
HAL Id: hal-03326900
https://hal.science/hal-03326900

Submitted on 1 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A C++ Cherenkov photons simulation in CORSIKA 8
Matthieu Carrère, Luisa Arrabito, Johan Bregeon, David Parello, Philippe

Langlois, George Vasileiadis

To cite this version:
Matthieu Carrère, Luisa Arrabito, Johan Bregeon, David Parello, Philippe Langlois, et al.. A C++
Cherenkov photons simulation in CORSIKA 8. CHEP 2021 - 25th International Conference on Com-
puting in High-Energy and Nuclear Physics, May 2021, Online, France. pp.#03011, �10.1051/epj-
conf/202125103011�. �hal-03326900�

https://hal.science/hal-03326900
https://hal.archives-ouvertes.fr


A C++ Cherenkov photons simulation in CORSIKA 8

Matthieu Carrère1,2,∗, Luisa Arrabito1, Johan Bregeon4, David Parello2,3, Philippe
Langlois2,3, and Georges Vasileiadis1

1LUPM : Laboratoire Univers et Particules de Montpellier, France
2DALI : Digits, Architectures et Logiciels Informatiques, Perpignan, France
3LIRMM : Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, France
4LPSC : Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France

Abstract. CORSIKA is a standard software for simulations of air showers in-
duced by cosmic rays. It has been developed mainly in Fortran 77 continuously
over the last thirty years. It has become very difficult to add new physics features
to CORSIKA 7. CORSIKA 8 aims to be the future of the CORSIKA project. It
is a framework in C++17 which uses modern concepts in object oriented pro-
gramming for an efficient modularity and flexibility. The CORSIKA 8 project
aims to attain high performance by exploiting techniques such as vectoriza-
tion, gpu/cpu parallelization, extended use of static polymorphism and the most
precise physical models available. In this paper, we focus on the Cherenkov
photon propagation module of CORSIKA, which is of particular interest for
gamma-ray experiments, like the Cherenkov Telescope Array. First, we present
the optimizations that we have applied to the Cherenkov module thanks to the
results of detailed profiling using performance counters. Then, we report our
preliminary work to develop the Cherenkov Module in the CORSIKA 8 frame-
work. Finally, we will demonstrate the first performance comparison with the
current CORSIKA software as well as physics validation.

Acknowledgments

This work was conducted in the context of the CTA Consortium then was performed within
and together with the CORSIKA 8 Collaboration.

1 Introduction

CORSIKA[2] is a software for the simulation of air shower development written in C/Fortran
77. It is used by a wide community in the fields of gamma-ray astronomy, neutrino, radio
astronomy and cosmic rays. In this paper we focus in particular on the use case of the
Cherenkov Telescope Array[3] (CTA) project and on the module processing the propagation
of the Cherenkov photons through the atmosphere. CTA is the next generation ground-based
observatory for gamma-ray astronomy at very-high energies up to about 300 TeV. It is
composed of two arrays of Cherenkov telescopes deployed in the two hemispheres in La
Palma (Spain) and Paranal (Chile). CTA regularly performs massive simulation campaigns

∗e-mail: matthieu.carrere@lupm.in2p3.fr

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 251, 03011 (2021)	 https://doi.org/10.1051/epjconf/202125103011
CHEP 2021



using EGI1 resources. It represents more than 200 million HS06 CPU hours2 per year with
about 70% spent in CORSIKA. In order to reduce this computing time, we have studied
different strategies of code optimization[1]. In Section 2, we present the final steps of this
optimization work applied to the most recent CORSIKA 7 version. We will show how our
optimizations allow us to better exploit the capabilities of modern processors, in particular
enhancing auto-vectorization and efficient memory usage. Moreover, our approach in
optimizing the code aimed to keep the same numerical accuracy and physics results with
respect to the original version. The optimized code has been successfully used in production
during the last large-scale campaign performed by the CTA consortium in 2020. For the
current production Prod5, which started in July 2020, we estimate that the optimized code
has saved us around 12 million HS06 CPU hours for 72 million HS06 CPU hours consumed
so far. During 30 years, the core of CORSIKA did not change and adding new features
or optimizations has become a complex task. In this context, the CORSIKA 8 project [5]
aims to entirely rewrite CORSIKA in modern C++ (C++ 17) to obtain a modular, flexible
and efficient code. It is always a challenge to re-write an old scientific code in a modern
framework, while keeping compatible physics results and high performance. For the use
case of CTA, the Cherenkov module was the most CPU consuming part and we expect the
same behavior in CORSIKA 8. Indeed for each shower, billions of Cherenkov photons
are produced and their positions, directions and arrival times must be calculated taking
into account the properties of the traversed atmosphere. In the framework of CORSIKA
8, we have thus started the development of the Cherenkov module and obtained the first
physics and performance comparisons with CORSIKA 7 (our reference). This work is
presented in Section 3. Table 1 summarizes the different CORSIKA versions (that we
have) developed and compared both for the optimization done in CORSIKA 7 and in the
Cherenkov module development in CORSIKA 8. Finally, in Section 4 we present conclu-
sions and prospects to continue to improve the performance and the quality of the simulations.

All the simulations in this paper have been produced with input parameters typically
used in CTA productions. In particular, we have been using gamma incident particles in an
energy range of 3 GeV - 330 TeV and for the conditions of the CTA South site at Paranal
(geomagnetic field, altitude). In order to obtain reproducible results, we have also fixed the
pseudo-random number generator seeds. Finally, CORSIKA 7 optimizations have been tested
with runs of 5000 showers, whereas CORSIKA 8 Cherenkov module has been validated by
injecting particle tracks from 10 showers generated with CORSIKA 7.

Table 1: CORSIKA Versions

Version Description
CORSIKA 7.6900-ORG Original 7.6900 version with scalar operations
CORSIKA 7.6900-OPT-V1 Optimized 7.6900 with vectorial operations

(with vector-libm)
CORSIKA 7.6900-OPT-V2 7.6900-OPT-V1 with memory and vector

size optimizations
CORSIKA 7.7100 Similar version of 7.6900-OPT-V2
CORSIKA 8 CherenkC7Test Module 7.7100 rewrites with oriented object to read

CORSIKA 7 inputs (with/without vector-libm)

1European Grid Infrastructure
2https://w3.hepix.org/benchmarking.html

2

EPJ Web of Conferences 251, 03011 (2021)	 https://doi.org/10.1051/epjconf/202125103011
CHEP 2021



using EGI1 resources. It represents more than 200 million HS06 CPU hours2 per year with
about 70% spent in CORSIKA. In order to reduce this computing time, we have studied
different strategies of code optimization[1]. In Section 2, we present the final steps of this
optimization work applied to the most recent CORSIKA 7 version. We will show how our
optimizations allow us to better exploit the capabilities of modern processors, in particular
enhancing auto-vectorization and efficient memory usage. Moreover, our approach in
optimizing the code aimed to keep the same numerical accuracy and physics results with
respect to the original version. The optimized code has been successfully used in production
during the last large-scale campaign performed by the CTA consortium in 2020. For the
current production Prod5, which started in July 2020, we estimate that the optimized code
has saved us around 12 million HS06 CPU hours for 72 million HS06 CPU hours consumed
so far. During 30 years, the core of CORSIKA did not change and adding new features
or optimizations has become a complex task. In this context, the CORSIKA 8 project [5]
aims to entirely rewrite CORSIKA in modern C++ (C++ 17) to obtain a modular, flexible
and efficient code. It is always a challenge to re-write an old scientific code in a modern
framework, while keeping compatible physics results and high performance. For the use
case of CTA, the Cherenkov module was the most CPU consuming part and we expect the
same behavior in CORSIKA 8. Indeed for each shower, billions of Cherenkov photons
are produced and their positions, directions and arrival times must be calculated taking
into account the properties of the traversed atmosphere. In the framework of CORSIKA
8, we have thus started the development of the Cherenkov module and obtained the first
physics and performance comparisons with CORSIKA 7 (our reference). This work is
presented in Section 3. Table 1 summarizes the different CORSIKA versions (that we
have) developed and compared both for the optimization done in CORSIKA 7 and in the
Cherenkov module development in CORSIKA 8. Finally, in Section 4 we present conclu-
sions and prospects to continue to improve the performance and the quality of the simulations.

All the simulations in this paper have been produced with input parameters typically
used in CTA productions. In particular, we have been using gamma incident particles in an
energy range of 3 GeV - 330 TeV and for the conditions of the CTA South site at Paranal
(geomagnetic field, altitude). In order to obtain reproducible results, we have also fixed the
pseudo-random number generator seeds. Finally, CORSIKA 7 optimizations have been tested
with runs of 5000 showers, whereas CORSIKA 8 Cherenkov module has been validated by
injecting particle tracks from 10 showers generated with CORSIKA 7.

Table 1: CORSIKA Versions

Version Description
CORSIKA 7.6900-ORG Original 7.6900 version with scalar operations
CORSIKA 7.6900-OPT-V1 Optimized 7.6900 with vectorial operations

(with vector-libm)
CORSIKA 7.6900-OPT-V2 7.6900-OPT-V1 with memory and vector

size optimizations
CORSIKA 7.7100 Similar version of 7.6900-OPT-V2
CORSIKA 8 CherenkC7Test Module 7.7100 rewrites with oriented object to read

CORSIKA 7 inputs (with/without vector-libm)

1European Grid Infrastructure
2https://w3.hepix.org/benchmarking.html

2 CORSIKA 7 - Optimizations

2.1 Cherenkov Simulation in CTA

Figure 1: Cherenkov photons simulation in CORSIKA 7.6900-OPT-V1

The main steps of Cherenkov simulation in CORSIKA and the associated functions are il-
lustrated in Figure 1. Each particle produced in the shower undergoes a series of physics
interactions. Between two interactions the particle is transported from one point to another
(track step). For each track step, the number of Cherenkov photons induced is calculated. In
order to save computing time, Cherenkov photons are grouped into bunches of 5 photons and
then propagated through the atmosphere. Track steps are thus further subdivided into sub-
steps, so that one photon bunch is emitted for each sub-step. Given the fact that the different
bunches propagate independently from one another, it is possible to group their coordinates
into vectors and vectorize the code. A precise description of the atmosphere allows us to take
into account the effect of refraction on the photon bunches directions. In particular, the values
of air density, thickness and refraction index are tabulated at different altitudes. Interpolation
is then used to obtain the properties of the atmosphere at intermediate altitudes. Telescope
arrays are represented by a grid of telescope positions, each telescope being represented by
a fiducial sphere. Once propagated to the ground, only the photon bunches intersecting a
telescope are saved in the final output. In CORSIKA, the Cherenkov photon propagation,
the atmospheric model and the geometry of the telescope arrays are handled in a dedicated
package (IACT/atmo). By profiling CORSIKA 7 with Linux Perf tool, we have identified
the most CPU consuming functions. These can be grouped into 3 categories each represent-
ing about 1/3 of the overall CPU consumed: elementary mathematical functions, Cherenkov
simulation functions and a set of other smaller functions. All the measurements reported in
this section have been done on a dedicated server1.

2.2 Vectorization

The first optimization work done in CORSIKA 7 consisted in enhancing SIMD (Single In-
struction Multiple Data) auto-vectorization (CORSIKA 7.6900-OPT-V1 in Table 1), as de-

1Intel Xeon Gold 5122/3.6Ghz/L3:16.5MB, RAM:128GB with gcc/gfortran 8.4 and optimization flags: -O3
-mavx2

3

EPJ Web of Conferences 251, 03011 (2021)	 https://doi.org/10.1051/epjconf/202125103011
CHEP 2021



tailed in Ref. [1]. Indeed, all modern processors perform operations in parallel thanks to vec-
tor SIMD registers. These specialized registers allow us to use vector instructions performing
one type of operation for multiple data in one cycle. Many technologies exist for different
architectures. In our case, we have considered the x86 instruction set1, and more specifically
AVX22 (AVX-512 did not provide here significant speed-up and is not yet widespread in the
grid computing centers). In order to benefit from SIMD vectorization, there are two main
options. The first is automatic vectorization by the compiler (auto-vectorization) while the
second is to use manually intrinsic functions which depend on the target architecture. Auto-
vectorization has been chosen because it allows us to easily obtain a portable code with good
performance. Writing code using intrinsic functions is a difficult task and it requires to write
a specialized version for each instruction set.

In version 7.6900-OPT-V1, Cherenkov functions have been rewritten to enable auto-
vectorization and the vectorization ratio τvec (cf. Equation (1)) increased from 0.57% to
almost 10%. The main bonus comes from the application of vector-libm[4]3, a specialized
vector mathematical library where the overall vectorization ratio τvec increased to 59.52%.
Indeed as 1/3 of computing time is used in elementary function call, using the vector-libm
for the relevant parts of the code increased the vectorization rate to a significant speed-up.
We measure a 1.48 overall speed-up for the vectorized version 7.6900-OPT-V1 using AVX2
instructions.

In principle, we expect even better performances by enabling AVX-512 instructions, since
it allows us to execute twice more operations in parallel compared to AVX2. However, we
measure slightly better elapsed time performances with AVX2 whereas AVX512 execution
had a lower number of cycles. This behavior is explained as the clock frequency is automati-
cally reduced to avoid chip heating on Intel CPUs when AVX512 is enabled. A similar effect
also appears with AVX2 : Figure 2 exhibits some speedup differences between the number of
cycles and the elapsed time.

τvec =

∑
2 ∗ I128,dbl + 4 ∗ I256,dbl + 8 ∗ I512,dbl∑

2 ∗ I128,dbl + 4 ∗ I256,dbl + 8 ∗ I512,dbl +
∑

Iscal,dbl
(1)

Equation 1: Vectorization ratio with the number of instructions for each instruction set (scalar
operations, vectorized operations in 128 bits, 256 bits and 512 bits) in double precision.

0 1 2
0

100

200

300

400

500

600

700

se
co
n
d
s
ti
m
e
el
ap
se
d

1.
48

1.
82

Versions

0. v7.6900-ORG

1. v7.6900-OPT-V1

2. v7.6900-OPT-V2

(a) Total time elapsed

0 1 2
0.00e+00

5.00e+11

1.00e+12

1.50e+12

2.00e+12

2.50e+12

cy
cl
es

1.
52

1.
90

Versions

0. v7.6900-ORG

1. v7.6900-OPT-V1

2. v7.6900-OPT-V2

(b) Total cycles

Figure 2: Comparision on CORSIKA 7.6900-ORG/OPT-V1/OPT-V2

1instruction collection to perform basic math operations
2256 bits registers to calculate in parallel 4 floaty doubles or 8 floaty singles
3https://gitlab.com/cquirin/vector-libm

4

EPJ Web of Conferences 251, 03011 (2021)	 https://doi.org/10.1051/epjconf/202125103011
CHEP 2021



tailed in Ref. [1]. Indeed, all modern processors perform operations in parallel thanks to vec-
tor SIMD registers. These specialized registers allow us to use vector instructions performing
one type of operation for multiple data in one cycle. Many technologies exist for different
architectures. In our case, we have considered the x86 instruction set1, and more specifically
AVX22 (AVX-512 did not provide here significant speed-up and is not yet widespread in the
grid computing centers). In order to benefit from SIMD vectorization, there are two main
options. The first is automatic vectorization by the compiler (auto-vectorization) while the
second is to use manually intrinsic functions which depend on the target architecture. Auto-
vectorization has been chosen because it allows us to easily obtain a portable code with good
performance. Writing code using intrinsic functions is a difficult task and it requires to write
a specialized version for each instruction set.

In version 7.6900-OPT-V1, Cherenkov functions have been rewritten to enable auto-
vectorization and the vectorization ratio τvec (cf. Equation (1)) increased from 0.57% to
almost 10%. The main bonus comes from the application of vector-libm[4]3, a specialized
vector mathematical library where the overall vectorization ratio τvec increased to 59.52%.
Indeed as 1/3 of computing time is used in elementary function call, using the vector-libm
for the relevant parts of the code increased the vectorization rate to a significant speed-up.
We measure a 1.48 overall speed-up for the vectorized version 7.6900-OPT-V1 using AVX2
instructions.

In principle, we expect even better performances by enabling AVX-512 instructions, since
it allows us to execute twice more operations in parallel compared to AVX2. However, we
measure slightly better elapsed time performances with AVX2 whereas AVX512 execution
had a lower number of cycles. This behavior is explained as the clock frequency is automati-
cally reduced to avoid chip heating on Intel CPUs when AVX512 is enabled. A similar effect
also appears with AVX2 : Figure 2 exhibits some speedup differences between the number of
cycles and the elapsed time.

τvec =

∑
2 ∗ I128,dbl + 4 ∗ I256,dbl + 8 ∗ I512,dbl∑

2 ∗ I128,dbl + 4 ∗ I256,dbl + 8 ∗ I512,dbl +
∑

Iscal,dbl
(1)

Equation 1: Vectorization ratio with the number of instructions for each instruction set (scalar
operations, vectorized operations in 128 bits, 256 bits and 512 bits) in double precision.

0 1 2
0

100

200

300

400

500

600

700

se
co
n
d
s
ti
m
e
el
ap
se
d

1.
48

1.
82

Versions

0. v7.6900-ORG

1. v7.6900-OPT-V1

2. v7.6900-OPT-V2

(a) Total time elapsed

0 1 2
0.00e+00

5.00e+11

1.00e+12

1.50e+12

2.00e+12

2.50e+12

cy
cl
es

1.
52

1.
90

Versions

0. v7.6900-ORG

1. v7.6900-OPT-V1

2. v7.6900-OPT-V2

(b) Total cycles

Figure 2: Comparision on CORSIKA 7.6900-ORG/OPT-V1/OPT-V2

1instruction collection to perform basic math operations
2256 bits registers to calculate in parallel 4 floaty doubles or 8 floaty singles
3https://gitlab.com/cquirin/vector-libm

2.3 Vector length tuning

The vector length of static arrays used in the vectorized Cherenkov function of CORSIKA
7.6900-OPT-V1 can be tuned at the compilation time. The Cherenkov function contains two
main loops over particle sub-steps (see Figure 1), to compute the propagation that include
several calls to the vector-libm. The two loops perform the same computations but the first
time is vectorized loop while the second one remains scalar. For a given particle step, the
vector length parameter also determines how the workload is subdivided between the vector
and the scalar loop. If static arrays cannot be entirely filled, the remaining computations will
be done in the scalar loop. We can thus argue that the vector length parameter has an impact
on overall performances.

However, the optimal value of this parameter depends on several factors and is difficult
to predict. For instance among these factors, the number of sub-steps is not uniform, as
shown by the distribution in Figure 2(a). A too high value of vector length would imply
a larger fraction of computations performed in the scalar loop. On the other side, a too
low value implies a large number of loops and branches, which has a negative impact on
performances. Finally, the vector-libm delivers best performances for the vector length equals
to 8 as reported in Ref [4] and by our experiments presented in Figure 2(b).

0 10 20 30 40 50 60 70
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

×10
6

Number of sub-steps

D
is

tr
ib

u
ti
o

n

(a) Sub-steps distribution

0 1 2 3 4 5
0.00e+00

5.00e+11

1.00e+12

1.50e+12

2.00e+12

cy
cl
es

1.
25

1.
34 1.
24

1.
08

0.
85

Versions

0. VL2

1. VL4

2. VL8

3. VL16

4. VL32

5. VL64

(b) Vector length comparison

Figure 3: Analyses on CORSIKA 7.6900-OPT-V1/OPT-V2

2.4 Memory usage optimization

Since further vectorization required profound changes in the code, either the logic of algo-
rithms or the data structures, we have examined other paths for optimization and in particular
regarding memory access. Using the Perf Linux tool, we have collected data from several
performance counters. By analyzing counters statistics, we identify a single function that
generates 71% of the cache misses as shown in Figure 4(a). This memset_sse2 function is
used to initialize memory blocks to zero. Fortunately in the present case, we found that mem-
set_sse2 was in fact called by a calloc function call that allocates the memory for structures
of photon bunches. After having verified that such initialization was not necessary in this
case, a simple malloc function drastically reduced the number of cache misses as shown in
Figure 4(b). The impact on overall performances was also significant, bringing the overall
speed-up to 1.82 after changing, as shown in Figure 2.

5

EPJ Web of Conferences 251, 03011 (2021)	 https://doi.org/10.1051/epjconf/202125103011
CHEP 2021



1

71.33%

2

28.67%

(a) CORSIKA 7.6900-OPT-V1 - By
function : 1.memset_sse2, 2.rest

0 1 2
0.00e+00

2.00e+08

4.00e+08

6.00e+08

8.00e+08

1.00e+09

1.20e+09

1.40e+09

1.60e+09

ca
ch
e-
m
is
se
s

1.
01

21
.1
1

Versions

0. v7.6900-ORG

1. v7.6900-OPT-V1

2. v7.6900-OPT-V2

(b) CORSIKA 7.6900-ORG/OPT-V1/OPT-V2

Figure 4: Cache-misses analysis

3 CORSIKA 8 - Cherenkov Module Development

CORSIKA 8 is a collaborative project for the development of a modern C++ version of COR-
SIKA1 using different modern tools for version control, testing and continuous integration.
In the CORSIKA 8 framework it is already possible to simulate hadronic and electromag-
netic showers. The support for electromagnetic cascades has been recently introduced via an
interface with the PROPOSAL software.2 At the moment only some analytical atmospheric
models are supported, but in the future more precise models, e.g., atmospheric tables as in
CORSIKA 7, will be included. In the rest of the paper we present our contribution to the
development of a Cherenkov module in the CORSIKA 8 framework to handle the generation
and the propagation of the Cherenkov photons through the atmosphere.

Measurements reported in this section have been done on a laptop configuration3. For
the first development phase of CORSIKA 8, we considered that the compiler optimizations
should be disabled. But in this phase of tests on the Cherenkov module presented below, we
analyze data compiled with the optimizations enabled.

3.1 Cherenkov module - Overview

We follow three main steps to develop a Cherenkov module in the CORSIKA 8 framework
with compatible physical results and performances with respect to the current CORSIKA 7.
The first step consists of writing a version very close to the CORSIKA 7 Cherenkov module,
to provide a good basis for comparison. Then, we develop a version in the general style of
CORSIKA 8, i.e. using different C++ 17 concepts and removing all pointers.

Finally, we explore different possibilities of optimization, testing different vector libraries
for elementary functions or applying single precision to certain parts of the code, thanks to
a numerical error analysis or using vectorized operations with templates. Indeed, instead of
writing a loop with operations that could be not vectorized, we could create an operator which
performs automatically some vectorial operations .

The first step is currently almost achieved. The CherenkovC7Test module (cf. Table 1)
generates and propagates Cherenkov photons to the ground using the same algorithms as in
CORSIKA 7 except one missing function that tests photons crossing the telescopes.

1https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika
2https://github.com/tudo-astroparticlephysics/PROPOSAL
3Intel i7-8665U/4.8Ghz/L3:8MB, RAM:16GB with gcc/g++/gfortran 9.3 and optimization flags: -O3 -mavx2

6

EPJ Web of Conferences 251, 03011 (2021)	 https://doi.org/10.1051/epjconf/202125103011
CHEP 2021



1

71.33%

2

28.67%

(a) CORSIKA 7.6900-OPT-V1 - By
function : 1.memset_sse2, 2.rest

0 1 2
0.00e+00

2.00e+08

4.00e+08

6.00e+08

8.00e+08

1.00e+09

1.20e+09

1.40e+09

1.60e+09

ca
ch
e-
m
is
se
s

1.
01

21
.1
1

Versions

0. v7.6900-ORG

1. v7.6900-OPT-V1

2. v7.6900-OPT-V2

(b) CORSIKA 7.6900-ORG/OPT-V1/OPT-V2

Figure 4: Cache-misses analysis

3 CORSIKA 8 - Cherenkov Module Development

CORSIKA 8 is a collaborative project for the development of a modern C++ version of COR-
SIKA1 using different modern tools for version control, testing and continuous integration.
In the CORSIKA 8 framework it is already possible to simulate hadronic and electromag-
netic showers. The support for electromagnetic cascades has been recently introduced via an
interface with the PROPOSAL software.2 At the moment only some analytical atmospheric
models are supported, but in the future more precise models, e.g., atmospheric tables as in
CORSIKA 7, will be included. In the rest of the paper we present our contribution to the
development of a Cherenkov module in the CORSIKA 8 framework to handle the generation
and the propagation of the Cherenkov photons through the atmosphere.

Measurements reported in this section have been done on a laptop configuration3. For
the first development phase of CORSIKA 8, we considered that the compiler optimizations
should be disabled. But in this phase of tests on the Cherenkov module presented below, we
analyze data compiled with the optimizations enabled.

3.1 Cherenkov module - Overview

We follow three main steps to develop a Cherenkov module in the CORSIKA 8 framework
with compatible physical results and performances with respect to the current CORSIKA 7.
The first step consists of writing a version very close to the CORSIKA 7 Cherenkov module,
to provide a good basis for comparison. Then, we develop a version in the general style of
CORSIKA 8, i.e. using different C++ 17 concepts and removing all pointers.

Finally, we explore different possibilities of optimization, testing different vector libraries
for elementary functions or applying single precision to certain parts of the code, thanks to
a numerical error analysis or using vectorized operations with templates. Indeed, instead of
writing a loop with operations that could be not vectorized, we could create an operator which
performs automatically some vectorial operations .

The first step is currently almost achieved. The CherenkovC7Test module (cf. Table 1)
generates and propagates Cherenkov photons to the ground using the same algorithms as in
CORSIKA 7 except one missing function that tests photons crossing the telescopes.

1https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika
2https://github.com/tudo-astroparticlephysics/PROPOSAL
3Intel i7-8665U/4.8Ghz/L3:8MB, RAM:16GB with gcc/g++/gfortran 9.3 and optimization flags: -O3 -mavx2

In order to do an accurate comparison between this new CherenkovC7Test version
and CORSIKA 7, we have slightly modified the latter to save particle tracks coordinates
which are used as entries by the Cherenkov function. Then, we inject these entries in the
CherenkovC7Test module and we compare the results in terms of photon coordinates after
the propagation to the ground.

In Tables 2 and 3 we explain how the module is organized.

Table 2: CherenkovC7Test Module in CORSIKA 8 - Simulation

Steps in Simulation Main methods
1. Read and init tabulated atmosphere model loadAtmosphereProfile()
2. Loop: Read particle data created in CORSIKA7 initParticleValues()
3. Loop: Generates and propagates photons generatePhotons(),propagatePhotons()
4. Loop: Save data savePhotonsInformationBeforeInpact()

Table 3: CherenkovC7Test Module in CORSIKA 8 - Different classes

Class Description Dependencies
CherenkovC7Test generate and propagate photons AtmosphereTabulated
AtmosphereTabulated generate atmosphere and interaction Interpolation
Interpolation linear and cubic spline interpolations

It was necessary to add interpolation because C functions in CORSIKA 7 used only dou-
ble precision type. In fact, CORSIKA 8 uses macro custom types for physical values (ener-
gies, lengths, etc) to keep safe physics dimensions with zero runtime cost dimension check-
ing. Interface code was added to transform these unit types consistently between CORSIKA
8 and CORSIKA 7 code. Thanks to this new rewriting with templates, methods of the class
Interpolation can take any type in input/output.

3.2 Cherenkov module - Performances

In order to accurately estimate the performances related to specific parts of the code, we have
used the PAPI API[6] to collect hardware performance counters in some selected areas for
CORSIKA 7 and CORSIKA 8. Indeed contrary to Linux Perf, PAPI allows us to instrument
the code to isolate the areas where it sums the collected events for one or multiple counters. So
thanks to PAPI, we can easily isolate the different parts of the code that we want to compare
between CORSIKA 7 and 8, where the selected counters come from the Linux Perf library.

We compare for some selected hardware counters the Cherenkov module in CORSIKA
7 and CORSIKA 8 (CherenkovC7Test) with and without the vector-libm. We recall that
CORSIKA 7 always uses here the vector-libm.

Table 4: General hardware counter ratios (C8 Cherenkov module / C7 Cherenkov module)

Version Instructions Cycles Wall clock time
C8 / C7 1.26 1.67 1.48
C8+vlibm / C7 1.02 1.57 1.39

7

EPJ Web of Conferences 251, 03011 (2021)	 https://doi.org/10.1051/epjconf/202125103011
CHEP 2021



The results reported in Table 4 exhibit that the Cherenkov module in CORSIKA 8 is al-
ways slower than in CORSIKA 7. Nevertheless the wall clock time difference is reduced
with the vector-libm. Indeed adding the vector-libm in CORSIKA 8 removes 20% of instruc-
tions and reduces the number of cycles. Nevertheless, it seems that the vector-libm library is
bottle-necked as explained in the next paragraphs.

Table 5: Distribution of double precision floating-point instructions in Mi (mega-instructions)

Version Scalar Vector 256bits Vectorization Ratio
C7 108 53 66.4%
C8 236 10 14.6%
C8+vlibm 219 29 34.8%

In Table 5 we report the number of scalar and vector instructions as well as the vector-
ization ratio. In CORSIKA 8 the number of scalar instructions increases by about a factor
2 while the number of vector instructions decreases by about 45% despite the vector-libm
being enabled. Here are some explanations for such reduction of vectorized instructions. To
add the vector-libm in CORSIKA 8, we had to remove some memory alignment functions in
the vectorized functions, as C++ does not know them (old C functions). Moreover the "con-
straint" clause (mainly used for function parameters) is not used in C++ whereas it is in C.
For the scalar instructions, the code in CORSIKA 8 is slightly different : we add some oper-
ations to convert double to "custom types", for some comparisons, isolated calculations (co-
efficients,etc) and mathematical functions (absolute value function, pow function,etc). Two
multiplication are necessary for each function (custom type to double and double to custom
type). These technical differences may explain the observed reduction of the vectorized ratio.
This scalar part is the previously mentionned bottleneck for the vector-libm efficiency.

Table 6: Branch and cache miss ratio ratio

Version BM/B1 CM/CR1 LLCM/LLC1

C7 3.0% 6.0% 9.8%
C8 46.8% 33.7% 41.0%
C8+vlibm 3.3% 32.7% 41.8%

We have then measured the events for different counters giving indications to the memory
access pattern, as reported in Table 6.1 First, we observe that in CORSIKA 8, the ratio of
cache misses to cache references increases from 6% to about 33%. Secondly, branch misses
ratio2 is stable between CORSIKA 7 and 8, except for CORSIKA 8 without vector-libm,
where we observe an increase. In fact, the use of vector-libm has a branch cost because we
need to test if we can use vector-libm’s functions or not during the simulation. It generates
more branches but it is not proportional with branch misses. It explains the important 46.8%
ratio of branch misses to branches without the vector-libm.

LLC-loads ratio is interesting because it increases by more than 41% in comparison to
9.8% measured in CORSIKA 7. L3 cache misses is bigger than for other cache levels so
it reveals that CORSIKA 8 uses more data than CORSIKA 7. Even if the implemented
algorithms are the same, CORSIKA 8’s classes with methods and attributes increase cache

1BM: branch misses, B: branch, CM: cache misses, CR: cache reference, LLCM: last level cache misses, LLC:
last level cache load

2number of miss-predicted branches / number of executed branches

8

EPJ Web of Conferences 251, 03011 (2021)	 https://doi.org/10.1051/epjconf/202125103011
CHEP 2021



The results reported in Table 4 exhibit that the Cherenkov module in CORSIKA 8 is al-
ways slower than in CORSIKA 7. Nevertheless the wall clock time difference is reduced
with the vector-libm. Indeed adding the vector-libm in CORSIKA 8 removes 20% of instruc-
tions and reduces the number of cycles. Nevertheless, it seems that the vector-libm library is
bottle-necked as explained in the next paragraphs.

Table 5: Distribution of double precision floating-point instructions in Mi (mega-instructions)

Version Scalar Vector 256bits Vectorization Ratio
C7 108 53 66.4%
C8 236 10 14.6%
C8+vlibm 219 29 34.8%

In Table 5 we report the number of scalar and vector instructions as well as the vector-
ization ratio. In CORSIKA 8 the number of scalar instructions increases by about a factor
2 while the number of vector instructions decreases by about 45% despite the vector-libm
being enabled. Here are some explanations for such reduction of vectorized instructions. To
add the vector-libm in CORSIKA 8, we had to remove some memory alignment functions in
the vectorized functions, as C++ does not know them (old C functions). Moreover the "con-
straint" clause (mainly used for function parameters) is not used in C++ whereas it is in C.
For the scalar instructions, the code in CORSIKA 8 is slightly different : we add some oper-
ations to convert double to "custom types", for some comparisons, isolated calculations (co-
efficients,etc) and mathematical functions (absolute value function, pow function,etc). Two
multiplication are necessary for each function (custom type to double and double to custom
type). These technical differences may explain the observed reduction of the vectorized ratio.
This scalar part is the previously mentionned bottleneck for the vector-libm efficiency.

Table 6: Branch and cache miss ratio ratio

Version BM/B1 CM/CR1 LLCM/LLC1

C7 3.0% 6.0% 9.8%
C8 46.8% 33.7% 41.0%
C8+vlibm 3.3% 32.7% 41.8%

We have then measured the events for different counters giving indications to the memory
access pattern, as reported in Table 6.1 First, we observe that in CORSIKA 8, the ratio of
cache misses to cache references increases from 6% to about 33%. Secondly, branch misses
ratio2 is stable between CORSIKA 7 and 8, except for CORSIKA 8 without vector-libm,
where we observe an increase. In fact, the use of vector-libm has a branch cost because we
need to test if we can use vector-libm’s functions or not during the simulation. It generates
more branches but it is not proportional with branch misses. It explains the important 46.8%
ratio of branch misses to branches without the vector-libm.

LLC-loads ratio is interesting because it increases by more than 41% in comparison to
9.8% measured in CORSIKA 7. L3 cache misses is bigger than for other cache levels so
it reveals that CORSIKA 8 uses more data than CORSIKA 7. Even if the implemented
algorithms are the same, CORSIKA 8’s classes with methods and attributes increase cache

1BM: branch misses, B: branch, CM: cache misses, CR: cache reference, LLCM: last level cache misses, LLC:
last level cache load

2number of miss-predicted branches / number of executed branches

misses. Attributes enable to call functions with sending argument but contrary to C code, we
have inevitably more data in memory.

Table 7: Performance events and percentage1for C7 and C8+vlibm

Step Minstructions Mcycles KcacheMisses KLLCMisses Vector Ratio
Generate Photons C7 133 (12.3%) 107 (16.6%) 22 (17.0%) 4 (39.8%) 0.0%
Generate Photons C8 192 (17.6%) 200 (19.8%) 5912 (33.1%) 421 (46.8%) 0.0%
Before Propagation C7 444 (41.3%) 246 (38.1%) 7 (5.1%) 0 (3.0%) 52.3%
Before Propagation C8 343 (31.4%) 305 (30.2%) 4809 (26.9%) 399 (21.3%) 52.5%
Propagation C7 499 (46.4%) 292 (45.3%) 99 (77.9%) 5 (57.2%) 75.5%
Propagation C8 557 (51.0%) 505 (50.0%) 7142 (40.0%) 484 (31.9%) 28.7%

Finally, we have divided the Cherenkov module in 3 areas (as shown in Table 7) and
compared different counters area by area. In general, we have a huge increase for cache
misses and LLC misses for CORSIKA 8 but we notice some particularities for every area.

Like in CORSIKA 7, the photon generation step does not produce vectorized instructions
and we observe a moderate increase of instructions and cycles. Before photon’s propagation
(some calculations to prepare it), we found a vector ratio slightly better for CORSIKA 8
version. In fact there are more vectorial operations and a general instruction decrease in this
part thanks to a loop fusion between scalar and vectorized loops versions of CORSIKA 7. C
version is faster but very close in cycles with C++ version.

Propagation function is a more specific case where vectorization does not work very well.
Indeed, CORSIKA 8 vector ratio is worse than CORSIKA 7 in this case and we need to
investigate further. This cycle increase is not negligible. We call a lot of getter methods from
Atmosphere class to get some values that can generate additional cycles. We can also imagine
a bug in the algorithm with vector-libm which does not work in this method and use mainly
the libm for elementary functions (two possible ways in algorithm).

For the moment, there was not optimization work and this is clearly seen in performance
results. Vector-libm improves general performance with an insufficient speedup of 1.06. This
work is a basis to do something better in performance, readability and precision. Several
optimization options were evoked like vectorial calculations in single precision, new vectorial
operators and new C++ style in general.

3.3 Module Cherenkov - Physics results

Table 8: Pearson and Kolmogorov indices between CORSIKA 7/8 for the total number of
photons, positions in X,Y,Z, directions in X,Y and arrival times by sub-step

NbPhotons PosZ PosX PosY DirX DirY Time
Pearson 1.000 1.000 0.988 0.996 0.982 0.986 0.991
Kolmogorov 1.000 1.000 0.995 0.935 0.963 0.939 0.972

In order to validate the physical results obtained with the new Cherenkov module in COR-
SIKA 8 compared to CORSIKA 7, we have set up a test environment to run and compare the
two codes under very similar conditions. First of all, it is important to use the same set of
entries (i.e., particle track coordinates) for the two versions. Secondly, in this first phase, we

1Number of events / Overall number of events

9

EPJ Web of Conferences 251, 03011 (2021)	 https://doi.org/10.1051/epjconf/202125103011
CHEP 2021



have implemented essentially the same algorithms as those used in CORSIKA 7. The main
difference between the two codes concerns the random number generator, that is used to gen-
erate the φ angular coordinate of the emitted Cherenkov photons for a given opening angle
θ. CORSIKA 7 uses a modified version of the CERN random number generator in double
precision (RMM48), while CORSIKA 8 currently uses the uniform real distribution in double
precision of the "random" library.

The output of the Cherenkov module consists of the list of photon bunches reaching the
ground, with their positions, directions and arrival time. We have thus run the Cherenkov
module on a set of 10 gamma-ray showers and compared the different output distributions.

As shown in Figure 5(a), the 2D map of the photon counts on the ground is very similar
between CORSIKA 7 and CORSIKA 8 while the photon distribution by atmospheric depth
is exactly the same in Figure 5(b). A statistical comparison of the distributions of the physi-
cal quantities confirms a very good agreement between the two versions, as indicated by the
Pearson and Kolmogorov coefficients in Table 8. We have also verified that the slight differ-
ences in position and direction distributions are due to the different random generator used in
the two versions. With this validated version in hands, we are now ready to start the second
and third phases of our plan, i.e., writing the module in a more C++ friendly style in line with
the CORSIKA 8 framework (e.g., using templates, static polymorphism, etc.) and applying
different types of optimizations, also benefiting from the language capabilities.

-8 -6 -4 -2 0 2 4

x (km)

 -5

  0

  

5

10

y
 (

k
m

)

1

10

100

1000

|P
h
o
to

n
 c

o
u
n
ts

 d
iff

e
re

n
c
e
|

(a) 2D map of the photon counts difference on the ground

0 100000 200000 300000
Photons

0

100

200

300

400

500

600

700

800

D
e
p

th
 (

g
.c

m
-2

)

Corsika 7

Corsika 8

(b) Photon distribution by atmospheric depth
for CORSIKA 7 (in red) and CORSIKA 8 (in

blue)

Figure 5: Comparison between CORSIKA 7 and CORSIKA 8 after propagation in atmo-
sphere with gamma incident particles - 10 CORSIKA 7 showers with 4.9x106 Cherenkov
photons produced

4 Conclusion

Starting with a detailed profiling of CORSIKA (version 7), we have been able to apply differ-
ent kinds of optimizations while keeping a portable code. Starting from a vectorized version
developed in a previous work, we have been able to further optimize CORSIKA by improving

10

EPJ Web of Conferences 251, 03011 (2021)	 https://doi.org/10.1051/epjconf/202125103011
CHEP 2021



have implemented essentially the same algorithms as those used in CORSIKA 7. The main
difference between the two codes concerns the random number generator, that is used to gen-
erate the φ angular coordinate of the emitted Cherenkov photons for a given opening angle
θ. CORSIKA 7 uses a modified version of the CERN random number generator in double
precision (RMM48), while CORSIKA 8 currently uses the uniform real distribution in double
precision of the "random" library.

The output of the Cherenkov module consists of the list of photon bunches reaching the
ground, with their positions, directions and arrival time. We have thus run the Cherenkov
module on a set of 10 gamma-ray showers and compared the different output distributions.

As shown in Figure 5(a), the 2D map of the photon counts on the ground is very similar
between CORSIKA 7 and CORSIKA 8 while the photon distribution by atmospheric depth
is exactly the same in Figure 5(b). A statistical comparison of the distributions of the physi-
cal quantities confirms a very good agreement between the two versions, as indicated by the
Pearson and Kolmogorov coefficients in Table 8. We have also verified that the slight differ-
ences in position and direction distributions are due to the different random generator used in
the two versions. With this validated version in hands, we are now ready to start the second
and third phases of our plan, i.e., writing the module in a more C++ friendly style in line with
the CORSIKA 8 framework (e.g., using templates, static polymorphism, etc.) and applying
different types of optimizations, also benefiting from the language capabilities.

-8 -6 -4 -2 0 2 4

x (km)

 -5

  0

  

5

10

y
 (

k
m

)

1

10

100

1000

|P
h
o
to

n
 c

o
u
n
ts

 d
iff

e
re

n
c
e
|

(a) 2D map of the photon counts difference on the ground

0 100000 200000 300000
Photons

0

100

200

300

400

500

600

700

800

D
e
p

th
 (

g
.c

m
-2

)

Corsika 7

Corsika 8

(b) Photon distribution by atmospheric depth
for CORSIKA 7 (in red) and CORSIKA 8 (in

blue)

Figure 5: Comparison between CORSIKA 7 and CORSIKA 8 after propagation in atmo-
sphere with gamma incident particles - 10 CORSIKA 7 showers with 4.9x106 Cherenkov
photons produced

4 Conclusion

Starting with a detailed profiling of CORSIKA (version 7), we have been able to apply differ-
ent kinds of optimizations while keeping a portable code. Starting from a vectorized version
developed in a previous work, we have been able to further optimize CORSIKA by improving

memory access and enhancing vectorization. The overall obtained speed-up after this opti-
mization work is 1.86 in elapsed time and 2.05 in number of cycles. All these optimizations
were done without changing the logic of the algorithms and in such a way that the obtained
physical results were identical to the original version.

Further CORSIKA optimization would require profound changes in algorithms or in data
structures. We have thus chosen to contribute to the on-going CORSIKA 8 project for the full
rewriting of CORSIKA in C++. Our contribution focuses on the Cherenkov module, which
is of particular interest for the CTA community and which also appears to be the bottleneck
regarding run time in CTA simulations. The work presented in this paper is the first phase
toward the development of an optimized Cherenkov module in CORSIKA 8 framework.

Our goal was to first develop a version very similar to CORSIKA 7, from the algorithmic
point of view, to have a good basis for comparison. We have thus performed a detailed
profiling of the new and of the old code and compared several hardware counters. The overall
performance of the new version is already very close to CORSIKA 7, even before any specific
optimization work. Nevertheless, an excess of cache misses in the new version indicates that
there is some room for improvement regarding memory access.

Then, we have set up a test environment that allowed us to compare the distributions of
different physical output quantities of the Cherenkov module between the two codes. We
have found that the agreement between the different distribution is excellent.

Starting from this version, the next step will consist in writing a new one in line with
the CORSIKA 8 framework C++ style (e.g., using templates, static polymorphism, etc.).
Then, we will investigate different optimization strategies, like using optimized libraries for
different mathematical computations or developing our own vectorized operators thanks to
C++ features, that could also benefit to other modules. Finally, we think that a promising
strategy would be to reduce the precision of some computations from double to single in
specific parts of the code, so to take even more benefit from vectorization. In order to study
the numerical errors associated to the reduction of the precision, we plan to use the Shaman
library[7] or equivalent tools.

References

[1] L.Arrabito, K.Bernlöhr, J.Bregeon, M.Carrère, A.Khattabi, P.Langlois, D.Parello
G.Revy , Optimizing Cherenkov Photons Generation and Propagation in CORSIKA for
CTA Monte–Carlo Simulations, Computing and Software for Big Science, 4, 9 (2020)

[2] D.Heck et al., CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers,
Forschungszentrum Karlsruhe Report FZKA 6019, 90 pages, 10 figures (1998)

[3] The CTA Consortium, Science with the Cherenkov Telescope Array, WORLD SCIEN-
TIFIC, ISBN 9789813270091, http://dx.doi.org/10.1142/10986 (2018)

[4] C.Lauter , A new open-source SIMD vector libm fully implemented with high-level scalar
C, 2016 50th Asilomar Conference on Signals, Systems and Computers, pp. 407-411
(2016)

[5] R.Engel et al., Towards a Next Generation of CORSIKA : A Framework for the Simulation
of Particle Cascades in Astroparticle Physics, Comput. Softw. Big Sci., 43, 2 (2019)

[6] S.Browne et al., A Portable Programming Interface for Performance Evaluation on Mod-
ern Processors, The International Journal of High Performance Computing Applications,
14, 189-204 (2000)

[7] N.Demeure, Gestion du compromis entre la performance et la précision de code de cal-
cul, HAL https://tel.archives-ouvertes.fr/tel-03116750, 169 (2021)

11

EPJ Web of Conferences 251, 03011 (2021)	 https://doi.org/10.1051/epjconf/202125103011
CHEP 2021


