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Abstract: Higher-spin diffeomorphisms are to higher-order differential operators what diffeomor-
phisms are to vector fields. Their rigorous definition is a challenging mathematical problem which
might predate a better understanding of higher-spin symmetries and interactions. Several yes-go
and no-go results on higher-spin diffeomorphisms are collected from the mathematical literature
in order to propose a generalisation of the algebra of differential operators on which higher-spin
diffeomorphisms are well-defined. This work is dedicated to the memory of Christiane Schomblond,
who taught several generations of Belgian physicists the formative rigor and delicate beauty of
theoretical physics.
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1. Introduction

Higher-spin gravity theories are interacting theories whose spectrum of free particles
contains at least one massless higher-spin particle (i.e., of spin greater than two). As a
byproduct of the consistency of their symmetries, they must contain as well as a massless
particle of spin two in their spectrum, which one may tentatively interpret as a graviton
(hence the name “gravity”). Despite the long history of this subject!, the (non)locality
properties of its finite gauge symmetries remain elusive.” They are the subject of this paper.
More precisely, one will focus on finite gauge symmetries in the metric-like formulation
with unconstrained symmetric tensors as gauge fields and parameters.

It is well-known that a finite collection of symmetric tensor fields can be packaged
into a single generating function, which can be interpreted as the symbol of a differential
operator. Accordingly, the commutator of differential operators (or, respectively, the Pois-
son bracket of their symbols) defines a Lie algebra structure on the space of higher-spin
gauge parameters. Moreover, the latter gauge parameters act on higher-spin gauge fields
via the adjoint action. This simple procedure provides a non-abelian deformation of the
gauge symmetries for free higher-spin gauge fields in the unconstrained metric-like for-
mulation. These non-abelian deformations have been first considered by Segal in their
investigation [14] of conformal higher-spin gravity (where they are supplemented by
higher-spin Weyl-like transformations). Later on, they were obtained by gauging hyper-
translations via the Noether method in the metric-like formulation [15,16], the frame-like
formulation [17,18] and the BRST formulation [19]. They should also arise from off-shell
higher-spin gravity after elimination of auxiliary fields and partial gauge-fixing [20-25].
Finally, they appear as the natural gauge symmetries in ambient space for the higher-spin
extension of Fefferman-Graham’s ambient metric [26-28].

Some recent mathematical results by Grabowski and Poncin [29,30] on the automor-
phisms of the Lie algebra of differential operators imply that this Lie algebra does not
integrate to a Lie group. This mathematical no-go theorem implies that non-abelian higher-
spin gauge symmetries are not well-defined if the fields and parameters are packed into
differential operators. This shows that if finite higher-spin symmetries are taken seriously,
then they require to leave the realm of operators with bounded number of derivatives (the
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landmark of locality) in the sense that the topological vector space of differential operators
must be suitably completed. Some proposals are made in this direction in this paper, mostly
by collecting old results in deformation quantisation.

The plan of the paper is as follows. The problem with the finite counterpart of non-
abelian higher-spin gauge symmetries in the unconstrained metric-like formulation is
addressed in Section 2, where the results by Grabowski and Poncin are briefly reviewed
and translated into a no-go theorem on naive higher-spin diffeomorphisms. This no-go
theorem calls for an extension of the class of generating functions for higher-spin gauge
fields and parameters. This way out is exemplified in Section 3 on the geometrically
transparent case of their Poisson limit: the space of symbols may be extended to the
space of smooth functions on the cotangent bundle on which symplectomophisms are
well-defined. Our strategy is to consider a deformation of this example where the space
of differential operators is extended to a larger space, modeled on the deformed algebra
of functions on the cotangent bundle. This is done by importing known results on the
deformation quantisation of cotangent bundles. Nevertheless, some work needs to be
done in order to ensure that the elements of the corresponding deformed algebra can be
interpreted as suitable generalisations of differential operators. This is the main technical
task of this paper. As a preliminary step, the one-to-one correspondence(s) between
differential operators and their symbols, i.e., the quantisation(s) of the cotangent bundle, is
reviewed in Section 4 in the light of almost-commutative algebras. In Section 5, our general
strategy for going beyond differential operators is explained. As a first proposal, the class
of almost-differential is defined in Section 6 in terms of differential operators weighted
by some formal variable. This provides a functional space of generalised differential
operators bypassing the no-go theorem. Some results from deformation quantisation are
then reviewed in Section 7. The next step is to make use of these results to define in
Section 8 the class of formal quasi-differential operators, and show in Section 9 that it
provides another space of generalised differential operators bypassing the no-go theorem.
The relation between the two classes is discussed in Section 10. Finally, we end up with
a short conclusion in Section 11. An Appendix A details the proof of a technical lemma.
The paper is long but it aims to be as self-contained as possible.

2. Higher-Spin Gauge Symmetries in the Unconstrained Metric-like Formulation
2.1. Non-Abelian Deformations of Higher-Spin Gauge Symmetries

The metric-like formulation dates back to Fronsdal’s seminal works on free higher-
spin gauge fields on constant-curvature backgrounds [31,32]. He immediately raised the
question of the nonlinear completion of this free theory, i.e., the introduction of interactions
in a way compatible with (deformed) gauge symmetries.

Deforming higher-spin gauge symmetries. A more humble problem, that one can view
as a preliminary step towards Fronsdal’s programme, is to look for a deformation:

O Muyeope = 5V (g Cpyopisy + O(H), (1)

of the infinitesimal gauge transformations, where V is the covariant derivative with respect
to the background metric g, with respect to which indices will be raised and lowered.
The round bracket stands for the total symmetrisation with weight one (i.e., T, ...,
TP1 s for a symmetric tensor). One requires that the deformation must be consistent, such
that the commutator [J¢,, d¢, | of two gauge transformations closes,

[551’552]}1]‘1"?‘5 = 5[@'1,52]]/1#1"'#5 ’ (2)

where ({1, {>] stands for a Lie bracket over the space of gauge parameters. Strictly speaking,
the closure might hold only on-shell.

Non-abelian deformations. The deformation (1) is usually required to be non-abelian,
i.e., the Lie bracket over the space of gauge parameters must be non-trivial. In the original
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metric-like formulation of Fronsdal, this deformation problem is already a challenge®
because, in the undeformed theory, the gauge fields ..., are constrained to be double-
traceless while the gauge parameters ¢y, ...,,_, are traceless, with respect to the background

metric.*

Relaxing trace constraints. This difficulty provides a strong motivation for considering
“unconstrained” formulations® where these tracelessness conditions are absent.® In such
case, two (closely related) non-abelian deformations stand out from the crowd, for their
simplicity. They have a neat geometric interpretation which makes manifest that these
fully nonlinear gauge transformations are actually background independent (although
they look superficially background-dependent deformations, if one perturbs around a
given constant-curvature background). Let us briefly review these infinitesimal gauge
transformations, since their finite counterpart is the focus of this paper.

2.2. Two Examples of Infinitesimal Higher-Spin Gauge Symmetries

The crucial observation is that the undeformed part of higher-spin gauge transforma-
tion in (1) takes the form of a so-called Killing derivative, V(H 1{5}12‘,%), which is familiar to
geometers and well-known to arise from the Schouten bracket with the metric. This remark
can be used to produce two examples of nonabelian deformations as follows.

Example 1 (Hamiltonian vector fields on the cotangent bundle). First, one packages the tower
of symmetric tensors (here gauge fields and parameters) into a single function on the cotangent
bundle T* M of the spacetime manifold M :

Mp) = D) H) by
s=0 "
Eop) = X g T W P P ®

s=1

Note that the coefficients in the expansion in powers of momenta are contravariant symmetric
tensor fields. The latter will be called symmetric multivector fields for short. Second, one defines the
higher-spin metric as the following extension of the background metric

$0up) = 2olup) + hxp), g% p) = 380 pupy @

where go(x, p) encodes the background metric, of which h(x, p) is seen as a small (higher-spin)
fluctuation. Third, the canonical Poisson bracket on the cotangent bundle T* M provides a non-
abelian deformation of higher-spin gauge transformations,

oeg(x,p) = {¢(x,p), g(x,p)}. (5)

One can check that (5) takes the form (1) by inserting definitions (3)—(4) and the formula

{S(xp), gox,p)} = _71)!V(”1§“2"'”5)(X) Py Pos - 6)

s=1 (S
The corresponding Lie bracket over gauge parameters is nothing but the canonical Poisson bracket

(G p), 2 p)) = ELD a%(px;: - aglag,lp) ar), )

When expressed in terms of the coefficients in (3), it is called the Schouten bracket of symmetric
multivector fields [41] and reads



Universe 2021, 7, 508 4 of 41

ViU

{gl , 62 }1/1---1/71_'_72_1 = 1 aygl( (x) é;rl +]"’Vrl +Y271)]"(x) B 1’1 a‘ugz(l/lu'l/rz (x) 611/1’2#»1"-1/714»}'271)]’[ (x) ' (8)
In symplectic geometry language, the higher-spin gauge transformation (5) is nothing but a Lie
derivative of the function g(x, p) along the Hamiltonian vector field on the cotangent bundle T* M
generated by the function §(x, p). Therefore its finite counterpart is a Hamiltonian symplectomor-
phism of the cotangent bundle.

Example 2 (Higher-spin Lie derivatives). Higher-spin gauge fields hy,, ..., transform as Lorentz
symmetric tensor fields on a constant-curvature background, at linearised order. However, there is
no reason to expect them to transform like symmetric tensor fields under general coordinate trans-
formations in fully nonlinear higher-spin gravity. In fact, minimal coupling of massless particles
to gravity is known to be problematic in the standard (metric-like or frame-like) formulations.”
Relaxing this requirement, one can package the tower of gauge fields and parameters as differential
operators on the spacetime manifold M :

. —il)3

H = E%hﬂl Hs(x)vm...vysq_”_, (9)
s=0

X - Z % EH s =1 () Vi Vi + ... (10)
o] (s—=1)!

where { is a parameter with the dimension of a length (which plays a similar role to the string
length) and the dots stand for lower-order terms fixed by the ordering prescription.® Similarly,
the higher-spin metric defines the following extension of the background Laplacian

A

G=0Gy+H, Gy = — = V2. (11)

The commutator of differential operators provides another non-abelian deformation (1) of higher-spin
gauge transformations,

5.6 = L%,6, (12)

since

¥ (13)

S

o A —il)?
(X, Col = D) ((5_11))|V(u1,§ﬂ2 K (x) Vi -+ Vs
s=0 ’

Low-spin truncation. If one truncates the gauge transformations (1) obtained from (5) or
(12) to the “low-spin” sector (s = 1,2), they both reproduce Maxwell gauge transformations
of scalar gauge parameter ¢(x) and infinitesimal diffeomorphims, i.e., Lie derivatives along
the vector field X = ¢#(x)d,. By analogy, the unconstrained gauge transformation (12)
will be called a higher-spin Lie derivative along the differential operator X . Their finite
counterpart will be called higher-spin diffeomorphisms (they will be defined more precisely
later).

Differential operators vs. Symbols. Note that a proper ordering prescription implies
that there is a one-to-one correspondence between differential operators and symbols.
In particular, here there is a one-to-one correspondence between higher-spin metrics g(x, p)
as in (4) and higher-spin extension G of the Laplacian as in (11). Accordingly, one can
rewrite (12) as

oeg(x,p) = %[C(xfp),g(xfp)]* = {Z(x,p), glx,p)} +O(0), (14)

in terms of a suitable star-product x (with respect to ¢ as formal variable).



Universe 2021, 7, 508

5 of 41

Higher-spin diffeomorphisms vs. Hamiltonian symplectomorphisms. The form (14) of
the transformation (12) makes manifest that the first deformation (5) can be obtained
as the Poisson limit (/ — 0) of the second deformation (12). Accordingly, the Poisson
limit of higher-spin diffeomorphisms are symplectomorphisms of the cotangent bundle
of spacetime. In this sense, higher-spin diffeomorphisms can be thought as quantum
symplectomorphisms, however we refrain from using this terminology because it can be
misleading (they are finite gauge symmetries of classical higher-spin gravity).’

2.3. Problems with Higher-Spin Diffeomorphisms

The existence of finite counterparts of the infinitesimal non-abelian gauge transforma-
tions (5) and (12) is a challenging mathematical problem. The subtlety here is the functional
space to which the higher-spin metric g(x, p) (or, equivalently, G) and the higher-spin gauge
parameter ¢(x, p) should belong in order for finite higher-spin gauge transformations to
be well-defined.

The problem is that symplectomorphisms or higher-spin diffeomorphisms generically
transform a symbol g(x, p) or a differential operator G, that encodes a finite collection of
symmetric tensor gauge fields, into a “pseudo” symbol (in the sense of a function on the
cotangent bundle which is not polynomial in the momenta) or, respectively, a “pseudo”
differential operator of infinite order (in the sense of an operator which is not polynomial
in the derivatives). Generically, a finite higher-spin gauge transformation of a given
higher-spin metric activates an infinite tower of higher-spin gauge fields with unbounded
spin. This agrees with (and is closely related to) the standard lore that higher-spin gravity
theories (in dimension 4 or higher) must have an infinite spectrum of gauge fields with
unbounded spin. While the non-abelian structure of infinitesimal higher-spin symmetries
(rigid or gauged) is enough to derive the latter property of higher-spin gravity spectra,
the problem with finite higher-spin gauge symmetries is much stronger. It highlights the
fact that higher-spin diffeomorphisms are necessarily non-local in terms of the spacetime
manifold (albeit local in terms of its cotangent bundle).

These general remarks will not come as a surprise to experts. Our goal here is to
emphasise that both the problem and some solutions can be made mathematically precise
by extracting known results from the mathematical literature.

2.4. Notation and Terminology
In order to state the problem as a theorem, let us fix some notation and terminology.'"

Poisson algebra of symbols. Let S(M) denote the space of smooth functions on the
cotangent bundle T*M that are polynomial in the momenta. Such functions are usually
called symbols. In Darboux coordinates, symbols h(x, p) are smooth functions of positions
x#* and polynomial functions of momenta p, . The space S(M) of symbols on M is endowed
with a structure of Poisson algebra via the pointwise product and the canonical Poisson
bracket. It is isomorphic to the space ©7 (M) := I'(OTM) of sections of the symmetric
tensor product of the tangent bundle (i.e., symmetric multivector fields on M), endowed
with a structure of Poisson algebra via the symmetric tensor product and the Schouten
bracket (8).

Associative algebra of differential operators. Let D (M) denote the associative algebra of
differential operators on M. Heuristically, they are linear operators acting on C* (M) of the
form F(x, 0) with only a finite number of derivatives.

2.5. No-Go Theorems

The Lie algebras corresponding to the vector spaces S(M) and D(M) endowed with
the canonical Poisson bracket or, respectively, with the commutator as Lie bracket will be
denoted G(M) and ©(M). The higher-spin gauge transformations (5) and (12), respectively,
correspond to the adjoint action of the respective algebras &(M) and D (M) on themselves.
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By definition, Hamiltonian vector fields on T*M are inner derivations of the Poisson
algebra C*(T*M). In particular, Hamiltonian vector fields on T* M which are polynomial
in the momenta are inner derivations of the Poisson algebra S(M) of symbols. Similarly,
the adjoint action of a differential operator is by definition an inner derivation of the associa-
tive algebra D(M). Therefore, the higher-spin gauge transformations (5) and (12) coincide
with the inner derivations of these two algebras. However, the inner automorphisms of
these algebras are scarce: they only correspond to the gauge symmetries of the low-spin
truncation, i.e., internal Abelian gauge symmetries (as in Maxwell electromagnetism) and
standard diffeomorphisms of the manifold M (as in general relativity).

The Lie algebras of inner derivations of S(M) and D(M) are isomorphic to (M) and
D (M), respectively. The problem is that these Lie algebras of inner derivations do not
integrate to Lie groups of inner automorphisms. While the infinitesimal automorphisms are
perfectly well defined, however their naive exponentiation is not well defined in general
(see Section 7 of [29] and Section 8 of [30] for more details) except for the inner automor-
phisms of G(M) or (M) generated by symbols of degree one or, respectively, by first-order
differential operators. The Poisson algebra S(M) of symbols and the associative algebra
D(M) of differential operators admit very few finite automorphisms, although they admit
a plethora of infinitesimal automorphisms (derivations).

One may summarise the results of [29,30] relevant for us as follows.

Theorem 1 (Grabowski and Poncin). Any one-parameter group of automorphisms of the associa-
tive algebra D(M) of differential operators (respectively, of the Poisson algebra S(M) of symbols)
is generated by a first-order differential operator (respectively, by a symbol of degree one in the
momenta).

By contraposition, this can be expressed equivalently as a no-go theorem.

Theorem 2 (No-go theorem). Higher-spin Lie derivatives along higher-order differential operators
on M (respectively, higher-degree Hamiltonian vector fields on T*M) cannot be integrated to
one-parameter groups of automorphisms of the associative algebra D (M) of differential operators
(respectively, of the Poisson algebra S(M) of symbols).

If a Lie algebra is integrable to a Lie group'!, then one would expect (for any reasonable
topology) that all its inner derivations are integrable, locally, to one-parameter groups of
automorphisms of the Lie algebra (via the exponential map). Accordingly, an important
corollary of Grabowski—Poncin’s theorem is the strong no-go theorem (cf. Corollary 4
in [29]):

Corollary 1 (Grabowski and Poncin). The two infinite-dimensional Lie algebras, © (M) of differ-
ential operators and &(M) of symbols on a manifold M, are not integrable to infinite-dimensional
Lie groups (of which they are the Lie algebras).

2.6. Definitions

In order to describe precisely the origin of the problem, some definitions are in order.

Filtered vs. Graded algebras. A filtered algebra .A admits a collection of vector subspaces
A; (indexed by non-negative integers i € N) such that A; = A; fori < jand A;A; < A;yj for
all i and j.'? The graded algebra associated to the filtered algebra A is denoted grA = @y gr; A
and defined via the quotients gr; A = A; /A;_;. The equivalence class [a] € grA of an
element a € A of a filtered algebra will be called the principal symbol of a. The principal
symbol is a homogeneous element of the associated graded algebra (i.e., [a] has a fixed
grading). This defines an infinite collection of surjective linear maps

g; Al‘ - griA ap [ai], (15)
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which will be collectively denoted ¢ : A — gr.A and called the principal symbol map.

Commutative algebra of symbols. The algebra S(M) of symbols can be either filtered or
graded by the polynomial degree in the momenta of symbols. The distinction only has to
do with the choice of decomposition of this algebra, either as a “matryoshka doll” (filtered
algebra) or as a “sliced bread” (graded algebra). A symbol on M which is a homogeneous
polynomial in the momenta will be called a principal symbol. Principal symbols are in
one-to-one correspondence with symmetric multivector fields, hence S(M) =~ @7 (M) as
graded algebras.

Almost-commutative algebras. The graded algebra gr.4 associated to a filtered associa-
tive algebra A is commutative iff the commutator is of degree —1: [A;, Aj]] < A;yj_1.
In such case, the filtered associative algebra A is called almost commutative (because it is
commutative up to lower-order terms).

Differential operators vs. principal symbols. The associative algebra D (M), filtered by
the order of differential operators, is almost-commutative. The principal symbol of a
differential operator of order k is equivalent to a symmetric multivector field of rank k.
The principal symbol map o : D(M) — OT (M) stands for the collection of surjective
linear maps

k
1
ox : DKM) - FT(M) = ] 5 XIUE () Oy Oy > X ()0 © - © Oy (16)
r=0 "

Schouten algebras. A Poisson algebra P that is a graded algebra for the commutative
product (i.e., P; - P; € P;y; for the commutative product) and whose Poisson bracket is of

grading —1 (i.e., {P;, Pj} € Piyj-1) will be called a Schouten algebra.'® The Poisson algebras
gr S(M) of principal symbols and ©7 (M) of symmetric multivector fields, respectively,
graded by the polynomial degree in the momenta and by the rank, are isomorphic as
Schouten algebras.

Poisson limit. The graded algebra gr.A of an almost-commutative algebra A is endowed
with a canonical structure of Schouten algebra, where the Poisson bracket { , } is inherited
from the commutator bracket [ , ] via the principal symbol: {c(a),c(b)} := o([a, b]).
This Schouten algebra gr.A will be called the Poisson limit of the almost-commutative algebra.
The Schouten algebra S(M) of principal symbols is isomorphic to the Poisson limit of the
almost-commutative algebra D(M) of differential operators: S(M) = gr D(M).

2.7. Automorphisms

Finite automorphisms. An automorphism F : A = A of an algebra A is an isomorphism
of the vector space A into itself that preserves the product (i.e., F(a1a2) = F(aq)F(ap),
Vay,ap € A). An automorphism of a filtered algebra .4 must also preserve the filtration
(i.e., F(A;) c A;, Vi e N). An automorphism of a Poisson algebra P must preserve both
products: the commutative product and the Poisson bracket (i.e., F(f1 - f2) = F(f1) - F(f2)

and F({f1, fa}) = { F(f1), F(f2) } forany fi, f2 € P).

Diffeomorphisms. A diffeomorphism of a smooth manifold M is equivalent to an automor-
phism of the algebra C* (M) of smooth functions on M. In particular, a symplectomorphism
of a symplectic manifold M can be defined as an automorphism of the Poisson algebra

C®(M).

Infinitesimal automorphisms. The derivations of an algebra are its infinitesimal auto-
morphisms. An inner derivation of an associative (or Lie) algebra is an endomorphism
ad, of the algebra defined in terms of the commutator (or Lie bracket) as ad, (b) := [a, ].
The infinitesimal automorphisms of a filtered algebra are those derivations that preserve
the filtration.
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Lie derivatives along vector fields. Let Lxf denote the Lie derivative of the function
f € C*(M) along the vector field X € X(M). The vector fields X € X(M) on a manifold
M are in one-to-one correspondence with the derivations, Lx : f — Lxf, of the algebra
C®(M) of functions on M. Let LxY = [X, Y] = adxY denote the Lie derivative of the vector
field Y € X(M) along the vector field X € X(M). The vector fields X € X(M) on a manifold
M are in one-to-one correspondence with the inner derivations, adyx : Y — LxY, of the
Lie algebra X(M) of vector fields on M. Symplectic vector fields on a symplectic manifold
M are derivations of the Poisson algebra C* (M) for both its commutative product and
its Poisson bracket. In particular, Hamiltonian vector fields are inner derivations of the
Poisson algebra C*(M).

Higher-spin Lie derivatives along differential operators. By analogy, the inner deriva-
tion adg : Y — ad¢Y = [X, Y] of the associative algebra D(M) of differential operators
will be called the higher-spin Lie derivative along the differential operator X € D(M). Note
that if X e D"(M) is a differential operator of order r, then the higher-spin Lie derivative
adg : DI(M) — D7t"=1(M) along X increases the order by r — 1. Therefore, higher-spin
Lie derivatives along first-order differential operators define infinitesimal automorphisms
of the filtered algebra D (M) of differential operators, but higher-order differential opera-
tors do not define infinitesimal automorphisms of the filtered algebra D (M) because they
increase the order. This property is the root of the no-go theorems.

Obstruction to integrability. A global flow on a manifold M is nothing but an action of
the additive group R on the manifold M. A vector field X on M is complete if it generates
a global flow on M, i.e., a group morphism from the one-dimensional Lie group R to the
infinite-dimensional group of diffeomorphisms of M. More algebraically, a vector field X
on M is complete if it generates a group morphism:

exp(eLx) : R — Aut(C*(M)) : t—exp(tLx) (17)

from the additive group R to the group of automorphisms of the commutative algebra
C*(M). Via conjugation, this defines a group morphism:

exp(eady) : R — Inn(X(M)) : t— exp(tady) (18)

from the additive group R to the group of inner automorphisms of the Lie algebra X (M) of
vector fields on M.

Obstruction to integrability. The generalisation exp( e ady) of flows (18) for first-order
differential X € D!(M) works analogously, in the sense that it defines inner automorphisms
exp(tady) of the filtered algebra D(M) of differential operators (for sufficiently small
parameter t). Its naive extension to higher-order differential operators, X € D’(M) with
r > 1, is tantalising but it fails to be well-defined. The higher-spin Lie derivative ad¢ along
a higher-order differential operator is a well-defined derivation of D(M), but it does not
preserve the filtration because it increases the order (by a finite amount). In fact, its power
ad% (appearing in the Taylor series of exp(fady) at t = 0) increase the order of differential
operators on which it acts by n(r — 1), which becomes arbitrarily large when n — o0 and
r > 1. This explains why the tentative exponentiation exp( t ad¢) has a wild action: it shifts
the order by infinity! Therefore, if X is a higher-order differential operator then exp( t ad <)
sends differential operators to objects that are outside D(M).'*

The above simple argument shows explicitly that, in order to define higher-spin
diffeomorphisms, the space of differential operators should be completed, in order to
include generalised differential operators with an infinite number of derivatives.

3. Symplectomorphisms of the Cotangent Bundle

The obstruction to the integrability of inner derivations of the associative algebra
D(M) of differential operators to one-parameter group of inner automorphisms is not a



Universe 2021, 7, 508

9 of 41

“quantum” feature since the same applies for the Poisson algebra S(M) where there is a
similar obstruction to the integrability of inner derivations. In fact, the “classical” case
shows a clear way out of the no-go theorem of Grabowski and Poncin. The aim of this
section is to use the cotangent bundle in order to explain geometrically the origin of the
problem and its solution.

In order to demystify the subtleties at hand and gain some geometric intuition, they
are illustrated on elementary examples in this section. On the way, basic concepts and
results in symplectic geometry are reviewed.

3.1. Lagrangian Submanifolds

Consider a submanifold ' © M of a symplectic manifold M. It is defined by an
embedding i : N < M. A submanifold such that the pullback of the symplectic two-form
Q) on M along this embedding vanishes identically on N (that is to say: i*Q) = 0) is called
an isotropic submanifold. A maximal isotropic submanifold N' = M of a finite-dimensional
symplectic manifold M,

iN—>M, i*fO=0, 2dimN = dim M, (19)
is called a Lagrangian submanifold.

Example 3 (Zero section of the cotangent bundle). The canonical fibration
T:T*M—> M : (x,py) — x¥ (20)
of the cotangent bundle possesses a canonical section (as any vector bundle) : the zero section, i.e.,
{:M—T*M: x— (x#,0). (21)

The pullbacks of the fibration and of the zero section define, respectively, the canonical embedding (of
the subspace of functions on the base)

T CP(M) > CE(T*M) : f(x) > X(x, p) = f(x) (22)
and the canonical projector (onto the space of functions on the base)
" CH(T*M) - C*(M) : X(x,p) — Xo(x) = X(x,0). (23)

The fibre T~ (m) = T} M of the canonical fibration above a point m € M and the graph {(M) <
T*M of the zero section are Lagrangian submanifolds of the cotangent bundle.

Example 4 (Symplectic vector space). Consider a finite-dimensional symplectic vector space
W with symplectic two-form Q). A Lagrangian subspace V. W is such that the quotient W/V
isomorphic to the dual space V* of the Lagrangian subspace: W/V = V*. The isomorphism is
provided by the symplectic two-form itself:

Q:W/WV SV [w]— Qw,e), (24)

where w € W is a representative of the equivalence class [w] € W/V (i.e., w ~ w + v for any
veV).

Any differential one-form a € Q! (M) is, by definition, equivalent to a section & : M >
T*M of the canonical fibration (20) of the cotangent bundle. If the differential one-form
on M reads as & = «,(x) dx" in some local coordinates x* on M, then the section reads as
pu = ayu(x) in the corresponding local Darboux coordinates (x*, py) on T* M. The pullback
of the tautological one-form 8 € Q!(T*M) on the cotangent bundle along the section
a : M — T*M identifies with the original differential one-form, #*6 = « (as is obvious
in components since 6 = p,dx!). A submanifold L  T*M of the cotangent bundle T*M
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projects diffeomorphically on the base M iff it is the graph of a differential one-form a on
the base M, i.e., L = a(M).

Consider an exact symplectic manifold M with Liouville one-form 6, i.e., Q) = 46.
An exact submanifold is a Lagrangian submanifold N ¢ M such that the pullback of the
Liouville one-form by the embedding i : N < M is exact (i.e., i*6 = dH for a function H

on N).

Example 5 (Generating function). Consider a function H € C* (M) on the manifold M. Its dif-
ferential & = dH € QY (M) defines a section of the cotangent bundle, which reads as p, = 0, H(x)
in Darboux coordinates. The graph dH(M) < T*M of such a section is an exact Lagrangian
submanifold of the cotangent bundle. In such case, the function H on the base manifold is called a
generating function.

Putting everything together, a submanifold L < T*M of the cotangent bundle T* M
projecting diffeomorphically on the base manifold is Lagrangian (respectively, exact) iff
it is the graph of a closed (respectively, exact) differential one-form & on the base M,
ie, L = a(M) with da = 0 (respectively, « = dH).

3.2. Flows of Hamiltonians of Degree Zero

The Hamiltonian flows of the cotangent bundle generated by Hamiltonians of degree zero in
the momenta produce vertical symplectomorphisms mapping the zero section to exact submanifolds.

Proof. To see this, pick a point p € T,; M of the cotangent bundle, i.e., a tangent covector
p at m € M. Consider a differential one-form A = A, (x)dx# € Q'(M). The translations
p — p + A|m by the differential one-form on M read in fibre coordinates as:

x> xH py = Pl = py+ Ap(x). (25)

These translations are vertical diffeomorphisms of the cotangent bundle T* M. Moreover,
they are (exact) symplectomorphisms iff the differential one-form A is closed (exact).
In physical terms, they correspond to a minimal coupling to an electromagnetic field with
vanishing fieldstrength (pure gauge). In geometrical terms, the corresponding vertical flow
is symplectic/Hamiltonian iff it maps the zero section to Lagrangian/exact submanifolds.
If this vertical flow is Hamiltonian, then the corresponding Hamiltonian H(x) is a function
on the base M independent of the momenta. This ends the proof. O

Example 6 (Vertical affine symplectomorphisms). Consider a vector space V with basis {e,}
and Cartesian coordinates y*. The coordinates on the cotangent bundle T*V =~ V @ V* are
(y*, pp) - The Hamiltonian flow of T*V generated by a homogenous Hamiltonian H(y, p) = a, y*,
of degree one in the positions y and zero in the momenta p, produce vertical translations, (y*, py) —
(Y, pp + tap), mapping the zero section {(V) = V @ 0 (of equation p, = 0) to parallel affine
subspaces (of equation p, = —t ag). The Hamiltonian flow of T*V generated by the homogenous
Hamiltonian H(y, p) = %l’éab y™yP, of degree two in the positions and zero in the momenta, produce
linear vertical symplectomorphisms, (y*, pp) — (Y, pp + t apc Y), mapping the zero section p, = 0
to linearly independent exact subspaces (of equation p, = —t g, y?). The group of all vertical affine
symplectomorphisms is isomorphic to the abelian group V* @ (V* © V*).

3.3. Lagrangian Foliations

A foliation of a symplectic manifold M whose leaves are Lagrangian submanifolds
is called a Lagrangian foliation (in symplectic geometry) or a polarisation (in geometric
quantisation) of a symplectic manifold.

Example 7 (Vertical polarisation of the cotangent bundle). The fibration T : T* M — M defin-
ing the cotangent bundle provides an example of Lagrangian foliation (since each cotangent space
T M is a Lagrangian submanifold of the cotangent bundle T* M), called the vertical polarisation of
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the cotangent bundle. Note that the cotangent bundle may admit other Lagrangian foliations than
this canonical one.

Example 8 (Symplectic vector space). The direct sum V @ V* of a finite-dimensional vector
space V and its dual V* is a finite-dimensional symplectic vector space endowed with a canonical
symplectic two-form Q defined by Qv @, w® B) = a(w) — B(v) forallv,w e Vand o, p € V*.
Conversely, any finite-dimensional symplectic vector space W is isomorphic to a direct sum V @ V*
of a Lagrangian subspace space V. W with its dual V*. In fact, any finite-dimensional symplectic
vector space W may be decomposed as the direct sum V @ L of a Lagrangian subspace V. W and
another Lagrangian subspace L < W complementary to V. Moreover, the latter subspace L ~ W/V
is isomorphic to the dual of the former subspace V, i.e., L ~ V*. Any Lagrangian subspace L ¢ W
of a symplectic vector space W defines a Lagrangian foliation by all affine subspaces parallel to L.

Example 9 (Cotangent bundle of a vector space). The cotangent bundle of the vector space V is
a finite-dimensional symplectic vector space which decomposes as the direct sum T*V = V@ TV of
the base space V and the cotangent space Tj'V = V* at the origin. Actually, any finite-dimensional
symplectic vector space W identifies with the cotangent bundle T*V of a finite-dimensional vector
space V upon a choice of polarisation W = V & L.

3.4. Flows of Hamiltonians of Degree One

The Hamiltonian flows of the cotangent bundle generated by homogeneous Hamiltonians of
degree one in the momenta produce symplectomorphisms obtained by lifting diffeomorphisms of the
base. They preserve both the vertical polarisation and the zero section of the cotangent bundle.

A symplectomorphism of the cotangent bundle T* M coincides with the lift of a diffeo-
morphism of the base manifold M iff it preserves the tautological one-form 6. In Darboux
coordinates, this means that p;l dx'!' = p,dx! if the change of coordinates takes the form:

0xP
oo x(x), pe = Py = S5 e (26)

Consider a Hamiltonian flow of the cotangent bundle T* M. The following statements are

equivalent: the flow

(a) preserves the tautological one-form,

(b) is the lift of a flow on the base manifold M generated by a base vector field, X =
XH(x) Oy,

(c) is generated by a homogenous Hamiltonian of degree one in the momenta, H(x, p) =
X1 (x) py-

Example 10 (Lift of affine transformation). Consider a vector space V with Cartesian coordinates
y*. Darboux coordinates on the cotangent bundle T*V = V & V* are (y*, pp). The Hamilto-
nian flows of T*V generated by Hamiltonians with affine dependence in the positions and linear
dependence in the momenta,

H(y,p) = (A" + A%ay") p., 27)
are lifts
v®a — V®d = (L+Av)) ® ((AT)_l(tX)) (28)

of affine transformations v — v’ = £ + A(v) of the base V, where { € V defines a translation and
A € GL(V) defines a general linear transformation whose transpose is denoted AT € GL(V*).

More generally, the following statements are equivalent: a Hamiltonian flow of the
cotangent bundle of a manifold M

(a) preserves the vertical polarisation, i.e., it maps cotangent spaces T,; M to cotangent
spaces T, M,
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(b) is the composition of a vertical symplectomorphism and the lift of a diffeomorphism
of the base M,
(c) is generated by a Hamiltonian of degree one in the momenta, H(x, p) = X¥(x) py, +

f(x).

Example 11 (Affine symplectomorphisms). Consider again the cotangent bundle T*V of a
vector space V. Its affine symplectomorphisms span the affine symplectic group ISp (V @ V*). The
subgroup of affine symplectomorphisms that preserve the vertical polarisation and the Lagrangian
subspace V@0 < T*V is isomorphic to the affine group IGL(V). Finally, the group of affine
symplectomorphisms that preserve the vertical polarisation also contains an abelian subgroup: the
subgroup V* @ (V* © V*) of vertical affine symplectomorphisms. In fact, the group of affine
symplectomorphisms preserving the vertical polarisation is isomorphic to the semidirect product

IGL(V) x (V*@ (VFOVY)).

3.5. Flows of Hamiltonians of Higher Degree

The Hamiltonian flows of the cotangent bundle that do not preserve the vertical polarisation
are generated by homogeneous Hamiltonians of degree strictly greater than one in the momenta.
The converse is also true.

A symplectomorphism of the tangent bundle, ® : T*M — T*M, that does not pre-
serve the canonical fibration 7 : T*M — M does, nevertheless, preserves the symplectic
structure by definition. Thus, it maps the cotangent space T,; M at a point m to a Lagrangian
submanifold ®(T;; M). The latter can be taken as fibre over ®(m). Thus, any symplecto-
morphism & defines a Lagrangian foliation (in general, distinct from the canonical one).

Example 12 (Linear changes of polarisation). Consider once again the cotangent bundle T*V
of a vector space V. The Hamiltonian flows generated by Hamiltonians, H(y®, p) = 3 Y papy,
independent of the positions and quadratic in the momenta are horizontal in the sense that they
preserve the zero section p, = 0, in fact they read as (y*, pp) — (Y* +tY*p¢, py). The vertical
polarisation of T*V by the affine subspaces y* =y, parallel to the cotangent space TV at
the origin (of equation y* = 0), is mapped to the polarisation of T*V by affine subspaces of
equation y* = y& + t Y py, . The group of horizontal changes of polarisation is an abelian subgroup
VOV c Sp (Ve V*)of the group of linear symplectomorphisms. The affine symplectomorphisms
of the cotangent bundle T*V of the vector space V are summarised in Table 1.

Table 1. Affine symplectomorphisms of the tangent bundle T*V ~ V @ V* of a vector space V of dimension 7.

Basis of Hamiltonian

Lie Algebra Dimension Exact Symplectomorphisms Vector Fields Basis of Hamiltonians
v n Vertical translations a(:; x7
VEoV* M Linear vertical symplectom xb #;c + x€ ;% § xbxe
VE@ (VO V*) @ Affine vertical symplectom a%a, xb % + x° % x?, xb x°
Vv n Horizontal translations % Pa
2 : : : b 0 0 b
gl(V) n Lift of linear transformations x7 5 — Pe (‘/ALPI; x’pe
igl(V) n?+n Lift of affine transformations %, x? ai;c - pca%b Pa, xb Pe
Vov @ Linear changes of polarisation Pa % +pp % % Pa Py
isp(T*V) 2n? +3n Affine symplectomorphisms Affine vector fields degree 2

Example 13 (Changes of polarisation). On the cotangent bundle T* M of a manifold M, one may
also consider the linear changes of polarisations (x*, p,) — (x¥ +t Y*pp, py) in some Darboux
coordinates. One can explicitly see that such transformations do not preserve the space S(M)
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of symbols. For instance, the symbol f(x¥,p,) = exp(k,x") of degree zero in the momenta is
mapped to the function f(x" +tY*pp, py) = exp(kyx") exp(t Y"Pkyp,) which is manifestly not
polynomial in the momenta for t # 0.

3.6. Summary

Combining all those observations sheds some light on the Grabowski—Poncin theorem
on the scarcity of finite automorphisms of the Poisson algebra of symbols with respect to
its infinitesimal automorphisms. The one-parameter groups of inner automorphisms of the
Poisson algebra S(M) of symbols on the manifold M are necessarily generated by symbols
of degree one. Retrospectively, this is somewhat natural since only symbols of degree one
generate Hamiltonian symplectomorphisms of T*M preserving the vertical polarisation,
the latter being instrumental in the intrinsic definition of the algebra S(M) of symbols.
Breaking the vertical polarisation simultaneously destroys the polynomiality in momenta.
Nevertheless, these Hamiltonian vector fields on T*M are symplectomorphisms, therefore
they will map the vertical polarisation to another choice of polarisation, with respect to
which the pullback of symbols will be polynomial in the new “momenta”.

4. Quantisation of the Cotangent Bundle: Differential Operators as Symbols and
Vice Versa

The Poisson algebra C*(T* M) offers a suitable completion'” of the Schouten algebra
S(M) of symbols on which symplectic diffeomorphisms of the cotangent bundle admit
an algebraic definition as automorphisms of the Poisson algebra. In order to construct a
similar completion of the almost-commutative algebra D (M) of differential operators, one
should first describe it as a quantisation of its Poisson limit S(M).

4.1. Quantisation of the Cotangent Bundle

Quantisation of Schouten algebras. An isomorphism g : S = A of vector spaces from a

Schouten algebra S to an almost-commutative algebra A such that its restrictions g; : S; —

Aj; composed with the ones of the principal symbol map o; : A; — gr; A define

(i)  acollection of isomorphisms §; = 0; 0 g; : S; = gr;.A of vector spaces, and

(i) anisomorphism g : S = gr.A of Schouten algebras between S and the Poisson limit
of A,

will be called a quantisation of the Schouten algebra S into the almost-commutative algebra A.1°

Example 14 (Universal enveloping algebra of a Lie algebra). Let g be a Lie algebra. The uni-
versal enveloping algebra U(g) is almost-commutative. The Poincaré-Birkhoff-Witt map

~ 1
pbw : O(g) = U(g) : Y1 O OYn — 0 2 Ys1) = Ys(n) (29)

€Sy,

is a quantisation of the symmetric algebra O(g) of the Lie algebra.

Quantisation of the cotangent bundle. A quantisation Q : S(M) = D(M) from the
Schouten algebra of symbols on M into the almost-commutative algebra of differential
operators on M will be called a quantisation of the cotangent bundle T* M.

Transfer of structures. Note that a quantisation g : S = A allows to transfer each structure
on the other: On the one hand, A inherits the grading of S as follows: A|; = q(S;) . On the
other hand, one may induce an associative product » on S from the associative product
o of A, as follows: q(f »g) = q(f) oq(g) for all f,g € S. In this way, the vector space S
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becomes endowed with a structure of almost-commutative algebra. One may decompose
the induced product * via the grading of S as

00
* = Z *i *le - Si ®S] - SH,]‘fk . (30)
k=0

where *; decreases the grading by k. Let - and {, } denote, respectively, the commutative
product and the Lie bracket of the Poisson algebra S. The condition (ii) implies that ¢ is
equal to the original commutative product and that the commutator bracket of 1 is equal
to the original Poisson bracket,

x=- and [, ]q=1{}. (31)

Example 15 (Symmetric algebra of a Lie algebra). Let g be a Lie algebra. The quantisation
(29) induces a Poisson structure on its symmetric algebra &(g) for which x, = © and the Poisson
bracket arises from the Lie bracket of g. Moreover, the explicit form of the induced product x is
known [43].

4.2. Compatibility Condition

Rings over an associative algebra. Let A and B be two associative algebras with respective
units 1 4 and 1. An injective morphism i : A — B of associative algebras will be called
a unit map."” An associative algebra B endowed with a unit map i : A < B is called a
ring B over the base algebra A (or A-ring for short). Equivalently, B admits a subalgebra
isomorphic to A : the image i(A) < B. If the image of the unit map belongs to the centre,
i(A) € Z(B), then B is called an algebra over A (or .4-algebra).

Functions vs. Differential operators of order zero. The algebra D(M) of differential
operators is a C*(M)-ring. In fact, any function f € C*(M) defines a differential operator
of order zero, f € D°(M), acting on C* (M) by multiplication by f,i.e., f : g — f -g. This
provides a canonical unit map:

6 : CP®M)—>DM) : ff. (32)
Note that icoo (M) = choo(M) .

Characters of rings over an algebra. Consider an A-linear map 7 : B — A which is a
retraction of the unit map i : 4 < BB and which relate the unit elements, i.e.,

n(i(a)«b) =a-m(b), moi=idy, n(lg)=14. (33)
If this map is such that:
7(by * by) = n(bl *i(n(bz))), by, by € B, (34)
then it is called a character on the A-ring B. A character such that:
byeB: m(byxby)=0, VbyeB — by =0, (35)
or, equivalently'®, such that:
beB: m(bxi(a))=0, acA — b=0, (36)
will be called a non-degenerate character on the A-ring B.

Example 16 (Cotangent bundle). The pullback t* of the fibration T : T*M —» M of the
cotangent bundle defines a unit map (22) endowing C* (T* M) with a structure of C*(M)-ring.
The pullback {* of the zero section { : M — T*M defines a degenerate character on the C*°(M)-
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ring C®(T*M). The same applies for the (co)restriction of these maps to the subalgebra S(M) <
C®(T*M) of symbols, hence S(M) is also a C* (M)-ring endowed with a degenerate character.

Example 17 (Differential operators of order zero vs. Functions). The action of differential
operators on the constant function 1 € C* (M) defines a non-degenerate character on the C*(M)-
ring D(M) of differential operators,

o[1] : D(M) - C*(M) : X — Xo = X[1]. (37)

The function Xy € C*(M) defines a differential operator Xo € D°(M) of order zero, which is
the component of order zero of the differential operator X € D(M). The composition {* of the
character (37) followed by the unit map (32) defines a surjective linear map:

2 A A

* : D(M) - D°(M) : X — X (38)

from the algebra D(M) of all differential operators onto the subalgebra D°(M) of differential
operators of order zero.

Anchors of rings over an algebra. Consider a ring B over an algebra .A. A morphism
from the A-ring B to the A-ring End(A) of endomorphisms of A,

~

¢ :B—End(A) :bb. (39)

will be called an anchor of the A-ring B.” In other words,

(i) itis an algebra morphism, i.e., it relates the product x in B to the product o in End(.A)
one has: .
bl*bz = blobz, Vbl,bzelg, (40)

In particular, an anchor (39) defines a representation of the .A-ring 3 on its base algebra
A.
(ii) it relates their unit maps, i.e., the anchor extends the canonical isomorphism (32) in
the sense that /\
i(a)=4, Vae A, 41)
where “hat” stands, in the left-hand-side, for the anchor (39) and, in the right-hand-
side, for the canonical isomorphism (32). In particular, an anchor relates the unit
elements, i.e.,
g =idy. (42)

Example 18 (Cotangent bundle). Given a quantisation of the cotangent bundle T* M, the follow-
ing square is commutative:

sM) % D)

1 i (43)

CH(M) > DO(M)
where the vertical arrows are, respectively, the unit map (22) of the C*(M)-ring S(M) and the
embedding i : D°(M) < D(M). Therefore, any quantisation Q : S(M) = D(M) of the cotangent
bundle is an injective anchor of the C*(M)-ring S(M) of symbols, whose image is the C* (M)-ring
D(M) of differential operators.

Character = Anchor. The notions of anchor and character on A-rings are actually equiv-
alent to each other. On the one hand, from an anchor & : B — End(A) one may define a
character 77 : B — A via

n(b) = b[1p]. (44)
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On the other hand, from a character 77 : B — A one may define an anchor é : B — End(.A) via
bla] := m(bxi(a)). (45)

One can check by a direct computation that the properties (33) and (34) of a character and
the properties (40) and (41) of a character imply each other. Note that the anchor is injective
iff the character is non-degenerate.

Compatibility condition. A quantisation of the cotangent bundle T* M defines an injective
anchor. However, the corresponding character 7t defined by (44) and the canonical character
{* defined in (23) on the C*(M)-ring S(M) may differ in general. Consider the square:

s £ pwm

S

7*| | & (46)
C*(M) - DO(M)

where the vertical arrows are the canonical characters (23) and (38) on the C*(M)-ring
S(M) and the D°(M)-ring D(M), respectively. A quantisation of the cotangent bundle
T*M such that the diagram (46) is commutative, will be called a compatible quantisation
of the cotangent bundle (in the sense that it is compatible with the canonical characters on
those rings).

4.3. Examples of Quantisation of the Cotangent Bundle

Consider the short exact sequence of C*(M)-modules

0 — DMy & D (M) B oF T (M) — 0, (47)

where the maps iy : D¥~1(M) < D¥(M) define the filtration, and the maps o} : D¥(M) —
OFT (M) (16) send a differential operator onto its principal symbol. The short exact se-
quence (47) reflects the fact that the Poisson limit gr D(M) of the almost-commutative
algebra D(M) of differential operators is isomorphic to the Schouten ©®7 (M) of symmetric
multivector fields.

A linear splitting (i.e., a splitting of vector spaces)

0 — DF1(M) & Dr(M) & T (M) — 0, (48)
of the short exact sequence (47) is equivalent to a quantisation:
q:0T(M)SDM): X—X (49)

of the Schouten algebra ©7 (M) of symmetric multivector fields into the almost-commutative
algebra D(M) of differential operators. More explicitly, for k > 0 the sections g of the
principal symbol (16) take the form:

(50)

v

k
g : O T (M) = DX(M) « XJ7(x) 0, © -+ Oy — | Z3 ()0, - 0
r=0

where the differential operator of order k > 0 reads

X k—1
D Z5 ) oy By = XIN) G+ 2 2R (3 B0y, (BD)
r=0 r=0
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with the coefficients Zy, being linear in the components X} (x). Each such quantisa-
tion (49) is compatible with the principal symbol, in the sense that 00 g = idg7 () (since
0k © gk = id e (pr) by definition of a splitting). For a quantisation (49) compatible with the
canonical characters, the sums in (51) should start from r = 1 for any k > 0.

Obviously, for k = 0 the short exact sequences (47) and (48) are degenerate and take
the form:

0—-D'M) S C®M) -0 and 0« D(M)ECP(M) 0. (52)

In particular, g =  : C*°(M) = D(M) is the canonical isomorphism (32) sending a
function f to the zeroth-order differential operator f. Similarly, the linear splitting (48) for
k =1 is canonical:

0 — DO(M) <~ D(M) & T(M) — 0, (53)

where ¢; reinterprets vector fields as differential operators of order one.
The quantisation (49) of the Schouten algebra S(M) defines a quantisation of the
cotangent bundle T*M
Q:8SM)SDM): X—X (54)

which maps symbols of degree k to differential operators of order k

k
Qi : SF =DM N XD @y pp > Y 200, (55)

r=0 0<s<r<k

where the multi-index notation y(r) = p; - - -y, was used for symmetric indices. The
inverse & = Q™! of a quantisation map (54) will be called a symbol map,

Y :DM)SSM) : X—X. (56)

A quantisation of the cotangent bundle such that each section g is a differential

v()

operator will be called a differential quantisation, i.e., the Zy; X
acting on the components of the principal symbols X, i.e.,

are differential operators

Kkt
Z Z) | P("” ap] apm Xlil(k) , (57)

where ¢ < k and the order «(k, /) of the differential operator depends on k and ¢. For
quantisations corresponding to “choices of ordering” in some coordinate system x*, the sec-
tions gy are differential operators of order k. Differential quantisations will be assumed
to satisfy this extra condition. A differential quantisation q : ©7 (M) = D(M) which is
C®(M)-linear will be called a quantisation of normal type (i.e., all differential operators (57)
are of order zero, hence only the term m = 0 is present in the sum).

Example 19 (Normal quantisation). Consider the manifold M to be topologically trivial. Pick
a global coordinate system x#.”" Then, an example of compatible and normal-type quantisation is
provided by the C*® (M)-linear maps

G+ XFUTH(X) Oy © -+ @ Oy, > XFUH () Oy -+ Oy -

r

(58)

The corresponding quantisation of the cotangent bundle is the normal quantisation sending symbols
to the corresponding normal-ordered operators,

k
1
On : Zﬁxm (X) Py - Py Z Xﬂl Hr(x) Oy -+ Oy - (59)



Universe 2021, 7, 508

18 of 41

The inverse map

A A

Iy X = X(x,p) = exp(—puxt) X[ exp(puxt)] (60)

is the normal symbol map.

Example 20 (Weyl quantisation). The other paradigmatic example of differential quantisation of
the cotangent bundle of a topologically trivial manifold is Weyl quantisation [46,47]. It is based
instead on the Weyl (i.e., symmetric) ordering, instead of the normal ordering (in some Darboux
coordinate system). The corresponding quantisation map is called the Weyl map sending symbols to
the corresponding Weyl-ordered operators. Its inverse is the symbol map called the Wigner map. For
a review and explicit formulae, see, e.g., [15,16]. Note that the Weyl quantisation is not compatible
with the canonical characters. For instance, the Weyl map sends the Weyl symbol X (x, p) = x¥p,
to the Weyl-ordered operator X = %(J??‘ 00y + 0y okt) = xt0, + % whose action on the unit gives
X[1]=1#0=X(x,p=0).

5. Quantisation of the Cotangent Bundle: Going beyond Differential Operators
5.1. Quasi-Differential Operators

A quantisation (54) of the cotangent bundle allows to endow the commutative algebra
S(M) of symbols with a non-commutative product » inherited from the composition
product o of the almost-commutative algebra D(M) of differential operators.

Strict product. Let us assume that there exists an associative product » on the whole
space C*(T*M) of functions on the cotangent bundle T*M such that (i) it reduces to
the above-mentioned product on the subspace S(M) < C*(T*M) of symbols on M and
(ii) the constant function 1 € C*(T*M) is the unit element for this product. Such an
associative product will be called a strict product on C*(T*M). The space C*(T*M) of
smooth functions on the cotangent bundle endowed with a strict product * will be denoted
C(T*M). The canonical embedding (22) of the commutative algebra C* (M) of functions
on the base manifold inside the algebra C*™(T*M) of functions on the cotangent bundle
T*M is a unit map of C°(T*M).

Strict quantisation of the cotangent bundle. Let us further assume that the C*°(M)-ring
C(T*M) is endowed with an injective anchor extending the quantisation map (54). This
hypothetical situation will loosely?! be referred to as a strict quantisation of the cotangent
bundle. In this ideal case, the C*(M)-ring C(T*M) could be interpreted as defining a
completion of the almost-commutative algebra D(M) of differential operators M.

Quasi-differential operators. The image of the injective anchor will be denoted QD (M)
and called the associative algebra of quasi-differential operators on the manifold M. Let us
motivate the terminology “quasi-differential operator” : The term “operator” is justified
by the fact that, by construction, the image QD(M) < End( C*(M) ) is spanned by linear
operators on C*(M). More precisely, there is an isomorphism of associative algebras:

6 CP(T*M) S QD(M) : X — X (61)

sending functions X(x, p) on the cotangent bundle T*M on linear operators X acting on
functions f(x) on M. The map (61) will be called a strict quantisation map because it provides,
by definition, an extension of some quantisation map Q : S(M) = D(M) sending symbols
to differential operators. In particular, the isomorphism (61) extends the unit map (32)
sending functions on the base manifold M to zeroth-order differential operators on M. The
adjective “differential” to designate these operators comes from the fact that the vertical
coordinates p, of generic functions f(x, p) on the cotangent bundle T*M can loosely be
interpreted as standing for partial derivatives d, while the adjective “quasi” underlines
that the dependence is not polynomial in general. Table 2 provides a comparison between
the classical and quantum algebras of functions on the cotangent bundle that have been
introduced so far.
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Pseudo-differential operators. Note that the term “pseudo-differential operator” was
avoided on purpose, in order to avoid confusion since this technical term is already taken
(see, e.g., [49-51] for classical textbooks on the subject). Roughly, pseudo-differential
operators corresponds to functions on phase space with power-law asymptotic behaviour
(and extra technical requirements). The functional space of pseudo-differential operators
seems too small to remain invariant under the action of automorphisms generated by

higher-order differential operators.”

Table 2. Classical versus quantum algebras of functions on the cotangent bundle.

Classical Quantum
Algebra Poisson algebra (symplectic) Associative algebra (central)
C®(T*M) QD(M)
Elements Functions on the cotangent bundle Quasi-differential operators
X(x,p) X(x,0)
Graded /Filtered Schouten algebra Almost-commutative algebra
subalgebra S(M) D(M)
Elements Symbols Differential operators
k ok
X(xp) = X & X1 ) py -, X = 3 5 X0 () 8y -+
r=0 r=0
Commutative Base algebra Order zero subalgebra
subalgebra C®(M)c S(M) DY(M) c D(M)
Elements Functions on the base Differential operators of order zero
f(x) /

5.2. Criteria on the Strict Product

Compatibility condition. On the one hand, the D°(M)-ring QD(M) of quasi-differential
operators is endowed with a non-degenerate character {* : QD(M) — D°(M) send-
ing quasi-differential operators X to zeroth-order differential operators Xo. This non-
degenerate character extends (38) and is defined exactly in the same way. On the other
hand, the C*(M)-ring C*(T*M) is endowed with the degenerate character (23). A strict
quantisation is said compatible (with the canonical unit maps and characters) if the follow-
ing square is commutative:

CX(T*M) - QD(M)
7*| | (62)
c*(M) - DO(M)

where the horizontal (respectively, vertical) arrows are isomorphisms (respectively, surjec-
tive morphisms) of associative algebras. Obviously, this requires to start from a compatible
quantisations of the Schouten algebra of symbols, since the square (46) must be commuta-
tive.

Candidate character. A strict quantisation can be defined equivalently via a non-degenerate
character on the C*(M)-ring C(T*M). The unit map (22) and the degenerate charac-
ter (23) of the C*(M)-ring C*(T*M) allow to define how a function X on the cotangent
bundle T*M may act on functions f on the base manifold M:

RIf] = g*(x x T*(f)> € C*(M) with X e C®(T*M) and fe CO(M).  (63)
which reads, in Darboux coordinates, as X[f] = (X * f) |p=0 - This definition automatically

ensures that the square (62) is commutative, since the constant function 1 € C*(M) is the
unit element for the strict product: X[1] = {*(X » 1) = Xy . However, the corresponding
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map & : X — X need not be an anchor because it may fail to be an algebra morphism.
Nevertheless, the converse statement is true: any compatible strict quantisation is such that
the relation (63) holds.”?

Contact ideal of order zero. Consider the subalgebra ker (* < C*®(T*M) spanned by
all functions X on the cotangent bundle vanishing on the zero section, i.e., such that
Xo = {*(X) = 0. It is an ideal for both the pointwise product and the Poisson bracket. It
will be called the zeroth-order contact ideal of the cotangent bundle zero-section and denoted
70(5(M)).

Criteria on the strict product. The map (23) induces a character on the C*(M)-ring
CL(T*M) iff the map & : X — X defined through (63) is an anchor, which happens iff the
underlying strict product satisfies the following condition:

VX, YeCP(T*M), 3ZeI°(Z(M)) : XY = X* *(Y) + Z. (64)

In fact, the map @ is an anchor of the C*(M)-ring C (T* M) iff it is a morphism of associa-
tive algebras, i.e.,

(Yo X)[f] = Y[ X[f]]- (65)
This condition translates into (64) by using the definition (63).

Normal-type quantisations. A strict product * on the space of functions on the cotangent
bundle T*M such that:

faX = f-X, Vfer(CPM)), VXeCP(T*M), (66)

where - is the pointwise product, will be called of normal type. It is natural to focus on
strict products of normal type because the condition (66) ensures the consistency with the
following particular case of the identity (65):

(foX)g] = - (XIgD), (67)

which holds by the very definition of the map (32). A strict quantisation of the cotangent
bundle is said of normal type if the strict quantisation map is C*(M)-linear (or, equivalently,
if the underlying strict product is of normal type).

5.3. Strict Higher-Spin Diffeomorphisms

The automorphisms of the associative algebra C°(T*M) will be called strict higher-
spin diffeomorphisms of the manifold M. By construction, a strict higher