Mathieu Muzellec
email: mathieu.muzellec@student.isae-supaero.fr

Paul Vivot
email: paul.vivot@student.isae-supaero.fr

Rob Vingerhoeds
email: rob.vingerhoeds@isae-supaero.fr

Pierre De Saqui-Sannes
email: pierre.de-saqui-sannes@isae-supaero.fr

Towards a combination of MARTE and ECOA

Keywords: ECOA, MARTE, MBSE, real-time, modeling

Through the definition of a metamodel, the ECOA (European Component Oriented Architecture) open standard offers a development framework for complex avionic systems software. Its purpose is to create and maintain architectures to achieve interoperability, sustainability and portability at both functional and software interface level. However, being a metamodel, ECOA only offers an abstract syntax and theoretical concepts to develop software and their interfaces. It therefore suffers from a lack of modeling language, tools and methods enabling real-time analysis during the development process of software. Combining the rigour of the ECOA metamodel with the potential of model-based analysis would not only allow a reduction in development time of complex software-based systems but also help improving system optimality with respect to hard real-time requirements. Translation of ECOA concepts into a formally defined and tooled modeling language is thus an avenue to explore. This paper advocates for using the UML realtime profile MARTE (Modeling and Analysis of Real-Time and Embedded systems) as it offers a concrete syntax to complete the ECOA metamodel with a certain number of annotations that serve as input for analysis tools. A method will be associated to this approach. Results of a preliminary study are presented both in terms of ECOA to MARTE translation and perspectives for real-time analysis of models.

I. INTRODUCTION

In 2011, the British Ministry of Defence and the French DGA (Direction Générale de l'Armement) respectively requested BAE Systems Military Air and Information and Dassault Aviation to standardize and promote a development framework for complex avionic systems software. The European Component Oriented Architecture (ECOA) was released as a result as an open standard [START_REF] Bae Sytems | ecoa white paper[END_REF]. ECOA defines a metamodel with limited expression power in terms of real-time constraints and mechanisms. ECOA also suffers from a lack of tools and method to check models against hard real-time requirements and to achieve schedulability analysis and determinism proofs.

There is yet no recognised solution for modeling ECOA systems that would allow the implementation of real-time analyses. Such a solution would allow combining the rigor of the ECOA standard and the possibilities offered by modelbased analysis. This would not only allow a reduction in development time of complex software-based systems but also help improving system optimality with respect to hard realtime requirements.

This paper advocates for using the UML real-time profile MARTE (Modeling and Analysis of Real-Time and Embedded systems) [START_REF] Omg | The official omg marte web site[END_REF]. With its support of real-time features, MARTE turns out to be a good candidate for carrying out analyses on schedulability, determinism, and quantitative aspects of realtime software models.

Model analysis demands a formally defined modeling language both in terms of syntax and semantics. This paper therefore discusses the joint use of ECOA and MARTE to increase the expressive power and formality of the former, whilst exploring the potential of the latter.

This paper is organized as follows. Section II presents the ECOA standard. Section III surveys related work. Section IV overviews MARTE. Section V proposes and justifies MARTE modeling choices for ECOA regarding the real-time embedded systems (RTES) requirements. Section VI concludes the paper and outlines future work.

II. ECOA

A. Presentation and objectives

ECOA [START_REF] Bae Sytems | ecoa white paper[END_REF] defines an open standard for software architecture of real time systems in the aerospace industry, it was published in 2015. Its purpose is to create and maintain architectures to achieve interoperability, sustainability and portability at both functional and software interface level.

With ECOA, software construction relies on a serviceoriented architecture and model-based specification of Application Software Components (ASC) to be defined in terms of interfaces and deployment on computing platforms. To increase portability, ASCs remain independent of the underlying computing platform. So-called 'ECOA Containers' [START_REF] Ecoa | Architecture specification part 1: Key concepts[END_REF] enable managing functional code using three standardized communication mechanisms: Request Response, Events and Versioned Data [START_REF] Ecoa | Architecture specification part 3: Mechanisms[END_REF].

To increase the potential of seeing ECOA adopted by new programs, the ECOA collaboration program road-map [START_REF] Moxon | A next generation avionics software architecture -the ecoa programme[END_REF] identifies the need for tools dedicated to embedded systems and the need to be able to handle hard real-time domain requirements. Model analysis tools are needed to achieve analysis of schedulability, proofs of determinism and the analysis of the Worst-Case Execution Time (WCET). Such analysis plays an important role as off the earliest phases of the avionics software systems.

B. Metamodel overview

ECOA bases its metamodel on the notion of services: each component has well defined duties and requirements called required or provided services. Doing so, each component can be replaced by another component if the latter fulfils the same services, thus enabling continuous improvement of ECOA systems and interoperability. ECOA's top-down architecture describes complex software as an assembly of Application Software Components (ASC) [START_REF] Ecoa | Architecture specification part 1: Key concepts[END_REF]. Those software components are encapsulated within Containers and allocated to computing nodes. ECOA Containers are the platform integration code which allows deploying ECOA ASCs on a target computing platform in a portable way. ECOA ASCs interact with each other through APIs of their Containers, thereby remaining independent of the underlying specific OS. Furthermore, ASCs are 'passive' objects, meaning that they do not control their own execution as they are activated by their Containers. This principle is known as the 'inversion of control' and contributes to ASC portability. ASCs are characterized by their services. A service in ECOA comprises a group of Service Operations through which the Component may access the facilities of the Provided Service. ASC Interfaces are formalized through Provided Services and Required Services. ASCs also distinguish themselves by their inner properties and insertion policies which make them unique (see Figure 1). ASCs are themselves composed of Modules which are sequential units of code executed in parallel during tasks. Modules are the very unit of ECOA [START_REF] Ecoa | Architecture specification part 1: Key concepts[END_REF] and only their interactions with the other Modules of the modeled system are detailed in the metamodel as developers are left free to find their own best solution for the behaviour of the Module. Hence, in the ECOA development process, Modules are being developed independently by developers according to the services needed by the System Integrators and only use the services locally provided by their environment. Developers can use any of the supported programming languages. They can use portable libraries as long as they declare the dependencies in the ASC Insertion Policies [START_REF] Ecoa | Architecture specification part 1: Key concepts[END_REF]. This choice was made to increase portability and re-usability of the developed components: a Module is only made to respond to a given service and can be exchanged with another Module meeting the same requirements without any impact on the global system. The internal behavior of the Modules is thus left to developers and is not represented in the ECOA Architecture; they are considered as trustworthy black boxes.

C. Need for Modules modeling

Modules from different Containers can interact between themselves through different ASCs in order to fulfil the required task. In fact, only Modules have a physical implementation in ECOA systems as they are implemented as software code by Component developers, whereas other ECOA infrastructure objects such as Containers are realized by the Platform developers and are only abstract concepts. In the ECOA object-oriented metamodel, only the Modules are instantiated by Module Instances, whereas the other concepts only serve to define the system architecture. So to perform real-time analyses on ECOA systems the Modules' behaviour has to be described. As ECOA does not provide the necessary characteristics for embedded real-time systems, Modules have to be modeled using a dedicated modeling language which has those characteristics [START_REF] Giese | Modeling Languages for Real-Time and Embedded Systems: Requirements and Standards-Based Solutions[END_REF].

The complexity of performing a schedulability analysis on Modules comes from the fact that each Module Instance can theoretically be executed in its own thread, while a task can be executed on different Module Instances. However, since ECOA does not prescribe any specific scheduling policy, the strategy for executing several Modules within the same thread or in separate threads is left open. There is a key difference between the notions of tasks, concurrency between tasks and the ECOA architecture's inner concurrency that needs to be clarified.

Moreover, due to the competition between Module Instances through tasks, the execution of a Module Instance can be interrupted by a request from another Module Instance of a higher priority if the service it fulfills has a higher priority [START_REF] Ecoa | Architecture specification part 3: Mechanisms[END_REF].

It is therefore important to model the Modules' behavior as well as the interactions between them.

Although ECOA does not prescribe any specific scheduling policy, it assumes that a Module Instance is single-threaded and has a fixed priority assigned by the System Integrator. It is up to the System Integrator to deploy Modules Instances onto OS tasks according to their priorities and according to the chosen scheduling policy. OS task priorities are set according to the Module Instance priority deployed onto them and their scheduling is the responsibility of the Infrastructure Integrator. Moreover, Modules of different OS tasks are preemptive: a Module Instance executing on a computing resource may be temporarily swapped off its thread by another task with a higher priority. Hence their behavior in an ASC is not always sequential as an ASC can be involved in several tasks themselves composed of several Module Instances.

ECOA as a metamodel only offers an abstract syntax and theoretical concepts to develop software and their interfaces. To develop tools for ECOA, one will thus need to use a modeling language which would offer a concrete syntax for analysis tools to work on. Furthermore, the real-time attributes needed by those tools to conduct analyses and the need to model ECOA Modules' behaviour will drive the modeling method used.

Based on these expressed needs and taking into account a study reported in [START_REF] Evensen | A comparison and evaluation of realtime software systems modeling languages[END_REF], MARTE was found as a suitable modeling language to implement the ECOA metamodel. It provides facilities to annotate models with information required to perform specific analysis [START_REF] Omg | The official omg marte web site[END_REF].

III. RELATED WORK

The idea of using a modeling language to represent ECOA systems has already been proposed by BAE systems [START_REF]Ecoa software description with uml[END_REF]. This paper presents a prototype UML (Unified Modeling Language) profile for ECOA created to help software engineers to design and construct ECOA systems. However, as UML does not handle real-time notions, it needs to be completed with additional profiles through specifications. This prototype UML profile therefore does not match with the real time requirements needed to conduct scheduling or determinism analyses.

The ECOA program is currently into its 'Transition to a production environment' phase as stated in its road-map [START_REF] Bae Sytems | ecoa white paper[END_REF]. This phase includes a 'Procure ECOA tools' part as tool sets are required to realize the full benefits of the ECOA approach: these tools should encompass design, early verification of models, source code generation and conformance testing for components and platforms [START_REF] Bae Sytems | ecoa white paper[END_REF]. As these tools will have to be based on a modeling language, the language chosen should enable as many of these objectives to be verified. This paper focuses on the realisation of those objectives while giving priority to the realisation of analysis for hard real-time systems.

A comparison and evaluation of real-time modeling languages was addressed in [START_REF] Evensen | A comparison and evaluation of realtime software systems modeling languages[END_REF] with respect to amongst other criteria the scope, the formalism, and the architectural coverage. Several real-time software system modeling languages were reviewed, namely the Architectural Analysis and Design Language (AADL) [START_REF]Aadl specification[END_REF], the Unified Modeling Language (UML) [START_REF] Omg | Uml specification[END_REF], Systems Modeling Language (SysML) [START_REF] Omg | Sysml specification[END_REF], [START_REF] Apvrille | An educational case study of using sysml and ttool for unmanned aerial vehicles design[END_REF], the Modeling and Analysis of Real-Time Embedded Systems (MARTE) UML profile [START_REF] Omg | The official omg marte web site[END_REF], and the AADL for UML profile. As a result, MARTE, in addition to being compatible with all of these languages, appeared to be the most suitable language to model RTES regarding the modeling of the compile time, execution, and deployment nature of software. MARTE also distinguished itself with its expansive array of packages and components to address the schedulability, performance, and timing concerns of a real-time systems. Furthermore, the combination of MARTE with a metamodel in order to develop real-time analyses tools was already subject to a study by Thales for their Arcadia/Capella [START_REF]Eclipse. Model based systems engineering -capella mbse tool[END_REF] solution through the add-on: PolarSys Time4Sys [START_REF]Time4sys[END_REF]. Time4Sys is a timing performance framework that fills the semantic gaps between the design models of real-time systems and the models of timing verification tools. To do so, it uses a subset of the MARTE OMG standard [START_REF] Omg | The official omg marte web site[END_REF] as a basis to represent a synthetic view of the system design model. However, the chosen subset of the MARTE standard does not include the sub-profile describing real-time units. Hence, in the context of modeling ECOA systems based on the notion of real-time units that are Modules, the Time4Sys solution is a priori not relevant yet inspiring.

IV. MARTE

The MARTE profile adds capabilities to UML to model RTES and 'provides support for specification, design, and verification/validation stages' where UML is lacking of those concepts [START_REF] Omg | The official omg marte web site[END_REF]. The latest version of MARTE (1.2) was published in 2019 by the OMG. MARTE is supported by a growing number of modeling tools (e.g., MagicDraw [START_REF]Magicdraw tool[END_REF], Visual Paradigm [START_REF]Visual Paradigm International. Visual paradigm tool[END_REF] and Papyrus UML [START_REF]Eclipse. Eclipse papyrus modeling environment[END_REF]) and real-time analysis tools (e.g., Cheddar [START_REF] Cheddar | An open-source real-time schedulability tool/scheduling simulator[END_REF] and RapidRMA [START_REF] Rapidrma | Rapid rate monotonic analysis[END_REF]).

The MARTE profile consists of three main packages as shown in Figure 2.

• The MARTE Foundations package defines the basic concepts to design and analyze embedded real-time systems. • The MARTE Design Model package offers elements to capture requirements, specification, design and implementation phase. It provides concepts for high-level modeling and for detailed hardware and software description. • The MARTE Analysis Model defines specific model abstractions and annotations that can be used by external tools to analyze the modeled system. The analysis package is divided into three parts according to the kind of analysis to be tackled: quantitative analysis, schedulability analysis and performance analysis.

These packages provide fourteen sub-profiles (see Figure 2) to the user and can address different real-time compliance cases: software or hardware modeling, system architecting, performance and schedulability analysis, infrastructure provider and methodologies. Depending on the targeted compliance cases, the MARTE specification offers help to select the suitable subprofiles and respect the dependencies between the subprofiles.

The RtUnit artefact [START_REF] Omg | The official omg marte web site[END_REF] is defined in the HLAM (High-Level Application Modeling) package. Its high-level modeling concepts address real-time and embedded features. HLAM depends on two mother packages -CoreElements and GRM (General Resource Modeling) -and specifies them for the real time domain.

The CoreElements package holds the basic elements used to represent the dual descriptor-instance nature of any modeling entity as well as the basic elements necessary for behavioral modeling and their run-time semantics.

The GRM package offers concepts to model a general platform for executing real-time embedded applications. Executing platforms may be modeled at different level of details, including both software and hardware platforms. The GRM package also provides fundamental modeling constructs that can be refined to support: V. MARTE MODELING CHOICES FOR ECOA

In this section a transcription of each ECOA concepts into MARTE artefacts is proposed. The goal is then to be able to carry out real-time analyses on this MARTE syntactic transcription using the real-time features offered by MARTE.

For each of the following ECOA development steps a transcription from ECOA concepts to MARTE artefacts is detailed:

• ECOA Data Types (Step 0) All the ECOA Data Types found in the ECOA documentation [START_REF] Ecoa | Architecture specification part 3: Mechanisms[END_REF] can be transposed using the MARTE Model Library for primitive types and operations, the Library for extended data types (Annex D [START_REF] Omg | The official omg marte web site[END_REF]), the NFP type package and the Value Specification Language (VSL) (Annex B [START_REF] Omg | The official omg marte web site[END_REF]).

In addition, MARTE offers the possibility to annotate any model with non-functional properties. Their value are specified thanks to the (NFP Declaration package), a facility to be used by the tools that carry out analyses.

B. ECOA Services (Step 1)

As ECOA Services can be seen as sets of actions, one first has to define the notion of action. The MARTE definition of an action is close to the UML definition: an Action is a fundamental unit of behavior which takes a set of inputs and converts them into a set outputs. The MARTE real-time construct depicting an action is a RtAction, found in the HLAM package.

An ECOA Service being a set of actions supplied or required by an Application Software Component, it can be characterized through its actions by a MARTE GRM::BehaviorScenario.

The MARTE transcription for ECOA Services can be implemented using the GRM::ResourceService object as GRM Resources provide linked services. A ResourceService is 'the available means for a Resource to manifest, and then perform, its expected duties and/or responsibilities, to further satisfy the requirements for which it is in place' [START_REF] Omg | The official omg marte web site[END_REF]. This definition is very similar to the ECOA Service Operations and one may thus model ECOA Services using the MARTE ResourceService.

However, to perform schedulability analysis on ECOA systems, the real-time features of the system components have to be specified. Doing so is possible with MARTE using the HLAM::RtService object. An RtService is a specification of the GRM::ResourceService which owns additional real-time attributes. Moreover, RtServices can be completed with RtFeatures which are additional real-time characteristics. Figure 3 presents a description of an RtService and its attributes.

An RtService allows the specification of different real-time attributes' interaction mechanisms that match with the ECOA ones:

• ConcurrencyKind : the concurrency policy used for the RtService between 'reader' or 'writer'. It matches with the ECOA access mechanisms of Versioned Data entities.

• ExecutionKind : defines the kind of execution of a behavioral feature between 'deferred' (Event occurrence matching the service invocation is saved in the queue of Fig. 3. RtService of the HLAM package [START_REF] Omg | The official omg marte web site[END_REF] behavior attached to the object), 'remoteImmediate'(The execution is performed immediately with schedulable resource of the calling object) and 'localImmediate' (The execution is performed immediately with a schedulable resource of the called object). To be able to choose between those behaviors is useful when describing an ECOA model with MARTE as execution can be immediate or not: in the case of a request-response interaction mechanism, the response can be given directly after the computation or deferred.

• SynchronizationKind : defines the different kinds of synchronization mechanism for real-time services. For the ECOA transcription three of them are needed:

-'synchronous': the action waits for the end of the client execution before continuing to execute, -'asynchronous': the action does not wait for the end of the client execution before continuing to execute, and -'delayedSynchronous': the client action continues to execute and synchronize later when the client will return a value. The 'delayedSynchronous' RtService attribute matches to the asynchronous ECOA Request-Response interaction mechanism while the 'asynchronous' attribute matches to the ECOA Event interaction mechanism and the 'synchronous' attribute matches to the ECOA synchronous Request-Response interaction mechanism. All in all, the ECOA Service concept can be implemented by the MARTE RtService object as it can represent an ECOA Service along with its real-time attributes and properties.

C. ECOA Component Definitions (Step 2)

An ECOA Application Software Component (ASC) provides a set of services implemented as RtServices in MARTE which are executed by the Module Instances contained in this ASC. The same modeling approach as in the UML description (page 7 of [START_REF]Ecoa software description with uml[END_REF]) can be implemented in MARTE. Whereas in UML 'an ECOA Component Definition is represented using [an abstract] UML class', in MARTE ECOA Components can be described as Resources from the GRM::Resource package. Those resources provide linked services modeled by RtServices which are stereotypes of the GRM::ResourceCore::Service object. Those resources can be further described using notations from the NFP package or even RtFeatures.

D. ECOA Assemblies (Step 3)

Concerning ECOA Assemblies, the most appropriate MARTE sub-profile to detail an ECOA assembly scheme is the Generic Component Model (GCM) package. This package offers concepts such as interaction ports, connectors and assembly parts to model real-time and embedded systems in a component based approach.

The RtServices are executed following a behavior being defined in the assembly scheme. This behavior can be transcripted using the CoreElements::Causality::Behavior package. Plus, transitions between RtServices are triggered by RtActions which inherits from the GCM::InvocationAction package. Those RtActions can specify real-time features, such as deadlines and periods.

E. ECOA Component Implementations (Step 4)

In order to represent ECOA Component Implementations, the GRM::ResourceCore package is a central aspect as it describes both the resources and their services as classifiers (it inherits of the CoreElements:: Foundations::Classifier package) and also represents their run-time instances (it inherits of the CoreElements:: Foundations::Instance package). Thus, each resource (which represents an ECOA Component) provides one or more ResourceService which are characterized by their behavior. The run-time instances of these services being ResourceServiceExecution instance objects.

In the following subsections the representation of the ECOA Service Instances, the Modules Instances and their implementation are presented, based on the ResourceService and ResourceServiceExecution artefacts of the MARTE GRM package.

1) ECOA Service Instances (Component Implementation):

The ECOA Service concepts is implemented by the MARTE RtServices objects. A RtService element inherits from the GRM::ResourceCore:Service package and is thus a specification of a ResourceService. As mentioned, this ResourceService has Instances called ResourceService-Execution and Service Instances in ECOA are modeled by ServiceExecution elements in MARTE. This Service Instance is still linked to the corresponding RtService by heritage dependency. In addition, NFP annotations from the mother RtService class can be modified on the Instance if required. This can be useful when two instances of the same service have different priorities depending on the task they are called upon.

Furthermore, the access to databases through the ECOA Versioned Data mechanism [START_REF] Ecoa | Architecture specification part 3: Mechanisms[END_REF] can be represented in MARTE with the PpUnit object, a protected passive element that models concurrency for shared information among real-time units (presented in the next section). It provides a protection mechanism to support concurrent access by multiple real-time units and uses the schedulableResource of the RtUnit invoking its service to be executed. The PpUnit fits to the different ECOA database behaviors as it specifies its concurrency policy either globally for all of their provided services (concPolicy attribute), or locally through the concPolicy attribute of the RtService [START_REF] Ecoa | Architecture specification part 3: Mechanisms[END_REF]. This concurrency policy can be:

• Sequential: only one schedulable resource at a time can access a feature of a PpUnit. In this case, the PpUnit does not provide access control mechanism; it is up to the client to deal with potential concurrent conflicts. It corresponds to the Versioned Data mechanism without access control in ECOA [START_REF] Ecoa | Architecture specification part 3: Mechanisms[END_REF]. • Guarded: one schedulable resource at a time can access a feature of a PpUnit while concurrent ones are suspended. • Concurrent: multiple schedulable resources at a time can access a PpUnit.

Guarded and Concurrent policies can correspond to the ECOA Versioned Data mechanism with access control depending on the System Integrator's choice.

2) ECOA Module Types (Component Implementation):

To implement the key notion of the ECOA Module and its behavior we recommend to use the RtUnit artefact of the HLAM subprofile. An RtUnit is 'a real-time unit that may be seen as an autonomous execution resource, able to handle different messages at the same time. It is an unit of concurrency able to invoke services of other real-time units, send signals or data.' [START_REF] Ecoa | Architecture specification part 3: Mechanisms[END_REF] presented next page in Figure 4.

An RtUnit may own one or several behaviors as it inherits from the CoreElements:: Causality:: CommonBehavior:: BehavioredClassifier package. Those behaviors usually take the form of a state-based behavior where states represents a configuration of the RtUnit and transitions denote reconfigurations of the unit. Being able to model the RtUnit behaviors will allow the detailing of ECOA Module behaviors which are not described in the ECOA metamodel.

An RtUnit also provides one or more RtServices and may invoke services from other RtUnits. It owns a single message queue for saving the messages it receives once its execution has started. Messages can represent operation calls, signal or data as for the ECOA Module. Each message can be used to trigger the execution of a behavior of the unit.

We represent Module Operation Calls by RtActions as they trigger RtServices and define Module Operations as RtServices. In addition, an RtService being a set of inner RtServices triggered by RtActions it can be composed of only one RtService.

Also, as an RtUnit inherits from the GRM:: ResourceTypes:: ConcurrencyResource, it is a ConcurrencyResource : 'a protected active resource that is capable of performing its associated flow of execution concurrently with others, all of which take their processing capacity from a potentially different protected active resource (eventually a ComputingResource)' [START_REF] Ecoa | Architecture specification part 3: Mechanisms[END_REF]. Hence RtUnits are resources performing their own execution in concurrence with other RtUnits, as Modules in ECOA.

Finally, an RtUnit has at its disposal one or several Comput-ingResources, representing the computing resources available in the ECOA Container which contains this RtUnit (processors, core processor, etc). To perform its execution, the RtUnit needs both to be allocated on a schedulable resource and to have access to one of its computing resources. A schedula-bleResource is defined as 'a kind of concurrencyResource with logical concurrency. This means that it takes the processing capacity from another active protected resource, usually a computingResource, and competes for it with others linked to the same scheduler under the basis of the concrete scheduling parameters that each schedulableResource has associated'. In our case, the MARTE schedulableResource linked to the RtUnit represents a thread. This thread is managed by a MARTE Scheduler corresponding to the underlying Operating System in an ECOA system. This reliance of a RtUnit on a schedulableResource allowed us to implement the required passive behavior.

There is one major distinction between the RtUnit and the ECOA Module concepts: a Module is a passive element whereas a RtUnit is active by nature. This can be solved by forcing a RtUnit to be passive.

To do so, one can prevent the RtUnit from having its own means of performing its computation by allocating it only one schedulableResource. Its isDynamic attribute shall thus be set to false. The thread represented by the schedulableResource will then be managed by the Scheduler which will allocate it on the corresponding computing resource when required by the ECOA services. Furthermore, with only one schedu-lableResource available the RtUnit is also single-threaded.

All in all, an ECOA Module can be represented by a RtUnit with specific attributes in MARTE (a single schedu-lableResource on a RtUnit managed by a Scheduler on the computingResources of the Container).

3) ECOA Module Implementations (Component Implementation):

The implementation of an ECOA Module is made through the definition of characteristics and attributes to represent the concrete choices made for the Module Implementation (e.g. programming language) as shown in the UML description [START_REF]Ecoa software description with uml[END_REF]. MARTE offers additional real-time notations (NFPs and RtFeatures) to detail the Module nature. Those concepts will Fig. 4. RtUnit of the HLAM package [START_REF] Ecoa | Architecture specification part 3: Mechanisms[END_REF] Last, MARTE also enables to annotate hardware and software components with real-times attributes, such as the memory of resources and the cores number of processors. The ECOA open standard defines a metamodel that offers a framework for the development of complex avionic systems software. However, this metamodel neither address the definition of the real-time attributes of its concepts nor their syntax and therefore does not allow the direct implementation of realtime analysis. In order to be able to conduct such analyses via tools while respecting the ECOA standard, the ECOA metamodel needs to be complemented by both a modeling language and a modeling method.

H. Modeling synthesis

The MARTE profile for UML can address these needs as it provides a modeling language dedicated to the embedded realtime domain and thus a concrete syntax on which tools can rely. It has the advantage of presenting a semantic adaptable to a large class of real-time systems.

All in all, MARTE extends the expressive power of ECOA and provides a translation for all the elements defined in the ECOA metamodel, in particular the key concept of ECOA Modules can be transcripted as MARTE RtUnit artefacts.

In order to validate the choices proposed in this preliminary study showing the feasibility of formalising an extended ECOA metamodel for the real-time domain, and before implementing real-time analyses via tools, it will be necessary to carry out the concrete implementation of these choices on an example.

As a continuation of this study, the definition of a formal semantic transcription of the ECOA metamodel using the semantics of the MARTE modeling language could be determined. Doing so would make it possible to determine if the focus on MARTE and the avoidance of extending UML/MARTE profiles by further own aspects really does not pose restrictions or shortcomings for the intended goal. Only then the implementation of tools on MARTE-ECOA models could be considered . Eventually, the definition of an ECOA profile for MARTE could then emerge and transcend the model-based approach of complex avionics software-based systems.

Fig. 1 .

 1 Fig.1. Abstract view of an Application Software Component (ASC)[START_REF] Ecoa | Architecture specification part 1: Key concepts[END_REF]

•

 Software design in the SRM (Software Resource Modeling) package, • Hardware design in the HRM (Hardware Resource Modeling) package, and • Analysis with the GQAM (Generic Quantitative Analysis Modeling), SAM (Schedulability Analysis Modeling) and PAM (Performance Analysis Modeling) packages.

Fig. 2 .

 2 Fig.2. View of the different MARTE packages and subprofiles[START_REF] Omg | The official omg marte web site[END_REF]

Figure 5

 5 Figure 5 presents all of the ECOA concepts implemented in this paper with their corresponding MARTE transcription.

Fig. 5 .

 5 Fig. 5. MARTE transcription overview of ECOA

ACKNOWLEDGMENTS

We strongly thank Mr Brice Hillen and Mrs Sylvie Schuller for their expert support on the understanding of the ECOA metamodel during this research project. We would also like to thank Prof. Ahlem Mifdaoui for her insights regarding the hard real-time field and for the help she provided us with.

This work was supported by the CASAC chair granted by Dassault Aviation through the ISAE-SUPAERO Foundation.

enable the implementation of schedulability analyses of the ECOA Modules.

Hence, RtUnits complemented by RtFeatures and NFPs enable the modeling of a concrete ECOA Module Implementation.

4) ECOA Module Instances (Component Implementation):

A RtUnit inherits from the GRM:: ResourceCore:: Resource package, thus its instance is a GRM:: ResourceInstance. This instance implements services described by ResourceServiceExecution as explained earlier.

Moreover, through the RtFeatures and its RtSpecifications, one can define properties on those RtUnit Instances required in the ECOA specification. For example, a RtFeature can describe a 'priority' attribute, allowing to characterize the priority of an RtUnit Instance, such as in ECOA for the Module Instances.

F. Additional Analysis

Step MARTE offers two main subprofiles for analysis purposes: schedulability and performance. The latter are made possible through the Software Analysis Modeling (SAM) and Performance Analysis Modeling (PAM) subprofiles of the Generic Quantitative Analysis Modeling (GQAM) package. To use those subprofiles both GRM , NFP and GQAM constructs have to be described beforehand. Plus, 'extra annotations needed for analysis are to be attached to an actual design model, rather than requiring version of the design model to be created only for the analysis' [START_REF] Omg | The official omg marte web site[END_REF]. This feature of MARTE should greatly facilitate the work of ECOA model developers.

The core of the GQAM domain is the description of how the system behavior uses resources. In fact, quantitative analysis techniques determine the values of 'output NFPs' (such as response times, deadline failures, resource utilization, and queue sizes) based on data provided as 'input NFPs' (e.g., request or trigger rates, execution demands, deadlines, and Quality of Service targets)' [START_REF] Omg | The official omg marte web site[END_REF].

As in the GQAM clause, the SAM's conceptual domain model is organized around the notion of Analysis Context. An Analysis Context is the root concept to collect relevant quantitative information for performing a specific analysis scenario. In particular, it would use all of the RtFeatures defined through the modeling of the ECOA elements. They are also known as real-time situations in the schedulability analysis domain.

In general, an AnalysisContext is associated with the following two modeling concerns:

• WorkloadBehavior: contains a set of related end-to-end system-level operations, each with a defined behavior, triggered over time as defined by a set of workload event by external (e.g. environmental events) or internal (e.g. a timer) stimuli. • ResourcesPlatform: represents a concrete architecture and capacity of hardware and software processing resources used in the context under consideration. Starting with the Analysis Context and its elements, a tool could follow the links of the model to extract the information that it needs to perform the model analysis.

G. ECOA Integration and Deployment (Step 5)

This step corresponds to the implementation of an ECOA software system on a concrete hardware and software environment according to a predefined allocation scheme. The MARTE metamodel enables modeling hardware, software and allocation schemes so it can also be used to model the ECOA integration and deployment step.

The hardware integration description can be modeled using the MARTE GRM package as described in this paper, as well as the Alloc package and the Hardware Resource Modeling package (HRM). The software environment description can also be modeled using the MARTE GRM package, the Alloc package and the Software Resource Modeling package (SRM).