)) is bounded as

δ (G) ≤ 1

2 (n− 1)
+ e−4m/n. (9.11)

Theorem 32 Let G be a simple graph with n ≥ 2 nodes and m ≤ n

2
edges. Let

M =
∑

i k
2
i , then,

GEE0 (G) ≥ exp (−M/n) + (n− 1) exp ((M/n− 2m) / (n− 1)) , (9.12)

with equality attained if and only if G admits λ1 =
√
M/n , λ2 = · · · = λk =

(n− 2k + 1)−1
√
M/n and λk+1 = · · · = λn = − (n− 2k + 1)−1

√
M/n for some

1 ≤ k ≤
⌊
n

2

⌋
.

9.1 Random graphs

In this subsection we consider the estimation of the Gaussian Estrada indices of random
graphs. The reasons for studying random graphs have been explained in Section 5.2.
Here we will consider both Erd®s-Rényi and Barabási-Albert random graphs.
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Theorem 33 [5, 80] For an Erd®s-Rényi random graph Gn,p with lnn
n ≪ p for sig-

ni�cantly large r = 2
√
np (1− p), we have

GEEλ̃ (Gn,p) = n exp

(
−r2

2

)(
I0

(
r2

2

)
+ I1

(
r2

2

))
, (9.13)

if λ̃ = 0, and

GEEλ̃ (Gn,p) =
2n

√
r2 − 1

r
er

2

erfc (r) (9.14)

if λ̃ = −1, as n→ ∞.

Theorem 34 [5, 80] Let GBA be a Barabási-Albert random graph and let r = 2
√
np (1− p).

Then, when n→ ∞,

GEEλ̃ (GBA) =
n

r2

(√
πrerf (r) + e−r2

− 1
)
, (9.15)

if λ̃ = 0, and

GEEλ̃ (GBA) =

√
π

2
((1− r) erf (1− r) + (1 + r) erf (1 + r))

−
√
πerf (1)− e−1

) (9.16)

if λ̃ = −1.

9.2 Double Gaussian Estrada index

Another important situation appearing in many molecular systems is the existence of
two reference eigenvalues, typically located around the mid part of the spectrum, which
are of great relevance for understanding the behavior of these systems. In 1952, Fukui et
al. [99] calculated the chemical reactivity of molecules by using molecular orbital theory,
but their method neglects all molecular orbitals except two, the occupied one of higher
energy (HOMO) and the vacant one of lowest energy (LUMO). According to Fukui the
HOMO gives a molecule a character of electron donor, whereas the LUMO acts as an
electron acceptor. The theory was further applied by Woodward and Ho�mann [234]
in the interpretation of the stereochemistry of electrocyclic organic reactions. Both,
the Frontiers Molecular Orbital (FMO) theory of Fukui and the Woodward-Ho�mann
rules are paradigmatic examples of success of theoretical approaches in Chemistry.
Both Fukui and Ho�mann won the Nobel Prize in Chemistry for such works. Since
then [98], FMO is widely applied for studying chemical reactivity [176].

Let us consider here, for instance, molecular systems S where the energy E is
obtained by the time-independent Schrödinger equation: (αI + tNNA)Ψ = EΨ , as
described before. Then, when α = 0 and tNN = −1, the energy levels of the system
are Ej = −λj . Typically, the states with energy levels Ej < 0 are occupied by electrons,
while those with energy Ej ≥ 0 are empty. Then, the energy level just below Ej = 0
is known as the highest occupied molecular orbital (HOMO) and the one just over
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Ej = 0 is the lowest unoccuppied molecular orbital (LUMO). These two molecular
orbitals are fundamental in understanding the chemical reactivity of these molecular
systems [182]. They can be described in the current approach by the negative of two
references eigenvalues λ̃1 and λ̃2 of the adjacency matrix. Then, we have the following
[6].

De�nition 21 The double-Gaussianized Estrada index of G is de�ned as

DGEEλ̃1,λ̃2
(G) = tr

{
exp

[
−
(
λ̃1I −A

)2 (
λ̃2I −A

)2]}
. (9.17)

Fig. 9.2: Schematic illustration of the double Gaussianization of the graph spectra. The
eigenvalues of the adjacency matrix are folded at two di�erent reference eigenvalues
and then exponentiated as illustrated in the right part of the �gure.

Lemma 17 Let G be any graph. Then,

DGEEλ̃1,λ̃2
(G) = e−λ̃2

1λ̃
2
2tr
(
e2(λ̃

2
1λ̃2+λ̃1λ̃

2
2)Ae−(λ̃

2
1+λ̃2

2+4λ̃1λ̃2)A2

e2(λ̃1+λ̃2)A3

e−A4
)
.

(9.18)

Lemma 18 Let λ̃1 = −1 and λ̃2 = 1, such that EE (G,−1, 1) = tr
(
exp

[
−
(
A2 − I

)2])
.

Let Kn, Kn1,n2 and K1,n−1 be the complete, bicomplete and star graphs of n nodes,

respectively. Then

DGEE−1,1 (Kn) = n− 1 + e−n2(n−2)2 , (9.19)

DGEE−1,1 (Kn1,n2) =
n1 + n2 − 2

e
+ 2e−(n1n2−1)2 , (9.20)

DGEE−1,1 (K1,n−1) =
n− 2

e
+ 2e−(n−2)2 . (9.21)
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Lemma 19 Let Gb be connected bipartite graph of n nodes, then

DGEE−1,1 (Gb) ≤ DGEE−1,1 (Kn) . (9.22)

Conjecture 2 Let G be any connected graph of n nodes, then

DGEE−1,1 (G) ≤ DGEE−1,1 (Kn) . (9.23)

Claim The double-Gaussianized Estrada index of a simple graph has the following
Taylor series expansion:

DGEE−1,1 =
1

e

( ∞∑
k=0

aktrA
2k

)

=
1

e

(
trI + 2trA2 + trA4 − 2

3
trA6 − 5

6
trA8

− 1

15
trA10 +

23

90
trA12 + . . .

)
.

(9.24)

where ak =
∑

4a+2b=2k

(−1)a 2b

a!b! , and a, b are non negative integers.

9.3 Numerical analysis

We consider here the bounds given in Theorem 30 and in Theorem 32 for all connected
graphs with 8 nodes. The bound given in Theorem 31 is not applicable in all the cases
and we do not considered it for this general case. We show in Fig. 9.3 the histogram of
the relative deviations for these two bounds in these small graphs. The mean relative
deviations (in %) of the two bounds are, respectively 89.84 ± 2.51 and 66.51 ± 6.55,
which points to the fact that the second bound is a better approximation than the �rst
one to the Gaussian Estrada index.

In Table 8 we give the values of the three bounds for the �ve networks studied here
as well as the values of the actual Gaussian Estrada index for λ̃ = 0. The bound given
in Theorem 30 is extremely far away from the actual values and practically says the
same as the trivial bound GEE0 (G) > 0. The same happens for Theorem 32 in the
cases of Stony and neurons, but it gives more decent estimations for the cases of the
bigger networks of Internet and powergrid.

10 Mittag-Le�er Estrada indices

As we have seen in previous sections of this paper, the Estrada indices of a graph may
arise as the solution of the linear dynamical system

d

dt
u (t) =Mu (t) , (10.1)

where M is a given graph matrix, with initial condition u (0) = u0. The solution of
this system is given by u (t) = exp (tM)u0. The case in whichM = A is the adjacency
matrix of the graph has been analyzed in the paper [172].
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Fig. 9.3: Histograms of the relative deviations in percentage of the bounds given in
Theorem 30 and in Theorem 32 for all connected graphs with 8 nodes.

network Theorem 30 Theorem 31 Theorem 32 GEE0 (G)

Stony 0.0675 NA 8.018 · 10−4 41.360
neurons 0.071 NA 6.260 · 10−4 69.083
yeast 0.163 NA 4.998 1135.731

Internet 0.292 NA 109.2963 2148.635
Powergrid 0.375 309.576 342.947 1907.307

Table 8: Values of the bounds given in Theorem 30, Theorem 31 and in Theorem 32
for the Gaussian Estrada index GEE0 (G) of the �ve real-world networks studied here.
The bound given in Theorem 31 is not applicable (NA) for most of the networks as
they do not ful�ll the necessary condition on the edge density.

Let us consider that, instead of using the �rst derivative of u (t) respect to time,
we use a fractional derivative. Then we have a system of the form:

Dα
t u (t) =Mu (t) , (10.2)

for 0 < α < 1, where the Caputo fractional derivative [37] is given by

Dα
t u (t) =

1

Γ (⌈α⌉ − α)

∫ t

0

u(⌈α⌉) (τ)

(t− τ)α+1−⌈α⌉ dτ, (10.3)

where f (k) represents the kth derivative of f and Γ (z) is the Euler gamma function:

Γ (z) =

∫
xz−1e−xdx,Re (z) > 0. (10.4)

The solution of this system is given by

u (t) = Eα,1 (t
αM)u0, (10.5)

where
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Eα,1 (t
αM) =

( ∞∑
k=0

(tαM)k

Γ (αk + β)

)
, (10.6)

which are the Mittag-Le�er matrix functions (for properties of Mittag-Le�er matrix
function the reader is referred to [102, 183])

To catch the analogy with the standard Estrada index of a graph we can write is
as

EE (G) = tr

( ∞∑
k=0

Ak

Γ (k + 1)

)
= tr (exp (A)) , (10.7)

due to the fact that Γ (k + 1) = k!,
Therefore we can generalize the Estrada index to account for a wider class of

penalization functions, such that we write

EEα,β (G) = tr

( ∞∑
k=0

Ak

Γ (αk + β)

)
. (10.8)

At the same time we keep in mind that EEα,β (G) is the solution of a system
of equations of the form Dα

t u (t) = Au (t) as we will explore later. We propose the
name Mittag-Le�er Estrada index for EEα,β (G) in honor to the mathematician Gösta
Mittag-Le�er (1846-1927)7. Some examples of closed formulas are illustrated in Table
9.

α β function

1/2 1 exp
(
A2

)
(I + erf (A))

1 1 exp (A)

2 1 cosh
(√

A
)

3 1 1
3

[
exp

(
A1/3

)
+ 2 exp

(
−A1/3

)
cos

(√
3

2
A1/3

)]
4 1 1

2

[
cos

(
A1/4

)
+ cosh

(
A1/4

)]
Table 9: Examples of Mittag-Le�er functions of the adjacency matrix.

One important aspect of these functions in general is that by controlling the pa-
rameters α and β we can penalize the walks of k length in di�erent ways. For instance,
if ((α− 1) k + β) < 0 for all k, then the walks of any length are penalized less than in
EE1,1 (G). This is for instance, the case of EE1/2,1 (G) (see Table 9). In those cases
where ((α− 1) k + β) > 0 for all k, the penalization of all walks is heavier than in the
exponential, which are for instance the cases of EEα>1,β (G). There is a third case
which occurs when (α− 1) k + β is negative for 0 ≤ k ≤ kc and positive for k > kc,
where kc is a given integer. This is the case, for instance, of the matrix functions where

kc < −
(

β

α− 1

)
.

Let us �rst consider the Estrada index EE1/2,1 (G) = tr
(
exp

(
A2
)
(I + erf (A))

)
.

A similar index was de�ned and studied in the paper [89] in the following form:

7 A biography of Gösta Mittag-Le�er can be found at: https://mathshistory.st-
andrews.ac.uk/Biographies/Mittag-Le�er/
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∞∑
k=0

Ak

k!!
= tr

(
1
2 exp

(
A2

2

)(
2I +

√
2πerf

(
A√
2

)))
, (10.9)

where k!! is the double factorial of k. The goal of de�ning such index was to account
for less penalization of longer walks, which may play an important role in several
applications (for some examples see [1, 89]) . For instance, if we compare the subgraph
expansion of EE1/2,1 (G) with that of EE1,1 (G) (see Eq. (3.12)) we can clearly observe
the di�erences in the penalization of bigger subgraphs made by both indices. In the
case of EE1/2,1 (G) we have:

EE1/2,1 (G) ≈ F1 +
10

3
F2 + 4F3 +

1674

59
F4 + F5 + 2F6 + 12F7 +

5944

581
F8+

+
1516

97
F9 +

334

37
F10 +

467

194
F11 + 2F12 +

65

54
F13 +

65

54
F14+

+ 4F15 +
467

97
F16 + 2F17 +

65

54
F18 +

1336

185
F19 +

467

194
F20 +

65

54
F21,

(10.10)

which points out that triangles are more than 20 times less penalized by this function
that by the exponential, squares are penalized 30 times less, pentagons, hexagons and
heptagons are penalized 93, 120 and 433 times less by EE1/2,1 (G) than by EE1,1 (G).
Let us show a practical example on how these di�erent penalizations in�uence the
Estrada indices of cycle graphs. In Fig. 10.1 we illustrate three graphs with 8 nodes but
having di�erent length of their main cycles. In GI there is a triangle and an heptagon,
in GII a square and a hexagon, and in GIII two pentagons. The index EE1,1 (G) of
the three graphs are: 21.68, 20.64 and 20.38, respectively. That is, there is a di�erence
of 4.8% between GI and GII and of 1.25% between GII and GIII . On the other hand,
the index EE1/2,1 (G) is 672.24, 540.58 and 507.13 for GI , GII and GIII , respectively,
which represent 19.6% of di�erence between the �rst pair and 6.2% between the second
one.

Fig. 10.1: Examples of three graphs with 8 nodes and chordless cycles of di�erent
lengths: GI has a triangle and an heptagon; GII has a square and a hexagon; GIII

has two pentagons.

Finally, we consider the Mittag-Le�er Estrada indices de�ned as follow:
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MTEE1,β+1 (G) = tr

( ∞∑
k=0

Ak

Γ (k + β + 1)

)
= tr

( ∞∑
k=0

Ak

(k + β)!

)
, β = 1, 2, 3, · · · .

(10.11)
These indices were developed and studied in 2010 in the paper [75], as a way to

penalize more heavily the longer walks than in the matrix exponential. The indices
EE1,β+1 (G) are also the trace of the so-called matrix Ψ functions:

MTEE1,β+1 (G) = trΨβ (A) , (10.12)

where

Ψγ (A) :=
1

(β − 1)!

∫ 1

0

e(1−t)Axt−1dt, (10.13)

which obey the following recurrence formula:

Ψβ (A) = AΨβ+1 (A) +
1

β!
I. (10.14)

When the adjacency matrix is not singular we can represent these Estrada indices
as follow

MTEE1,2 (G) = tr (Ψ1 (A)) , (10.15)

MTEE1,3 (G) = tr (Ψ2 (A)) , (10.16)

and so forth. Other Mittag-Le�er matrix functions in the context of network theory
have been recently studied in [13].

10.1 Resolvent Estrada index

The context of Mittag-Le�er Estrada indices also allow the consideration of other
indices that were previously proposed in the literature. This is the case of an index
proposed in 2010 in [85]. The goal of introducing this index was to change the penal-
ization of the di�erent powers of the adjacency matrix from k! to (n− 1)k to increase
the contribution of walks of longer lengths. The index proposed in [85] corresponds to
the trace of the resolvent of the adjacency matrix:

REE (G) = tr

( ∞∑
k=0

Ak

(n− 1)k

)
= tr

((
I − 1

n− 1
A

)−1
)
, (10.17)

which eventually was proposed in [27] to be named as the resolvent Estrada index
of the graph. It can be seen that the resolvent Estrada index is a particular case of
Mittag-Le�er Estrada index:

REE (G) =MTEE0,1 (G) = tr

( ∞∑
k=0

(A/n)k

Γ (αk + β)

)
= tr

((
I − A

n

)−1
)
. (10.18)
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Remark 7 The use of the normalization ck = 1/ (n− 1) in (ckA)
k is just one of the

many possibilities that exist. In reality this normalization is not a good one, because
the corresponding Estrada index is very close to the number of nodes of the graph, as
can be inferred from the bounds presented before. Then, other general choices of the
type (ϱA)k where ϱ < (λ1)

−1 are more appropriate here.

A nice result relating the resolvent Estrada index and the characteristic polynomial of
the adjacency matrix was proved by in [41] and is given below.

Theorem 35 Let G any graph with n nodes and let P (G, x) be the characteristic

polynomial of the adjacency matrix of G, aka its characteristic polynomial. Then,

EE0,1 (G) = (n)
P ′ (G,n)

P (G,n)
, (10.19)

where P ′ (G,n) is the �rst derivative of P (G, x) evaluated at x = n.

To illustrate the previous result let us consider the three graphs in Fig. 10.1. Their
characteristic polynomials are, respectively:

P (GI , x) = x8 − 9x6 − 2x5 + 24x4 + 8x3 − 19x2 − 8x, (10.20)

P (GII , x) = x8 − 9x6 + 22x4 − 16x2 + 1, (10.21)

P (GIII , x) = x8 − 9x6 + 24x4 − 4x3 − 20x2 + 8x, (10.22)

which give EE0,1 (GI) = 4023/484,EE0,1 (GII) = 2980/359, and EE0,1 (GIII) =
2191/264. That is, the di�erence between the �rst pair of graphs is only 0.13% and
between the second pair is only 0.02%. This is a direct consequence of penalizing more
heavily the longer walks than in the exponential matrix function.

Some other inequalities have been reported for the resolvent Estrada index in terms
of the number of nodes, edges, maximum degree, etc.

Lemma 20 [41] Let G be a simple graph with n nodes and m edges. Then,

REE (G) ≥
n2 (n− 1)2

n (n− 1)2 − 2m
, (10.23)

with equality if and only if G ∼= K̄n.

Lemma 21 [114] Let G be a simple noncomplete graph with n > 3 nodes and m edges.

Then,

REE (G) ≤ n+
4m

(n− 1)2 − 2m
, (10.24)

with equality if and only if G ∼= K̄n.

Lemma 22 [175] Let G be a simple graph with n nodes, m edges and maximum degree

kmax ̸= n− 1. Then,

REE (G) < n

(
1 +

kmax

(n− 1) (n− 1− kmax)

)
, (10.25)

REE (G) < n+
2m

(n− 1) (n− 1− kmax)
. (10.26)
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11 Estrada indices and network of oscillators

The study of vibrations on regular graphs, known as lattices, is standard in solid-state
physics (see for instance Chapter 4 in [144]). The techniques of classical as well as
of quantum mechanics are used in the analysis of such vibrational problems. In 2003
this analysis was extended to consider non-regular networks [146] where the vibrations
where analyzed in the context of a quantum system. Here we investigate the connections
existing between some of the Estrada indices and the network vibrations, used in
a metaphorical sense. That is, although some physical systems represented by non-
regular graphs can be analyzed using the techniques developed here we consider the
current approach as an appropriate tool for giving a physical meaning to the indices
involved.

Let us consider a system S consisting of ball of mass M which are connected by
springs with the spring constant Mω2. Let us consider that the ball-spring system is
submerged into a thermal bath at the temperature τ . Then the balls in the complex
network oscillate under thermal disturbances. We will consider that every ball is tied
to the ground by a spring which has spring constant satisfying K ≫ maxv kv (see Fig.
11.1). This guarantees that the system can oscillates but do not translate from a �xed
position. In this way we can analyze how a given ball can transmit small oscillations
to the rest of the balls of the system.

Fig. 11.1: Illustration of a system formed by three balls of mass M tied to the ground
with springs of constant K connected by springs of constant Mω2.

The general Hamiltonian of this system is written as

H =
∑
v

[
p2v
2M

+ (K − kv)
Mω2x2v

2

]
+
Mω2

2

∑
i<j

Avw (xv − xw)
2
, (11.1)

where the �rst term represents the kinetic energy of the corresponding balls and the
second term represents the potential energy of the system, with pv being the momentum
and xv the coordinate of the ball v.

11.1 Quantum oscillators

In this setup we consider that the system obeys the laws of quantum mechanics. Then,
the momenta pw and the coordinates xv are not independent variables but they are
operators that satisfy the commutation relation: [xv, pw] = iℏδvw,where i =

√
−1, ℏ is
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the Dirac constant and δvw is Dirac delta. Additionally we will use second quantization
to express the creation and annihilation of oscillations at the given balls of the system.
That is, we use the boson creation and annihilation operators de�ned by [184]

a†v =
1√
2ℏ

(
xv

√
MΩ − i√

MΩ
pv

)
, (11.2)

av =
1√
2ℏ

(
xv

√
MΩ +

i√
MΩ

pv

)
. (11.3)

With the use of these operators, the Hamiltonian of a network of quantum harmonic
oscillators is given by [84]

Ĥ (S) =
∑
v

ℏΩ
(
a†vav +

1

2

)
− ℏω2

4Ω

∑
v,w

(
a†v + av

)
Avw

(
a†w + aw

)
. (11.4)

where Ω =
√
K/Mω and K is a constant such that K ≫ maxv kv.

Since A is symmetric, we can diagonalize it by means of an orthogonal matrix O
as in

Λ = O (KI −A)OT , (11.5)

where Λ is the diagonal matrix with the eigenvalues λµ of (KI −A) on the diagonal.
This generates a new set of boson creation and annihilation operators as

bµ =
∑
v

Oµvav =
∑
v

av

(
OT
)
vµ
, (11.6)

b†µ =
∑
v

Oµva
†
v =

∑
i

a†v

(
OT
)
vµ
, (11.7)

We can then decouple the Hamiltonian as

Ĥ (S) =
∑
µ

Hµ (S) , (11.8)

with

Hµ (S) ≡ ℏΩ
(
b†µbµ +

1

2

)
+

ℏω2

4Ω
(λµ −K)

(
b†µ + bµ

)2
= ℏΩ

[
1 +

ω2

2Ω2
(λµ −K)

](
b†µbµ +

1

2

)
+

ℏω2

4Ω
(λµ −K)

[(
b†µ

)2
+ (bµ)

2

]
.

(11.9)

We now introduce an approximation in which each mode of oscillation does not get
excited beyond the �rst excited state. In other words, we restrict ourselves to the space
spanned by the ground state (the vacuum) |vac⟩ and the �rst excited states b†µ |vac⟩.
Then the second term in the last line of the Hamiltonian (11.9) equals zero and we
have

Hµ (S) = ℏΩ
[
1 +

ω2

2Ω2
(λµ −K)

](
b†µbµ +

1

2

)
. (11.10)
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Remark 8 This approximation is justi�ed when the energy level spacing ℏΩ is much
greater than the energy scale of external disturbances, (speci�cally the temperature
�uctuation kBT = 1/τ), as well as than the energy of the network springs ℏω, i.e.
τℏΩ >> 1 and Ω >> ω. This happens when the mass of each oscillator is small, when
the springs to the ground, MΩ2, are strong, and when the network springs Mω2 are
weak. Then an oscillation of tiny amplitude propagates over the network.

We are going to work in this limit hereafter. The thermal bath represents here an
'external situation' which a�ects all the links in the network at the same time, e.g.,
economic crisis, social agitation, extreme physiological conditions, etc. After equilibra-
tion, all links in the network are weighted by the parameter τ = (kBT )

−1.
Let us now compute how much an excitation at the node p propagates throughout

the network before coming back to the same node and being annihilated. This infor-
mation is obtained through the diagonal thermal Green's function, which is given in
the framework of quantum mechanics by

Gvv (S, τ) =
1

Z
⟨vac| ave−τĤ (S)a†v |vac⟩ , (11.11)

where the partition function is given by

Z (S) =
∏
µ

exp

{
−τℏΩ

2

[
1 +

ω2

2Ω2
(λµ −K)

]}
. (11.12)

The diagonal thermal Green's function can then be obtained as [84]

Gvv (S, τ) =
1

Z

∑
µ,ν

(
OT
)
vµ

⟨vac| bµe−τĤ (S)b†ν |vac⟩Oνv

=
1

ZA

∑
µ

(OT
)
vµ

(
OT
)
vµ

⟨vac| bµe−τHµb†µ |vac⟩Oµv

∏
ν( ̸=µ)

⟨vac| e−τHν |vac⟩


=
∑
µ

(
OT
)
vµ

⟨vac| bµe−τHµb†µ |vac⟩
⟨vac| e−τHµ |vac⟩

Oµv

=
∑
µ

(
OT
)
vµ

exp

{
−τℏΩ

[
1 +

ω2

2Ω2
(λµ −K)

]}
Oµv

= e−βℏΩ
(
exp

[
τℏω2

2Ω2
A

])
vv

(11.13)

where we have used the spectral decomposition of A in the last line.

Let us consider ℏ = 1 and K =
1

2
Mω3. Then, [84]

Gvv (S, τ) = e−τ
√
2ω (exp [τA])vv = e−τ

√
2ωGvv (G, τ) . (11.14)

Remark 9 In [84] it is remarked that

EE (G, τ) =
∑
v

Gvv (G, τ) = eτ
√
2ω
∑
v

Gvv (S, τ) , (11.15)
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which indicates that the Estrada index represents the sum of the excitations started at
every node of a graph, which propagate throughout the network before coming back
to the same node and being annihilated in a network of quantum harmonic oscillators.

11.2 Classical Oscillators

Here we consider a system S like the one described before but obeying the laws of clas-
sical mechanics. In this case we can write the Hamiltonian of the system by considering
only the potential energy (for justi�cation see [84]):

H =
KMω2

2

∑
v

x2v − Mω2

2

∑
v,w

xvAvwxw

=
Mω2

2
xT (KI −A)x,

(11.16)

where x = (x1, x2, · · · , xn)T and I is the n× n identity matrix.
We can now diagonalize A as before and by taking a su�ciently large value of the

constant K, we can make all eigenvalues λµ positive. By de�ning a new set of variables
yµ as y = Ox and x = OT y, we can transform the Hamiltonian in the form

H =
Mω2

2
yTΛy =

Mω2

2

∑
µ

y2µ +
Mω2

2

∑
µ

λµy
2
µ. (11.17)

Here again we focus of the quanti�cation of those oscillations that start at a given
ball of the system, navigates the whole system and return to the corresponding ball.
Namely,

Γvv (S, β) =
〈
x2v

〉
=

1

Z

∫
x2ve

−τH
∏
w

dxw, (11.18)

where the partition function is given by

Z (S) =
∫
e−τH

∏
v

dxv =

∫
dx exp

(
−τMω2

2
xT (KI −A)x

)
, (11.19)

where the integral is n-fold.
Now, because the Jacobian of the orthogonal matrix O is unity we have

∏
i dxi =∏

µ dyµ. Therefore, the multi-fold integration in the partition function is decoupled to
give

Z (S) =
∏
µ

[∫
exp

(
−τMω2

2
λµy

2
µ

)
dyµ

]

=
∏
µ

√
2π

τMω2λµ
,

(11.20)

which can be written in matrix form as



46 Ernesto Estrada

Z (S) =
(

2π

τM
ω2

)n/2
1√

det (KI −A)
. (11.21)

Since we have made all the eigenvalues of (KI −A) positive, its determinant is
positive. Similarly, we have

Γvv (S, τ) =
1

Z

∫ [∑
σ

(
OT
)
vσ
yσ

]2
e−τH

∏
µ

dyµ, (11.22)

where σ is used simply to avoid the confusion with µ in the same equation for the
subscript for the product.

In the integrand, odd functions with respect to yµ vanish. Therefore, only the
terms of y2σ survive after integration in the expansion of the square parentheses in the
integrand. This gives

Γvv (S, τ) =
1

Z

∫ [∑
σ

(Oσvyσ)
2

]
exp

(
−τMω2

2

∑
ν

λνy
2
ν

)∏
µ

dyµ

=
1

Z

∑
σ

Oσv

∫
y2σ exp

(
−τMω2

2
λσy

2
σ

)
dyσ

=
∏

µ( ̸=σ)

(∫
exp

(
−τMω2

2
λµy

2
µ

)
dyµ

)
.

(11.23)

Comparing this expression with that of the partition function we have [84]

Γvv (S, τ) =
∑
σ

O2
σv

(∫
y2σe

−τMω2λσy
2
σ/2dyσ∫

e−τMω2λσy2
σ/2dyσ

)
=
∑
σ

O2
σv

√
2π

[τMω2λσ]
3√

2π
τMω2λσ

=
∑
σ

O2
σv

τMω2λσ

=
1

τMω2

[
(KI −A)−1

]
vv

=
1

τKMω2

[(
I − A

K

)−1
]
vv

.

(11.24)

Remark 10 In [84] it is remarked that if K = n− 1 then we have

REE (G, τ) =
∑
v

[(
I − A

n− 1

)−1
]
vv

= τ (n− 1)Mω2
∑
v

Γvv (S, τ) , (11.25)

which indicates that the resolvent Estrada index represents the sum of the excitations
started at every node of a graph, which propagate throughout the network before
coming back to the same node in a network of classical harmonic oscillators.
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12 Estrada indices and epidemics on networks

In continuation with the previous line of research in which the Estrada index is derived
from a given dynamical systems context we analyze here its connection with epidemio-
logical models on networks. The �eld of mathematical epidemiology has a long tradition
in applied mathematics (see for instance [7, 34, 169]. In 2001, the authors of the sem-
inal work [179] discovered the tremendous in�uence of network topology on epidemic
spreadings. Since then, the use of network-theoretic approaches together with epidemi-
ological models have become a necessary combination [143, 149]. Here we will show
that such networked epidemiological models have a clear connection with the Estrada
index of a graph.

For that we will brie�y introduce the Susceptible/Infected (SI) model on networks.
The reader should be aware that this is a generalist model that can be used in many
di�erent scenarios, not only on the analysis of diseases propagating on a network. Let
G be a graphs whose nodes can be in either of two states: either susceptible or infected
one. An infected node can transmit the infection to any other node in the graph to which
it interacts with. Then, if ζ is the rate at which such infection is transmitted between
nodes, and if sv (t) and xv (t) are the probabilities that the node v is susceptible or get
perturbed at time t, respectively, we can write the dynamics [170]:

dxv (t)

dt
= ζ (1− xv (t))

∑
w∈N

Avwxw (t) , t ≥ t0, (12.1)

where Avw are the entries of the adjacency matrix of the graph for the pair of nodes
v and w, and N is the set of nearest neighbors of v. In matrix-vector form becomes
[170]:

dx (t)

dt
= ζ [IN − diag (x (t))]Ax (t) , (12.2)

with initial condition x (0) = x0.

The SI model can be rewritten as

1

1− xv(t)

dxv (t)

dt
= ζ

∑
w∈N

Avw

(
1− e−(− log(1−xw(t)))

)
, (12.3)

which is equivalent to

dyv (t)

dt
= ζ

∑
w∈N

Avwf (yw (t)) , (12.4)

where yv (t) := g (xv (t)) = − log (1− xv (t)) ∈ [0,∞], f (y) := 1− e−y = g−1 (y).
Lee et al. [155] have considered the following linearized version of the previous

nonlinear equation

dŷ (t)

dt
= ζAdiag (1− x (t0)) ŷ (t) + ζb (x (t0)) , (12.5)

where x̂ (t) = f (ŷ (t)) in which x̂ (t) is the approximate solution to the SI model,
ŷ (t0) = g (x (t0)) and b (x) := x + (1− x) log (1− x) . They have found that the
solution to this linearized model is [155]:
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ŷ (t) = eζ(t−t0)Adiag(1−x(t0))g (x (t0))

+
∞∑
k=0

(ζ (t− t0))
k+1

(k + 1)!
[Adiag (1− x (t0))]

k
Ab (x (t0)) .

(12.6)

When t0 = 0, xi (0) = c/N , i = 1, 2, . . . , N for some c, the previous equation is
transformed to

ŷ (t) = (1/γ − 1) eγζtA1⃗− (1/γ − 1 + log (γ)) 1⃗, (12.7)

where γ = 1 − c/N and 1⃗ is the all-ones vector. In [155] the authors proved that this
solution is an upper bound to the exact solution of the SI model.

Therefore, if we take the sum of the entries of ŷ (t) at a given t we have

n∑
v=1

ŷv (t) = C1

[
tr
(
eγζtA

)
+ tr

(
(J − I)

(
eγζtA

))]
− nC2, (12.8)

where C1 = (1/γ − 1) and C2 = (1/γ − 1 + log (γ)) . Obviously the �rst term in the
square bracket is the Estrada index of the graph in which edges are weighted by γζt.
This term represents the circulability of the infection around the nodes of the graph,

while the term tr
(
(J − I)

(
eγζtA

))
, where J is the all-ones matrix, accounts for the

transmissibility of the disease between the nodes.

12.1 Fractional SI model on networks

In recent years there have been an explosion of works in which the classical derivatives
used in the epidemiological models have been substituted by fractional ones [8, 11,
12, 133, 192]. There have been several reasons for adopting fractional epidemiological
models. They include for instance

1. the fact that the fractional parameter can be tuned to adjust the output of the
model to real data [8] and so they can be more accurate that models using standard
derivatives;

2. the fact that a fractional di�erential operators may be derived from epidemiological
models whenever the recovery time from the disease is power-law distributed [11];

3. the fact that fractional derivatives capture the history of the variable, that is, they
have memory, and the e�ect of recent memory is more important than the e�ect of
older memory [12, 192].

In general, fractional derivatives are nowadays widely used to model biological processes
[136] to incorporate di�erent aspects of the dynamics in such systems. Here, we will
describe a model which naturally gives rise to the Mittag-Le�er Estrada index in the
context of epidemiological models.

We proceed by considering fractional time-derivatives in the modi�ed SI model pro-
posed in [155]. That is, in [1] the authors considered the following linearized fractional
SI equation

Dα
t ŷ (t) = ζαAdiag (1− x0) ŷ (t) + ζαAb (x (0)) , (12.9)
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where x̂ (t) = f (ŷ (t)) in which x̂ (t) is an approximate solution to the fractional SI
model, ŷ is the solution of (12.9) with initial condition ŷ (0) = g (x (0)) and b (x) :=
x + (1− x) log (1− x) . Here Dα

t f (t) is the fractional time derivative in the Caputo
formulation [37], which was previously given in Eq. (10.3).

For convenience, we write Ω := diag (1− x0) , and Â = AΩ. It was then proved
that this solution is an upper bound to the exact fractional SI model.

Let us �x the following notation. Let x and y be two vectors of the same length
n. Then, we say that x ⪯ y is xi ≤ yi for all i = 1, . . . n. Let x̃(t) be the solution of
the linearized fractional models of the form: Dα

t x̃(t) = ζAx̃(t), which is exponential
unstable.

Theorem 36 [1] For any t ≥ 0, we have

x(t) ⪯ x̂(t) = f(ŷ(t)) ⪯ x̃(t),

under the same initial conditions x0 := x(0) = x̂(0) = x̃(0), where the solution ŷ of

(12.9) is given by

ŷ (t) = Eα,1

(
(ζt)αÂ

)
g (x0) +

∞∑
n=0

(ζt)α(n+1)ÂnAb (x0)

Γ (α (n+ 1) + 1)
. (12.10)

Furthermore, ∥x̂(t)− x(t)∥ → 0 and ∥x̃(t)− x(t)∥ → ∞ as t goes to in�nity.

Corollary 5 [1] Let x0 ⪯ 1, x0 = c
N where c ∈ R+, let γ = 1− x0. Then

ŷ (t) =

(
1− γ

γ

)
Eα,1

(
tαζαγA

)
1⃗−

(
1− γ

γ
+ log γ

)
1⃗, (12.11)

where Eα,1

(
.
)
is the Mittag-Le�er matrix function of the corresponding matrix.

Therefore, here again if we take the sum of the entries of ŷ (t) at a given t we have

n∑
v=1

ŷv (t) = C1

[
tr
(
Eα,1

(
tαζαγA

))
+ tr

(
(J − I)

(
Eα,1

(
tαζαγA

)))]
− nC2,

(12.12)
Thus, again the Mittag-Le�er Estrada index, which is the �rst term in the squared
bracket, represents the circulability of the infection around the nodes of the graph in
the fractional SI model, while the second term represents the transmissibility of the
disease between the nodes.

13 Estrada indices from piecewise walk penalization

In the same work [75] in which the author proposed the use of the matrix Ψ functions
as a way to increase the penalization of longer walks in graphs, a di�erent strategy was
proposed to drop such penalization relative to the exponential matrix function. This
strategy can be formulated as a piecewise penalization as follows. Suppose that we do
not want to penalize the walks of lengths smaller than certain value t ∈ Z. Then, we
de�ne the following stepwise function:
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ft (k) =

{
1 if k < t,

k! if k ≥ t,
(13.1)

such that the piecewise Estrada index of the graph G is de�ned as:

EEt (G) = tr

( ∞∑
k=0

Ak

ft (k)

)
= tr

(
t−1∑
k=0

Ak +
∞∑
k=t

Ak

k!

)
. (13.2)

In the case that the adjacency matrix has no unity eigenvalue we can write this
Estrada index as [75]:

EEt (G) = tr
[
(I −A)−1

(
I −At

(
I + eA −AeA

))]
. (13.3)

For computational purposes this expression can be adapted for any network as
follows. Let r be a constant su�ciently close to one, such that r ̸= 1/λ for all λ, which
are the eigenvalues of A. Then,

EEt (G) ≈ tr
[
(I − rA)−1

(
I − (rA)t

(
I + erA − rAerA

))]
. (13.4)

14 Nonlocal adjacency, Harary Estrada index and beyond

There are physical situations in which the entities of a system not only interact if
they are nearest neighbors, but also through nonlocal interactions. These long-range
interactions have been documented in physical, chemical and biological systems [3, 39,
148, 164, 177, 194, 195, 235, 240]. In a physical context, like the tight-binding kind of
models described before, these nonlocal interactions corresponds to the case where the
Hamiltonian of the system describes not only NN interactions but also next-nearest-
neighbor (NNN) and other interactions beyond them [31, 168, 174, 193]:

Ĥ = ĤNN + ĤNNN + · · · . (14.1)

In this framework we have that the system can be described by the weighted sum
of higher-order adjacency matrices:

Ĥ = αI + tNNA+ tNNNA2 + · · · , (14.2)

where A2 is a matrix with entries (A2)ij equal to one if i and j are not adjacent and
are separated by two edges or zero otherwise. We can extend this concept to any other
separation, such that [77]

(Ad)ij =

{
1 if dij = d,

0 otherwise,
(14.3)

where dij is the length of the shortest path between the two nodes. The parameters
tNN , tNNN , etc. are expected to decay with the length of the separation between the
corresponding entities. That is, the strength of the interaction decays with a given law
of their separation d, i.e., f (d). In this way we can write [72, 218]

Ĥ = αI + tNNA+ tNNNA2 + · · · = αI +
diam∑
d=1

f (d)Ad, (14.4)
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where diam is the diameter of the graph. Let us see how we can construct Ĥ.
Here we will use a min-plus algebra to de�ne what otherwise is the shortest path

distance matrix of the graph. We do that because it is a mathematically elegant ap-
proach, which may also open some possibilities for studying other kinds of functions
for graphs.

Let (R ∪ {+∞} ,⊕,⊗) be the min tropical semiring with the operations [32, 131,
139]:

x⊕ y := min {x, y} ,
x⊗ y := x+ y.

(14.5)

The identity element for ⊕ is +∞ and that for ⊗ is 0. Then, we can de�ne the
tropical adjacency matrix power as

A⊗k+1 = A⊗k ⊗A, (14.6)

where A⊗0 = Î, which is the tropical identity matrix, i.e., a matrix with zeros in the
main diagonal and ∞ outside it.

Let us �x any α with 0 < α ≤ ∞ and let us de�ne the matrix M = [mij ] : mij ∈
(−α, α) for all i, j = 1, . . . , n. Let f̃ be a real function on the open interval (−α, α) .
We de�ne the pseudo-entrywise (pseudo-Hadamard) matrix function f̃ (M) as

(
f̃ (M)

)
ij

:=

{
f (mij) if mij ̸= 0

0 if mij = 0
. (14.7)

Here, the function f could be an exponential, a trigonometric function or simply
the power function. Let us hereafter focus only on the negative power function, such
that (−s) represents the entrywise power. We can now write:

Ĥ = As =

( ∞⊕
k=0

A⊗k

)(−s)

. (14.8)

The tropical sum is carried out up to in�nity as it converges in all cases where there
are no negative cycles in the graph. A negative cycle is a cycle where the product
of the weights of all its edges is negative. Typically, except for signed graphs, we
consider positive edge weights, which always avoid such negative cycles. The in�nite
sum

⊕∞
k=0A

⊗k is known as the Kleene star operator of A [32, 131, 139]. Obviously,
As = [Aij (s)], where [72, 218]

Aij (s) :=

{
d−s
ij if i ̸= j,

0 if i = j,
(14.9)

which are the entry-wise powers of all nondiagonal entries of the shortest path dis-
tance matrix of the graph. The parameter s accounts for the strength of the nonlocal
interaction. Notice that

lim
s→0

As = A (Kn) .

Here again, in the statistical physics context, the partition function of the system
containing nonlocal interactions is:
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Z = tr
(
e−τĤ

)
, (14.10)

where τ is the inverse temperature as before. Because the parameters tNN , tNNN ,

etc., are negative we have that

Z = tr
(
eτAs

)
=: EE (As, β) , (14.11)

Then, using the same de�nitions as the ones given before we can de�ne the entropy,
enthalpy and free energy of the system having local and nonlocal interactions.

It is important to notice that

As = A+
diam∑
d=2

d−sAd, (14.12)

which implies that

lim
s→∞

As = A (G) . (14.13)

Let Ãs :=
∑diam

d=2 d−sAd. Then, because A and Ãs do not commute in general, we
have according to the Golden-Thompson inequality that

EE (As, τ) = tr
(
eτ(A+Ãs)

)
≤ tr

(
eτAeτÃs

)
. (14.14)

When s = 1, the corresponding matrix As=1 is known in mathematical chemistry
as the Harary matrix [137, 167, 181] in honor to mathematician Frank Harary (1921-
2005)8.

Nowadays there are not many results about the HEE index. Hereafter we collect
some of the existing ones for simple graphs [109], HEE (G) = EE (As=1, τ = 1) .

Theorem 37 [109] Let G be a simple graph with n vertices and m edges. Then, the
Harary Estrada index of G is bounded as

√
n2 + 2

(
3m

2
+
n (n− 1)

4

)
≤ HEE (G) ≤ n− 1 + exp

(√
3m

2
+
n (n− 1)

4

)
(14.15)

with equalities attained if and only if G ∼= K̄1.

Theorem 38 [138] Let G be a simple graph with n ≥ 2 vertices and let κ = 1
2 tr
(
A2

s=1

)
.

Then, the Harary Estrada index is bounded as

HEE (G) ≥ exp

(√
2κ

n (n− 1)

)
+ (n− 1) exp

(
−
√

2κ

n (n− 1)

)
. (14.16)

8 A biography of Frank Harary can be found at: https://mathshistory.st-
andrews.ac.uk/Biographies/Harary/
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14.1 Numerical analysis

In Fig. 14.1 we illustrate the histograms of the relative deviations of the lower bounds
given in Theorem 37 and in Theorem 38 as well as of the upper bound given in Theorem
37. We consider all connected graphs with 8 nodes.

For both lower bounds, the values obtained with these bounds are about 20-40
times smaller than the actual values. The mean relative deviations are, respectively
93.16 ± 2.19 and 96.591 ± 1.52. The upper bound is as average 1019 times bigger
than the actual HEE (G) indices for these small graphs, which is an extremely poor
performance of this bound.
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Fig. 14.1: Histogram of the relative deviations for the lower bounds Theorem 37 and
Theorem 38 (in %) as well as of the upper bound Theorem 37 (as logarithm) for all
11,117 connected graphs with 8 nodes.

In Table 10 we give the values of the bounds previously considered for the �ve
real-world networks analyzed here as well as the actual values of HEE (G). As can
be seen both lower and upper bounds are extremely far from the actual values of the
Harary Estrada indices of these real-world networks. In particular, the upper bound is
extremely higher than the actual values.

network Theorem 37 Theorem 38 HEE (G) Theorem 37

Stony 165.738 84.257 3.714 · 1024 1.366 · 101891
neurons 403.037 228.631 1.320 · 1052 1.163 · 109767
yeast 3148.113 2080.379 6.879 · 10242 2.908 · 1054,1231

Internet 4265.314 2751.873 1.062 · 10390 1.328 · 10989,990
Powergrid 6988.691 4912.604 1.927 · 10138 1.462 · 102,654,419

Table 10: Values of the lower bounds Theorem 37 and Theorem 38 as well as the
upper bound Theorem 37 for the Harary Estrada index of the �ve real-world networks
analyzed in this paper. The actual values of HEE (G) of these networks are also given.
We have used �very precise arithmetic� (vpa) in Matlab for these calculations.
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15 Laplacian Estrada index and backward di�usion

In the study of graph properties, the function K (G) =
(
e−tL

)
, where L is the graph

Laplacian, has found many applications [22, 45, 150, 236]. The name �Laplacian� honors
mathematician Pierre-Simon Laplace (1749-1827)9. The function K (G) is known as
the heat kernel of the graph [125, 191] and appears naturally in the solution u (t) =
exp (−tDL)u0 of the di�usion equation on graphs:

du (t)

dt
= −DLu (t) , u (0) = u0, (15.1)

where D is the di�usivity (see Section 16). Therefore, the trace of the heat kernel would
correspond to a sort of di�usion Estrada index. However, in [92] the following index
was proposed and named �the Laplacian Estrada index� of the graph

LEE (G) = tr
(
eL
)
=

n∑
j=1

eµj , (15.2)

where µj are the corresponding eigenvalues of L. Therefore, what the authors of [92]
have proposed can be though as an index related to the solution of the backward
di�usion equation, i.e., negative time, or as a di�usion equation with negative di�usivity
D < 0 [65]. There are physical situations in which such negative di�usivity appears
[48, 140, 173, 225, 226]. For instance, in the simultaneous di�usion of boron and point
defect in silicon, the di�usivities of interstitial could be negative [225]. That is, the
di�usion process of interstitial or vacancy could be a backward di�usion in silicon. In
other scenarios, a backward di�usive model is used to detect the potential location of
sources in spreading processes.

In [92] the authors proved the following result.

Proposition 2 Let G be a simple graph with n nodes and m edges. Let Z =
∑

i k
2
i be

the �rst Zagreb index of G. Then,

√
n (n− 1) e4m/n + n+ 8m+ 2Z ≤ LEE (G) ≤ n−1+e2m+m−2m2+

1

2
Z, (15.3)

with equality if and only if G ∼= K̄n.

Further, in [249] the authors proved the following results.

Proposition 3 Let G be a simple graph with n nodes and m edges. Let Z =
∑

i k
2
i be

the �rst Zagreb index of G. Then,

LEE (G) ≤ n− 1 + 2m−
√
Z + 2m+ exp

(√
Z + 2m

)
, (15.4)

with equality if and only if G ∼= K2 ∪ K̄n−2 or G ∼= K̄n.

9 A biography of Pierre-Simon Laplace can be found at: https://mathshistory.st-
andrews.ac.uk/Biographies/Laplace/
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Proposition 4 Let G be a simple graph with n nodes and m edges. Then,

LEE (G) ≥ 2 +
√
n (n− 1) e4m + 4− 3n− 4m, (15.5)

with equality if and only if G ∼= K̄n.

Other bounds were obtained in [248] on the basis of the degree sequence of a graph.

Proposition 5 Let G be a simple graph with n nodes andm edges. Let kmax, k2, · · · , kmin

be the nonincreasing ordering of the node degrees of G. Then,

LEE (G) ≥ ekmax+1 +
n−1∑
i=2

eki + ekmin−1, (15.6)

with equality if and only if G ∼= Sn.

Proposition 6 Let G be a simple graph with n nodes andm edges. Let kmax, k2, · · · , kmin

be the nonincreasing ordering of the node degrees of G. Then,

LEE (G) ≥ n+
∑ ki

ki + 1

(
eki+1 − 1

)
, (15.7)

with equality if and only if G is a vertex disjoint union of complete subgraphs.

Several bounds have been proposed on the basis of the maximum and minimum
degrees of a graph. We resume some of them here.

Theorem 39 [160] Let G be a simple graph with n nodes and m edges. Let kmax and

kmin be the maximum and minimum node degrees of G. Then,

LEE (G) ≥ ekmax+1−2m/n + (n− 2)
(
e4m/n−kmax−1

)1/(n−2)

+ e−2m/n, (15.8)

with equality if and only if G ∼= Kn or G ∼= Sn.

Theorem 40 [40] Let G be a simple graph with n nodes and m edges. Let kmax and

kmin be the maximum and minimum node degrees of G. Then,

LEE (G) ≥ 1 + ekmax+1 + ekmin + (n− 3) e(2m−kmax−kmin−1)/(n−3), (15.9)

with equality if and only if G ∼= 2K1 ∨ Kn−2 or G ∼= K1,n−1 or G ∼= K(n−1)/2 ∪
K(n−1)/2 (n is odd).

Theorem 41 [161] Let G be a simple graph with n nodes and m edges. Let kmax and

kmin be the maximum and minimum node degrees of G. Then,

√
n2 + 4m ≤ LEE (G) ≤ n−1+exp

(√
2m (kmax + kmin + 1− 2m/n)− nkminkmax

)
,

(15.10)
with equality if and only if G ∼= K̄n.



56 Ernesto Estrada

The following is an upper bound found in [163].

Theorem 42 Let G be a simple graph with n nodes and m edges. Then,

LEE (G) ≤
⌊
2m

n

⌋
en + n−

⌊
2m

n

⌋
− 1 + exp

(√
2m− n

⌊
2m

n

⌋)
, (15.11)

with equality if and only if G ∼= Kn or G ∼= Kn − e.

Finally, we present the estimation made in [100] for the Laplacian Estrada index
of Erd®s-Rényi random graphs.

Theorem 43 Let Gn,p be an Erd®s-Rényi random graph with n nodes and probability

p. Then, the Laplacian Estrada index is given by

LEE (Gn,p) = enp
(
(n− 1) eo(1)n + o (1)

)
, a.s. (15.12)

In [132] the authors �nd estimations for the Laplacian Estrada index of random mul-
tipartite graphs.

Remark 11 Other bounds and estimations have been reported for the Laplacian Estrada
index of speci�c graphs, or based on other graph parameters not considered here. Some
non-exhaustive examples are: [20, 58, 60, 61, 117, 135, 145, 162, 207, 242, 243, 251].

Remark 12 The normalized Laplacian Estrada index de�ned as

NLEE (G) = tr
(
eK

−1/2LK−1/2
)
, (15.13)

where K is the diagonal matrix of node degree has been studied in [47, 123, 158, 203,
207].

Remark 13 The signless Laplacian Estrada index de�ned as

SLEE (G) = tr
(
eK+A

)
, (15.14)

has been also studied in [16, 117, 227].

15.1 Numerical analysis

In Fig. 15.1 we illustrate the histograms of the relative deviations (in %) of the lower
bounds (Proposition 2), (Proposition 4) (Proposition 5), (Proposition 6), (Theorem
40) and (Theorem 41) for all connected graphs with 8 nodes. The best performance is
obtained from the bound (Proposition 6) followed by (Proposition 5).

We also analyzed the upper bounds given in Proposition 2, Proposition 3, Theorem
41 and Theorem 42 for the same set of graphs. In these cases the best performances
were obtained for Theorem 41 and Theorem 42, while 2 give very high upper bounds.

In Table 11 we give the lower bounds for the Laplacian Estrada index of �ve real-
world networks. In general, the bounds (Proposition 5), (Proposition 6) and (Theorem
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Fig. 15.1: Relative deviations (in %) of the lower bounds (Proposition 2), (Proposition
4) (Proposition 5), (Proposition 6), (Theorem 40) and (Theorem 41) for all connected
graphs with 8 nodes.

Bound Stony neurons yeast Internet Powergrid

real 2.137 · 1022 9.561 · 1033 6.848 · 1028 4.718 · 10256 7.740 · 108

Proposition 2 3.049 · 108 3.688 · 108 1.033 · 106 9.218 · 104 7.128 · 104
Proposition 4 3.049 · 108 3.688 · 108 1.033 · 106 9.218 · 104 7.128 · 104
Proposition 5 9.498 · 1019 7.636 · 1033 2.717 · 1028 4.656 · 10256 5.593 · 108
Proposition 6 9.295 · 1019 7.771 · 1033 4.405 · 1028 4.648 · 10256 6.512 · 108
Theorem 39 3.473 · 1013 3.682 · 1027 3.648 · 1025 1.523 · 10255 3.363 · 107
Theorem 40 9.496 · 1019 7.498 · 1033 1.649 · 1028 4.656 · 10256 4.852 · 108
Theorem 41 125.95 293.75 2.230 · 103 3.018 · 103 4.944 · 103

Table 11: Values of the lower bounds (Proposition 2), (Proposition 4) (Proposition
5), (Proposition 6), (Theorem 40) and (Theorem 41) for the �ve real-world networks
analyzed and well their actual values of LEE (G).

40) perform very well, while (Proposition 2), (Proposition 4) and (Proposition 41) are
several orders of magnitude below the actual values of the Laplacian Estrada indices
of these networks.

The case of the upper bound is much more contrasting with values several orders
of magnitude over the actual values of the Laplacian Estrada indices of these �ve
networks. We have used variable-precision �oating-point arithmetic� (VPA) to evaluate
each element of the symbolic input in Matlab for these calculations. It is used to
evaluate symbolic inputs with variable-precision �oating-point arithmetic, calculating
values to 32 signi�cant digits.

The results are given in Table 12.
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Fig. 15.2: Relative deviation (in logarithmic scale) of the upper bounds given in Propo-
sition 2, Proposition 3, Theorem 41 and Theorem 42 for all connected graphs with 8
nodes.

The following bounds based on the largest Laplacian eigenvalue µ1 perform very
well for the four real-world networks analyzed as can be seen in Table 13. The reason
is that the largest eigenvalue of the Laplacian matrix dominates the spectrum of this
matrix, i.e., it is very large and separated from the second largest eigenvalue.

16 Radius of gyration and distance Estrada index

When presenting the di�usion equation on graphs, Eq. (15.1), we mentioned in passing
the di�usion coe�cient D , which appears in the equation and in its solution. The
di�usion coe�cient is related to the radius r of the spherical particle di�using on a
medium of viscosity η by the Stokes-Einstein equation [66]:
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Bound Stony neurons yeast Internet Powergrid

real 2.137 · 1022 9.561 · 1033 6.848 · 1028 4.718 · 10256 7.740 · 108

2 4.482 · 10720 5.321 · 101713 3.927 · 105931 2.784 · 104478 2.989 · 105727
3 1.999 · 1087 1.653 · 10132 1.006 · 10210 2.063 · 10425 1.192 · 10110
41 3.323 · 1095 2.170 · 10210 7.351 · 10356 3.852 · 10899 1.006 · 10167
42 6.125 · 1049 5.605 · 10122 4.457 · 10966 7.499 · 101309 2.989 · 102146

Table 12: Values of the upper bounds given in Proposition 2, Proposition 3, Theorem 41
and Theorem 42 for all connected graphs with 8 nodes for the �ve real-world networks
analyzed and well their actual values of LEE (G).

network exp (µ1) real n exp (µ1)

Stony 2.1362 · 1022 2.1370 · 1022 2.3925 · 1024
neurons 9.121 · 1033 9.561 · 1033 2.554 · 1036
yeast 3.112 · 1028 6.848 · 1028 6.922 · 1031

Internet 4.717 · 10256 4.718 · 10256 1.422 · 10260
Powergrid 5.414 · 108 7.740 · 108 2.375 · 1012

Table 13: Values of lower and upper bounds based on µ1for LEE (G) of the �ve real-
world networks analyzed based on the spectral radius of the Laplacian matrix.

D =
1

6τπηr
, (16.1)

where τ is the inverse temperature. In the case of small molecules like drugs, or macro-
molecular systems like proteins, the particles cannot longer be considered spherical. In
these cases it is customary to replace the radius of the spherical particle by the radius
of gyration of the corresponding molecule [94, 107, 126, 152, 171]. The radius of gyra-
tion is de�ned as follows. Let S = (p1, · · · , pn) be a system formed by n particles or
points pi, which are located in a given region of the three-dimensional Euclidean space.
Let rij be the Euclidean distance between the particles pi and pj . Then, the radius of

gyration of S is de�ned as R2
S =

1

2n2
∑

i,j r
2
ij [94]. However, it has been shown that

even when the radius of gyration based on Euclidean distances is used, there are cases
of undesired degeneration of the index for pairs of clusters [74]. That is, there are pairs
of nonisomorphic clusters which have the same radius of gyration. Some examples in
2- and in 3-dimensions are given in Fig. 16.1.

The radius of gyration is widely used in organic chemistry, polymer sciences, pro-
teins, and RNA, in general, for the study of their compactness. Most of these molecular
systems can be represented as graphs. For instance, molecules are typically represented
by molecular graphs [217], proteins can be represented by �protein residue networks�
[76, 212], and the secondary structure of RNA is also represented by graphs [147].
Then, it is important to extend the concept of �radius of gyration� to graphs.

De�nition 22 Let G be a simple graph. Let dij be the shortest path distance between
the nodes i and j. The graph radius of gyration is de�ned as

R2
G =

1

2n2

∑
i,j

d2ij . (16.2)
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Fig. 16.1: Examples of Euclidean objects in 2- (a and b) and 3-dimensions (c and d),
which have the same radius of gyration: (a and b) R2

S = 1
4 , (c and d) R2

S = 3
16 . Every

edge has length equal to one in each of the objects.

Let D be the shortest path distance matrix of G. Then, it is straightforward to realize
that

tr
(
D2
)
= 2

∑
i,j

d2ij = 4n2R2
G. (16.3)

Then, if σ1 ≥ σ2 ≥ · · · ≥ σn are the eigenvalues of D, the graph radius of gyration
is the second spectral moment of D, i.e.,

R2
G =

1

4n2

n∑
j=1

σ2j . (16.4)

Therefore, we can say that the second moment of the shortest path distance matrix
is a measure of the packing of the graph. In the case of the graph we can have a similar
degeneracy of the index R2

G for nonisomorphic graphs. For instance in Fig. 16.2 we
give an example of four nonisomorphic graphs with the same value of R2

G = 9
50 .

In order to ameliorate this degeneracy problem we can think on extending the
packing measure to higher moments of D as

P (G) = c2tr
(
D2
)
+ c3tr

(
D3
)
+ · · · . (16.5)

Let us include the term c0tr
(
D0
)
+ c1tr

(
D1
)
(the �rst is the weighted number

of vertices and the second is zero in simple graphs) and let us consider ck = (k!)−1.
Then, we get the following index, �rst de�ned in [108].
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Fig. 16.2

De�nition 23 Let G be a simple graph. Let D be the shortest path distance matrix
of G with eigenvalues σ1 ≥ σ2 ≥ · · · ≥ σn. Then the distance Estrada index of the
graph is

DEE (G) = tr (exp (D)) =
n∑

j=1

eσj , (16.6)

which is an index of the packing of the graph.

For instance, for the graphs in Fig. 16.2 we obtain the following values: DEE (a) ≈
318.467, DEE (b) ≈ 300.616, DEE (c) ≈ 284.917, and DEE (d) ≈ 281.697. This
means that among the graphs in Fig. 16.2, (d) is the most �packed� one in terms of its
shortest path distance and the one in (a) is the least packed.

Several bound have been obtained for the distance Estrada index, some of which
are resumed below.

Theorem 44 [108] Let G be a simple graph with n nodes and m edges. Then, if the

diameter is dmax, the distance Estrada index is bounded as√
n2 + 4m ≤ DEE (G) ≤ (n− 1) exp

(
dmax

√
n (n− 1)

)
, (16.7)

where equalities are attained if and only if G ∼= K1.

Theorem 45 [202] Let G be a simple graph with n nodes and m edges. Then, if dmax,

G = (
∏

iDi)
1/n

and W =
∑

ij dij stand for the diameter, the geometric mean of the

graph distances and the Wiener index of G, the distance Estrada index is bounded as

√4W 2 − nG2

n (n− 1)

+
n− 1

exp

(
1

n− 1

√
4W 2 − nG2

n (n− 1)

) ≤ DEE (G) ≤ (n− 1)+e
√
2dmaxW ,

(16.8)
where upper bound is attained if and only if G ∼= K1 and the lower one if and only if

G ∼= Kn.
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Theorem 46 [204] Let G be a simple graph with n nodes with maximum and second

maximum degress kmax and kmax2 and diameter dmax. Then, the distance Estrada

index is bounded as

DEE (G) ≥ e

√
(2n−2−kmax)(2n−2−kmax2) + (n− 1) e

−

√√√√(2−
kmax

n− 1

)(
2−
kmax2

n− 2

)
,

(16.9)

DEE (G) < (n− 1) + e
√

n(n−1)d2
max−1,

(16.10)

where equality is attained if and only if G ∼= K2.

Theorem 47 [204] Let G be a simple graph with n nodes and m edges, the distance

Estrada index is bounded as

DEE (G) ≥ e2(n−1)−2m/n + e−(2(n−1)−2m/n) + n− 2 (16.11)

where equality is attained if and only if G ∼= K2.

16.1 Random graphs

The distance Estrada index has been studied for random graphs where some bounds
have been reported in [205, 209].

Theorem 48 Let Gn,p be an Erd®s-Rényi random graph with n nodes and probability

p. Then, the distance Estrada index is bounded as

(1 + o (1))+e2(n−1)−np−O(
√
n) ≤ DEE (Gn,p) ≤ (1 + o (1))+e(n−1)

√
4−3p, (16.12)

almost surely (a.s).

Theorem 49 Let Gn1,n2,p be an Erd®s-Rényi random bipartite graph with n = n1+n2
nodes and probability p. If n1 = Θ (n2) , then the distance Estrada index is bounded as

(1 + o (1)) + e5n2−2np−O(
√
n) ≤ DEE (Gn,p) ≤ (1 + o (1)) + e5n1+2n1p−O(

√
n),

(16.13)
asymptotically almost surely (a.a.s.) which, when n1 = n2 becomes

(1 + o (1))+en(5/2−p)−O(
√
n) ≤ DEE (Gn,p) ≤ (1 + o (1))+en(5/2+p)−O(

√
n), a.a.s.
(16.14)
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16.2 Numerical analysis

We analyze here the lower bounds in Theorem 44, Theorem 45, Theorem 46 and The-
orem 47. The relative deviations (in %) are illustrated in Fig. 16.3. As can be seen the
closest values are obtained by the bound given in Theorem 45. The distributions of the
relative deviations for Theorem 46 and Theorem 47 appears to show some dependencies
with the structure of the graphs, which produce the multi-peak structures observed in
the histograms.
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Fig. 16.3: Relative deviations of the lower bounds in Theorem 44, Theorem 45, Theorem
46 and Theorem 47 for all connected graphs with 8 nodes.

We also considered the upper bounds given in Theorem 44, Theorem 45 and The-
orem 46 were we observe that these bounds are several order of magnitude over the
actual values of DEE (G) even for small graphs like the ones studied here.
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Fig. 16.4: Relative deviations (in logarithmic scale) of the upper bounds given in The-
orem 44, Theorem 45 and Theorem 46 for all connected graphs with 8 nodes.

In Table 14 we give the values of the lower and upper bounds as well as the actual
values calculated with very precise arithmetic (vpa) in Matlab for the �ve real-world
networks studied. As can be seen in the Table 14 the bound given in Theorem 45 gives
the best lower and upper estimates of the distance Estrada index. It is also interesting
to remark that the network of the western USA power grid displays an extremely large
value of DEE (G), indicating that it is a very poorly packed network. Indeed, this
network is planar as the power stations are embedded in the landscape of the western
USA

Bound Stony neurons yeast Internet Powergrid

Theorem 44 125.952 293.755 2.230 · 103 3.018 · 103 4.944 · 103
Theorem 45 4.232 · 10112 4.450 · 10318 1.060 · 104225 5.479 · 104923 5.715 · 1040739
Theorem 46 3.873 · 1078 3.516 · 10209 7.265 · 101902 5.592 · 102375 1.060 · 104282
Theorem47 9.473 · 1089 1.644 · 10236 1.608 · 101928 2.765 · 102616 4.681 · 104289

real 2.932 · 10115 1.356 · 10324 2.705 · 104311 5.963 · 105065 1.990 · 1041503

Theorem 44 5.479 · 10195 5.705 · 10730 3.453 · 1010625 1.275 · 1011786 5.755 · 1098702
Theorem 45 1.043 · 10118 1.464 · 10482 8.313 · 106699 2.208 · 107617 2.059 · 1063414
Theorem 46 3.931 · 10198 2.044 · 10728 1.553 · 1010622 4.229 · 1011782 1.165 · 1098599

Table 14: Values of the lower and upper bounds for DEE (G) in the �ve real-world
networks analyzed in this paper.

The results obtained for Erd®s-Rényi random graphs Gn,p with 1000 ≤ n ≤ 4000
and p = 0.5 are illustrated in Table 15, showing good agreement between the actual
values and those predicted by Theorem 48. The values were computed in [209] using
variable-precision �oating-point arithmetic (VPA) in Matlab.

17 Conclusions

We presented an account of the many di�erent facets of the Estrada indices of graphs.
Starting from the �classical� Estrada index we give several interpretations of the in-
dex based on (i) combinatorics of subgraphs, (ii) statistical mechanics, (iii) marginal
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n lower bound actual value upper bound

1000 (1 + o (1)) e1498−O(31.62) e1531.29 (1 + o (1)) e1579.56

2000 (1 + o (1)) e2998−O(44.72) e3022.48 (1 + o (1)) e3160.70

3000 (1 + o (1)) e4498−O(54.77) e4513.71 (1 + o (1)) e4741.84

4000 (1 + o (1)) e5998−O(63.25) e6005.90 (1 + o (1)) e6322.97

Table 15: Actual values for Erd®s-Rényi random graphs Gn,p as well as the lower and
upper bounds found in [209].

probability in a quantum system, (iv) oscillations models on networks, and (v) epi-
demiological models on networks. Then we move forward to the analysis of other kinds
of Estrada indices. First we contextualize these indices originally introduced in an ad
hoc way in the mathematical literature. For instance, the Seidel Estrada index is placed
in the context of signed graphs, the theory of balance and the concept of network bi-
partivity. The resolvent Estrada index is analyzed as a case of Mittag-Le�er Estrada
indices which appear in the context of fractional epidemiological models on graphs. The
Harary Estrada index is understood as a particular case of nonlocal operator on graphs.
The Laplacian Estrada index is now pondered on the basis of the di�usion equation
with negative di�usivity or a backward di�usive process. Finally, the distance Estrada
index is considered in the context of the radius of gyration of a graph, which can be
connected to the di�usion coe�cient of graphs via the Stokes-Einstein equation. In all
cases we have provided numerical analysis of several of the bounds and estimations
made for these indices. Such results have revealed the necessity of investigating more
robust bounds, particularly upper bounds, for most of the indices studied. In many
cases the bounds, although correct, are very far away from the actual values of the
indices, which leaves large rooms for improvements. We encourage authors searching
for new bounds to compare them with the existing ones with the challenge of improving
them for general classes of graphs.

Finally, we have not considered many of the results obtained in the literature for
speci�c classes of graphs, which would make this paper too long to be digested. We
advice the reader that such bounds exist for several of the indices described in this
paper and for several classes of graphs of importance in speci�c areas of applications.

Acknowledgements The author thanks �nancial support from Ministerio de Ciencia, Inno-
vacion y Universidades, Spain for the grant PID2019-107603GB-I00 �Hubs-repelling/attracting
Laplacian operators and related dynamics on graphs/networks�. The author thanks the referees
for exhaustive and construtive revision of the manuscript.

Appendix

The following result allows the calculation of the 21 di�erent subgraphs which are used
in the expressions of spectral moments of the adjacency matrix.

Theorem 50 Let ki and ti be the degree and the number of triangles at the node i.

Then, the number of subgraphs illustrated in Fig. 3.1 are obtained as follow:

F2 =
1

2

∑
i

ki, (17.1)
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F3 =
1

2

∑
i

ki (ki − 1) , (17.2)

F4 =
1

6
tr
(
A3
)
, (17.3)

F5 =
∑

(i,j)∈E

(ki − 1) (kj − 1)− 3F4, (17.4)

F6 =
1

6

∑
ki≥3

ki (ki − 1) (ki − 2) , (17.5)

F7 =
1

8

(
tr
(
A4
)
− 4F3 − 2F2

)
, (17.6)

F8 =
∑
ki>2

ti (ki − 2) , (17.7)

F9 =
1

4

∑
i,j

((
A2
)

ijAij

)((
A2
)

ij ·Aij − 1
)
, (17.8)

F10 =
1

10

(
tr
(
A5
)
− 30F4 − 10F8

)
, (17.9)

F11 =
1

2

∑
ki≥4

ti (ki − 2) (ki − 3) , (17.10)

F12 =
1

2

∑
ki>2

(ki − 2)×
∑
i,j

((
A2
)
ij

2

)
− 2F9, (17.11)

F13 =
∑

(i,j)∈E

(
A2
)

ij (ki − 2) (kj − 2)− 2F9, (17.12)

F14 =
∑
i

ti

∑
i ̸=j

(A2)ij

− 6F4 − 2F8 − 4F9, (17.13)

F15 =
∑

(i,j)∈E

(
A3
)

ij

(
A2
)

ij − 9F4 − 2F8 − 4F9, (17.14)

F16 =
1

12

(
tr
(
A6
)
− 2m− 12F3 − 24F4 − 6F5 − 12F6 − 48F7 − 36F9 − 12F12 − 24F15

)
,

(17.15)

F17 =
1

2

∑
ki>2

(ki − 2)Bi − 2F16, (17.16)

where
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Bi =
(
A5
)

ii−20ti−8ti (ki − 2)−2
∑

(i,j)∈E

(
A2
)

ij (kj − 2)−2
∑

(i,j)∈E

(
tj −

(
A2
)

ij

)
,

(17.17)

F18 =
∑

(i,j)∈E

((
A2
)
ij

3

)
, (17.18)

F19 =
∑
i

ti ·
∑
i ̸=j

((
A2
)
ij

2

)
− 6F9 − 2F16 − 6F19, (17.19)

F20 =
1

14

(
tr
(
A7
)
− 126F4 − 84F8 − 112F9 − 70F10 − 28F11 − 14F13

−14F14 − 56F16 − 14F18 − 84F19 − 28F20) .
(17.20)
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