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Abstract: Higher-spin diffeomorphisms are to higher-order differential operators what diffeomor-
phisms are to vector fields. Their rigorous definition is a challenging mathematical problem which
might predate a better understanding of higher-spin symmetries and interactions. Several yes-go
and no-go results on higher-spin diffeomorphisms are collected from the mathematical literature
in order to propose a generalisation of the algebra of differential operators on which higher-spin
diffeomorphisms are well-defined. This work is dedicated to the memory of Christiane Schomblond,
who taught several generations of Belgian physicists the formative rigor and delicate beauty of
theoretical physics.
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1. Introduction

Higher-spin gravity theories are interacting theories whose spectrum of free particles
contains at least one massless higher-spin particle (i.e., of spin greater than two). As a
byproduct of the consistency of their symmetries, they must contain as well as a massless
particle of spin two in their spectrum, which one may tentatively interpret as a graviton
(hence the name “gravity”). Despite the long history of this subject1, the (non)locality
properties of its finite gauge symmetries remain elusive.2 They are the subject of this paper.
More precisely, one will focus on finite gauge symmetries in the metric-like formulation
with unconstrained symmetric tensors as gauge fields and parameters.

It is well-known that a finite collection of symmetric tensor fields can be packaged
into a single generating function, which can be interpreted as the symbol of a differential
operator. Accordingly, the commutator of differential operators (or, respectively, the Pois-
son bracket of their symbols) defines a Lie algebra structure on the space of higher-spin
gauge parameters. Moreover, the latter gauge parameters act on higher-spin gauge fields
via the adjoint action. This simple procedure provides a non-abelian deformation of the
gauge symmetries for free higher-spin gauge fields in the unconstrained metric-like for-
mulation. These non-abelian deformations have been first considered by Segal in their
investigation [14] of conformal higher-spin gravity (where they are supplemented by
higher-spin Weyl-like transformations). Later on, they were obtained by gauging hyper-
translations via the Noether method in the metric-like formulation [15,16], the frame-like
formulation [17,18] and the BRST formulation [19]. They should also arise from off-shell
higher-spin gravity after elimination of auxiliary fields and partial gauge-fixing [20–25].
Finally, they appear as the natural gauge symmetries in ambient space for the higher-spin
extension of Fefferman-Graham’s ambient metric [26–28].

Some recent mathematical results by Grabowski and Poncin [29,30] on the automor-
phisms of the Lie algebra of differential operators imply that this Lie algebra does not
integrate to a Lie group. This mathematical no-go theorem implies that non-abelian higher-
spin gauge symmetries are not well-defined if the fields and parameters are packed into
differential operators. This shows that if finite higher-spin symmetries are taken seriously,
then they require to leave the realm of operators with bounded number of derivatives (the
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landmark of locality) in the sense that the topological vector space of differential operators
must be suitably completed. Some proposals are made in this direction in this paper, mostly
by collecting old results in deformation quantisation.

The plan of the paper is as follows. The problem with the finite counterpart of non-
abelian higher-spin gauge symmetries in the unconstrained metric-like formulation is
addressed in Section 2, where the results by Grabowski and Poncin are briefly reviewed
and translated into a no-go theorem on naive higher-spin diffeomorphisms. This no-go
theorem calls for an extension of the class of generating functions for higher-spin gauge
fields and parameters. This way out is exemplified in Section 3 on the geometrically
transparent case of their Poisson limit: the space of symbols may be extended to the
space of smooth functions on the cotangent bundle on which symplectomophisms are
well-defined. Our strategy is to consider a deformation of this example where the space
of differential operators is extended to a larger space, modeled on the deformed algebra
of functions on the cotangent bundle. This is done by importing known results on the
deformation quantisation of cotangent bundles. Nevertheless, some work needs to be
done in order to ensure that the elements of the corresponding deformed algebra can be
interpreted as suitable generalisations of differential operators. This is the main technical
task of this paper. As a preliminary step, the one-to-one correspondence(s) between
differential operators and their symbols, i.e., the quantisation(s) of the cotangent bundle, is
reviewed in Section 4 in the light of almost-commutative algebras. In Section 5, our general
strategy for going beyond differential operators is explained. As a first proposal, the class
of almost-differential is defined in Section 6 in terms of differential operators weighted
by some formal variable. This provides a functional space of generalised differential
operators bypassing the no-go theorem. Some results from deformation quantisation are
then reviewed in Section 7. The next step is to make use of these results to define in
Section 8 the class of formal quasi-differential operators, and show in Section 9 that it
provides another space of generalised differential operators bypassing the no-go theorem.
The relation between the two classes is discussed in Section 10. Finally, we end up with
a short conclusion in Section 11. An Appendix A details the proof of a technical lemma.
The paper is long but it aims to be as self-contained as possible.

2. Higher-Spin Gauge Symmetries in the Unconstrained Metric-like Formulation
2.1. Non-Abelian Deformations of Higher-Spin Gauge Symmetries

The metric-like formulation dates back to Fronsdal’s seminal works on free higher-
spin gauge fields on constant-curvature backgrounds [31,32]. He immediately raised the
question of the nonlinear completion of this free theory, i.e., the introduction of interactions
in a way compatible with (deformed) gauge symmetries.

Deforming higher-spin gauge symmetries. A more humble problem, that one can view
as a preliminary step towards Fronsdal’s programme, is to look for a deformation:

δξ hµ1¨¨¨µs “ s∇pµ1
ξµ2¨¨¨µsq ` Ophq , (1)

of the infinitesimal gauge transformations, where ∇ is the covariant derivative with respect
to the background metric ḡµν with respect to which indices will be raised and lowered.
The round bracket stands for the total symmetrisation with weight one (i.e., Tpµ1¨¨¨µsq “

Tµ1¨¨¨µs for a symmetric tensor). One requires that the deformation must be consistent, such
that the commutator rδξ1 , δξ2s of two gauge transformations closes,

“

δξ1 , δξ2

‰

hµ1¨¨¨µs “ δrξ1,ξ2s
hµ1¨¨¨µs , (2)

where rξ1, ξ2s stands for a Lie bracket over the space of gauge parameters. Strictly speaking,
the closure might hold only on-shell.

Non-abelian deformations. The deformation (1) is usually required to be non-abelian,
i.e., the Lie bracket over the space of gauge parameters must be non-trivial. In the original
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metric-like formulation of Fronsdal, this deformation problem is already a challenge3

because, in the undeformed theory, the gauge fields hµ1¨¨¨µs are constrained to be double-
traceless while the gauge parameters ξµ1¨¨¨µs´1 are traceless, with respect to the background
metric.4

Relaxing trace constraints. This difficulty provides a strong motivation for considering
“unconstrained” formulations5 where these tracelessness conditions are absent.6 In such
case, two (closely related) non-abelian deformations stand out from the crowd, for their
simplicity. They have a neat geometric interpretation which makes manifest that these
fully nonlinear gauge transformations are actually background independent (although
they look superficially background-dependent deformations, if one perturbs around a
given constant-curvature background). Let us briefly review these infinitesimal gauge
transformations, since their finite counterpart is the focus of this paper.

2.2. Two Examples of Infinitesimal Higher-Spin Gauge Symmetries

The crucial observation is that the undeformed part of higher-spin gauge transforma-
tion in (1) takes the form of a so-called Killing derivative, ∇pµ1

ξµ2¨¨¨µsq, which is familiar to
geometers and well-known to arise from the Schouten bracket with the metric. This remark
can be used to produce two examples of nonabelian deformations as follows.

Example 1 (Hamiltonian vector fields on the cotangent bundle). First, one packages the tower
of symmetric tensors (here gauge fields and parameters) into a single function on the cotangent
bundle T˚M of the spacetime manifold M :

hpx, pq “
ÿ

sě0

1
s!

hµ1¨¨¨µspxq pµ1 ¨ ¨ ¨ pµs ,

ξpx, pq “
ÿ

sě1

1
ps´ 1q!

ξµ1¨¨¨µs´1pxq pµ1 ¨ ¨ ¨ pµs´1 . (3)

Note that the coefficients in the expansion in powers of momenta are contravariant symmetric
tensor fields. The latter will be called symmetric multivector fields for short. Second, one defines the
higher-spin metric as the following extension of the background metric

gpx, pq “ g0px, pq ` hpx, pq , g0px, pq “
1
2

ḡµνpxq pµ pν (4)

where g0px, pq encodes the background metric, of which hpx, pq is seen as a small (higher-spin)
fluctuation. Third, the canonical Poisson bracket on the cotangent bundle T˚M provides a non-
abelian deformation of higher-spin gauge transformations,

δξ gpx, pq “ t ξpx, pq , gpx, pq u . (5)

One can check that (5) takes the form (1) by inserting definitions (3)–(4) and the formula

t ξpx, pq , g0px, pq u “
ÿ

sě1

1
ps´ 1q!

∇pµ1 ξµ2¨¨¨µsqpxq pµ1 ¨ ¨ ¨ pµs . (6)

The corresponding Lie bracket over gauge parameters is nothing but the canonical Poisson bracket

t ξ1px, pq , ξ2px, pq u “
Bξ1px, pq
Bxµ

Bξ2px, pq
Bpµ

´
Bξ1px, pq
Bpµ

Bξ2px, pq
Bxµ . (7)

When expressed in terms of the coefficients in (3), it is called the Schouten bracket of symmetric
multivector fields [41] and reads
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t ξ1 , ξ2 u
ν1¨¨¨νr1`r2´1 “ r2 Bµξ

pν1¨¨¨νr1
1 pxq ξ

νr1`1¨¨¨νr1`r2´1qµ

2 pxq ´ r1 Bµξ
pν1¨¨¨νr2
2 pxq ξ

νr2`1¨¨¨νr1`r2´1qµ

1 pxq . (8)

In symplectic geometry language, the higher-spin gauge transformation (5) is nothing but a Lie
derivative of the function gpx, pq along the Hamiltonian vector field on the cotangent bundle T˚M
generated by the function ξpx, pq. Therefore its finite counterpart is a Hamiltonian symplectomor-
phism of the cotangent bundle.

Example 2 (Higher-spin Lie derivatives). Higher-spin gauge fields hµ1¨¨¨µs transform as Lorentz
symmetric tensor fields on a constant-curvature background, at linearised order. However, there is
no reason to expect them to transform like symmetric tensor fields under general coordinate trans-
formations in fully nonlinear higher-spin gravity. In fact, minimal coupling of massless particles
to gravity is known to be problematic in the standard (metric-like or frame-like) formulations.7

Relaxing this requirement, one can package the tower of gauge fields and parameters as differential
operators on the spacetime manifold M :

Ĥ “
ÿ

sě0

p´i`qs

s!
hµ1¨¨¨µspxq∇µ1 ¨ ¨ ¨∇µs ` . . . , (9)

X̂ “
ÿ

sě1

p´i`qs´1

ps´ 1q!
ξµ1¨¨¨µs´1pxq∇µ1 ¨ ¨ ¨∇µs´1 ` . . . (10)

where ` is a parameter with the dimension of a length (which plays a similar role to the string
length) and the dots stand for lower-order terms fixed by the ordering prescription.8 Similarly,
the higher-spin metric defines the following extension of the background Laplacian

Ĝ “ Ĝ0 ` Ĥ , Ĝ0 “ ´
`2

2
∇2 . (11)

The commutator of differential operators provides another non-abelian deformation (1) of higher-spin
gauge transformations,

δX̂Ĝ “
i
`
rX̂, Ĝs , (12)

since
rX̂, Ĝ0s “

ÿ

sě0

p´i`qs

ps´ 1q!
∇pµ1 ξµ2¨¨¨µsqpxq∇µ1 ¨ ¨ ¨∇µs ` . . . (13)

Low-spin truncation. If one truncates the gauge transformations (1) obtained from (5) or
(12) to the “low-spin” sector (s “ 1, 2), they both reproduce Maxwell gauge transformations
of scalar gauge parameter ξpxq and infinitesimal diffeomorphims, i.e., Lie derivatives along
the vector field X “ ξµpxqBµ. By analogy, the unconstrained gauge transformation (12)
will be called a higher-spin Lie derivative along the differential operator X̂ . Their finite
counterpart will be called higher-spin diffeomorphisms (they will be defined more precisely
later).

Differential operators vs. Symbols. Note that a proper ordering prescription implies
that there is a one-to-one correspondence between differential operators and symbols.
In particular, here there is a one-to-one correspondence between higher-spin metrics gpx, pq
as in (4) and higher-spin extension Ĝ of the Laplacian as in (11). Accordingly, one can
rewrite (12) as

δξ gpx, pq “
i
`

“

ξpx, pq , gpx, pq
‰

‹
“ t ξpx, pq , gpx, pq u `Op`q , (14)

in terms of a suitable star-product ‹ (with respect to ` as formal variable).
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Higher-spin diffeomorphisms vs. Hamiltonian symplectomorphisms. The form (14) of
the transformation (12) makes manifest that the first deformation (5) can be obtained
as the Poisson limit (` Ñ 0) of the second deformation (12). Accordingly, the Poisson
limit of higher-spin diffeomorphisms are symplectomorphisms of the cotangent bundle
of spacetime. In this sense, higher-spin diffeomorphisms can be thought as quantum
symplectomorphisms, however we refrain from using this terminology because it can be
misleading (they are finite gauge symmetries of classical higher-spin gravity).9

2.3. Problems with Higher-Spin Diffeomorphisms

The existence of finite counterparts of the infinitesimal non-abelian gauge transforma-
tions (5) and (12) is a challenging mathematical problem. The subtlety here is the functional
space to which the higher-spin metric gpx, pq (or, equivalently, Ĝ) and the higher-spin gauge
parameter ξpx, pq should belong in order for finite higher-spin gauge transformations to
be well-defined.

The problem is that symplectomorphisms or higher-spin diffeomorphisms generically
transform a symbol gpx, pq or a differential operator Ĝ, that encodes a finite collection of
symmetric tensor gauge fields, into a “pseudo” symbol (in the sense of a function on the
cotangent bundle which is not polynomial in the momenta) or, respectively, a “pseudo”
differential operator of infinite order (in the sense of an operator which is not polynomial
in the derivatives). Generically, a finite higher-spin gauge transformation of a given
higher-spin metric activates an infinite tower of higher-spin gauge fields with unbounded
spin. This agrees with (and is closely related to) the standard lore that higher-spin gravity
theories (in dimension 4 or higher) must have an infinite spectrum of gauge fields with
unbounded spin. While the non-abelian structure of infinitesimal higher-spin symmetries
(rigid or gauged) is enough to derive the latter property of higher-spin gravity spectra,
the problem with finite higher-spin gauge symmetries is much stronger. It highlights the
fact that higher-spin diffeomorphisms are necessarily non-local in terms of the spacetime
manifold (albeit local in terms of its cotangent bundle).

These general remarks will not come as a surprise to experts. Our goal here is to
emphasise that both the problem and some solutions can be made mathematically precise
by extracting known results from the mathematical literature.

2.4. Notation and Terminology

In order to state the problem as a theorem, let us fix some notation and terminology.10

Poisson algebra of symbols. Let SpMq denote the space of smooth functions on the
cotangent bundle T˚M that are polynomial in the momenta. Such functions are usually
called symbols. In Darboux coordinates, symbols hpx, pq are smooth functions of positions
xµ and polynomial functions of momenta pν . The space SpMq of symbols on M is endowed
with a structure of Poisson algebra via the pointwise product and the canonical Poisson
bracket. It is isomorphic to the space dT pMq :“ ΓpdTMq of sections of the symmetric
tensor product of the tangent bundle (i.e., symmetric multivector fields on M), endowed
with a structure of Poisson algebra via the symmetric tensor product and the Schouten
bracket (8).

Associative algebra of differential operators. Let DpMq denote the associative algebra of
differential operators on M. Heuristically, they are linear operators acting on C8pMq of the
form Ĥpx, Bqwith only a finite number of derivatives.

2.5. No-Go Theorems

The Lie algebras corresponding to the vector spaces SpMq and DpMq endowed with
the canonical Poisson bracket or, respectively, with the commutator as Lie bracket will be
denoted SpMq and DpMq. The higher-spin gauge transformations (5) and (12), respectively,
correspond to the adjoint action of the respective algebras SpMq and DpMq on themselves.
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By definition, Hamiltonian vector fields on T˚M are inner derivations of the Poisson
algebra C8pT˚Mq. In particular, Hamiltonian vector fields on T˚M which are polynomial
in the momenta are inner derivations of the Poisson algebra SpMq of symbols. Similarly,
the adjoint action of a differential operator is by definition an inner derivation of the associa-
tive algebra DpMq. Therefore, the higher-spin gauge transformations (5) and (12) coincide
with the inner derivations of these two algebras. However, the inner automorphisms of
these algebras are scarce: they only correspond to the gauge symmetries of the low-spin
truncation, i.e., internal Abelian gauge symmetries (as in Maxwell electromagnetism) and
standard diffeomorphisms of the manifold M (as in general relativity).

The Lie algebras of inner derivations of SpMq and DpMq are isomorphic to SpMq and
DpMq, respectively. The problem is that these Lie algebras of inner derivations do not
integrate to Lie groups of inner automorphisms. While the infinitesimal automorphisms are
perfectly well defined, however their naive exponentiation is not well defined in general
(see Section 7 of [29] and Section 8 of [30] for more details) except for the inner automor-
phisms of SpMq or DpMq generated by symbols of degree one or, respectively, by first-order
differential operators. The Poisson algebra SpMq of symbols and the associative algebra
DpMq of differential operators admit very few finite automorphisms, although they admit
a plethora of infinitesimal automorphisms (derivations).

One may summarise the results of [29,30] relevant for us as follows.

Theorem 1 (Grabowski and Poncin). Any one-parameter group of automorphisms of the associa-
tive algebra DpMq of differential operators (respectively, of the Poisson algebra SpMq of symbols)
is generated by a first-order differential operator (respectively, by a symbol of degree one in the
momenta).

By contraposition, this can be expressed equivalently as a no-go theorem.

Theorem 2 (No-go theorem). Higher-spin Lie derivatives along higher-order differential operators
on M (respectively, higher-degree Hamiltonian vector fields on T˚M) cannot be integrated to
one-parameter groups of automorphisms of the associative algebra DpMq of differential operators
(respectively, of the Poisson algebra SpMq of symbols).

If a Lie algebra is integrable to a Lie group11, then one would expect (for any reasonable
topology) that all its inner derivations are integrable, locally, to one-parameter groups of
automorphisms of the Lie algebra (via the exponential map). Accordingly, an important
corollary of Grabowski–Poncin’s theorem is the strong no-go theorem (cf. Corollary 4
in [29]) :

Corollary 1 (Grabowski and Poncin). The two infinite-dimensional Lie algebras, DpMq of differ-
ential operators and SpMq of symbols on a manifold M, are not integrable to infinite-dimensional
Lie groups (of which they are the Lie algebras).

2.6. Definitions

In order to describe precisely the origin of the problem, some definitions are in order.

Filtered vs. Graded algebras. A filtered algebra A admits a collection of vector subspaces
Ai (indexed by non-negative integers i P N) such that Ai Ă Aj for i ă j and AiAj Ď Ai`j for
all i and j.12 The graded algebra associated to the filtered algebra A is denoted grA “ ‘iPN griA
and defined via the quotients griA “ Ai {Ai´1. The equivalence class ras P grA of an
element a P A of a filtered algebra will be called the principal symbol of a. The principal
symbol is a homogeneous element of the associated graded algebra (i.e., ras has a fixed
grading). This defines an infinite collection of surjective linear maps

σi : Ai � griA : ai ÞÑ rais , (15)
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which will be collectively denoted σ : A � grA and called the principal symbol map.

Commutative algebra of symbols. The algebra SpMq of symbols can be either filtered or
graded by the polynomial degree in the momenta of symbols. The distinction only has to
do with the choice of decomposition of this algebra, either as a “matryoshka doll” (filtered
algebra) or as a “sliced bread” (graded algebra). A symbol on M which is a homogeneous
polynomial in the momenta will be called a principal symbol. Principal symbols are in
one-to-one correspondence with symmetric multivector fields, hence SpMq – dT pMq as
graded algebras.

Almost-commutative algebras. The graded algebra grA associated to a filtered associa-
tive algebra A is commutative iff the commutator is of degree ´1 : rAi,Ajs Ď Ai`j´1.
In such case, the filtered associative algebra A is called almost commutative (because it is
commutative up to lower-order terms).

Differential operators vs. principal symbols. The associative algebra DpMq, filtered by
the order of differential operators, is almost-commutative. The principal symbol of a
differential operator of order k is equivalent to a symmetric multivector field of rank k.
The principal symbol map σ : DpMq � dT pMq stands for the collection of surjective
linear maps

σk : DkpMq� dkT pMq :
k
ÿ

r“0

1
r!

Xµ1¨¨¨µrpxq Bµ1 ¨ ¨ ¨ Bµr ÞÑ Xµ1¨¨¨µkpxqBµ1 d ¨ ¨ ¨ d Bµk . (16)

Schouten algebras. A Poisson algebra P that is a graded algebra for the commutative
product (i.e., Pi ¨Pj Ď Pi`j for the commutative product) and whose Poisson bracket is of
grading ´1 (i.e., tPi,Pju Ď Pi`j´1) will be called a Schouten algebra.13 The Poisson algebras
grSpMq of principal symbols and dT pMq of symmetric multivector fields, respectively,
graded by the polynomial degree in the momenta and by the rank, are isomorphic as
Schouten algebras.

Poisson limit. The graded algebra grA of an almost-commutative algebra A is endowed
with a canonical structure of Schouten algebra, where the Poisson bracket t , u is inherited
from the commutator bracket r , s via the principal symbol: tσpaq, σpbqu :“ σ

`

r a , b s
˘

.
This Schouten algebra grA will be called the Poisson limit of the almost-commutative algebra.
The Schouten algebra SpMq of principal symbols is isomorphic to the Poisson limit of the
almost-commutative algebra DpMq of differential operators: SpMq – grDpMq.

2.7. Automorphisms

Finite automorphisms. An automorphism F : A „
Ñ A of an algebra A is an isomorphism

of the vector space A into itself that preserves the product (i.e., Fpa1a2q “ Fpa1qFpa2q,
@a1, a2 P A). An automorphism of a filtered algebra A must also preserve the filtration
(i.e., FpAiq Ă Ai, @i P N). An automorphism of a Poisson algebra P must preserve both
products: the commutative product and the Poisson bracket (i.e., Fp f1 ¨ f2q “ Fp f1q ¨ Fp f2q

and Fp t f1, f2u q “ t Fp f1q, Fp f2q u for any f1, f2 P P).

Diffeomorphisms. A diffeomorphism of a smooth manifold M is equivalent to an automor-
phism of the algebra C8pMq of smooth functions on M. In particular, a symplectomorphism
of a symplectic manifold M can be defined as an automorphism of the Poisson algebra
C8pMq.

Infinitesimal automorphisms. The derivations of an algebra are its infinitesimal auto-
morphisms. An inner derivation of an associative (or Lie) algebra is an endomorphism
ada of the algebra defined in terms of the commutator (or Lie bracket) as adapbq :“ ra, bs.
The infinitesimal automorphisms of a filtered algebra are those derivations that preserve
the filtration.
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Lie derivatives along vector fields. Let LX f denote the Lie derivative of the function
f P C8pMq along the vector field X P XpMq. The vector fields X P XpMq on a manifold
M are in one-to-one correspondence with the derivations, LX : f ÞÑ LX f , of the algebra
C8pMq of functions on M. Let LXY “ rX, Ys “ adXY denote the Lie derivative of the vector
field Y P XpMq along the vector field X P XpMq. The vector fields X P XpMq on a manifold
M are in one-to-one correspondence with the inner derivations, adX : Y ÞÑ LXY, of the
Lie algebra XpMq of vector fields on M. Symplectic vector fields on a symplectic manifold
M are derivations of the Poisson algebra C8pMq for both its commutative product and
its Poisson bracket. In particular, Hamiltonian vector fields are inner derivations of the
Poisson algebra C8pMq.

Higher-spin Lie derivatives along differential operators. By analogy, the inner deriva-
tion adX̂ : Ŷ ÞÑ adX̂Ŷ “ rX̂, Ŷs of the associative algebra DpMq of differential operators
will be called the higher-spin Lie derivative along the differential operator X̂ P DpMq. Note
that if X̂ P DrpMq is a differential operator of order r, then the higher-spin Lie derivative
adX̂ : DqpMq Ñ Dq`r´1pMq along X̂ increases the order by r´ 1. Therefore, higher-spin
Lie derivatives along first-order differential operators define infinitesimal automorphisms
of the filtered algebra DpMq of differential operators, but higher-order differential opera-
tors do not define infinitesimal automorphisms of the filtered algebra DpMq because they
increase the order. This property is the root of the no-go theorems.

Obstruction to integrability. A global flow on a manifold M is nothing but an action of
the additive group R on the manifold M. A vector field X on M is complete if it generates
a global flow on M, i.e., a group morphism from the one-dimensional Lie group R to the
infinite-dimensional group of diffeomorphisms of M. More algebraically, a vector field X
on M is complete if it generates a group morphism:

expp‚LXq : RÑ Aut
`

C8pMq
˘

: t ÞÑ expp tLX q (17)

from the additive group R to the group of automorphisms of the commutative algebra
C8pMq. Via conjugation, this defines a group morphism:

expp ‚ adX q : RÑ Inn
`

XpMq
˘

: t ÞÑ expp t adX q (18)

from the additive group R to the group of inner automorphisms of the Lie algebra XpMq of
vector fields on M.

Obstruction to integrability. The generalisation expp ‚ adX̂q of flows (18) for first-order
differential X̂ P D1pMqworks analogously, in the sense that it defines inner automorphisms
expp t adX̂q of the filtered algebra DpMq of differential operators (for sufficiently small
parameter t). Its naive extension to higher-order differential operators, X̂ P DrpMq with
r ą 1, is tantalising but it fails to be well-defined. The higher-spin Lie derivative adX̂ along
a higher-order differential operator is a well-defined derivation of DpMq, but it does not
preserve the filtration because it increases the order (by a finite amount). In fact, its power
adn

X̂
(appearing in the Taylor series of expp t adX̂q at t “ 0) increase the order of differential

operators on which it acts by npr´ 1q, which becomes arbitrarily large when n Ñ8 and
r ą 1. This explains why the tentative exponentiation expp t adX̂q has a wild action: it shifts
the order by infinity! Therefore, if X̂ is a higher-order differential operator then expp t adX̂q

sends differential operators to objects that are outside DpMq.14

The above simple argument shows explicitly that, in order to define higher-spin
diffeomorphisms, the space of differential operators should be completed, in order to
include generalised differential operators with an infinite number of derivatives.

3. Symplectomorphisms of the Cotangent Bundle

The obstruction to the integrability of inner derivations of the associative algebra
DpMq of differential operators to one-parameter group of inner automorphisms is not a
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“quantum” feature since the same applies for the Poisson algebra SpMqwhere there is a
similar obstruction to the integrability of inner derivations. In fact, the “classical” case
shows a clear way out of the no-go theorem of Grabowski and Poncin. The aim of this
section is to use the cotangent bundle in order to explain geometrically the origin of the
problem and its solution.

In order to demystify the subtleties at hand and gain some geometric intuition, they
are illustrated on elementary examples in this section. On the way, basic concepts and
results in symplectic geometry are reviewed.

3.1. Lagrangian Submanifolds

Consider a submanifold N Ă M of a symplectic manifold M. It is defined by an
embedding i : N ãÑM. A submanifold such that the pullback of the symplectic two-form
Ω on M along this embedding vanishes identically on N (that is to say: i˚Ω “ 0) is called
an isotropic submanifold. A maximal isotropic submanifold N ĂM of a finite-dimensional
symplectic manifold M,

i : N ãÑM , i˚Ω “ 0 , 2 dimN “ dimM , (19)

is called a Lagrangian submanifold.

Example 3 (Zero section of the cotangent bundle). The canonical fibration

τ : T˚M � M : pxµ, pνq ÞÑ xµ (20)

of the cotangent bundle possesses a canonical section (as any vector bundle) : the zero section, i.e.,

ζ : M ãÑ T˚M : xµ ÞÑ pxµ, 0q . (21)

The pullbacks of the fibration and of the zero section define, respectively, the canonical embedding (of
the subspace of functions on the base)

τ˚ : C8pMq ãÑ C8pT˚Mq : f pxq ÞÑ Xpx, pq “ f pxq (22)

and the canonical projector (onto the space of functions on the base)

ζ˚ : C8pT˚Mq� C8pMq : Xpx, pq ÞÑ X0pxq “ Xpx, 0q . (23)

The fibre τ´1pmq “ T˚m M of the canonical fibration above a point m P M and the graph ζpMq Ă
T˚M of the zero section are Lagrangian submanifolds of the cotangent bundle.

Example 4 (Symplectic vector space). Consider a finite-dimensional symplectic vector space
W with symplectic two-form Ω. A Lagrangian subspace V Ă W is such that the quotient W{V
isomorphic to the dual space V˚ of the Lagrangian subspace: W{V – V˚. The isomorphism is
provided by the symplectic two-form itself:

Ω : W{V „
Ñ V˚ : rws ÞÑ Ωpw, ‚q , (24)

where w P W is a representative of the equivalence class rws P W{V (i.e., w „ w` v for any
v P V).

Any differential one-form α P Ω1pMq is, by definition, equivalent to a section ᾱ : M ãÑ

T˚M of the canonical fibration (20) of the cotangent bundle. If the differential one-form
on M reads as α “ αµpxq dxµ in some local coordinates xµ on M, then the section reads as
pµ “ αµpxq in the corresponding local Darboux coordinates pxµ, pνq on T˚M. The pullback
of the tautological one-form θ P Ω1pT˚Mq on the cotangent bundle along the section
ᾱ : M ãÑ T˚M identifies with the original differential one-form, ᾱ˚θ “ α (as is obvious
in components since θ “ pµdxµ). A submanifold L Ă T˚M of the cotangent bundle T˚M
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projects diffeomorphically on the base M iff it is the graph of a differential one-form α on
the base M, i.e., L “ ᾱpMq.

Consider an exact symplectic manifold M with Liouville one-form θ, i.e., Ω “ dθ.
An exact submanifold is a Lagrangian submanifold N ĂM such that the pullback of the
Liouville one-form by the embedding i : N ãÑM is exact (i.e., i˚θ “ dH for a function H
on N ).

Example 5 (Generating function). Consider a function H P C8pMq on the manifold M. Its dif-
ferential α “ dH P Ω1pMq defines a section of the cotangent bundle, which reads as pµ “ BµHpxq
in Darboux coordinates. The graph dHpMq Ă T˚M of such a section is an exact Lagrangian
submanifold of the cotangent bundle. In such case, the function H on the base manifold is called a
generating function.

Putting everything together, a submanifold L Ă T˚M of the cotangent bundle T˚M
projecting diffeomorphically on the base manifold is Lagrangian (respectively, exact) iff
it is the graph of a closed (respectively, exact) differential one-form α on the base M,
i.e., L “ αpMqwith dα “ 0 (respectively, α “ dH).

3.2. Flows of Hamiltonians of Degree Zero

The Hamiltonian flows of the cotangent bundle generated by Hamiltonians of degree zero in
the momenta produce vertical symplectomorphisms mapping the zero section to exact submanifolds.

Proof. To see this, pick a point p P T˚m M of the cotangent bundle, i.e., a tangent covector
p at m P M. Consider a differential one-form A “ Aµpxq dxµ P Ω1pMq. The translations
p ÞÑ p` A|m by the differential one-form on M read in fibre coordinates as:

xµ ÞÑ xµ , pν ÞÑ p1ν “ pν ` Aνpxq . (25)

These translations are vertical diffeomorphisms of the cotangent bundle T˚M. Moreover,
they are (exact) symplectomorphisms iff the differential one-form A is closed (exact).
In physical terms, they correspond to a minimal coupling to an electromagnetic field with
vanishing fieldstrength (pure gauge). In geometrical terms, the corresponding vertical flow
is symplectic/Hamiltonian iff it maps the zero section to Lagrangian/exact submanifolds.
If this vertical flow is Hamiltonian, then the corresponding Hamiltonian Hpxq is a function
on the base M independent of the momenta. This ends the proof.

Example 6 (Vertical affine symplectomorphisms). Consider a vector space V with basis teau

and Cartesian coordinates ya. The coordinates on the cotangent bundle T˚V – V ‘ V˚ are
pya, pbq . The Hamiltonian flow of T˚V generated by a homogenous Hamiltonian Hpy, pq “ αa ya,
of degree one in the positions y and zero in the momenta p, produce vertical translations, pya, pbq ÞÑ

pya, pb ` t αbq, mapping the zero section ζpVq “ V ‘ 0 (of equation pa “ 0) to parallel affine
subspaces (of equation pa “ ´t αa). The Hamiltonian flow of T˚V generated by the homogenous
Hamiltonian Hpy, pq “ 1

2 αab yayb, of degree two in the positions and zero in the momenta, produce
linear vertical symplectomorphisms, pya, pbq ÞÑ pya, pb` t αbc ycq, mapping the zero section pa “ 0
to linearly independent exact subspaces (of equation pa “ ´t αab yb). The group of all vertical affine
symplectomorphisms is isomorphic to the abelian group V˚ ‘ pV˚ dV˚q.

3.3. Lagrangian Foliations

A foliation of a symplectic manifold M whose leaves are Lagrangian submanifolds
is called a Lagrangian foliation (in symplectic geometry) or a polarisation (in geometric
quantisation) of a symplectic manifold.

Example 7 (Vertical polarisation of the cotangent bundle). The fibration τ : T˚M � M defin-
ing the cotangent bundle provides an example of Lagrangian foliation (since each cotangent space
T˚m M is a Lagrangian submanifold of the cotangent bundle T˚M), called the vertical polarisation of
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the cotangent bundle. Note that the cotangent bundle may admit other Lagrangian foliations than
this canonical one.

Example 8 (Symplectic vector space). The direct sum V ‘V˚ of a finite-dimensional vector
space V and its dual V˚ is a finite-dimensional symplectic vector space endowed with a canonical
symplectic two-form Ω defined by Ωpv‘ α, w‘ βq “ αpwq ´ βpvq for all v, w P V and α, β P V˚.
Conversely, any finite-dimensional symplectic vector space W is isomorphic to a direct sum V ‘V˚

of a Lagrangian subspace space V Ă W with its dual V˚. In fact, any finite-dimensional symplectic
vector space W may be decomposed as the direct sum V ‘ L of a Lagrangian subspace V Ă W and
another Lagrangian subspace L Ă W complementary to V. Moreover, the latter subspace L – W{V
is isomorphic to the dual of the former subspace V, i.e., L – V˚. Any Lagrangian subspace L Ă W
of a symplectic vector space W defines a Lagrangian foliation by all affine subspaces parallel to L.

Example 9 (Cotangent bundle of a vector space). The cotangent bundle of the vector space V is
a finite-dimensional symplectic vector space which decomposes as the direct sum T˚V “ V‘T˚0 V of
the base space V and the cotangent space T˚0 V – V˚ at the origin. Actually, any finite-dimensional
symplectic vector space W identifies with the cotangent bundle T˚V of a finite-dimensional vector
space V upon a choice of polarisation W “ V ‘ L.

3.4. Flows of Hamiltonians of Degree One

The Hamiltonian flows of the cotangent bundle generated by homogeneous Hamiltonians of
degree one in the momenta produce symplectomorphisms obtained by lifting diffeomorphisms of the
base. They preserve both the vertical polarisation and the zero section of the cotangent bundle.

A symplectomorphism of the cotangent bundle T˚M coincides with the lift of a diffeo-
morphism of the base manifold M iff it preserves the tautological one-form θ. In Darboux
coordinates, this means that p1µdx1µ “ pµdxµ if the change of coordinates takes the form:

xµ ÞÑ x1µpxq , pν ÞÑ p1ν “
Bxρ

Bx1ν
pρ. (26)

Consider a Hamiltonian flow of the cotangent bundle T˚M. The following statements are
equivalent: the flow

(a) preserves the tautological one-form,
(b) is the lift of a flow on the base manifold M generated by a base vector field, X̂ “

Xµpxq Bµ,
(c) is generated by a homogenous Hamiltonian of degree one in the momenta, Hpx, pq “

Xµpxq pµ.

Example 10 (Lift of affine transformation). Consider a vector space V with Cartesian coordinates
ya. Darboux coordinates on the cotangent bundle T˚V “ V ‘ V˚ are pya, pbq . The Hamilto-
nian flows of T˚V generated by Hamiltonians with affine dependence in the positions and linear
dependence in the momenta,

Hpy, pq “ pλb ` λb
ayaq pb , (27)

are lifts
v‘ α ÞÑ v1 ‘ α1 “

`

``Λpvq
˘

‘
`

pΛTq´1pαq
˘

(28)

of affine transformations v ÞÑ v1 “ ``Λpvq of the base V, where ` P V defines a translation and
Λ P GLpVq defines a general linear transformation whose transpose is denoted ΛT P GLpV˚q.

More generally, the following statements are equivalent: a Hamiltonian flow of the
cotangent bundle of a manifold M

(a) preserves the vertical polarisation, i.e., it maps cotangent spaces T˚m M to cotangent
spaces T˚m1M,
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(b) is the composition of a vertical symplectomorphism and the lift of a diffeomorphism
of the base M,

(c) is generated by a Hamiltonian of degree one in the momenta, Hpx, pq “ Xµpxq pµ `

f pxq.

Example 11 (Affine symplectomorphisms). Consider again the cotangent bundle T˚V of a
vector space V. Its affine symplectomorphisms span the affine symplectic group ISp pV ‘V˚q. The
subgroup of affine symplectomorphisms that preserve the vertical polarisation and the Lagrangian
subspace V ‘ 0 Ă T˚V is isomorphic to the affine group IGLpVq. Finally, the group of affine
symplectomorphisms that preserve the vertical polarisation also contains an abelian subgroup: the
subgroup V˚ ‘ pV˚ d V˚q of vertical affine symplectomorphisms. In fact, the group of affine
symplectomorphisms preserving the vertical polarisation is isomorphic to the semidirect product

IGLpVq ˙
`

V˚ ‘ pV˚ dV˚q
˘

.

3.5. Flows of Hamiltonians of Higher Degree

The Hamiltonian flows of the cotangent bundle that do not preserve the vertical polarisation
are generated by homogeneous Hamiltonians of degree strictly greater than one in the momenta.
The converse is also true.

A symplectomorphism of the tangent bundle, Φ : T˚M „
Ñ T˚M, that does not pre-

serve the canonical fibration τ : T˚M � M does, nevertheless, preserves the symplectic
structure by definition. Thus, it maps the cotangent space T˚m M at a point m to a Lagrangian
submanifold ΦpT˚m Mq. The latter can be taken as fibre over Φpmq. Thus, any symplecto-
morphism Φ defines a Lagrangian foliation (in general, distinct from the canonical one).

Example 12 (Linear changes of polarisation). Consider once again the cotangent bundle T˚V
of a vector space V. The Hamiltonian flows generated by Hamiltonians, Hpya, pbq “

1
2 Yab pa pb,

independent of the positions and quadratic in the momenta are horizontal in the sense that they
preserve the zero section pb “ 0, in fact they read as pya, pbq ÞÑ pya ` t Yac pc, pbq. The vertical
polarisation of T˚V by the affine subspaces ya “ ya

0 , parallel to the cotangent space T˚0 V at
the origin (of equation ya “ 0), is mapped to the polarisation of T˚V by affine subspaces of
equation ya “ ya

0 ` t Yab pb . The group of horizontal changes of polarisation is an abelian subgroup
V dV Ă Sp pV ‘V˚q of the group of linear symplectomorphisms. The affine symplectomorphisms
of the cotangent bundle T˚V of the vector space V are summarised in Table 1.

Table 1. Affine symplectomorphisms of the tangent bundle T˚V – V ‘V˚ of a vector space V of dimension n.

Lie Algebra Dimension Exact Symplectomorphisms Basis of Hamiltonian
Vector Fields Basis of Hamiltonians

V˚ n Vertical translations B
Bpa

xa

V˚ dV˚ npn`1q
2 Linear vertical symplectom xb B

Bpc
` xc B

Bpb

1
2 xb xc

V˚ ‘ pV˚ dV˚q npn`3q
2 Affine vertical symplectom B

Bpa
, xb B

Bpc
` xc B

Bpb
xa, xb xc

V n Horizontal translations B
Bxa pa

glpVq n2 Lift of linear transformations xb B
Bxc ´ pc

B
Bpb

xb pc

iglpVq n2 ` n Lift of affine transformations B
Bxa , xb B

Bxc ´ pc
B
Bpb

pa, xb pc

V dV npn`1q
2 Linear changes of polarisation pa

B
Bxb ` pb

B
Bxa

1
2 pa pb

isppT˚Vq 2n2 ` 3n Affine symplectomorphisms Affine vector fields degree 2

Example 13 (Changes of polarisation). On the cotangent bundle T˚M of a manifold M, one may
also consider the linear changes of polarisations pxµ, pνq ÞÑ pxµ ` t Yµρ pρ, pνq in some Darboux
coordinates. One can explicitly see that such transformations do not preserve the space SpMq



Universe 2021, 7, 508 13 of 41

of symbols. For instance, the symbol f pxµ, pνq “ exppkµxµq of degree zero in the momenta is
mapped to the function f pxµ ` t Yµρ pρ, pνq “ exppkµxµq expp t Yνρkν pρq which is manifestly not
polynomial in the momenta for t ‰ 0.

3.6. Summary

Combining all those observations sheds some light on the Grabowski–Poncin theorem
on the scarcity of finite automorphisms of the Poisson algebra of symbols with respect to
its infinitesimal automorphisms. The one-parameter groups of inner automorphisms of the
Poisson algebra SpMq of symbols on the manifold M are necessarily generated by symbols
of degree one. Retrospectively, this is somewhat natural since only symbols of degree one
generate Hamiltonian symplectomorphisms of T˚M preserving the vertical polarisation,
the latter being instrumental in the intrinsic definition of the algebra SpMq of symbols.
Breaking the vertical polarisation simultaneously destroys the polynomiality in momenta.
Nevertheless, these Hamiltonian vector fields on T˚M are symplectomorphisms, therefore
they will map the vertical polarisation to another choice of polarisation, with respect to
which the pullback of symbols will be polynomial in the new “momenta”.

4. Quantisation of the Cotangent Bundle: Differential Operators as Symbols and
Vice Versa

The Poisson algebra C8pT˚Mq offers a suitable completion15 of the Schouten algebra
SpMq of symbols on which symplectic diffeomorphisms of the cotangent bundle admit
an algebraic definition as automorphisms of the Poisson algebra. In order to construct a
similar completion of the almost-commutative algebra DpMq of differential operators, one
should first describe it as a quantisation of its Poisson limit SpMq.

4.1. Quantisation of the Cotangent Bundle

Quantisation of Schouten algebras. An isomorphism q : S „
Ñ A of vector spaces from a

Schouten algebra S to an almost-commutative algebra A such that its restrictions qi : Si ãÑ

Ai composed with the ones of the principal symbol map σi : Ai � griA define

(i) a collection of isomorphisms rqi “ σi ˝ qi : Si
„
Ñ griA of vector spaces, and

(ii) an isomorphism rq : S „
Ñ grA of Schouten algebras between S and the Poisson limit

of A,

will be called a quantisation of the Schouten algebra S into the almost-commutative algebra A.16

Example 14 (Universal enveloping algebra of a Lie algebra). Let g be a Lie algebra. The uni-
versal enveloping algebra Upgq is almost-commutative. The Poincaré–Birkhoff–Witt map

pbw : dpgq „Ñ Upgq : y1 d ¨ ¨ ¨ d yn ÞÑ
1
n!

ÿ

sPSn

ysp1q ¨ ¨ ¨ yspnq (29)

is a quantisation of the symmetric algebra dpgq of the Lie algebra.

Quantisation of the cotangent bundle. A quantisation Q : SpMq „
Ñ DpMq from the

Schouten algebra of symbols on M into the almost-commutative algebra of differential
operators on M will be called a quantisation of the cotangent bundle T˚M.

Transfer of structures. Note that a quantisation q : S „
Ñ A allows to transfer each structure

on the other: On the one hand, A inherits the grading of S as follows: A|i “ qpSiq . On the
other hand, one may induce an associative product ‹ on S from the associative product
˝ of A, as follows: qp f ‹ gq “ qp f q ˝ qpgq for all f , g P S . In this way, the vector space S
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becomes endowed with a structure of almost-commutative algebra. One may decompose
the induced product ‹ via the grading of S as

‹ “

8
ÿ

k“0

‹k , ‹k : Si b Sj Ñ Si`j´k . (30)

where ‹k decreases the grading by k. Let ¨ and t , u denote, respectively, the commutative
product and the Lie bracket of the Poisson algebra S . The condition (ii) implies that ‹0 is
equal to the original commutative product and that the commutator bracket of ‹1 is equal
to the original Poisson bracket,

‹0 “ ¨ and r , s‹1 “ t , u . (31)

Example 15 (Symmetric algebra of a Lie algebra). Let g be a Lie algebra. The quantisation
(29) induces a Poisson structure on its symmetric algebra dpgq for which ‹0 “ d and the Poisson
bracket arises from the Lie bracket of g. Moreover, the explicit form of the induced product ‹ is
known [43].

4.2. Compatibility Condition

Rings over an associative algebra. Let A and B be two associative algebras with respective
units 1A and 1B . An injective morphism i : A ãÑ B of associative algebras will be called
a unit map.17 An associative algebra B endowed with a unit map i : A ãÑ B is called a
ring B over the base algebra A (or A-ring for short). Equivalently, B admits a subalgebra
isomorphic to A : the image ipAq Ď B. If the image of the unit map belongs to the centre,
ipAq Ď ZpBq, then B is called an algebra over A (or A-algebra).

Functions vs. Differential operators of order zero. The algebra DpMq of differential
operators is a C8pMq-ring. In fact, any function f P C8pMq defines a differential operator
of order zero, f̂ P D0pMq, acting on C8pMq by multiplication by f , i.e., f̂ : g ÞÑ f ¨ g. This
provides a canonical unit map:

‚̂ : C8pMq ãÑ DpMq : f ÞÑ f̂ . (32)

Note that 1̂C8pMq “ idC8pMq .

Characters of rings over an algebra. Consider an A-linear map π : B � A which is a
retraction of the unit map i : A ãÑ B and which relate the unit elements, i.e.,

π
`

ipaq ‹ b
˘

“ a ¨ πpbq , π ˝ i “ idA , πp1Bq “ 1A . (33)

If this map is such that:

πpb1 ‹ b2q “ π
´

b1 ‹ i
`

πpb2q
˘

¯

, @b1, b2 P B , (34)

then it is called a character on the A-ring B. A character such that:

b1 P B : πpb1 ‹ b2q “ 0 , @b2 P B ðñ b1 “ 0 , (35)

or, equivalently18, such that:

b P B : π
`

b ‹ ipaq
˘

“ 0 , a P A ðñ b “ 0 , (36)

will be called a non-degenerate character on the A-ring B.

Example 16 (Cotangent bundle). The pullback τ˚ of the fibration τ : T˚M � M of the
cotangent bundle defines a unit map (22) endowing C8pT˚Mq with a structure of C8pMq-ring.
The pullback ζ˚ of the zero section ζ : M ãÑ T˚M defines a degenerate character on the C8pMq-
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ring C8pT˚Mq. The same applies for the (co)restriction of these maps to the subalgebra SpMq Ă
C8pT˚Mq of symbols, hence SpMq is also a C8pMq-ring endowed with a degenerate character.

Example 17 (Differential operators of order zero vs. Functions). The action of differential
operators on the constant function 1 P C8pMq defines a non-degenerate character on the C8pMq-
ring DpMq of differential operators,

‚ r1s : DpMq� C8pMq : X̂ ÞÑ X0 “ X̂r1s . (37)

The function X0 P C8pMq defines a differential operator X̂0 P D0pMq of order zero, which is
the component of order zero of the differential operator X̂ P DpMq. The composition ζ̂˚ of the
character (37) followed by the unit map (32) defines a surjective linear map:

ζ̂˚ : DpMq� D0pMq : X̂ ÞÑ X̂0 (38)

from the algebra DpMq of all differential operators onto the subalgebra D0pMq of differential
operators of order zero.

Anchors of rings over an algebra. Consider a ring B over an algebra A . A morphism
from the A-ring B to the A-ring EndpAq of endomorphisms of A,

‚̂ : B Ñ EndpAq : b ÞÑ b̂ . (39)

will be called an anchor of the A-ring B.19 In other words,

(i) it is an algebra morphism, i.e., it relates the product ‹ in B to the product ˝ in EndpAq
one has:

{b1 ‹ b2 “ b̂1 ˝ b̂2 , @b1, b2 P B , (40)

In particular, an anchor (39) defines a representation of the A-ring B on its base algebra
A .

(ii) it relates their unit maps, i.e., the anchor extends the canonical isomorphism (32) in
the sense that

yipaq “ â , @a P A , (41)

where “hat” stands, in the left-hand-side, for the anchor (39) and, in the right-hand-
side, for the canonical isomorphism (32). In particular, an anchor relates the unit
elements, i.e.,

1̂B “ idA . (42)

Example 18 (Cotangent bundle). Given a quantisation of the cotangent bundle T˚M, the follow-
ing square is commutative:

SpMq Q
ÝÑ DpMq

τ˚
İ

§

İ

§ i

C8pMq ‚̂
ÝÑ D0pMq

(43)

where the vertical arrows are, respectively, the unit map (22) of the C8pMq-ring SpMq and the
embedding i : D0pMq ãÑ DpMq. Therefore, any quantisation Q : SpMq „Ñ DpMq of the cotangent
bundle is an injective anchor of the C8pMq-ring SpMq of symbols, whose image is the C8pMq-ring
DpMq of differential operators.

Character ” Anchor. The notions of anchor and character on A-rings are actually equiv-
alent to each other. On the one hand, from an anchor ‚̂ : B Ñ EndpAq one may define a
character π : B � A via

πpbq :“ b̂
“

1B
‰

. (44)
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On the other hand, from a character π : B � A one may define an anchor ‚̂ : B Ñ EndpAq via

b̂ ras :“ π
`

b ‹ ipaq
˘

. (45)

One can check by a direct computation that the properties (33) and (34) of a character and
the properties (40) and (41) of a character imply each other. Note that the anchor is injective
iff the character is non-degenerate.

Compatibility condition. A quantisation of the cotangent bundle T˚M defines an injective
anchor. However, the corresponding character π defined by (44) and the canonical character
ζ˚ defined in (23) on the C8pMq-ring SpMqmay differ in general. Consider the square:

SpMq Q
ÝÑ DpMq

ζ˚
§

đ

§

đζ̂˚

C8pMq ‚̂
ÝÑ D0pMq

(46)

where the vertical arrows are the canonical characters (23) and (38) on the C8pMq-ring
SpMq and the D0pMq-ring DpMq, respectively. A quantisation of the cotangent bundle
T˚M such that the diagram (46) is commutative, will be called a compatible quantisation
of the cotangent bundle (in the sense that it is compatible with the canonical characters on
those rings).

4.3. Examples of Quantisation of the Cotangent Bundle

Consider the short exact sequence of C8pMq-modules

0 Ñ Dk´1pMq
ik

ãÑ DkpMq
σk
� dkT pMq Ñ 0 , (47)

where the maps ik : Dk´1pMq ãÑ DkpMq define the filtration, and the maps σk : DkpMq�
dkT pMq (16) send a differential operator onto its principal symbol. The short exact se-
quence (47) reflects the fact that the Poisson limit grDpMq of the almost-commutative
algebra DpMq of differential operators is isomorphic to the Schouten dT pMq of symmetric
multivector fields.

A linear splitting (i.e., a splitting of vector spaces)

0 Ð Dk´1pMq
rk
� DkpMq

qk
Ðâ dkT pMq Ð 0 , (48)

of the short exact sequence (47) is equivalent to a quantisation:

q : dT pMq „Ñ DpMq : X ÞÑ X̂ (49)

of the Schouten algebradT pMq of symmetric multivector fields into the almost-commutative
algebra DpMq of differential operators. More explicitly, for k ą 0 the sections qk of the
principal symbol (16) take the form:

qk : dkT pMq ãÑ DkpMq : Xµ1¨¨¨µk
k pxq Bµ1 d ¨ ¨ ¨ d Bµk ÞÑ

k
ÿ

r“0

Zν1¨¨¨νr
Xk

pxqBν1 ¨ ¨ ¨ Bνr (50)

where the differential operator of order k ą 0 reads

k
ÿ

r“0

Zν1¨¨¨νr
Xk

pxq Bν1 ¨ ¨ ¨ Bνr “ Xµ1¨¨¨µkpxq Bµ1 ¨ ¨ ¨ Bµk `

k´1
ÿ

r“0

Zν1¨¨¨νr
Xk

pxq Bν1 ¨ ¨ ¨ Bνr , (51)
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with the coefficients ZXk being linear in the components Xµ1¨¨¨µk
k pxq. Each such quantisa-

tion (49) is compatible with the principal symbol, in the sense that σ ˝ q “ iddT pMq (since
σk ˝ qk “ iddkT pMq by definition of a splitting). For a quantisation (49) compatible with the
canonical characters, the sums in (51) should start from r “ 1 for any k ą 0.

Obviously, for k “ 0 the short exact sequences (47) and (48) are degenerate and take
the form:

0 Ñ D0pMq „Ñ C8pMq Ñ 0 and 0 Ð D0pMq „Ð C8pMq Ð 0 . (52)

In particular, q0 “ ‚̂ : C8pMq „Ñ D0pMq is the canonical isomorphism (32) sending a
function f to the zeroth-order differential operator f̂ . Similarly, the linear splitting (48) for
k “ 1 is canonical:

0 Ð D0pMq
r1
� D1pMq

q1
Ðâ T pMq Ð 0 , (53)

where q1 reinterprets vector fields as differential operators of order one.
The quantisation (49) of the Schouten algebra SpMq defines a quantisation of the

cotangent bundle T˚M
Q : SpMq „Ñ DpMq : X ÞÑ X̂ (54)

which maps symbols of degree k to differential operators of order k

Qk : SkpMqãÑDkpMq :
k
ÿ

r“0

Xµprq
r pxq pµ1 ¨ ¨ ¨ pµr ÞÑ

ÿ

0ďsďrďk

Zνpsq
Xr
pxq Bν1 ¨ ¨ ¨ Bνs , (55)

where the multi-index notation µprq ” µ1 ¨ ¨ ¨ µr was used for symmetric indices. The
inverse Σ “ Q´1 of a quantisation map (54) will be called a symbol map,

Σ : DpMq „Ñ SpMq : X̂ ÞÑ X . (56)

A quantisation of the cotangent bundle such that each section qk is a differential
operator will be called a differential quantisation, i.e., the Zνp`q

Xk
are differential operators

acting on the components of the principal symbols Xk, i.e.,

Zνp`q
Xk

“

κpk,`q
ÿ

m“0

Yνp`q | ρpmq
µpkq pxq Bρ1 ¨ ¨ ¨ Bρm Xµpkq

k , (57)

where ` ď k and the order κpk, `q of the differential operator depends on k and `. For
quantisations corresponding to “choices of ordering” in some coordinate system xµ, the sec-
tions qk are differential operators of order k. Differential quantisations will be assumed
to satisfy this extra condition. A differential quantisation q : dT pMq „Ñ DpMq which is
C8pMq-linear will be called a quantisation of normal type (i.e., all differential operators (57)
are of order zero, hence only the term m “ 0 is present in the sum).

Example 19 (Normal quantisation). Consider the manifold M to be topologically trivial. Pick
a global coordinate system xµ.20 Then, an example of compatible and normal-type quantisation is
provided by the C8pMq-linear maps

qk : Xµ1¨¨¨µrpxq Bµ1 d ¨ ¨ ¨ d Bµr ÞÑ Xµ1¨¨¨µrpxq Bµ1 ¨ ¨ ¨ Bµr . (58)

The corresponding quantisation of the cotangent bundle is the normal quantisation sending symbols
to the corresponding normal-ordered operators ,

QN :
k
ÿ

r“0

1
r!

Xµ1¨¨¨µrpxq pµ1 ¨ ¨ ¨ pµr ÞÑ

k
ÿ

r“0

1
r!

Xµ1¨¨¨µrpxq Bµ1 ¨ ¨ ¨ Bµr . (59)
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The inverse map
ΣN : X̂ ÞÑ Xpx, pq “ expp´pµxµq X̂r expppµxµq s (60)

is the normal symbol map.

Example 20 (Weyl quantisation). The other paradigmatic example of differential quantisation of
the cotangent bundle of a topologically trivial manifold is Weyl quantisation [46,47]. It is based
instead on the Weyl (i.e., symmetric) ordering, instead of the normal ordering (in some Darboux
coordinate system). The corresponding quantisation map is called the Weyl map sending symbols to
the corresponding Weyl-ordered operators. Its inverse is the symbol map called the Wigner map. For
a review and explicit formulae, see, e.g., [15,16]. Note that the Weyl quantisation is not compatible
with the canonical characters. For instance, the Weyl map sends the Weyl symbol Xpx, pq “ xµ pµ

to the Weyl-ordered operator X̂ “ 1
2 px̂

µ ˝ Bµ `Bµ ˝ x̂µq “ xµBµ `
1
2 whose action on the unit gives

X̂r1s “ 1
2 ‰ 0 “ Xpx, p “ 0q.

5. Quantisation of the Cotangent Bundle: Going beyond Differential Operators
5.1. Quasi-Differential Operators

A quantisation (54) of the cotangent bundle allows to endow the commutative algebra
SpMq of symbols with a non-commutative product ‹ inherited from the composition
product ˝ of the almost-commutative algebra DpMq of differential operators.

Strict product. Let us assume that there exists an associative product ‹ on the whole
space C8pT˚Mq of functions on the cotangent bundle T˚M such that (i) it reduces to
the above-mentioned product on the subspace SpMq Ă C8pT˚Mq of symbols on M and
(ii) the constant function 1 P C8pT˚Mq is the unit element for this product. Such an
associative product will be called a strict product on C8pT˚Mq. The space C8pT˚Mq of
smooth functions on the cotangent bundle endowed with a strict product ‹will be denoted
C8‹ pT˚Mq. The canonical embedding (22) of the commutative algebra C8pMq of functions
on the base manifold inside the algebra C8pT˚Mq of functions on the cotangent bundle
T˚M is a unit map of C8‹ pT˚Mq.

Strict quantisation of the cotangent bundle. Let us further assume that the C8pMq-ring
C8‹ pT˚Mq is endowed with an injective anchor extending the quantisation map (54). This
hypothetical situation will loosely21 be referred to as a strict quantisation of the cotangent
bundle. In this ideal case, the C8pMq-ring C8‹ pT˚Mq could be interpreted as defining a
completion of the almost-commutative algebra DpMq of differential operators M.

Quasi-differential operators. The image of the injective anchor will be denoted QDpMq
and called the associative algebra of quasi-differential operators on the manifold M. Let us
motivate the terminology “quasi-differential operator” : The term “operator” is justified
by the fact that, by construction, the image QDpMq Ă End

`

C8pMq
˘

is spanned by linear
operators on C8pMq. More precisely, there is an isomorphism of associative algebras:

‚̂ : C8‹ pT
˚Mq „Ñ QDpMq : X ÞÑ X̂ (61)

sending functions Xpx, pq on the cotangent bundle T˚M on linear operators X̂ acting on
functions f pxq on M. The map (61) will be called a strict quantisation map because it provides,
by definition, an extension of some quantisation map Q : SpMq „Ñ DpMq sending symbols
to differential operators. In particular, the isomorphism (61) extends the unit map (32)
sending functions on the base manifold M to zeroth-order differential operators on M. The
adjective “differential” to designate these operators comes from the fact that the vertical
coordinates pµ of generic functions f px, pq on the cotangent bundle T˚M can loosely be
interpreted as standing for partial derivatives Bµ while the adjective “quasi” underlines
that the dependence is not polynomial in general. Table 2 provides a comparison between
the classical and quantum algebras of functions on the cotangent bundle that have been
introduced so far.
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Pseudo-differential operators. Note that the term “pseudo-differential operator” was
avoided on purpose, in order to avoid confusion since this technical term is already taken
(see, e.g., [49–51] for classical textbooks on the subject). Roughly, pseudo-differential
operators corresponds to functions on phase space with power-law asymptotic behaviour
(and extra technical requirements). The functional space of pseudo-differential operators
seems too small to remain invariant under the action of automorphisms generated by
higher-order differential operators.22

Table 2. Classical versus quantum algebras of functions on the cotangent bundle.

Classical Quantum

Algebra Poisson algebra (symplectic) Associative algebra (central)
C8pT˚Mq QDpMq

Elements Functions on the cotangent bundle Quasi-differential operators
Xpx, pq X̂px, Bq

Graded/Filtered Schouten algebra Almost-commutative algebra
subalgebra SpMq DpMq

Elements Symbols Differential operators

Xpx, pq “
k
ř

r“0

1
r! Xµ1¨¨¨µr pxq pµ1 ¨ ¨ ¨ pµr X̂ “

k
ř

r“0

1
r! Xµ1¨¨¨µr pxq Bµ1 ¨ ¨ ¨ Bµr

Commutative Base algebra Order zero subalgebra
subalgebra C8pMq Ă SpMq D0pMq Ă DpMq

Elements Functions on the base Differential operators of order zero
f pxq f̂

5.2. Criteria on the Strict Product

Compatibility condition. On the one hand, the D0pMq-ring QDpMq of quasi-differential
operators is endowed with a non-degenerate character ζ̂˚ : QDpMq � D0pMq send-
ing quasi-differential operators X̂ to zeroth-order differential operators X̂0 . This non-
degenerate character extends (38) and is defined exactly in the same way. On the other
hand, the C8pMq-ring C8pT˚Mq is endowed with the degenerate character (23). A strict
quantisation is said compatible (with the canonical unit maps and characters) if the follow-
ing square is commutative:

C8‹ pT˚Mq ‚̂
ÝÑ QDpMq

ζ˚
§

đ

§

đζ̂˚

C8pMq ‚̂
ÝÑ D0pMq

(62)

where the horizontal (respectively, vertical) arrows are isomorphisms (respectively, surjec-
tive morphisms) of associative algebras. Obviously, this requires to start from a compatible
quantisations of the Schouten algebra of symbols, since the square (46) must be commuta-
tive.

Candidate character. A strict quantisation can be defined equivalently via a non-degenerate
character on the C8pMq-ring C8‹ pT˚Mq. The unit map (22) and the degenerate charac-
ter (23) of the C8pMq-ring C8pT˚Mq allow to define how a function X on the cotangent
bundle T˚M may act on functions f on the base manifold M:

X̂r f s :“ ζ˚
´

X ‹ τ˚p f q
¯

P C8pMq with X P C8pT˚Mq and f P C8pMq . (63)

which reads, in Darboux coordinates, as X̂r f s “ pX ‹ f q |p“0 . This definition automatically
ensures that the square (62) is commutative, since the constant function 1 P C8pMq is the
unit element for the strict product: X̂r1s “ ζ˚pX ‹ 1q “ X0 . However, the corresponding
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map ‚̂ : X ÞÑ X̂ need not be an anchor because it may fail to be an algebra morphism.
Nevertheless, the converse statement is true: any compatible strict quantisation is such that
the relation (63) holds.23

Contact ideal of order zero. Consider the subalgebra ker ζ˚ Ă C8pT˚Mq spanned by
all functions X on the cotangent bundle vanishing on the zero section, i.e., such that
X0 “ ζ˚pXq “ 0. It is an ideal for both the pointwise product and the Poisson bracket. It
will be called the zeroth-order contact ideal of the cotangent bundle zero-section and denoted
I0` ζpMq

˘

.

Criteria on the strict product. The map (23) induces a character on the C8pMq-ring
C8‹ pT˚Mq iff the map ‚̂ : X ÞÑ X̂ defined through (63) is an anchor, which happens iff the
underlying strict product satisfies the following condition:

@X, Y P C8pT˚Mq , DZ P I0` ζpMq
˘

: X ‹Y “ X ‹ ζ˚pYq ` Z . (64)

In fact, the map ‚̂ is an anchor of the C8pMq-ring C8‹ pT˚Mq iff it is a morphism of associa-
tive algebras, i.e.,

pŶ ˝ X̂qr f s “ Ŷ
“

X̂r f s
‰

. (65)

This condition translates into (64) by using the definition (63).

Normal-type quantisations. A strict product ‹ on the space of functions on the cotangent
bundle T˚M such that:

f ‹ X “ f ¨ X , @ f P τ˚
`

C8pMq
˘

, @X P C8pT˚Mq , (66)

where ¨ is the pointwise product, will be called of normal type. It is natural to focus on
strict products of normal type because the condition (66) ensures the consistency with the
following particular case of the identity (65):

p f̂ ˝ X̂qrgs “ f ¨ pX̂rgsq , (67)

which holds by the very definition of the map (32). A strict quantisation of the cotangent
bundle is said of normal type if the strict quantisation map is C8pMq-linear (or, equivalently,
if the underlying strict product is of normal type).

5.3. Strict Higher-Spin Diffeomorphisms

The automorphisms of the associative algebra C8‹ pT˚Mq will be called strict higher-
spin diffeomorphisms of the manifold M. By construction, a strict higher-spin diffeomorphism
of M induces a standard diffeomorphism of M iff the commutative algebra S0pMq –
C8pMq of functions (or, equivalently, the associative algebra SpMq of symbols) is an
invariant subspace under the action of this automorphism. This follows immediately from
the algebraic interpretation of diffeomorphisms of a manifold as automorphisms of the
commutative algebra of functions (cf. Section 2.7) and the results of [29,30] (cf. Section 2.5).

This notion can be further generalised as follows: an isomorphism F : C8‹ pT˚Mq „Ñ
C8‹ pT˚Nq of associative algebras will be called a strict higher-spin diffeomorphism from the
manifold M to the manifold N. One may conjecture that the following three statements
are equivalent:

1. A strict higher-spin diffeomorphism C8‹ pT˚Mq „
Ñ C8‹ pT˚Nq induces a standard

diffeomorphism M „
Ñ N,

2. Its restriction to the subalgebra of differential operators of order zero is an isomor-
phism S0pMq „Ñ S0pNq of commutative algebras,

3. Its restriction to the whole subalgebra of differential operators is an isomorphism
DpMq „Ñ DpNq of associative algebras.

The equivalence between the first and second statement is clear, but their equivalence with
the third statement remains an open question.
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5.4. Formal Completion

Let us stress that proving the existence of a strict quantisation of the cotangent bun-
dle and/or defining rigorously a suitable completion of the space DpMq of differential
operators are technically challenging problems, that would involve hard-core tools from ge-
ometric quantisation and/or functional analysis.24 In any case, the whole space C8pT˚Mq
may not be the best suited candidate for the completion one is looking for. The choice
of smooth function on the cotangent bundle should just be taken as an indicative exam-
ple, but this functional space is presumably too big if one looks for “almost” differential
operators. For instance, it could be replaced with the subspace of C8pT˚Mq spanned by
functions which are analytic in the momenta.

6. Almost Differential Operators

The first subsections contain (some new, but elementary) definitions and lemmas
which will be used to introduce in the last subsection an example of formal completion of
the almost-commutative algebra of differential operators bypassing the no-go theorem of
Grabowski and Poncin.

From now on, the letter h̄ will always denote a formal deformation parameter.25

6.1. Formal Power Series over an Algebra

Formal power series in h̄ . Let V be a complex vector space. Then VJh̄K denotes the vector
space of formal power series in h̄ with coefficients that are elements of V. The vector space
VJh̄K is a CJh̄K-module.

h̄-linearity. A C-linear map U P End
´

VJh̄K
¯

is said h̄ -linear if

U
´

8
ÿ

n“0

vn h̄n
¯

“

8
ÿ

n“0

Upvnq h̄n , @vn P V , (68)

i.e., if it is CJh̄K-linear. The h̄ -linear maps span an associative subalgebra of the associative
algebra End

`

VJh̄K
˘

of endomorphisms of the vector space VJh̄K. Any h̄ -linear endomor-
phism U : VJh̄K Ñ VJh̄K is determined uniquely from its restriction T “ U|V : V Ñ VJh̄K
to the subspace V Ă VJh̄K of power series independent of h̄. This restriction is a C-linear
map from V to VJh̄K, hence it can be thought of as an element of the space EndpVqJh̄K of
formal power series in h̄ with coefficients that are linear maps from the vector space V
to itself,

T P EndpVqJh̄K ô T “
8
ÿ

n“0

Tn h̄n with Tn P EndpVq . (69)

Therefore, the h̄ -linear maps span an associative algebra isomorphic to EndpVqJh̄K. With a
slight abuse of notation, the C-linear map T and its unique h̄-linear extension U will be
denoted by the same symbol from now on.

h̄-linear extension of product. Consider an associative algebra A . The h̄ -linear extension
of its product endows the vector space AJh̄K with a structure of CJh̄K-algebra. The same is
true for a Lie algebra: the h̄ -linear extension of the bracket of a Lie algebra g endows the
vector space gJh̄K with a structure of CJh̄K-Lie algebra. Idem for Poisson algebras.

h̄-filtration. Consider an associative filtered algebra A . Let us denote by A ⟪h̄⟫ (respec-
tively, by A xh̄y) the vector space spanned by formal power series (respectively, by polyno-
mials) in h̄ with coefficients which are of degree smaller or equal to the power of h̄,

aph̄q P A ⟪h̄⟫ ðñ aph̄q “
8
ÿ

n“0

an h̄n with an P An . (70)
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It will be called the h̄-filtered extension of the filtered algebra. The h̄ -linear extension of
the product of the associative algebra A endows the vector space A ⟪h̄⟫ Ă AJh̄K with a
structure of CJh̄K-subalgebra (indeed aph̄q bph̄q P A ⟪h̄⟫ for aph̄q and bph̄q in A ⟪h̄⟫ because
ai bj P Ai`j if ai P Ai and bj P Aj). Formal power series in h̄ can be differentiated with
respect to the formal variable h̄. An associative algebra A is filtered iff there exists an CJh̄K-
subalgebra A ⟪h̄⟫ Ă AJh̄K such that A ⟪h̄⟫ Ă d

dh̄ A ⟪h̄⟫ . This subalgebra A ⟪h̄⟫ defines the
filtration of A and vice versa.

h̄-grading. Consider an associative graded algebra B . Let us denote by B ‖h̄‖ the associa-
tive algebra spanned by formal power series in h̄ with coefficients which are of grading
equal to the power of h̄. It will be called the h̄-graded extension of the associative graded algebra
B. The subalgebra B ‖h̄‖ Ă BJh̄K is such that h̄n B ‖h̄‖X B ‖h̄‖ “ H for all n P N0.

h̄-grading associated to an h̄-filtration. The elements of the form aph̄q “ h̄ bph̄q, where
bph̄q P AJh̄K , form a proper ideal h̄AJh̄K Ă AJh̄K . Similarly, the elements of the same form
but where bph̄q P A ⟪h̄⟫ , form a proper ideal of h̄A ⟪h̄⟫ Ă A ⟪h̄⟫ . The quotient algebra of
the h̄-filtered extension A ⟪h̄⟫ of the filtered associative algebra A by the ideal h̄A ⟪h̄⟫ is
isomorphic to the h̄-graded extension of the associated graded algebra B “ grA,

A ⟪h̄⟫ { h̄A ⟪h̄⟫ – grA‖h̄‖ . (71)

An associative filtered algebra A is almost-commutative iff its h̄-filtered extension A ⟪h̄⟫ is
commutative modulo h̄,

“

A ⟪h̄⟫ , A ⟪h̄⟫ ‰ Ă h̄A ⟪h̄⟫ . (72)

which is equivalent to say that the quotient algebra (71) is commutative.

Refined adjoint representation. For any associative algebra A, one can form the Lie
algebra A by endowing the vector space A with the commutator as Lie bracket. Consider
an almost-commutative algebra A, one can define the following representation of the Lie
algebra A ⟪h̄⟫ on the associative algebra A ⟪h̄⟫

adh̄ : A ⟪h̄⟫Ñ der
`

A ⟪h̄⟫ ˘ : b ÞÑ adh̄
b (73)

where
adh̄

b :“
1
h̄

adb (74)

is an h̄ -linear derivation of the associative algebra A ⟪h̄⟫ .

Lemma 1 (Technical Lemma (Exponentiation)). Consider an almost-commutative algebra A.
Let us assume that the adjoint action ad|A1 : A1 Ñ derpAq of the Lie subalgebra A1 Ă A of degree
one is integrable in the sense that there are one-parameter groups of automorphisms of the almost-
commutative algebra A with elements of the form expp t adaq P AutpAq for some a P A1. Then
the action adh̄ of the Lie algebra A ⟪h̄⟫ on the associative algebra A ⟪h̄⟫ is essentially integrable,
in the sense that all elements aph̄q “

ř8
n“1 an h̄n

P A ⟪h̄⟫X h̄AJh̄K generate one-parameter groups
of automorphisms of the associative algebra A of the form expp t adh̄

aq P AutpA ⟪h̄⟫q when the
coefficient a1 is integrable in the previous sense.

The proof of this technical lemma can be found in Appendix A.

6.2. Almost-Differential Operators

A direct corollary of the technical lemma in the previous subsection is that the no-
go theorem of Grabowski and Poncin can be bypassed by considering instead the h̄-
filtered completion DpMq ⟪h̄⟫ of the associative algebra DpMq of differential operators. It
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is spanned by formal power series in h̄ with coefficients that are differential operators on
M of order smaller or equal to the power of h̄,

X̂h̄ “

8
ÿ

r“0

X̂r h̄r , X̂r P DrpMq . (75)

They will be called almost-differential operators on the manifold M.

Proposition 1 (Yes-go proposition 1 (Almost differential operators)). An almost-differential
operator X̂h̄ P DpMq ⟪h̄⟫X h̄DpMqJh̄K is locally integrable to a one-parameter group of automor-
phisms of the algebra DpMq⟪h̄⟫ of almost-differential operators.

More precisely, if X̂h̄ P DpMq⟪h̄⟫ is an almost-differential operator such that X̂h̄|h̄“0 “

0 and if the principal symbol of dX̂h̄
dh̄ |h̄“0 P D1pMq is a complete vector field, then X̂h̄

generates a globally-defined action of the additive group R on the algebra DpMq ⟪h̄⟫ . Note
that a similar proposition holds for the Poisson algebra SpMq⟪h̄⟫ spanned by formal power
series in h̄ with coefficients which are symbols of degree smaller or equal to the power of h̄.

7. Deformation Quantisation: Sample of Results

Extending a quantisation of the cotangent bundle to a strict quantisation, i.e., passing
from the space of symbols to the whole space of smooth functions on the cotangent bundle,
is not an easy task. It is not even guaranteed to work, a priori. Fortunately, a wealth of posi-
tive results are available for a slightly weaker version of this idea: a deformation quantisation
of the cotangent bundle where one only considers “formal” deformations of the pointwise
product. Hopefully, one might eventually set the deformation parameter h̄ to be equal to a
real number, in which case one would be allowed to speak of a “strict” deformation.

References to seminal papers on deformation quantisation and precise location of
theorems, quoted without proofs in this section, can be found in the lecture notes by Simone
Gutt from which this sample of results has been extracted (cf. Sections 3 and 5 of [55]).

7.1. Star Products

Let M be a manifold. A bilinear map

‹ : C8pMq ˆ C8pMq Ñ C8pMqJh̄K (76)

can be decomposed as a formal power series

‹ “

8
ÿ

n“0

‹n h̄n (77)

of bilinear maps
‹n : C8pMq ˆ C8pMq Ñ C8pMq (78)

and defines, via h̄ -(bi)linearity, a bilinear map on the whole space C8pMqJh̄K. A bilinear
map (76) defining an associative product on the space C8pMqJh̄K and which is a defor-
mation26 of the pointwise product on the commutative algebra C8pMq (in the sense that
‹0 “ ¨ ) is called a star product on the manifold M. The vector space C8pMqJh̄K endowed
with the star product ‹ is an associative algebra which will be denoted C8‹ pMqJh̄K.

Any star product on a manifold M endows the latter with a structure of Poisson man-
ifold by extracting a Poisson bracket from the leading part of the commutator bracket, i.e.,

tX, Yu :“
1
h̄
rX , Y s‹ modulo h̄ . (79)
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for all X, Y P C8pMq. Conversely, endowing a Poisson algebra with a star product is called
a deformation of the Poisson algebra of functions, and one speaks accordingly of a deformation
quantisation of the Poisson manifold.

A differential star product is a star product (77) such that each bilinear map ‹n is a
bidifferential operator on C8pMq. In particular, a natural star product is a differential
star product such that each bilinear map ‹n is a bidifferential operator of order n in each
argument, i.e., ‹n P pDn bDnqpMqJh̄K .

Example 21 (Normal star product). In some Darboux coordinates on the cotangent bundle T˚M
of a topologically trivial manifold M, the normal symbol map (60) allows to obtain the bilinear map

N
‹ :“ exp

˜

h̄
ÐÝ
B

Bpµ

ÝÑ
B

Bxµ

¸

, (80)

which provides an example of natural star product of normal type on T˚M. The corresponding set
of bidifferential operators reads

Xpx, pq
N
‹n Ypx, pq :“

1
n!

BnXpx, pq
Bpµ1 ¨ ¨ ¨ Bpµn

BnYpx, pq
Bxµ1 ¨ ¨ ¨ Bxµn

. (81)

From now on, one will restrict ourselves to natural star products so this assumption will be
left implicit.

7.2. Equivalences of Star Products and Automorphisms of Deformations

The invertible h̄ -linear maps T P EndpVqJh̄K of the form

T “ idV `

8
ÿ

n“1

Tn h̄n with Tn P EndpVq (82)

will be called perturbative redefinitions of the vector space VJh̄K. They form a normal subgroup
of the group GLpVJh̄K q X EndpVqJh̄K of invertible h̄ -linear endomorphisms of VJh̄K.

Two star products ‹ and ‹1 on the same Poisson manifold M are equivalent star products
if there exists a perturbative redefinition T of C8pMqJh̄K such that:

Tp f ‹ gq “ pT f q ‹1 pTgq , @ f , g P C8pMq . (83)

In other words, an equivalence of star products is a perturbative redefinition of the vector space
C8pMqJh̄K which defines an algebra isomorphism between C8‹ pMqJh̄K and C8

‹1
pMqJh̄K.

Locally, any two equivalent differential star products ‹ and ‹1 on a Poisson manifold M are
equivalent via a differential perturbative redefinition, i.e., T P DpMqJh̄K in (83).27 In general,
any associative deformation of a commutative algebra is equivalent to a deformation whose
unit element is the same as the one of the undeformed algebra. In this sense, there is no
loss of generality in assuming (as will be done from now on) that 1 P C8pMq is the unit
for both the pointwise product and for the star product.

Let C8‹ pMqJh̄K denote the Lie algebra obtained by endowing the associative C8‹ pMqJh̄K
with the so-called star commutator

rX , Y s‹ “ h̄ tX, Yu `Oph̄2
q (84)

as Lie bracket. The star adjoint representation is the morphism of Lie algebras

‹ad : C8‹ pMqJh̄K ãÑ inn
´

C8‹ pMqJh̄K
¯

: X ÞÑ ‹adX (85)

where
‹adXY :“ rX , Y s‹ (86)
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is an inner derivation of C8‹ pMqJh̄K
A self-equivalence of the star product ‹ is an equivalence of the star product with itself

(i.e., ‹ “ ‹1). For instance, for any X P C8‹ pMqJh̄K the automorphism expp‹adXq is a self-
equivalence called an inner self-equivalence. Locally, all self-equivalences of a star product
are inner.28 Two automorphisms of the deformation C8‹ pMqJh̄K which are related by a
self-equivalence of the star product ‹will be called equivalent automorphisms.

Let ‹ and ‹1 be two star products on, respectively, two symplectic manifolds M and
M1. Any h̄ -linear isomorphism T : C8‹ pMqJh̄K „Ñ C8

‹1
pM1qJh̄K of associative algebras is

entirely determined by the corresponding formal power series in h̄,

T “
8
ÿ

n“0

Tn h̄n with Tn : C8pMq
„
Ñ C8pM1q . (87)

whose coefficients are linear maps between the Poisson algebras of functions M and M1.
In particular, the term T0 : C8pMq

„
Ñ C8pM1q at order zero in h̄ is an isomorphism of

Poisson algebras, thereby defining a symplectomorphism between the two corresponding
symplectic manifolds M and M1. Any h̄ -linear isomorphism is the composition of such
a symplectomorphism and an equivalence of star products. The latter will be called the
quantum correction of the symplectomorphism.

A theorem of Fedosov (see Section 5.5 of their book [56]) ensures that any symplecto-
morphism of a symplectic manifold M (connected to the identity by a path of symplec-
tomorphisms) can be extended to an h̄ -linear algebra automorphism of the deformation
C8‹ pMqJh̄K. For instance, an automorphism of the form expp 1

h̄
‹adXq for a non-vanishing

function X P C8pMq on the symplectic manifold M is the deformation of a Hamiltonian
symplectomorphism. With a light abuse of terminology, it will be called a non-trivial inner
automorphism of the deformation C8‹ pMqJh̄K.

7.3. Derivations

An h̄ -linear derivation of the deformation C8‹ pMqJh̄K is an h̄ -linear endomorphism T
of the vector space C8pMqJh̄K which obeys to the Leibnitz rule with respect to the star
product, i.e.,

T P End
´

C8pMq

¯

Jh̄K and

TpX ‹Yq “ TpXq ‹Y` X ‹ TpYq , @X, Y P C8pMqJh̄K. (88)

The h̄ -linear derivations span the Lie algebra

der
`

C8‹ pMq
˘

X End
`

C8pMq
˘

Jh̄K . (89)

Any h̄ -linear derivation is entirely determined by the corresponding formal power se-
ries (87) in h̄. In particular, its constant term T0 defines a symplectic vector field on M. An
h̄ -linear derivation with non-vanishing constant term will be called a non-trivial derivation
of the deformation C8‹ pMqJh̄K. The non-trivial derivations are the infinitesimal countepart of
h̄ -linear automorphisms of the deformation C8‹ pMqJh̄K defining a non-trivial symplecto-
morphism of M.

The elements T of the associative algebra EndpVqJh̄K with vanishing constant term,
i.e., T0 “ 0 in (82), will be called infinitesimal perturbative redefinitions of the vector space VJh̄K.
They form the associative ideal h̄ EndpVqJh̄K which will be called the ideal of infinitesimal
perturbative redefinitions of the vector space VJh̄K,

T P h̄ EndpVqJh̄K ô T “
8
ÿ

n“1

Tn h̄n with Tn P EndpVq . (90)
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The terminology arises from the fact that any perturbative redefinition (82) is the exponen-
tial of an infinitesimal perturbative redefinition. In this sense, the group of perturbative
redefinitions can be denoted exp

`

h̄ EndpVqJh̄K
˘

,

T “ exp S with S P h̄ EndpVqJh̄K (91)

ô T “ idV ` R with R P h̄ EndpVqJh̄K . (92)

Elements which are both h̄ -linear derivations and infinitesimal perturbative redef-
initions of the deformation C8‹ pMqJh̄K will be called trivial derivations of the deformation
C8‹ pMqJh̄K. They are the infinitesimal counterpart of self-equivalence of star products. The
Lie algebra

der
`

C8‹ pMqJh̄K
˘

X h̄ End
`

C8pMq
˘

Jh̄K (93)

spanned by trivial derivations is a Lie ideal of the Lie algebra of h̄ -linear derivations.
An inner derivation of the associative algebra C8‹ pMqJh̄K is, by definition, the image

of an element X by the adjoint representation (85), i.e.,

‹adX P inn
´

C8‹ pMqJh̄K
¯

with X P C8‹ pMqJh̄K . (94)

Due to the property (84) of the star commutator, any such inner derivation of the associative
algebra C8‹ pMqJh̄K is a trivial derivation. They correspond to infinitesimal inner self-
equivalences of the star product ‹ . Accordingly, a derivation of the form

Lh̄
X :“

1
h̄
‹adX with X P C8pMq (95)

will be called a non-trivial inner derivation of the deformation C8‹ pMqJh̄K.29 Locally, all non-
vanishing h̄ -linear derivations of the deformation C8‹ pMqJh̄K are of the form (95), but with
X P C8pMqJh̄K in general. The non-trivial inner derivation (95) acts on functions on M
as follows:

Lh̄
XY “ tX, Yu `Oph̄q , where X, Y P C8pMq . (96)

As one can see, the non-trivial inner derivation Lh̄
X is a deformation of the Hamiltonian

vector field on M generated by the Hamiltonian X. The non-trivial inner derivations
are the infinitesimal contepart of non-trivial inner automorphisms of the deformation
C8‹ pMqJh̄K.

Table 3 summarises the main h̄-linear transformations of the deformation C8‹ pMqJh̄K.
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Table 3. Deformed vs. undeformed algebra of functions.

Mathematical Objects Classical (Undeformed) Quantum (Deformed)

Un/deformed Order h̄0 Formal power series in h̄

Algebra Symplectic algebra Associative algebra
of functions C8pMq C8‹ pMqJh̄K

Linear maps C-linear h̄-linear

Associative algebra of Endomorphism algebra Algebra of h̄-linear endomorphisms
endomorphisms End

`

C8pM
˘

End
`

C8pMq
˘

Jh̄K

Group of Group of symplectomorphisms Group of h̄-linear automorphisms
finite automorphisms Aut

`

C8pMq
˘

Aut
`

C8pMqJh̄K
˘

X End
`

C8pMq
˘

Jh̄K

Lie algebra of Lie algebra of Lie algebra of h̄-linear derivations
infinitesimal automorphisms symplectic vector fields der

`

C8pMqJh̄K
˘

X End
`

C8pMq
˘

Jh̄K

Group of finite Hamiltonian Flows of non-trivial
inner automorphisms flows P C8pMq inner automorphisms

Lie algebra of infinitesimal Lie algebra of Lie algebra of non-trivial
inner automorphisms Hamiltonian vector fields inner derivations

Group of Trivial group Normal subgroup of pert. redefs
finite redefinitions (identity map) exp

`

h̄ End
`

C8pMq
˘

Jh̄K
˘

Lie algebra of Trivial algebra Ideal of infinitesimal pert. redefs
infinitesimal redefinitions (zero map) h̄ End

`

C8pM
˘

Jh̄K

Group of Trivial group Group of star-product
self-equivalences (identity map) self-equivalences

Lie algebra of Trivial algebra Lie algebra of
infinitesimal self-equivalences (zero map) trivial derivations

One should stress that derivations of the deformation C8‹ pMqJh̄K are power series in
h̄ whose general coefficients are not derivations of C8pMq:

der
´

C8‹ pMqJh̄K
¯

‰ XpMqJh̄K . (97)

For instance, non-trivial inner derivations of a deformation C8‹ pMqJh̄K for a differential
star product are power series in h̄ whose general coefficients are differential operators on
C8pMq:

inn
´

C8‹ pMqJh̄K
¯

Ă DpMqJh̄K . (98)

Example 22 (Normal star product). In Darboux coordinates pxµ, pνq on the symplectic manifold
M, the normal star product (80) allows to calculate from the definition (95) the explicit form of the
non-trivial inner derivations in that case:

Lh̄
X “

8
ÿ

n“1

h̄n´1

n!

„

BnXpx, pq
Bpµ1 ¨ ¨ ¨ Bpµn

Bn

Bxµ1 ¨ ¨ ¨ Bxµn
´

BnXpx, pq
Bxµ1 ¨ ¨ ¨ Bxµn

Bn

Bpµ1 ¨ ¨ ¨ Bpµn



,

“
BX
Bpµ

B

Bxµ ´
BX
Bxµ

B

Bpµ
` Oph̄q . (99)
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8. Quasi Differential Operators
8.1. Star Products of Symbols of Differential Operators

Let SpMqrh̄s denote the commutative algebra of polynomials in h̄ with coefficients
that are symbols on M,

Xpx, p ; h̄q “
k
ÿ

r“0

Xrpx, pq h̄r , Xr P SpMq . (100)

This commutative algebra is bi-graded: it is graded by the polynomial degree in the
momenta and by the polynomial degree in the formal parameter h̄.

Given a quantisation of the cotangent bundle T˚M, the vector space SpMq of symbols
is endowed with a structure of almost-commutative algebra via the associative product
‹ in SpMq induced from the composition product ˝ in DpMq. Since the Schouten algebra
SpMq – dT pMq of symbols is graded by the polynomial degree in the momenta, one may
decompose the associative product ‹ with respect to this grading as in (30) where where ‹n
decreases the grading by n (and ‹0 “ ¨ is the pointwise product). This allows to define a
bilinear map:

‹ : SpMq ˆ SpMq Ñ SpMqrh̄s (101)

as follows

‹ “

8
ÿ

n“0

‹n h̄n . (102)

The map (101) will be loosely called a star product on SpMqrh̄s. With a slight abuse of
notation, the same symbol was used for the induced product and the star product, for the
sake of later convenience.

Consider the commutative subalgebra

SpMq |h̄| :“
8
à

n“0
SnpMq h̄n

Ă SpMqrh̄s , (103)

spanned by principal symbols where each momenta comes together with an h̄ factor, i.e., its
elements take the form:

Xpx, p ; h̄q “
k
ÿ

r“0

1
r!

Xµ1¨¨¨µrpxq pµ1 ¨ ¨ ¨ pµr h̄r . (104)

Equivalently, the coefficient of h̄r is a principal symbol of degree r : Xrpx, pq “ Xµ1¨¨¨µrpxq
pµ1 ¨ ¨ ¨ pµr in (100). The commutative algebra SpMq|h̄| is graded by the polynomial degree
in the momenta or, equivalently, in the formal parameter h̄ (since these polynomial degrees
coincide). The dilatation p ÞÑ h̄ p of the cotangent spaces by a common scaling factor h̄
defines an isomorphism

i : SpMq „Ñ SpMq|h̄| : Xpx, pq ÞÑ Xpx, h̄ pq . (105)

of graded algebras, from the algebra SpMq of symbols, graded by the polynomial degree
in momenta, to the h̄-graded algebra SpMq|h̄| .

Consider the associative algebra

DpMq xh̄y “
8
à

n“0
DnpMq h̄n

Ă DpMqrh̄s , (106)
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spanned by polynomials in h̄ with components which are differential operators of order
smaller or equal to the power of h̄, i.e., its elements take the form:

X̂h̄ “

k
ÿ

r“0

X̂r h̄r , X̂r P DrpMq . (107)

The h̄ -linear extension of the quantisation q : SpMq ãÑ DpMq defines a linear injection

q : SpMq|h̄| ãÑ DpMq xh̄y (108)

because the restrictions qn : SnpMq ãÑ DnpMq of the quantisation are linear injections. The
composition of the canonical isomorphism (105) with the linear injection (108),

Q :“ Q ˝ i : SpMq „Ñ DpMq xh̄y (109)

is a linear injection of the graded vector space SpMq inside the h̄-filtered vector space
DpMqxh̄y . The embedding (109) allows to motivate the star product (101) on SpMqrh̄s as
being induced from the composition product ˝ in DpMq xh̄y, in the sense that:

X ‹Y “ Q´1
´

pQXq ˝ pQYq
¯

, @X, Y P SpMq , (110)

where Q above is implictly understood as the h̄ -linear extension of Q. One can check
(by multiplying principal symbols) that the star product is indeed given by the power
series (102).

Example 23 (Normal quantisation). One can check explicitly that the bilinear map (80) arises
from the normal quantisation (59) by making use of the map

QN ˝ i : SpMq ãÑ DpMq xh̄y

:
k
ÿ

r“0

1
r!

Xµ1¨¨¨µrpxq pµ1 ¨ ¨ ¨ pµr ÞÑ

k
ÿ

r“0

h̄r

r!
Xµ1¨¨¨µrpxq Bµ1 ¨ ¨ ¨ Bµr (111)

which implements the usual quantisation rule pµ ÞÑ h̄ Bµ via the normal ordering prescription.

8.2. Formal Quasi-Differential Operators

A quantisation of the cotangent bundle T˚M determines a star product on SpMqrh̄s.
There is a unique deformation quantisation of the cotangent bundle T˚M whose star
product on C8pT˚MqJh̄K
(1) Is differential, and
(2) Reduces to the star product on SpMqrh̄s.
In fact, since the star product ‹ is assumed to be differential, it is fixed entirely by its
action on symbols, i.e., on the subspace SpMq Ă C8pT˚Mq. Note that the corresponding
star product on the cotangent budle is natural due to our assumption on differential
quantisations. This deformation quantisation of the cotangent bundle (in the sense of
Section 7) will be called the formal extension of the quantisation of the cotangent bundle (in
the sense of Section 4). For instance, the bilinear map (80) provides a formal extension of
the normal quantisation (59).30 Two different quantisations of the cotangent bundle would
nevertheless lead to equivalent star products on SpMqrh̄s since the composition product in
DpMq remains the same.

Consider a deformation C8‹ pT˚MqJh̄K of the Poisson algebra C8pT˚Mq of functions
on the cotangent bundle T˚M via a star product ‹ arising from a formal extension of a
quantisation of the cotangent bundle T˚M. Its elements will be called formal quasi-differential
operators on the manifold M.31 An equivalence class of such deformations C8‹ pT˚MqJh̄K with
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respect to the equivalence of star products, will be called a formal algebra of quasi-differential
operators on M, denoted QDpMq. Similarly, two such formal algebras of quasi-differential
operators over the same manifold M will be considered isomorphic iff their start products
are equivalent. By construction, the algebra DpMq of differential operators is a subalgebra
of the formal algebra QDpMq of quasi-differential operators. A corollary of well-known
results in symplectic geometry and deformation quantisation is the uniqueness property of
the formal algebra of quasi-differential operators. Strictly speaking, within our technical
abilities we were only able to prove it under a mild assumption on the topology of the
manifold M but we conjecture that it must be valid for any manifold M and provide some
arguments below.

Proposition 2 (Uniqueness). When the second Betti number of the manifold M vanishes
( b2pMq “ 0 ), the formal algebra QDpMq of quasi-differential operators on a manifold M is
unique, up to automorphisms.

In such case, the algebra QDpMq is entirely determined by M, as the terminology and
notation suggests (h̄ is absent).

Proof. An old theorem of Lichnerowicz [60] asserts that the differential star product is
unique (up to equivalences) on any symplectic manifold M whose second Betti number
vanishes b2pMq “ 0. Note that any vector bundle is homotopically equivalent to its base
manifold M. Therefore, the Betti numbers of the cotangent bundle T˚M are equal to the
ones of its base manifold M : bipT˚Mq “ bipMq.

Remark 1. In the general case (when the second Betti number of the manifold M does not vanish),
the vector spaces of equivalence classes of symplectic two-forms and of star products are characterised
by the de Rham cohomology in degree two. Nevertheless, one should remember that the star product
on C8pT˚MqJh̄K has been required to reduce to the associative product on SpMqrh̄s obtained from
a quantisation map Q : SpMq „Ñ DpMq of the cotangent bundle. This requirement implies that the
symplectic two-form on T˚M is the canonical one. Therefore, one may expect that the admissible
star products for the construction of QDpMq are in the same equivalence class as the homogeneous
Fedosov star product considered in [45].32 Another strategy for proving the uniqueness of the
algebra QDpMq would be to show that the star products on C8pT˚MqJh̄K arising from the formal
extension of distinct quantisations of the cotangent bundle T˚M are isomorphic. This is to be
expected since two different quantisations of the cotangent bundle lead to equivalent star products
on SpMqrh̄s.

The star product of a function Xpx, pq P C8pT˚Mq on the cotangent bundle with a
function f pxq P C8pMq on the base manifold, evaluated at vanishing momenta, produces
a formal function on the base manifold. In this sense, formal quasi-differential operators
can indeed be interpreted as “operators”, i.e., as linear maps on C8pMqJh̄K. They are
“formal” in the sense that they are formal power series in h̄ but, more importantly, they are
“quasi-differential” in the sense that they can be interpreted as formal power series in h̄
with coefficients which are differential operators.

Proposition 3 (Formal quantisation map). Let Q : SpMq „Ñ DpMq be a compatible quantisa-
tion of the cotangent bundle T˚M. There is an h̄-linear surjective anchor ‚̂h̄ : C8‹ pT˚MqJh̄K �
DpMq⟪h̄⟫ of the deformation of the algebra of functions on the cotangent bundle, that extends the
compatible quantisation and whose image is the algebra of almost-differential operators.

A map with the above properties will be called a formal quantisation map,

‚̂h̄ : C8‹ pT
˚MqJh̄K � DpMq⟪h̄⟫ : X ÞÑ X̂h̄ , (112)
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Concretely, it is defined as:

X̂h̄r f s :“ ζ˚
´

X ‹ τ˚p f q
¯

P C8pMqJh̄K . (113)

Proof. Firstly, the map (112) takes values in DJh̄K. Indeed, remember that star products
have been assumed to be differential, hence the definition (113) implies that X̂h̄ P DJh̄K.
Secondly, the map (112) is h̄-linear. This is by construction because ζ˚ should be understood
in (113) as the h̄-linear extension of (23). Thirdly, the map (112) is surjective. In fact,
the situation is similar to Section 8.1. The image of a principal symbol Xrpx, pq P S rpMq of
degree r in the momenta is a rth-order differential operator X̂h̄ P DrpMq h̄r of degree r in
h̄ whose principal symbol is Xpx, pq h̄r . Therefore, the images of formal quasi-differential
operators of the form Xrpx, pq P S rpMqh̄s (for all r and s) will span the whole DpMq⟪h̄⟫.
Finally, the map (112) is a morphism of algebras. Indeed, the definition (113) mimicks (63).
The quantisation of the cotangent bundle is assumed compatible, which means that the
quantisation map (54) is compatible with the definition (63). Therefore, the h̄-linearity
ensures that this remains true for the extension (112) of (54).

Example 24 (Normal quantisation). Since

X̂h̄r f s :“
`

Xpx, pq
N
‹ f pxq

˘
ˇ

ˇ

p“0 “

8
ÿ

n“0

h̄n

n!
BnXpx, 0q
Bpµ1 ¨ ¨ ¨ Bpµn

Bn f pxq
Bxµ1 ¨ ¨ ¨ Bxµn

, (114)

the normal star product (80) leads to the formal quantisation map

‚̂N
h̄ : Xpx, pq ÞÑ X̂h̄ “

8
ÿ

n“0

h̄n

n!
BnXpx, 0q
Bpµ1 ¨ ¨ ¨ Bpµn

Bµ1 ¨ ¨ ¨ Bµn , (115)

in agreement with the quantisation map (111).

The idea behind the introduction of formal (quasi-)differential operators is that, al-
though the subspace SpMqrh̄s (or C8pT˚Mqrh̄s ) of elements polynomial in h̄ reduces to
the space of symbols (or of functions on the cotangent bundle) if one would set the formal
variable to h̄ “ 1, this is not true for the space C8pT˚MqJh̄K of formal quasi-differential
operators because the evaluation at h̄ “ 1 can be divergent. Nevertheless, one can interpret
the formal algebra QDpMq of quasi-differential operators as a completion of the almost-
commutative algebra DpMq of differential operators. Metaphorically it would produce the
desired algebra of strict quasi-differential operators, if one were allowed to set h̄ “ 1 in the
formulae. This will be good enough for our purpose.

9. Higher-Spin Diffeomorphisms

Let us stress that if h̄ is treated as a real parameter (rather than a formal variable), then
it becomes natural to consider only isomorphisms and automorphisms that are h̄ -linear.

9.1. Looking for Higher-Spin Diffeomorphisms

The known general results on star product (and their equivalence) ensure that defor-
mation quantisation provides a possible cure of the formal exponentiation of higher-
spin Lie derivatives. The Appendix B of [57] provides a very concise review of the
mathematically rigorous results on Heisenberg-picture time evolution of operators in
deformation quantisation.

One can define the higher-spin Lie derivative of a differential operator Ŷpx, pq P DpMq
along a differential operator X̂ P DpMq as a trivial inner derivation of the deformation
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C8‹ pT˚MqJh̄K associated to the corresponding symbols X, Y P SpMq. This defines the
one-parameter group of inner self-equivalences:

Ypx, pq ÞÑ Ytpx, p ; h̄q “ exp
´

t ‹adX

¯

Ypx, pq (116)

“ exp‹
`

` t Xpx, pq
˘

‹ Ypx, pq ‹ exp‹
`

´ t Xpx, pq
˘

.

where

exp‹ A :“
8
ÿ

n“0

1
n!

A ‹ ¨ ¨ ¨ ‹ A
looooomooooon

n factors

. (117)

It remains true that if Xpx, pq P S rpMq is a symbol of degree r ą 1 then its star adjoint
action on the algebra of symbols:

‹adX : SqpMq Ñ Sq`r´1pMqrh̄s (118)

increases the degree in momenta by r´ 1 ą 0. However the difference now is that each
such higher-spin Lie derivative brings at least one power of h̄. Therefore,

Ytpx, p ; h̄q P SpMqJh̄K if Ypx, pq P SpMq . (119)

Consequently, inner self-equivalences generated by higher-order differential operators
X̂ P DpMq are inner automorphisms of the subalgebra S‹pMqJh̄K Ă C8‹ pT˚MqJh̄K denoting
the space of symbols SpMq endowed with the star product. Unfortunately, these inner
automorphisms are trivial automorphisms of S‹pMqJh̄K. In fact, their classical limit is
the identity:

Ytpx, p ; h̄ Ñ 0q “ Ypx, pq (120)

for all t P R. This is consistent with the Grabowski–Poncin no-go theorem.
A proper refinement of the previous attempt is to consider instead the mapping:

Ypx, pq ÞÑ Yh̄
t px, pq :“ exp

´

tLh̄
X

¯

Ypx, pq . (121)

where Lh̄
X denotes a non-trivial inner derivation(95) of the deformation C8‹ pT˚MqJh̄K. More

generally, a derivation of the form (95) with X P C8‹ pT˚MqJh̄K will be called a formal higher-
spin Lie derivative along a quasi-differential operator. Locally, any h̄ -linear derivation of the
deformation C8‹ pT˚MqJh̄K is a formal higher-spin Lie derivative. The classical limit of (121)
is the symplectomorphism:

Ypx, pq ÞÑ Yh̄Ñ0
t px, pq “ exp

´

t tXpx, pq , u
¯

Ypx, pq (122)

generated by the Hamiltonian vector field with Xpx, pq as Hamiltonian. Let us stress again
that the subspace SpMq Ă C8pT˚Mq of symbols is not preserved by such symplectomor-
phisms, consistently with the Grabowski–Poncin no-go theorem. However, the transfor-
mations (122) are well-defined on the whole Poisson algebra C8pT˚Mq. In other words,
generically Yh̄Ñ0

t P C8pT˚Mq even when X, Y P SpMq.

9.2. Formal Higher-Spin Diffeomorphisms

An h̄ -linear isomorphism of associative algebras between two deformations C8‹ pT˚Mq
Jh̄K and C8

‹1
pT˚M1qJh̄K will be called a formal higher-spin diffeomorphism between the manifold

M and the manifold M1.
A corollary of the known results for star products on symplectic manifolds (see

Proposition 9.4 of [61]) is that any formal higher-spin diffeomorphism Φ : C8‹ pT˚MqJh̄K „Ñ
C8
‹1
pT˚M1qJh̄K between M and M1 is the composition Φ “ F˚ ˝ T of its classical limit

F˚ : C8‹ pT˚Mq „Ñ C8
‹1
pT˚M1q (i.e., an isomorphism of Poisson algebras, associated to a
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symplectomorphism F : T˚M1 „Ñ T˚M between the corresponding cotangent bundles) and
a quantum correction T : C8‹ pT˚Mq „Ñ C8‹ pT˚Mq (i.e., a self-equivalence of star product).

Therefore, there is a one-to-one correspondence between:

1. symplectomorphisms from the cotangent bundle T˚M1 to the cotangent bundle T˚M,
2. classical limit of formal higher-spin diffeomorphisms between the manifolds M and

M1,
3. equivalence classes of h̄ -linear isomorphisms between the associative algebras

C8‹ pT˚MqJh̄K and C8
‹1
pT˚M1qJh̄K of formal quasi-differential operators with respect to

the equivalence of star products,
4. h̄ -linear isomorphisms between the formal algebras QDpMq and QDpM1q of quasi-

differential operators.

9.3. Formal Higher-Spin Flows

An h̄ -linear algebra automorphism of the deformation C8‹ pT˚MqJh̄K will be called a
formal higher-spin diffeomorphism of the manifold M. They form a group which will be denoted
HSDi f f pMq. The formal higher-spin diffeomorphisms exhaust all automorphisms of the
associative algebra C8‹ pT˚MqJh̄K of formal quasi-differential operators, up to spurious
perturbative redefinitions of h̄. Locally, any non-trivial formal higher-spin diffeomorphism
of M is a non-trivial inner automorphism of C8‹ pT˚MqJh̄K.

Any symplectomorphism of the cotangent bundle T˚M, connected to the identity by a
path of symplectomorphisms, admits an extension to a formal higher-spin diffeomorphisms
of M. Moreover, this extension is (locally) unique up to self-equivalences. In fact, formal
higher-spin diffeomorphisms on a manifold M can be thought of as “quantum-corrected”
symplectomorphisms on the cotangent bundle T˚M.

An action of the additive group R on the deformation C8pT˚MqJh̄K will be called a
(globally-defined) formal higher-spin flow on the manifold M. One will also admit locally-defined
formal higher-spin flows, i.e., actions of a Lie subgroup I Ă R of the additive group R
on the associative algebra C8pT˚NqJh̄K of formal differential operators on a submanifold
N Ă M. This allows to formulate a solution to the main problem addressed in this paper.

Proposition 4 (Yes-go proposition 2 (Formal quasi-differential operator)). Any formal quasi-
differential operator X P C8‹ pT˚MqJh̄K is integrable to a formal higher-spin flow on M, i.e., a
group morphism

expp‚Lh̄
Xq : I Ñ HSDi f f pNq : t ÞÑ expp tLh̄

Xq , (123)

defined for an open subset I Ď R (e.g., an open interval I “sa, br ) and submanifold N Ď M.

More precisely, the formal higher-spin flow is the combination:

expp tLh̄
Xq “ Tt ˝ expp tLh̄Ñ0

X q (124)

of the corresponding Hamiltonian flow on T˚M, i.e., the group morphism

expp‚Lh̄Ñ0
X q : I Ñ Di f f pT˚Nq : t ÞÑ expp tLh̄Ñ0

X q , (125)

with the quantum correction map

T‚ : RÑ exp
`

h̄DpMqJh̄K
˘

: t ÞÑ Tt (126)

where the perturbative redefinitions

Tt “ id`
8
ÿ

n“1

pnq
T t h̄n with

pnq
T tP D2npT˚Mq , (127)

have coefficients which are differential operators on the cotangent bundle T˚M of order
equal to twice the corresponding degree in h̄.33
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Proof. Any formal quasi-differential operator X P C8‹ pT˚MqJh̄K defines a formal higher-
spin Lie derivative (95) along X whose classical limit Lh̄Ñ0

X is a Hamiltonian vector field
on T˚M for the Hamiltonian X|h̄“0 P C8pT˚Mq. As any vector field on a manifold, this
vector field is integrable to a local flow. In particular, the Hamiltonian vector field Lh̄Ñ0

X on
T˚M is integrable to a local Hamiltonian flow expp‚Lh̄Ñ0

X q on T˚M, defined for an open
subset I Ď R and submanifold N Ď M. A theorem of Fedosov (Proposition 5.5.6 of [56])
ensures that each symplectomorphisms expp tLh̄Ñ0

X q for t P I can be extended to a formal
higher-spin diffeomorphism of M, which can be denoted expp tLh̄

Xq.

10. Quotient Algebra of Almost-Differential Operators

As was shown in Section 9, the algebra of (formal) quasi-differential operators actually
meets our goal in that it allows to define (formal) higher-spin diffeomorphisms. Never-
theless, this completion of the algebra of differential operators is quite huge. Two smaller
algebras are actually available: one is a subalgebra and one is a quotient algebra of the
algebra of formal quasi-differential operators.

10.1. Subalgebra

There is an algebra sitting in between the two algebras S‹pMqJh̄K and C8‹ pT˚MqJh̄K:
it is spanned by formal power series in h̄ whose coefficients are smooth functions of the
base M of the cotangent bundle T˚M but analytic functions of the momenta (see [45] for
a proof). This small completion is of interest. However, it is another one that we will
investigate here.

10.2. Quotient Algebra

Infinite-order contact ideal of the zero section. Consider the Poisson subalgebra I8
`

ζpMq
˘

Ă C8pT˚Mq spanned by all functions on the cotangent bundle vanishing on the zero sec-
tion together with all their derivatives along momenta. More concretely, all derivatives
along momenta vanish when evaluated at zero momenta:34

Xpx, pq P I8
`

ζpMq
˘

ðñ (128)

Xpx, pq P C8pT˚Mq and
BXpx, 0q

Bpµ1 ¨ ¨ ¨ Bpµk

“ 0 , @k P N .

The subalgebra I8
`

ζpMq
˘

is an ideal of C8pT˚Mq for both the pointwise product and
the Poisson bracket. It will be called the infinite-order contact ideal of the zero section of the
cotangent bundle. Note that this ideal does not contain any non-trivial symbol, i.e.,

I8
`

ζpMq
˘

X SpMq “ t0u (129)

Infinitesimal neighborhood of the zero-section. The quotient:

J8
`

ζpMq
˘

:“ C8
`

T˚M
˘

{ I8
`

ζpMq
˘

(130)

of the Poisson algebra of functions the cotangent bundle T˚M by the infinite-order contact
ideal of the zero section ζpMq Ă T˚M, is a Poisson algebra, whose elements will be called
jet fields on the infinitesimal neighborhood of the cotangent bundle zero-section. They can be
thought of as Taylor series at the origin of cotangent spaces (i.e., at zero momenta) of
smooth functions on the cotangent bundle:

Xpx ; pq “
8
ÿ

r“0

Xµ1¨¨¨µrpxq pµ1 ¨ ¨ ¨ pµ1 . (131)
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Deformation quantisation. For any differential star product ‹ , the subspace I8
`

ζpMq
˘

Jh̄K Ă
C8pT˚MqJh̄K is an ideal of the deformed algebra, i.e., with respect to the star product.
As such, it will be denoted I8‹

`

ζpMq
˘

Jh̄K Ă C8‹ pT˚MqJh̄K. The quotient:

J8‹
`

ζpMq
˘

Jh̄K :“ C8‹ pT
˚MqJh̄K { I8‹

`

ζpMq
˘

Jh̄K (132)

of the deformation C8‹ pT˚MqJh̄K by the ideal I8‹
`

ζpMq
˘

Jh̄K is an associative algebra,
which is a deformation of the Poisson algebra J8

`

ζpMq
˘

of jet fields on the infinitesimal
neighborhood of the cotangent bundle zero-section. One may interpret this construc-
tion as a deformation quantisation of the infinitesimal neighborhood of the cotangent
bundle zero-section.

Injective anchor. The formal quantisation map ‚̂h̄ in (112) is surjective but not injective.
In fact, it is not injective because it has a non-trivial kernel. The kernel of ‚̂h̄ is precisely
the8-contact ideal I8

`

ζpMq
˘

Jh̄K of the zero section of the cotangent bundle.35 Therefore,
the quotient map:

‚̂h̄ : J8‹
`

ζpMq
˘

Jh̄K „Ñ DpMq ⟪h̄⟫ : Xpx ; p, h̄q ÞÑ X̂h̄px ; Bq . (133)

is an isomorphism of associative algebras between J8‹
`

ζpMq
˘

Jh̄K and the algebra DpMq⟪h̄⟫.
Therefore, the elements of J8‹

`

ζpMq
˘

Jh̄K can be thought as almost-differential operators
(although the realisation is rather different).

Example 25 (Normal quantisation). The formal quantisation map (115) takes exactly the same
form if one replaces the functions Xpx, pq on the cotangent bundle by Taylor series (131) at the zero
section. The analogue of the map (111) would be the following embedding

QN ˝ i : J8‹
`

ζpMq
˘

ãÑ DpMq ⟪h̄⟫ (134)

:
8
ÿ

r“0

1
r!

Xµ1¨¨¨µrpxq pµ1 ¨ ¨ ¨ pµr ÞÑ

8
ÿ

r“0

h̄r

r!
Xµ1¨¨¨µrpxq Bµ1 ¨ ¨ ¨ Bµr , (135)

whose h̄ -linear extension would reproduce the isomorphism ‚̂N
h̄ : J8‹

`

ζpMq
˘

Jh̄K „Ñ DpMq⟪h̄⟫ .
Its inverse is the map

p‚̂N
h̄ q
´1 : DpMq⟪h̄⟫ „Ñ J8‹

`

ζpMq
˘

Jh̄K (136)

: X̂h̄ ÞÑ Xpx ; p, h̄q “ expp´ 1
h̄ pµxµq X̂r expp 1

h̄ pµxµq s (137)

Quotient algebra of almost differential operators. The algebra

DpMq ⟪h̄⟫ – J8‹
`

ζpMq
˘

Jh̄K (138)

of almost-differential operators is a completion with a reasonable size (since the quotient
throws away all elements which are invisible in the operatorial interpretation) of the
algebra DpMq of differential operators. Unfortunately, the deformation J8‹

`

ζpMq
˘

Jh̄K
of the Poisson algebra J8

`

ζpMq
˘

of jet fields on the infinitesimal neighborhood of the
cotangent bundle zero-section is constructed as a quotient (cf. (132) ) and, as such, re-
quires more care than the algebra DpMq⟪h̄⟫ of quasi-differential operators. For instance,
the zero section ζpMq is not preserved by generic symplectomorphisms of the cotangent
bundle, so the quotient algebra J8‹

`

ζpMq
˘

Jh̄K would meet the same conceptual problem
as the Schouten algebra SpMq of symbols, as far as automorphisms are concerned. This
implies that only those formal higher-spin diffeomorphisms on M whose classical limit
are symplectomorphism of T˚M sending the zero section ζpMq Ă T˚M into itself will
descend from automorphism of the algebra C8‹

`

T˚M
˘

Jh̄K of quasi-differential operators
to automorphisms of the algebra J8‹

`

ζpMq
˘

Jh̄K of almost-differential operators.36
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Zeroth-order contact ideal of the zero section. The zeroth-order contact ideal I0` ζpMq
˘

“

Ker ζ˚ Ă C8pT˚Mq of the cotangent bundle zero-section is spanned by all functions X
on the cotangent bundle vanishing on the zero section, i.e., such that X0 “ ζ˚pXq “ 0.
It is an ideal for both the pointwise product and the Poisson bracket. The infinite-order
contact ideal I8

`

ζpMq
˘

Ă I0` ζpMq
˘

remains an ideal inside the zeroth-order one. The
quotient algebra

I
`

ζpMq
˘

:“ I0` ζpMq
˘

{ I8
`

ζpMq
˘

(139)

of the zeroth-order ideal of the zero section ζpMq Ă T˚M by the infinite-order one, is
a Poisson algebra. Its elements can be thought of as Taylor series (131) vanishing at
zero momenta (i.e., the sum starts at r “ 1). Due to the isomorphism (138), a corollary
of the yes-go proposition in Section 6.2 is that any element X P I

`

ζpMq
˘⟪h̄⟫ is locally

integrable to a one-parameter group of non-trivial automorphisms expp´tLh̄
X q of the

algebra J8‹
`

ζpMq
˘

rrh̄ss of almost-differential operators.

11. Conclusions

General results in deformation quantisation provide cures of the obstruction to the
integration of differential operators to one-parameter groups of inner automorphisms. One
does so by considering some larger algebras (which can be thought of as a sort of completion
of the algebra of differential operators) on which “formal” higher-spin diffeomorphisms are
well-defined. The latter are nothing but a fancy name for quantum symplectomorphisms
addressed in the realm of deformation quantisation.

The obstruction to the integration of higher-degree Hamiltonian vector fields to one-
parameter groups of inner automorphisms of the Schouten algebra of symbols was by-
passed in Section 3 by enlarging the latter to the Poisson algebra of functions on the
cotangent bundle. Similarly, the obstruction to the integration of higher-spin Lie deriva-
tives to one-parameter groups of inner automorphisms of the almost-commutative algebra
of differential operators was bypassed in Section 9 by enlarging the latter to the associative
algebra of formal quasi-differential operators. Moreover, by properly taking into account
the equivalence relations underlying this extension, there is a one-to-one correspondence
between the symmetries of their classical limits, i.e., between symplectomorphisms of the
cotangent bundle and the classical limit of formal higher-spin diffeomorphisms.

Overcoming the obstacle was done at the price of considering formal deformations.
It would be nice to see if similar results hold for some associative algebra of strict quasi-
differential operators. Nevertheless, the results obtained from deformation quantisation
will be taken as an indication that strict higher-spin diffeomorphisms can be defined
rigorously. Table 4 summarises and compares the symmetries of the classical vs. quantum
tangent bundle. As a sign of optimism, no explicit distinction was made between “strict”
and “formal” in the table.

Table 4. Automorphisms of classical versus quantum algebras of functions on the cotangent bundle.

Classical Quantum

Algebra Poisson algebra (symplectic) Associative algebra (central)
C8pT˚Mq QDpMq

Elements Functions on the cotangent bundle Quasi-differential operators
Xpx, pq X̂px, Bq

Finite Symplectomorphisms Higher-spin
automorphisms of T˚M diffeomorphisms of M

Flow of inner Hamiltonian flow Higher-spin flow
automorphisms on T˚M on M

Infinitesimal Symplectic vector field Infinitesimal higher-spin
automorphism on T˚M diffeomorphism of M

Inner Hamiltonian vector Higher-spin
derivation field on T˚M Lie derivative on M
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Appendix A. Proof of Technical Lemma

One possible strategy for the proof of the “technical lemma” in Section 6.1 is to start by
showing that the lemma holds in the particular case of homogeneous elements aph̄q “ an h̄n

for all n ě 1, and then to conclude the proof by showing that the corresponding inner
automorphisms generate the generic case via composition. The proof is organised slightly
differently but follows the same logic.

Firstly, it is clear that the lemma holds in the particular case aph̄q “ a1 h̄ with a1 P A1.
Indeed, exppt adh̄

aq “ exppt ada1q is an automorphism of the h̄-filtered associative algebra
A ⟪h̄⟫ since exppt ada1q is, by assumption, an automorphism of the almost-commutative
algebra A (i.e., it preserves the filtration).

Secondly, one can check by explicit computation that the lemma also holds for any
element bph̄q P A ⟪h̄⟫X h̄2 AJh̄K, that is to say an element of the form bph̄q “

ř8
n“2 bn h̄n

with bn P An:

exppt adh̄
bq “ exp

´

t
8
ÿ

n“2

h̄n´1 adbn

¯

(A1)

“

8
ÿ

k“0

tk

k!

ÿ

n1,¨¨¨ , nkě2

h̄n1`¨¨¨`nk´k adbn1
¨ ¨ ¨ adbnk

(A2)

The main point to observe is that, at each order in h̄, there will only be only a finite
sum of products adbn1

¨ ¨ ¨ adbnm
(since each ni contributes to a strictly positive number in

the exponent). This ensures that the exponential (A1) is a well-defined h̄ -linear map on
A ⟪h̄⟫ . Moreover, since it is an exponential of a derivation of A ⟪h̄⟫, it is automatically an
algebra automorphism.

Thirdly, the composition product of two automorphisms exppadh̄
aq and exppadh̄

bq,
with aph̄q “ a1h̄ and bph̄q “

ř8
n“2 bn h̄n as above, is well-defined (since each of these two

automorphisms is well-defined). Therefore, one should only check that this product takes
the form exppadh̄

c q for some element c in A ⟪h̄⟫ . The Baker?Campbell?Hausdorff formula
guarantees that the element c belongs to A Jh̄K and is well-defined (since one knows that
the above composition product is well-defined). A closer look at each term in its expansion
as nested commutators ensures that c P A ⟪h̄⟫ . In fact, it is well-known that exppadTq “

AdexppTq for any endomorphism T, hence the operation exppadh̄
aq ˝ exppadh̄

bq “ exppadh̄
c q is

equivalent to a conjugation Adg by the element g “ expp 1
h̄ aq expp 1

h̄ bq “ expp 1
h̄ cq, where

the Dynkin version of the Baker–Campbell–Hausdorff formula gives

c “ h̄ log
´

expp 1
h̄ aq expp 1

h̄ bq
¯

(A3)

“ a` b´
8
ÿ

n“2

p´1qn

n

ÿ

ri`sią0

kpr1, s1, . . . , rn, snq
loooooooooomoooooooooon

PR

padh̄
aq

r1padh̄
bq

s1 ¨ ¨ ¨ padh̄
aq

rnpadh̄
bq

sn´1b
loooooooooooooooooooooomoooooooooooooooooooooon

“: cpr1,s1,...,rn ,snq

. (A4)

The explicit expression of the coefficients kpr1, s1, ¨ ¨ ¨ , rn, snq in (A4) is well-known (see,
e.g., the book [62], p. 117) but is not necessary for the proof. It is enough to check that each
term cpr1, s1, ¨ ¨ ¨ , rn, snq belongs to A ⟪h̄⟫ . This is true because, for any almost-commutative
algebra A, one has that adh̄

αβ P A ⟪h̄⟫ for any α, β P A ⟪h̄⟫ (see Section 6.1).
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Fourthly, the Zassenhaus formula gives

exp
´

1
h̄ pa` bq

¯

“ expp 1
h̄ aq expp 1

h̄ bq
loooooooooomoooooooooon

“exp
` 1

h̄ c
˘

expp 1
h̄ d1q expp 1

h̄ d2q ¨ ¨ ¨ , (A5)

where the expressions of di in terms of nested commutators of a and b is known recursively
(see, e.g., footnote 14 in [62], p.365). Their qualitative form is enough to check that di P

A ⟪h̄⟫X h̄2 AJh̄K (for aph̄q and bph̄q as above). Therefore, the second and third step of the
proof guarantee that each factor in the product

exppadh̄
a`bq “ exppadh̄

c q ˝ exppadh̄
d1
q ˝ exppadh̄

d2
q ˝ ¨ ¨ ¨ (A6)

is an automorphism of A ⟪h̄⟫ . This ends the proof.

Notes
1 Many pedagogical reviews of various levels are available by now: advanced ones [1–6] as well as introductory ones [7–11]. Two

books of conference proceedings also offer a panorama of this research area [12,13].
2 A distinct but related issue is the degree of (non)locality of higher-spin interactions. It has been a subject of intense scrutiny

and debate over the last years. This open problem will not be adressed here, although one may hope that the unavoidable
non-locality of finite higher-spin gauge symmetries might shed some light on this issue in the future.

3 This difficulty was recognised immediately by Fronsdal, despite he actually found such a non-abelian deformation together
with a Lie bracket over the space of traceless symmetric tensor fields [33].

4 In spacetime dimension four, it is well-known [7–11] that these trace constraints can be taken into account in the spinorial
frame-like formulation (where the fields are base one-forms and fibre tensor-spinors). At nonlinear level, the corresponding
gauged algebra of infinitesimal symmetries is the Weyl algebra of polynomial differential operators on the tangent space [1–6].
No-go theorems analogous to [29,30] have been established for the Weyl algebra [34,35].

5 Various metric-like unconstrained formulations of free massless higher-spin fields are available by now (see, e.g., the
reviews [36–40] and refs therein). They will not be reviewed here since our considerations are not dynamical but purely
at the level of gauge symmetries.

6 Let us repeat that, in the present paper, the focus is on finite gauge symmetries in the unconstrained metric-like formulation
for technical simplicity. It is natural to expect that our main conclusions should apply to the original constrained metric-like
formulation of Fronsdal without any qualitative change.

7 See, e.g., the 2nd and 3rd refs in [7–11] for some reviews of no-go theorems. See also [42] for a recent discussion of ways out in
other formulations (such as lightcone or twistor).

8 The prescription for (9) is as follows: one consider a covariantised Weyl map W : hpx, pq ÞÑ Ĥ where the operators are obtained
from their symbols (3) via (i) the quantisation rule p ÞÑ ´i`∇ and (ii) the anticommutator-ordering prescription with respect to
the covariant derivative

Ĥ “ exp
ˆ

i
2
` r∇µ , s

`

B

Bpµ

˙

hpx, pq
ˇ

ˇ

ˇ

ˇ

p“0
“

ÿ

sě0

p´i`qs

2s s!

”

∇µ1 ,
“

∇µ2 , ¨ ¨ ¨ , r∇µs , hµ1¨¨¨µspxqs
`
¨ ¨ ¨

‰

`

ı

`
, (10)

where rÂ, B̂s` :“ Â ˝ B̂` B̂ ˝ Â stands for the anticommutator. This procedure may look complicated but this is a purely
technical trick to ensure that (12) matches the form (1). It will not be used later on. (In any case, see Equation (3.18) and Appendix
A in the first entry of [15,16] where the flat case is explained in details).

9 Let us stress that the words “quantum”, “quantisation”, etc, throughout this paper should be taken in a mathematical technical
sense, not in a physical literal sense. In deformation quantisation, “quantum” is synonymous of “associative” while “classical”
is synonymous of “Poisson”.

10 For the sake of simplicity, reality conditions will not be discussed in this paper. All algebras considered here will be complex,
of which suitable reals forms (e.g., of Hermitian operators) can be extracted if necessary. From now on, factors of i will be
dropped from all formulae.

11 Note that the so-called “Lie’s third theorem” stating that every finite-dimensional Lie algebra g over the real numbers is
associated to a Lie group G does not hold in general for infinite-dimensional Lie algebras.

12 Moreover, if the algebra A has a unit element, then one further requires that 1 P A0. Here, all associative algebras are assumed
to have a unit element and, accordingly, morphisms of associative algebras relate their unit elements.
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13 Such a Poisson algebra was called a “classical Poisson algebra” in [29]. Since this terminology may be confusing to people
familiar with the vocabulary in deformation quantisation (where Poisson algebras are, by definition, classical), one chose to call
them Schouten algebras (as a tribute to the Schouten bracket of symmetric multivector fields). Note that a Gerstenhaber algebras
are the supercommutative analogues of Schouten algebras.

14 There would have been a way out if the higher-spin Lie derivative was locally nilpotent. However, it has been shown (cf. Section 3
of [29]) that adX̂ is locally nilpotent (more precisely: for any zeroth-order differential operator f̂ , there exists a positive integer n
such that adn

X̂
f̂ “ 0) iff X̂ is a differential operator of order zero. This is the crucial technical lemma behind the no-go theorems.

15 The Stone?Weierstrass theorem ensures that SpMq is dense inside C8pT˚Mq.
16 If the quantised Schouten algebra happens to be equal to the Poisson limit of the almost-commutative algebra (i.e., S “ grA)

then one also requires that the restriction qi of the quantisation is a section of the restriction σi of the principal symbol map
(σi ˝ qi “ idSi ).

17 Note that the injectivity can be assumed without loss of generality, in the sense that one can always focus on the quotient
algebra A{ker i. The terminology originates from the fact that, in particular, the unit map relates the two units in the sense that
ip1Aq “ 1B).

18 The equivalence between (35) and (36) holds because of (34) and the surjectivity of π : B � A.
19 This terminology is borrowed from [44] where the anchor is defined for bialgebroids (an extra compatibility condition with the

coproduct is added).
20 This quantisation is not canonical since, by construction, it depends explicitly on a choice of specific coordinate system.

Nevertheless, this normal-type quantisation can be made geometrical (i.e., globally well-defined and coordinate-independent) for
a generic manifold M by considering the following data: an affine connection on the base manifold M (cf. [45]). Retrospectively,
the corresponding normal coordinates provide a privileged coordinate system.

21 Usually, the term “strict quantisation” refers to one of the (many) mathematical approaches to the problem of quantisation and
often refers to the axiomatisation by Rieffel (see, e.g., their book [48]). Here, the term is understood in a non-technical sense.

22 Since the idea behind pseudo-differential operators is that they behave asymptotically like differential operators (whose “order”
can be any real number), they should face the same problem that was encountered for differential operators in Section 2.7.

23 This can be shown as follows: First, the relation X̂r f s “ pX̂ ˝ f̂ qr1s is true by the very definition of the map (32). Second,
the quantisation map is assumed to be an algebra morphism, hence Q : X ‹ f ÞÑ zX ‹ f “ X̂ ˝ f̂ . Third, the quantisation map
is assumed compatible, thus X̂r f s “ zX ‹ f r1s “ pX ‹ f q0 . This ends the proof. In particular, for functions X on the cotangent
bundle which are polynomial in the momenta, the relation (63) reproduces the action on functions f of differential operators X̂
with symbol X.

24 Let us mention that some literature on the functional analytic aspects of strict deformation quantisation on symplectic vector
spaces is available, see, e.g., [52–54] and refs therein. Nevertheless, for the sake of simplicity, the present work focuses on formal
deformation quantisation.

25 In the applications to higher-spin gravity, this formal parameter should tentatively be identified with the parameter `
with the dimension of a length, mentioned below Equation (9). However, for the general mathematical considerations of
Sections 6, 7, 8 and 10, it is a purely formal deformation parameter.

26 One speaks of strict deformations if the series are convergent for 0 ď h̄ ď 1, plus some extra technical assumptions, cf. the
celebrated definition by Rieffel [48].

27 This is true globally if the second Betti number of M vanishes.
28 This remains true globally if the first Betti number of M vanishes.
29 This is a slight abuse of terminology since, strictly speaking, they are not inner derivations. In fact, by definition ‹adX is an inner

derivation, but Lh̄
X is not (since 1{h̄ R CJh̄K).

30 See [45,57] for more details on the geometric construction of the homogeneous Fedosov star products on the cotangent bundle
generalising the normal star product (see also [58]).

31 As shown in [57,59], the analogue of the Gelfand–Naimark–Segal construction applies for such formal deformations C8‹ pT˚MqJh̄K.
This establishes on firm ground the quantum mechanical interpretation of these elements as operators acting on a Hilbert space.
This is not explored here but could be important in the future for looking for a suitable real form of the algebra of formal
quasi-differential operators considered here.

32 For the sake of completeness, note that the corresponding star products for a non-canonical symplectic two-form on the cotangent
bundle have been studied in [59].

33 This last property holds because the star product is natural. Detailed statements about the quantum correction to the Heisenberg-
picture time evolution can be found in Appendix B of [57].

34 For instance, if the base manifold is the Euclidean space M “ Rn, then the function f pxq expp´1{~p 2q is such that its Taylor series
along the direction of momenta vanishes on the zero section ~p “~0.
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35 This can be checked explicitly for the normal star product in Darboux coordinates, via the Formula (115). Nevertheless,
the conclusion is coordinate-free and remains valid for any equivalent differential star product.

36 From the point of view of higher-spin gravity, the status of such a strong condition on higher-spin diffeomorphisms is unclear
since it would remove the Maxwell gauge symmetries of the spin-one sector (since they correspond to vertical automorphisms
of the cotangent bundle that do not preserve the zero section). Nevertheless, they appear as a reasonable candidate subclass of
higher-spin symmetries which could be compatible with some weak notion of locality.

References
1. Vasiliev, M.A. Higher spin gauge theories in four-dimensions, three-dimensions, and two-dimensions. Int. J. Mod. Phys. D 1996,

5, 763–797. [CrossRef]
2. Vasiliev, M.A. Higher spin gauge theories in various dimensions. Fortschritte Phys. Prog. Phys. 2004, 52, 702–717. [CrossRef]
3. Vasiliev, M.A. Higher spin gauge theories in any dimension. Comptes Rendus Phys. 2004, 5, 1101–1109. [CrossRef]
4. Bekaert, X.; Cnockaert, S.; Iazeolla, C.; Vasiliev, M.A. Nonlinear higher spin theories in various dimensions. arXiv 2005, arXiv:hep-

th/0503128.
5. Didenko, V.E.; Skvortsov, E.D. Elements of Vasiliev theory. arXiv 2014, arXiv:1401.2975.
6. Vasiliev, M.A. Higher-spin theory and space-time metamorphoses. In Modifications of Einstein’s Theory of Gravity at Large Distances;

Springer: Cham, Switzerland, 2015; pp. 227–264.
7. Sorokin, D. Introduction to the classical theory of higher spins. AIP Conf. Proc. 2005, 767, 172.
8. Bekaert, X.; Boulanger, N.; Sundell, P. How higher-spin gravity surpasses the spin two barrier: No-go theorems versus yes-go

examples. Rev. Mod. Phys. 2012, 84, 987. [CrossRef]
9. Rahman, R. Higher Spin Theory—Part I. arXiv 2013, arXiv:1307.3199.
10. Rahman, R.; Taronna, M. From Higher Spins to Strings: A Primer. arXiv 2015, arXiv:1512.07932.
11. Bengtsson, A. Higher Spin Field Theory (Concepts, Methods and History) Volume 1: Free Theory; De Gruyter: Berlin, Germany, 2020.
12. Argurio, R.; Barnich, G.; Bonelli, G.; Grigoriev, M. (Eds.) Higher Spin Gauge Theories; International Solvay Institutes: Brussels,

Belgium, 2004.
13. Brink, L.; Henneaux, M.; Vasiliev, M.A. (Eds.) Higher Spin Gauge Theories; World Scientific: Singapore, 2017.
14. Segal, A.Y. Conformal higher spin theory. Nucl. Phys. B 2003, 664, 59. [CrossRef]
15. Bekaert, X.; Joung, E.; Mourad, J. On higher spin interactions with matter. JHEP 2009, 5, 126. [CrossRef]
16. Bekaert, X.; Meunier, E. Higher spin interactions with scalar matter on constant curvature spacetimes: Conserved current and

cubic coupling generating functions. JHEP 2010, 11, 116. [CrossRef]
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