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florent.mayé, vincent.dubanchet, davide.casu@thalesaleniaspace.com

Emmanuel Zenou
ISAE SUPAERO

Toulouse, France, 31400
emmanuel.zenou@isae-supaero.fr

Christine Espinosa
ISAE SUPAERO & Institut Clement Ader

Toulouse, France, 31400
christine.epinosa@isae-supaero.fr

Abstract— This paper proposes Thales Alenia Space vision-
based navigation solution for close proximity operations in au-
tonomous space rendezvous with non-cooperative targets. The
proposed solution covers all the phases of the navigation. First,
a neural network robustly extracts the target silhouette from
complex background. Then, the binary silhouette is used to
retrieve the initial relative pose using a detection algorithm. We
propose an innovative approach to retrieve the object’s pose
using a precomputed set of invariants and geometric moments.
The observation is extended over a set of consecutive frames in
order to allow the rejection of outlying measurements and to
obtain a robust pose initialization. Once an initial estimate of the
pose is acquired, a recursive tracking algorithm based on the ex-
traction and matching of the observed silhouette contours with
the 3D geometric model of the target is initialized. The detection
algorithm is run in parallel to the tracker in order to correct
the tracking in case of diverging measurements. The measure-
ments are then integrated into a dynamic filter, increasing the
robustness of target pose estimation, allowing the estimation of
target translational velocity and rotation rate, and implement-
ing a computationally efficient delay management technique
that allows merging delayed and infrequent measurements. The
overall Navigation solution has a low computational load, which
makes it compatible with space-qualified microprocessors. The
solution is tested and validated in different close proximity
scenarios using synthetic images generated with Thales Alenia
Space rendering engine SpiCam.

TABLE OF CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. BACKGROUND SUBTRACTION . . . . . . . . . . . . . . . . . . . . . . . 3
3. DETECTION ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. FRAME-BY-FRAME TRACKING ALGORITHM . . . . . . . . 5
5. INTEGRATED SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6. APPLICATION TO AN OPERATIONAL SCENARIO . . . . 9
7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1. INTRODUCTION
Autonomous rendezvous (RDV) is a key capability to answer
main challenges in space engineering, such as Active De-
bris Removal (ADR) and On-Orbit-Servicing (OOS). ADR
aims at removing the space debris, in low-Earth-orbit (LEO)
protected region, that are more likely to lead to future colli-
sion and feed the Kessler syndrome [1], thus increasing the
risk for operative spacecraft (S/C). OOS includes inspection,
maintenance, repair, assembly, refuelling and life extension

services to orbiting S/C or structures [2]. The two actors
in a rendezvous are referred to as the chaser and the target.
The chaser vehicle is a spacecraft which has both attitude and
translational control capability, and it actively navigates to
the target vehicle in the rendezvous process [3]. Rendezvous
scenarios are many and varied, and depend mainly on the
nature of the target. In this paper, we propose to classify
targets as cooperative or non-cooperative and prepared or
non-prepared. According to the definition provided by the
Consortium for Execution of Rendezvous and Servicing Op-
erations (CONFERS), when the target does not assist the
chaser in acquisition, track and rendezvous operations, it is
referred to as non-cooperative [4], meaning that the chaser
has to estimate autonomously on board the target state. The
notion of cooperative or non-cooperative therefore relates to
target’s behaviour. On the other hand, the notion of prepared
or non-prepared concerns target’s design. It indicates whether
the satellite was originally conceived to participate in a RDV,
and therefore whether it is supplied or not with equipment
to help both the tracking and the servicing. Because space
debris objects were not conceived to participate in a RDV
and are now inoperative, ADR operations will target non-
cooperative and non-prepared S/C. On the other hand, OOS
ideally targets cooperative and prepared S/C. However, a
generation of prepared satellite is not yet in orbit, and a
cooperative target can become non-cooperative in case of a
system failure. A RDV with a non-cooperative non-prepared
target remains the most challenging scenario for chaser’s
GNC (Guidance, Navigation & Control) system. For this
reason, the proposed study is focused on non-cooperative and
non-prepared targets. Autonomous rendezvous navigation
algorithms require accurate, up-to-date measurements of the
relative pose (i.e., position and attitude) of the target. Inex-
pensive camera sensors have a small form factor -so that they
are easily integrated to the S/C without affecting its design-
and a low power budget (unlike LIDARs [5], [6],[7]). For this
reason, the coupling of camera sensors with image processing
(IP) and computer vision (CV) algorithms can provide a
cost effective solution. This paper proposes a vision based
navigation algorithm that allows the 6-degrees-of-freedom
(DOF) pose estimation of a non-cooperative non-prepared
target using a single visible monocular camera. Indeed, the
use of monocular vision provides advantages with respect to
stereo-camera configurations, because single cameras have a
lower complexity and a much larger operational range which
is not limited by the size of the satellite platform.

Related Work

Tracking methods can be classified as frame-by-frame track-
ing or tracking-by-detection algorithms [8]. In frame-by-
frame tracking, the object’s pose retrieved from a frame is
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used as a prior for a local search of the pose in the follow-
ing frame. This recursive approach makes image features
identification and matching relatively easy [8]. However,
these methods require initialization and can diverge in the
presence of local minima. For this reason, a recursive
tracking algorithm must be complemented with a tracking-
by-detection algorithm to enable initial pose acquisition and
fault detection. In a tracking-by-detection algorithm, the
pose is retrieved by exploiting a-priori information on the
geometry and appearance of the tracked object, but with no
knowledge of the pose at previous instants.
Frame-by-frame tracking can be classified into non-model-
based and model-based techniques [5]. Non-model-based
techniques do not assume any a priori knowledge of the
tracked object’s shape, texture and other visual attributes.
These methods rely on visual features (e.g., SURF, SIFT,
ORB) which are ideally recognisable and distinguishable
from one image to another, regardless of the pose of the
camera, the lighting or the spectral conditions in the image.
For space applications, methods that depend upon visual
features detection are not robust since phenomena such as
occlusions, harsh lighting, and reflective materials can make
reliable detection and correspondence impossible [9]. On
the other hand, model-based techniques take advantage of a
priori knowledge of the object whose pose is to be estimated.
This knowledge can be in the form of “fiducials” (or “mark-
ers”), or in the form of a 3D geometrical description of the
object. Fiducials are features expressly designed in such a
way that they are easily detected and identified with an ad
hoc method [8] (e.g., ArUco, ARToolKit, AprilTags). The
use of fiducials implies that the target is originally designed
to be easily trackable, and therefore it is prepared. On the
other hand, in a rendezvous with a non-prepared target, the
pose estimation algorithm can still rely on the knowledge of
the 3D geometric model of the spacecraft. 3D model-based
tracking algorithms are therefore the best candidates for this
study.
On the other side, monocular pose estimation by detection
is by definition model-based, and it can be performed using
geometric methods or by template matching. In geometric
methods, the observed 2D features in the input image are
matched with a database of features computed offline. Then
the pose is retrieved solving the Perspective-n-Point problem
[10]. Geometric approaches based on local feature are pro-
posed for S/C pose acquisition in [11], [12], [13]. However,
methods relying on features detection lack robustness in the
adverse illumination conditions encountered by spaceborne
systems. In template matching approaches, a training set of
views of the object is acquired offline to generate a database
of templates that are compared at run-time with the input
image. Classical template matching approaches compare
the pixels intensities of the templates and the input image
according to similarity measures or alignment functions [14].
However, these methods are computationally expensive and
lack robustness to illumination changes [14]. Other ap-
proaches rely on templates of local features, such as image
gradient orientations (e.g., [15], [16]) or binary templates of
the extracted edges. An edge-based template matching ap-
proach relying on a similarity measure derived from Chamfer
Matching [17] and on an unsupervised clustering technique
is proposed for S/C pose estimation in [14]. The template
matching approaches described are computationally complex
because of the evaluation of a large number of possible pose
hypotheses and real-time may not be achievable on space
qualified processors. They might be appropriate for pose ini-
tialization, but cannot be used as a backup algorithm to help
detecting divergence in the recursive tracking algorithm. For
this reason, recent work has focused on using Convolutional

Neural Networks (CNNs) for pose estimation directly from
greyscale images in a end-to-end fashion [18], [19]. However,
the reported accuracy is currently still lower than that of
geometric methods [11]. Hybrid approaches, where CNNs
are used to extract keypoints (i.e., local features) from the
image while the PnP solver is used to compute the pose, have
recently shown very good accuracy with synthetic images
[20]. However, this still raises the issue of relying on local
features detection.
The approach proposed in this paper is to couple an edge-
based recursive tracking algorithm with a detection algorithm
relying on template matching with global features instead of
local ones. The rest of the paper is structured as follows. In
Sec.2 the background subtraction algorithm based on convo-
lutional neural network (CNN) is detailed. In Sec.3 we detail
the pose estimation by detection algorithm based on Zernike
invariants and geometric moments. In Sec.4 the frame-by-
frame tracking algorithm and its coupling with the dynamic
navigation filter are presented. Sec.5 presents the integrated
navigation solution designed for the particular camera sensor
and target model selected for this study. In Sec.6 the naviga-
tion solution is tested in different realistic scenarios and the
computational load of the navigation function is discussed.
In Sec.7 the conclusion are drawn and perspective for future
studies are given.

Problem Statement

Figure 2 shows a schematic representation of the pose esti-
mation problem. Let P tg be the coordinates of a point P
expressed in the target reference frame (RF) tg, which is
centered at the target center of mass (COM). The coordinates
of P , expressed in the camera RF cam, are:

P cam = [xcam, ycam, zcam]T = Rcam−tg P
tg + tcamOcam−Otg

.

(1)
The rotation matrix Rcam−tg is constructed using the clas-
sical Euler representation, with ϕ ∈] − π, π] the roll angle,
ϑ ∈] − π/2, π/2] the pitch angle and ψ ∈] − π, π] the yaw
angle. In this paper we will also use quaternions to describe
rotations, according to the Hamilton convention [21] (i.e.,
quaternions are written q = q0 + q1i + q2j + q3k, where q0
denotes the scalar part, q∗ denotes the quaternion conjugate
q∗ = q0 − (q1i + q2j + q3k) and ⊗ denotes the quaternion
product):

P cam = [xcam, ycam, zcam]T = qcam−tg ⊗ P tg ⊗ q∗cam−tg + tcamOcam−Otg

(2)
With the notation q([ϕ, ϑ, ψ]), we indicate the quaternion
corresponding to the Euler angles [ϕ, ϑ, ψ]. The vector
tcamOcam−Otg

corresponds to the translation from the origin
Ocam of the camera RF to the origin Otg of the target RF,
expressed in the camera RF. For simplicity, we will refer
to tcamOcam−Otg

as tcamcam−tg = [xcamcam−tg, y
cam
cam−tg, z

cam
cam−tg],

the translation vector from the camera to the target COM.
According to the classical pinhole camera model, the point
P cam is projected into the image plane as follows:

p = [up, vp] =

[
xcam

zcam
f + Cx,

ycam

zcam
f + Cy

]
. (3)

where f denotes the focal length of the camera and (Cx, Cy)
denotes the principal point of the image (see Fig.2).
For this particular study, a camera having a field of view
(FOV) of 30 deg and a sensor size of 1024 × 1024 has been
selected (i.e., on Fig. 2 we have Cx = Cy = 512 and
f = Cx/ tan(FOV/2) = 1911.). The geometry of the target
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S/C used in this study is inspired from the structure of the
Iridium-NEXT satellites and shown in Fig. 2. The target
has a size of 4 × 3 × 1 meters and an inertia matrix equal
to diag([700; 500; 1000]) kg m2. The target dimensions,
translated in pixels, correspond to a projected size of 76 ×
53 × 19 pixels at 100 m, 191 × 143 × 48 pixels at 40 m,
255×191×64 pixels at 30 m, 382×287×96 pixels at 20 m,
and 764 × 573 × 191 pixels at 10 m. The main structure
of the S/C, composed of the central body and the lateral
solar arrays, has two symmetry planes, (Otg, xtg, ztg) and
(Otg, ytg, ztg), see Fig. 2. Some elements on the central body
such as antennas and a docking fixture break the symmetry
but are relatively small and visible only for a restricted range
of attitudes (i.e., |ϕ| ∈ [80, 100] deg). For all the other
attitudes, to each set of Euler angles [ϕ, ϑ, ψ], corresponds
a symmetric solution [−ϕ, −ϑ, ψ−π]. The presence of two
solution branches is an issue that is discussed in Sec.5. All the
images used in this study are generated with Thales Alenia
Space rendering engine SpiCam.

2. BACKGROUND SUBTRACTION

Figure 1. Example of input and output images of the
segmentation algorithm

In order to robustly apply the pose estimation algorithms, it
is necessary to isolate the target spacecraft from any possible
complex background present on the captured image. In this
section we will present the use of neural networks applied
to space image segmentation. Recently major advances have
been achieved in the domain of computer vision thanks to
neural networks, especially convolutional neural networks.
This allows reaching in many applications a precision that
was complicated to achieve until now, and image segmenta-
tion strongly benefits from these new techniques. The use
of neural networks for image segmentation has already been
explored on classic cases, with famous network architectures
like Mask-R CNN [22], SegNet [23], or U-NET [24]. In the
case considered in this study, the need is to precisely extract
the mask of a satellite in space environment, with complex
llumination conditions and backgrounds such as the Earth.
The solution must be embeddable, meaning that the network
must have a low computational load. Fully convolutional
neural networks with transposed convolutions layers applied
to a classical encoder-decoder architecture have been selected
for this study. The convolution layers offer a higher level
of representation at each step, while the encoder architecture
decreases the feature space to force the categorization of pixel
into relevant classes. Finally, the transpose convolution layers
reconstruct the segmented image. This approach seems to be
well fitted to our case, with acceptable resource consumption
with a network composed by 6 convolutional layers and
13500 parameters to be trained. A meta-optimisation oper-
ation was performed to find the best fitted meta-parameter of
the network (e.g., depth of the encoding/decoding, number of

convolution kernels). The output of the neural network is a
grey-scale image where the intensity of the pixel corresponds
to the probability the pixel has of belonging to the space-
craft silhouette. The segmentation has been tested with two
independent dataset generated with two different synthetic
image generators, one of them being highly representative.
The network was previously trained on 9000 labeled images
randomly generated by the image generator, and then tested
on an independent dataset generated by the same generator on
a given test case. The network was able to extract the satellite
in almost every case, even when it was barely visible due to
the distance or the presence of shadows. The mask borders
are precise with a low noise of only few pixels. Some outputs
showed the issue of misdetection of some spacecraft parts, ei-
ther on the inside of the mask -especially for very short range
detections-, or on thin parts like the solar array connections.
The generated mask can present some false detection with
secondary blobs, but these blobs are always smaller and with
a lower pixel intensity than the satellite blob. A simple post
processing algorithm is applied to extract the main blob: a
20% downscaled image exploration is performed to detect the
blob, which is then extracted using a watershed algorithm.
The final output is a binary image, as shown in Fig.1. For
some images, this post-processing resulted in a separation
of the solar arrays from the satellite core. This issue has
been solved applying morphological filtering on the full scale
image before the extraction of the main blob. This post-
processing technique can also help filling missing S/C parts
that are inside the detected silhouette. With the filtering, the
algorithm has a complexity of O(n), with n the size of the
image. While no precise metric was measured at this stage
due to the difficulty to find a relevant one, it was assessed
that only the 0.2% of the images was presenting defaults
making them non exploitable for pose estimation. The impact
of the proposed segmentation method on the pose estimation
algorithms will be shown in Sec.6, where the full navigation
solution is tested.

3. DETECTION ALGORITHM
We detail in this section a method allowing to estimate the
pose of a known object by detection, i.e., it requires no prior
information about the pose of the observed object, making
it suitable for initial pose acquisition and the monitoring of
faults in other on-board estimators. The approach allows
to fully retrieve the object’s pose using its observed binary
silhouette and a pre-computed set of global features (i.e.,
features that are computed using the whole image). Global
features provide a low-dimensional representation of the tar-
get’s silhouette on a binary image. The interest in using
global features such as Fourier descriptors [25], [26], [27],
[28] or image moments [29], [26], [28], [30] is that these
features can be made invariant to translation, to scaling, and
most importantly to rotation. If a bi-dimensional shape is
described by such invariant features, the value of the fea-
tures will not depend on the position of the shape centroid
(translation invariance), on the shape dimension (scaling in-
variance), and on the rotation of the shape in the image plane
(rotation invariance). The shape of the projected silhouette
does depend both on the relative attitude and the relative
position of the observed object, and the contribution of the
translation is coupled with the contribution of the attitude.
However, under the hypothesis of weak-perspective model,
those effects can be decoupled. The weak perspective model
can be assumed when the depth of the object along the line of
sight is small compared to the distance from the camera [14],
and the FOV is small or the object is placed near to the center
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Figure 2. Schematic representation of the pose estimation
problem using a monocular image. In this particular case,

the camera optical axis is pointed toward the target COM, as
done for the generation of the images of the database used in

the detection algorithm detailed in Sec.3

of the FOV (i.e., xcamcam−tg ∼ 0 and ycamcam−tg ∼ 0). These
are indeed conditions that are met during the pose acquisition
phase. In the weak perspective model it is assumed that all
points on a 3D object are at the same distance z from the
camera without significant errors in the projection (compared
to the full pinhole perspective model). Under this hypotheses
the distance zcamcam−tg affects only the scale of the projected
silhouette, while the components xcamcam−tg and ycamcam−tg affect
only the position of the silhouette centroid. Thus, if global
invariant features are used do describe the S/C silhouette at
a given pose, the value of the features will depend only on
the roll and pitch angles ϕ and ϑ. In fact, ψ only affects the
rotation of the projected shape in the plane image, as visible
in Fig.2. The principle of the pose estimation algorithm that
we propose is the following. During an off-line process, a set
of synthetic views of the target, referred to as training images
in the following, is generated for a sufficiently large number
of views (referred to as Nw) selecting randomly discrete
values of the pairs (ϕ, ϑ) ∈] − π, π]×] − π/2, π/2]. When
generating the database, the camera is pointing to the target
COM (i.e., xcamcam−tg = ycamcam−tg = 0). The yaw angle ψ and
the camera-target distance d = zcamcam−tg remain fixed, with
ψ = ψtrain set to zero. The value of d = dtrain should be
chosen close to the value of the relative range at which the
pose must be acquired, in order to maximize the performance
of the algorithm [31]. Once the images corresponding to the
Nw viewpoints are generated, the global invariant descriptors
are computed for each view. For this study, we have selected
Zernike moment (ZM) invariants [32], which provide better
performance than other invariants such as Complex moments
or Fourier descriptors [31]. The methodology used to com-
pute the rotation invariants is detailed in [31] and [32]. The
size of the resulting database is Nw × Nf , with Nf the di-
mension of the feature vector. At run-time, when the camera
acquires a new image of the target, the algorithm computes
the descriptor vector associated to the resulting view and
finds in the database the pair (ϕmeas, ϑmeas) with the closest
descriptor vector (minimizing the Euclidean distance), i.e.,
performs a nearest neighbor search. The remaining degrees of
freedom, i.e., the yaw angle ψ and the relative camera-target
position tcamcam−tg , are estimated using geometric moments
(GMs), according to the procedure described in the following.
From a given image, the yaw angle ψ of Rcam−tg can be
retrieved using the second order central moments µij (i, j ≤

2, i + j = 2). First, the inclination ψ̃0 ∈] − π/2, π/2] of
the major axis of inertia of the silhouette on the image is
given by ψ̃0 = 1/2 atan [2µ11/(µ20 − µ02)] [32]. However,
to recover the full in-plane angle of rotation ψ0 ∈]− π, π] of
the silhouette, we still need to determine a specific direction
along the axis of inertia, i.e., distinguish between ψ0 = ψ̃0 or
ψ0 = ψ̃0 − π. For this, the third order central GMs can be
used, since they change sign under a rotation of π [33]. The
sign of moment µ′03, computed on the image frame rotated by
an angle ψ̃0 defines the in-plane rotation ψ0:

ψ0 =

{
ψ̃0 if µ′30 > 0 ,
ψ̃0 − π if µ′30 < 0 .

(4)

The ambiguity can be resolved only if the silhouette is not
rotationally symmetric. In the case of a silhouette having an
N-fold rotation symmetry (N-FRS) (i.e., if it repeats itself
after rotation around its centroid by 2πj/N , for all j =
1, ..., N ), N solutions are possible. In such case, only an
observation of the target pose on a set of consecutive frames
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Figure 3. Structure of the global feature based detection
algorithm.

could help solve the ambiguity, as done in Sec.5. Once
ψ0test is determined for the current image, we can deduce
the measured yaw angle ψmeas of the camera frame by

ψmeas = ψ0test + (ψtrain − ψ0train). (5)

where ψ0train
is the major axis of inertia (precumputed and

stored in the database) of the training view that best matches
the current view, and ψtrain = 0 by construction. Finally, we
obtain a measure of the relative camera-target position using
zeroth and first order moments. The zeroth order geometric
moment m00 is the area of the silhouette, while m10/m00 =
uc and m01/m00 = vc are the x and y coordinates of
the silhouette’s centroid in the image frame. The values of
m00train , uctrain , and vctrain must be precomputed for each
view and stored in the database. The relative distance camera-
target can be retrieved according to:

dmeas =
√
m00train

/m00meas
· dtrain (6)

where m00train is the zeroth order moment for the best
matching training view. Recalling (3) and exploiting the
fact that d =

√
(xcamcam−tg)

2 + (ycamcam−tg)
2 + (zcamcam−tg)

2 ∼
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zcamcam−tg , the components xcamcam−tg and ycamcam−tg can be ap-
proximated by:

xcamcam−tg =
d

f
(ucmeas

− Cx)

ycamcam−tg =
d

f
(vcmeas

− Cy)
(7)

where (ucmeas , vcmeas ) are the coordinates of the observed
silhouette centroid. The identities (7) can be used to ensure
camera pointing even before the target’s full pose has been
acquired. Fig. 3 summarizes the structure of pose estimation
by detection algorithm.

4. FRAME-BY-FRAME TRACKING
ALGORITHM

Within the many 3D model-based pose estimation techniques
for monocular vision, the more suitable for space applications
are the ones relying on edge extraction and tracking, since
edges are strong features easily detectable in correspondence
of high image gradients. These methods are computationally
efficient and naturally stable to lighting changes even for
specular materials [8]. A well-known model-based algorithm
relying on edge tracking is RAPiD (Real-time Attitude and
Position Determination ) algorithm. RAPiD was first theo-
rised in 1990 by C. Harris and C. Stennett in [34] and it was
one of the first monocular 3D tracker to successfully run in
real-time due to its low computational complexity. At instant
t, the 3D a priori model is projected in the image frame
using the pose parameters estimated at instant t − 1. Visible
edges are selected and sampled in order to determine a set of
“control points” that will be used in the optimisation process.
At the same time, edges are extracted on the greyscale image
captured at the instant t, resulting in a binary image. Then
the control points are associated to the observed points on
the image. The matching is carried out by searching along
the vector normal to the edge that contains the control point.
This mono-directional search reduces the matching search-
space from bi-dimensional to one-dimensional, thus allowing
fast tracking. To compute the pose correction, RAPiD method
relies on the fact that, at first order, small changes in the object
pose will cause a displacement of the control points in the
image frame which is linear in the pose parameters. This
linearity enables to determine the variation of pose through
the solution of a simple linear least square problem. However,
for high relative motion of the target in camera frame, or for
low acquisition rate, the displacement of the observed points
in the image frame may be to high to enable linearization.
For this reason, we propose a non-linear version of RAPID
method. The application of a non-linear version of RAPiD in
space rendezvous has been assessed also in [35], [36], [37],
where a graphic process units (GPU) is used in order to render
not only geometrical edges but also texture discontinuities of
the a priori model. Other RAPID-like methods have been
proposed in Refs.[38], [39]. All the cited works integrate,
to the pose estimation algorithm, a linear Kalman filter (KF)
which propagates a simple kinematic model. The method
that we propose does not need any GPU augmentation in
order to be compatible with typical space processing capa-
bilities. Moreover, it is coupled with a dynamic navigation
filter enabling the estimation of the full target rotational and
translational state exploiting only relative pose measurement.
In fact, in the case of high rotation rates typical of a tumbling
object, a simple kinematic filter does not allow to estimate
the rotation rate of the target, which needs to be known to
perform some RDV operations requiring the synchroniza-

tion of chaser motion with target motion. The proposed
filter implements a method allowing to merge multi-rate and
delayed measurements, being particularly suitable for the
RDV application, as tracking algorithms have relatively high
latency.

Contours-based tracker

The first step of the algorithm is the extraction of the edges
from the image captured at instant t using the Canny edge
detector. However applying the Canny edge extractor on the
greyscale images leads to the major drawback of detecting
not only geometrical edges, but also texture discontinuities.
Moreover, the direction of the light could make invisible
some geometrical edge due to the particular reflective texture
of the MLI (Multi Layer Insulation), or generate projected
shadows. All these conditions can lead to possible false
matching of the control points with a non-geometrical edge.
As this work does not consider the option of using GPU
acceleration to render also texture discontinuities and shad-
ows, the most robust solution to reduce the number of false
matching is to rely only on the external contour of the target,
using therefore the silhouette of the target extracted after the
segmentation process (Sec.2). In the meantime, a masking
algorithm is run in order to select the control points. The a
priori 3D model is projected into the image frame using the
estimated pose at the instant t − 1 and the camera intrinsic
calibration matrix. Then each surface is meshed monodi-
mensionally along its perimeter obtaining a set of possible
control points. All the points whose projection in the plane
u−v is inside the projected perimeter of any other surface are
discarded, since they certainly do not belong to the external
projected perimeter of the target.
At the end of the iteration, the output of the masking algo-
rithm is a set of 2D visible points (i.e., the control points)
belonging to the edges. In order to enable the matching
procedure, for each control point the two-component nor-
mal vector (orthogonal to the edge containing the point) is
computed. For each control point, the corresponding 3D
coordinates in target frame are stored because they will be
used in the optimisation process. Finally, the matching of a
control point with an observed point in the binary contour
image is found by moving from the projected control point
along the projected normal vector -in both directions- until
a value equal to 1 is found. In order to reduce the number
of false matching, we have decided to introduce the value
dtoll, a maximal acceptable distance from the control point
to the corresponding matched point. If no match is found
at a distance lower than dtoll, the control point is discarded.
This value of tolerance depends on many factors such as the
time span between two time step, the relative rotational and
translational target rate, the relative distance camera-target,
and the image size.
Once that the control points have been matched to the mea-
sured points, the cost function can be built. Given a fitting non
linear function ŷ(ρ) of a vector of n parameters ρ, and a set of
m data points yi, the parameters can be estimated minimising
the sum of the weighted squares of the errors between the
measured data yi and the fitting function ŷi(ρ). The resulting
scalar cost function is:

χ2(ρ) =

m∑
i

(yi − ŷi(ρ))2 = (Y − Ŷ (ρ))TW (Y − Ŷ (ρ))

(8)
where the weight matrix W is equal to diag(1/σ2

i ), with σi
the standard deviation of the error associated to measurement
yi. The set of measurement data Y will be a vector composed
by the projections of [ui, vi]T (i.e., the measured coordinates
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in image frame of the matched point corresponding to P tgi ,
the 3D point in target RF) along the projected normal ni =
[nûi

, nv̂i ]
T .

yi = nûiui + nv̂ivi, Y = [y1, y2, ..., yi, ..., ym]T (9)

The weight matrix W is set to be equal to the identity matrix
of size m×m, since there is no way to know the error related
to each matched image point [ui, vi].
In the pose parameter ρ, the rotations will be described
using quaternions (i.e., Eq.(2)), as quaternions have the
lowest dimensionality possible for a globally non-singular
representation of the rotational group SO(3) [40]. The
navigation filter described in the following paragraph also
relies on quaternions for the attitude estimation problem.
The set of parameters to be estimated will be ρ =
[tx, ty, tz, q0, q1, q2, q3], which has size n = 7, with
[tx, ty, tz] = [xcamcam−tg, y

cam
cam−tg, z

cam
cam−tg] and qcam−tg =

[q0, q1 , q2 , q3]. For each matched control point P tgi in target
RF, the corresponding point pi = [ûi(P

tg
i , ρ), v̂i(P

tg
i , ρ)] in

the image frame is given by (2) and (3). Then, the non-
linear function Ŷ (ρ) = [ŷ1(ρ), ŷ2(ρ), ..., ŷi(ρ), ..., ŷm(ρ)]T

can be built, with ŷi(ρ) = nui
ûi + nvi v̂i. The non-linear

optimisation is solved using the Levenberg-Marquardt (LM)
algorithm. The Jacobian of the nonlinear functions Ŷ (ρ) has
to be derived in order to compute at each iteration the update
of parameter ρ. The computation of the elements of the
Jacobian is provided in [41]. The obtained Jacobian is used
at each iteration to analytically compute, according to the
version of the LM algorithm proposed in [42], the direction
of the parameter increment, starting from the initial guess ρ0
which is taken to be equal to the estimated pose at instant
t − 1. In this optimisation process, some approximations
are introduced: at each update of the pose parameter within
the LM algorithm, a new set of control points and normal
vectors should be computed by the masking algorithm, and
new matches with the binary image should be found. Nev-
ertheless, such a process would dramatically increase the
computational load of the algorithm. For this reason, the
set of control points, matched points and normal vectors will
be kept constant for all the loops within each LM run. The
final parameter ρest estimated by the LM algorithm will be
the measured pose of the tracking algorithm.
One of the main problem related to the IP-CV algorithms
is to have a good characterization of the measurement noise
covariance matrix R, which is needed to integrate the mea-
surements into the Kalman filter. The covariance of the
estimated parameter ρest, and therefore of the measured pose,
can be computed from the Jacobian and the weight matrix,
according to : R = [JTWJ ]−1. However, the value of W is
not known. For these reason, the value of the χ2 evaluated
at the estimated parameter ρest divided by the degree of
freedom of the problem ν = m−n+1 is used as an indicator
of the level of confidence of the measurement. This value
is also used as one of the convergence criteria in the LM
algoritm [42].

r =
χ2(ρest)

ν
(10)

The value of r is a sort of averaged squared reprojection error,
and it will be referred to as residual in the following sections.
For a given target geometry, camera parameters and relative
camera-target distance, the residual can be correlated to the
noise covariance matrix of the associated measurements (i.e.,
a very low residual indicates that the reprojection error is
minimal and therefore that the measurement is reliable). This

correlation is obtained experimentally during offline calibra-
tion. During these test, a value of rmax (function of the range)
must be set in order to determine whether a measurement
is acceptable or not. In Sec.5 we will provide more details
about the way this eventuality is managed in the navigation
function.

Integration of the measurements in the navigation filter

The tracking algorithm discussed in the previous paragraph
provides a measurement of the relative pose camera-target,
but no measurement of the relative translational velocity
and rotational rate. As anticipated, certain close proximity
operations require the knowledge of the complete relative
state of the target. The coupling of the IP-CV algorithm with
a dynamic KF enables the estimation of both translational and
rotational velocity of the target. Moreover, the measurements
computed by the IP-CV tracking algorithm can be affected by
a consistent delay, due to the computational load associated
to operation such as the image segmentation, the 3D model
projection, and the non-linear optimisation. There will be
therefore a delay between the time of acquisition (i.e., the
capture of the image by the camera), and the time in which
the measurement becomes available. In addition, due to the
high computational load of the IP-CV algorithm, measure-
ments could be available at a lower rate with respect to the
navigation filter run frequency. For this reason, the filter
must implement an appropriate technique to merge delayed
and infrequent measurements. The complete formalisation of
the method and its application to the space RDV navigation
problem are discussed in [43], but we provide here a brief de-
scription. The translational motion is modelled according to
the well known Clohessy-Wiltshire-Hill’s (CWH) equations
[44], a system of linear differential equations that describes
the relative motion of the chaser with respect to the target,
expressed in the target Local Orbital Frame [LOF, with x
axis along the radial Earth-target, z axis along target orbit
angular momentum, and y axis completing the right-handed
trihedron]. The rotational dynamics is modelled according to
the non-linear prediction model: q̇i−tg =

1

2
qi−tg ⊗

[
0

ωtgi−tg

]
ω̇tgi−tg = −I−1tg

(
ωtgi−tg × Itg ω

tg
i−tg

) (11)

where qi−tg is the attitude quaternion from inertial (i.e., i)
to target RF, ωtgi−tg is target rotation rate with respect to the
inertial RF expressed in target RF and Itg is the inertia matrix
of the target at its COM.
In order to integrate delayed measurements, Larsen’s method
is implemented [45]. This method relies on the computation,
throughout the delay period, of a correction term to add to
the filter estimate when the delayed measurement becomes
available. It requires only two matrix multiplications at each
time step, as well as the storage of the predicted state and
error covariance matrix relative to the time step in which the
measurement was acquired (i.e., the camera acquisition time
in the case considered for this study). Moreover, Larsen’s
method allows to merge multi-rate measurements, enabling
the use of multiple sensors and tracking algorithms. Larsen’s
method is sub-optimal for non-linear systems and in the
presence of multi-rate measurements, but has a very low
computational load compared to optimal methods (e.g., Filter
Recalculation method, [46], [47]). The analysis in [43] has
proven that, for the RDV problem, Larsen’s method is the best
trade-off between optimality and computational load, with a
performance comparable to the one of the optimal method.
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5. INTEGRATED SOLUTION
During RDV operations, the knowledge of the full 6-DOF
pose is required only during the final approach, starting
from a relative distance around 50 − 40 m. Above this
distance, the navigation is in a range only mode, where
only the target relative position is estimated. The detection
algorithm described in Sec.3 allows, with Eqs.(6) and (7),
measuring the relative position even at those distances where
the attitude is not correctly retrieved (e.g., between 100 m
and 40 m using the camera considered in this study). The
measured position is then filtered in the translational dynamic
filter modelled according to the CWH equations. When the
estimated distance has reached the value selected to begin
the 6-DOF pose estimation, the pose acquisition mode is
activated. During this phase the chaser is on a hold point and
acquires the 6-DOF pose of the target. Once that the pose
is initialized, the 6-DOF tracking can start. We detail in the
following paragraphs each one of these navigation modes.

6-DOF pose acquisition

The detection method described in Sec.3 with Zernike invari-
ants up to the 9th order is employed in the pose acquisition
function. For the particular target geometry chosen for this
study, due to the impossibility to distinguish between two
symmetric attitudes (see Sec.1), the database is build using
only nonnegative values of ϕ. A total of Nw = 5000 samples
is used. The presence of small details on the main body of
the target breaks this symmetry and is observable for values
of |ϕ| ∈ [80, 100] deg. Thus, the database is extended
adding 500 random samples satisfying the conditions ϕ ∈
[−100, −80] deg. Using the camera considered for this study,
the method allows reliable pose acquisition from a distance
of 40 m using the ZM-based detection algorithm developed
in Sec.3. Using ZM up to the 9th order, at a distance of 40
m, the method allows the detection of the observed pose with
an accuracy (i.e., percentage of detection having an angular
error lower than 20 deg) of 95% and a mean error of 2 deg.
The method described in Sec.3 needs to be associated to
some post-processing function, in order to have a reliable
initialization of the pose and to robustly discard the 5% of
the outlying measurements. For outlying measurement (or
outlier) we mean a measurement which is not attributable to
any of the two symmetric solutions branches. The following
logic as been defined.
To initialize the pose, three conditions have to be satisfied.
Initially, we search for a time-window of a given length (ltw)
along which the difference between each consecutive attitude
measurements is below a given threshold δt1. The fulfillment
of such a condition ensures, in the observed time-window,
that the measurements are “continuous” and therefore com-
patible with the rigid body dynamics, and that no outliers are
present (the probability that in the considered time-window
there is a series of outlying measurements close one to the
other exists but remains low). At the current time step t =
i, the new acquired measurement [ϕi, ϑi, ψi] is compared
with the measurement [ϕi−1, ϑi−1, ψi−1] acquired at the
previous instant t = i − 1. Two index indicating the angular
distance between the two measurements are computed, one
taking into account only the roll and pitch angles (δϕϑi

), and
the second taking into account the full attitudes (δϕϑψi

).

{
δq = q([ϕi, ϑi, 0])⊗ q∗([ϕi−1, ϑi−1, 0])

δϕϑi
= 2
∣∣atan

(√
δq21 + δq22 + δq23/δq0

) ∣∣ (12)

{
δq = q([ϕi, ϑi, ψi])⊗ q∗([ϕi−1, ϑi−1, ψi−1])

δϕϑψi
= 2
∣∣atan

(√
δq21 + δq22 + δq23/δq0

) ∣∣
(13)

These indices are saved, together with the current measure-
ment, on a shifting memory which collects the last ltw values
of indices and measurements (from t = i + 1 − ltw to
t = i). It should be reminded that the roll and pitch angles are
computed at the same time thought a nearest neighbor search,
while the yaw angle is computed in a second step.
First, the condition on the continuity of the roll and pitch
angles has to be satisfied. If all the stored values of δϕϑt

,
t ∈ [i+ 1− ltw, i] are less than δt1 , the first condition cond1
is satisfied. A reasonable value of ltw is 10, while for δt1 a
value of 20 deg can be used.
Then, the continuity of the yaw angle is checked. The second
condition cond2 is automatically satisfied if all the stored
values of δϕϑψt , t ∈ [i+1−ltw, i] are less than δt1 . However,
as outlined in Sec. 3, there is an indetermination in the
estimation of the yaw angle for those couples of (ϕ, ϑ) that
correspond to a projected silhouette having a 2-fold rotation
symmetry [e.g., (ϕ = 0 ∨ ϕ = 180) ∧ ϑ = 0 deg]. For
these attitudes, Eq.(4), which allows discriminating between
ψ and ψ + π, is indeterminate due to the fact that the third
order geometric moments of these silhouettes are null. This
can lead to the presence of values of δϕϑψt

close to 180
deg. Thus, an error in ψ close to 180 deg can indeed be
corrected. A threshold δt2 is defined in order to set the
acceptable difference between two consecutive yaw angles
(a value of 20 deg can be used). From t = i + 1 − ltw to
t = i− 1, the yaw discontinuity δψt

=min(|ψt+1−ψt|, 2π−
|ψt+1 − ψt|) is computed. If at least one value of δψt

is in
the interval [δt2, π− δt2], the time window is discarded since
the discontinuity in ψ cannot be attributed to the rotational
symmetry of the silhouette. On the other side, if a value of
δψt is in the interval [π − δt2, π], a counter cψ (initialized at
0) is incremented by one and the value of the yaw angle ψt+1
is shifted of π. When the algorithm has reached t = i− 1, cψ
will indicate the number of shifts that have been performed
along the considered time-window.

Figure 4. Correction algorithm detecting discontinuity of π
(180 deg) in the yaw measurements, with ltw = 10.

The value of cψ can go from 0 (no corrections have been
performed) to ltw−1 (all the value of ψt except for t = i+1−
ltw have been corrected). A value of cψmax

must be defined
to set the maximal number of accepted corrections over a
time-window. In this study, a value of cψmax

= 30%ltw
has been choosen. If cψ ≤ cψmax

(Fig. 4, Case A), the
corrections of the ψt are accepted, and the values of δϕϑψt ,
t ∈ [i + 2 − ltw, i] are recomputed in order to check if they
verify cond2 (i.e., δϕϑψt

< δt1 ). If cψ ≥ ltw − cψmax
(Fig.
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4, Case B), then all the corrected values of ψ must be shifted
of π, and then checked for the verification of cond2. Finally,
if cψmax < cψ < ltw − cψmax (Fig. 4, Case C), there are
not enough values of ψ on the same solution branch, and
therefore it is impossible to solve the ambiguity caused by
the 2− FRS, and the time-window is discarded.
If both cond1 and cond2 are verified, then the cur-
rent (and eventually corrected) measurement qcam−tgi =
q([ϕi, ϑi, ψi]), together with the relative position tcamcam−tg
computed according to Eq.(7), is used as prior to refine the
measured pose using the contour-based tracking algorithm
described in Sec.4, obtaining q̃cam−tgi , t̃

cam
cam−tg . Then, the

reprojection error of the refined pose is computed according
to (10), and compared with a given threshold δt3 . The value
of δt3 can be chosen equal to the value of rmax at that range.
If the reprojection error is less than δt3 , the third condition
cond3 is verified and the pose q̃cam−tgi , t̃

cam
cam−tg is accepted

as initial pose. The time instant i is then referred to as tacqf
and the time instant i+ 1− ltw is referred to as tacqi .

Symmetry detection— If cond3 is verified, the pose
q̃cam−tgi , t̃

cam
cam−tg is considered a valid measurement to start

the tracking. However, the ambiguity on the attitude q̃cam−tgi
due to the target symmetry remains. As anticipated, this
ambiguity can be solved only if |ϕ| ∈ [80, 100] deg. If
the measured roll angle is in this range during the pose
acquisition time-window, when cond2 is verified, two re-
fined poses and residuals are computed using the tracking
algorithm of Sec.4. The first is computed using the relative
attitude qcam−tgi = q[ϕi, ϑi, ψi], and the second using the
symmetric relative attitude qsymcam−tgi = q([−ϕi, −ϑi, ψi −
π]). The pose providing the lower residual is selected (if
the difference between the two residual is above a certain
threshold) and the residual is compared to δt3 to check for
cond3. If qsymcam−tgi results being the pose with the lower
residual, all the collected measurements [ϕt, ϑt, ψt], t ∈
[i + 1 − ltw, i] are “switched” to the symmetrical solution
branch (i.e., [ϕt, ϑt, ψt] → [−ϕt, −ϑt, ψt − π]). The
symmetry is then considered to be initialized.
The tracking is initialized even if during the acquisition time-
window the roll angle does not enter in the interval allowing
the discrimination of the symmetric attitudes, Then, as soon
as the estimated roll angle enters the range |ϕ| ∈ [80, 100]
deg, the procedure described above is repeated applying the
criterion based on the residual previously described. If,
during the tracking, the estimation must be switched to the
symmetric solution branch, also the dynamic filter state must
be corrected, according to the following:

qi−tg = [q0, q1, q2, q3]
T

qi−tgsym
= [−q3, q2,−q1, q0]T

ωtgi−tg = [ωx, ωy, ωz]
T

ωtgi−tgsym
= [−ωx,−ωy, ωz]T

(14)
Eq.(14) can be obtained with simple kinematic relations
knowing that the true target reference frame and the sym-
metric target reference frame are separated by a rotation
of 180 deg around the axis ztg (i.e., xtg = −xtgsym and
ytg = −ytgsym ). Using the Jacobian J of the linear transfor-
mation [qi−tg, ω

tg
i−tg] → [qi−tgsym

, ωtgi−tgsym
] also the state

covariance matrix P must be corrected (i.e., Psym = JPJT ).

Filter initialization—When the initial attitude qcam−tgtacq
is

acquired, the rotational dynamic filter has to be initialized.
There is no need to do this for the translational dynamics
since the translational KF as already been activated during the
Range-only mode. All the measurement acquired (and even-

tually corrected) during the pose acquisition time-window are
taken into account: the measurements are propagated inside
a kinematic rotational filter from t = tacqi to t = tacqf .
As described in Sec.4, the filter state is composed by the
target absolute attitude quaternion qi−tg and by its rotation
rate with respect to the inertial frame expressed in body
axis ωtgi−tg . In a rotational kinematic filter, the prediction
model associated to the quaternion is equal to the one in
(11), while the derivative of the angular velocity is set to
zero (i.e. ω̇tgi−tg = 0). The filter is initialized with zero
rotation rate and state error covariance matrix equal to the
identity matrix of size 7. Successively the kinematic filter
goes from t = tacqi + 1 to t = tacqf . This allows to have a
robust initialization of the target rotational state at the current
instant tacqf , and allows the state covariance matrix P to start
its convergence. The obtained values of the state covariance
matrix P and the state x will be used as initialization for the
dynamic rotational KF described in Sec.4.

6-DOF pose tracking

The 6-DOF pose tracking relies on two different and indepen-
dent algorithms: a detector and a tracker. The detector relies
on measurements computed using the method developed in
Sec.3, and exploits the rotational kinematic KF to reject out-
liers and discriminate between multiple solutions caused by
the target symmetries. The measurements computed by the
detector are completely independent from the ones computed
by recursive tracker. The role of the detector is to provide
a corrected measurement in case of tracker divergences. On
the other side, the recursive tracker is based on the algorithm
developed in Sec.4 and its measurements are integrated in the
dynamic filter. Only the state estimated by the coupling of the
recursive tracker with the dynamic filter will be considered by
the Guidance and the Control functions.

Detector— The logic of the detector is very simple. At
the current time step t, the method described in Sec.3 is
used to obtain a measurement of the relative camera-target
attitude qmeascam−tg = q([ϕ, ϑ, ψ]). From the Euler angles, the
symmetrical measurement qsymcam−tg = q([−ϕ, −ϑ, ψ − π])
is built. The goal then is to determine which is the more likely
solution according to the target state at the previous instants.
Thus, a kinematic filter is associated to the method. From
the state estimated by the kinematic KF at the instant t − 1,
the predicted state at the instant t is computed, and, using the
current camera absolute attitude quaternion qi−cam, the pre-
dicted qcam−tg and the associated Euler angles eucam−tg =
[ϕpred, ϑpred, ψpred] are obtained. The predicted quater-
nion serves as anchor point to select the nearest measurement
between the actual output of the detection algorithm, and
the symmetric one. In order to do this, only the roll and
pitch angles of the predicted and the measured quaternion are
considered (i.e., using the metrics δϕϑ of eq. (12), where the
quaternion at the instant i − 1 is substituted by the predicted
quaternion). The ambiguity on the two symmetric solution is
solved by choosing the measurement having the lower δϕϑ.
The measurement is then accepted only if the full metrics
δϕϑψ (i.e., from Eq.(13), where the quaternion at the instant
i − 1 is substituted by the predicted quaternion) is below a
threshold which can be set to be equal to δt1 (e.g., 20 deg).
Before checking for this condition, the algorithm searches
for eventual correctable discontinuities in the yaw angle,
similarly to what was done in the pose acquisition function.
The angular distance δψ =min(|ψ−ψpred|, 2π−|ψ−ψpred|)
is computed. If δψ is in the interval [π − δt2, π], then ψ must
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be switched of π and the value δϕϑψmeas
must be updated.

At the end of these two step, if the new δϕϑψ is below δt1 , the
measurement can be used in the update step of the kinematic
filter. Otherwise, the measurement is considered to be an
outlier and it is discarded. In such a case, the KF estimated
state will be equal to the KF predicted state. A counter ckine
is increased by one any time a measurement is discarded, and
it is reset to zero any time a measurement is accepted and
used in the KF update step. The counter indicates the number
of time step during which the state has been propagated
without any measurement update. If the counter exceed a
certain threshold ckinemax (with ckinemax ∼ 20 step), the
state is no more reliable and the detector must be reinitialized
though the procedure discussed in the previous 6-DOF pose
acquisition paragraph. In such a case, a flag indicating the
availability of the detector measurements must be set to false
as long as a new pose is acquired. It should be noted that
this reinitialization will not affect the recursive tracker and
the dynamic filter estimated state. Only in case of its own
divergence the tracker will “consult” the detector.

Tracker—The tracker is based on the contour-based tracking
algorithm discussed in Sec.4. While the IP-CV “core” of
the tracker (masking algorithm, matching, cost function min-
imization) has not been modified for the implementation of
the full solution, its interface with the dynamic filter has been
changed in order to benefit from the addition of the detection
algorithm.
As anticipated, the measurement computed by the frame-by-
frame tracker is associated to a residual r (i.e., Eq.(10)). The
value of r is used to dynamically change the measurement
noise covariance matrix R. If the residual exceeds the
threshold rmax, the measurement computed by the recursive
tracker is discarded. In such a case, the recursive tracker
“asks” the detector for its measured pose (downstream of the
kinematic KF). Three scenarios are possible:

• The validity flag of the detector measurement is true: the
estimated relative pose sent by the detector is used as prior
to project the 3D model and re-run the tracking algorithm.
If the residual associated to this refined measurement is
below rmax, the measurement is accepted and used in the
dynamic KF to perform the state update.

• The validity flag of the detector measurement is true, but
the residual obtained refining the detector measurement is
above the threshold rmax. The measurement is discarded,
and the state in the dynamic Kalman filter is propagated in
“open-loop” (only prediction step).

• The validity flag of the detector estimate is false. This
is the worst case scenario, since the detector estimate is
not available to correct the divergence in the recursive
tracker. In such a scenario, the state of the dynamic filter
is propagated without the update step as long as the pose is
re-acquired.

If the dynamic filter does not receive any update for a given
number of time steps (i.e., the number of open-loop cycles of
the KF exceeds the threshold pr max in Fig.5), it is the filter
that ask for a full re-initialization of the pose. If the pose
is not reacquired after a given number of time-steps (i.e., it
max in Fig.5), an error is sent at higher level. If the tracking
is lost, the chaser should stop its approach motion to begin a
new acquisition phase or even perform a collision avoidance
maneuver if necessary. The schema in Fig.5 summarizes the
logic of the 6-DOF pose estimation function.

iteration>it max send pose 

acquisition KO

send tracking  KO

TRACKER

send  estimated pose

DETECTOR
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Figure 5. Architecture of the 6-DOF pose estimation
function

6. APPLICATION TO AN OPERATIONAL
SCENARIO

The navigation architecture has been tested on a forced mo-
tion scenario from a relative distance of 100 m to 5 m. In
the first 2 minutes of the simulation, the chaser approaches
the target along the y axis of the LOF at a relative speed
of 0.5 m/s. During this phase, only range measurements
are provided using the algorithm discussed in Sec.3. When
the chaser reaches a distance of 40 m from the target, it
stops the motion and starts the 6-DOF pose acquisition phase,
according to the method discussed in Sec.5. After 2 minutes,
the chaser start another forced motion towards the target at a
relative speed of 0.2 m/s. The approach velocities have been
chosen in order to cover all the phases in a relatively short
simulation, but remains high compared to the approach rates
usually used during close proximity operations. However,
this allows to test the tracking algorithm in presence of
high displacement of the target from one image frame to
the following one. The target rotational rate is initialized
at 1.5 deg/s around each body axis. The camera acquisition
frequency is 1 Hz, while the navigation filter frequency is 10
Hz. In order to run the detection algorithm, three different
databases have been built. The first one is built at a distance
of dtrain = 40 m, and it is used in the range-only phase, in
the pose acquisition phase and during the tracking, down to
a relative distance of 30 m. The second database is built at
dtrain = 20 m and it is used for a relative distance in the
interval [30, 15] m. For the distances below 15 m a database
built at dtrain = 10 m is used. All the databases have the
size of 5500 × 56 (i.e., Nw = 5500 samples, Nf = 51
Zernike rotation invariants up to the 9th order, and 4 more
global features being ψ0train

, m00train
, ϕtrain, and ϑtrain).

As the distance decreases, the interval of distances in which a
database built at a given distance dtrain can provide reliable
detections become smaller. This is due to the fact that the
weak perspective approximation is not applicable for shorter
ranges. For a 30 deg FOV camera and the considered target
geometry, the detection algorithm does not provide reliable
measurements below ∼ 8 m.

Discussion of the results

The simulation is run with three different series of images:
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Figure 6. Translational dynamics estimation

• CASE A: The first set of images are perfect binary sil-
houettes of the target satellite. The simulation run with
this set is the baseline simulation which shows the intrinsic
performance of the pose estimation algorithm.

• CASE B: The second set of images is composed by grey-
scale images obtained illuminating the target satellite with
a spot-light placed on the chaser. This could be the case
of a rendezvous performed approaching the target from the
-R-bar side, or a rendezvous on a geo-stationary orbit per-
formed along the V-bar. The images are affected by shad-
ows, reflections and blur, so that the silhouette retrieved is
affected by multiple sources of noise. The silhouettes are
retrieved using a simple thresholding technique.

• CASE C: The third set of images is composed by grey-scale
images obtained illuminating the target satellite with a spot-
light placed on the chaser, and Earth in the background.
This is the case that is more likely to happen during
rendezvous on a Low Earth orbit. The method discussed in
Sec.2 is used to extract the silhouette from the background.

Figures 6 and 7 show the results of the estimation for CASE
C, which is the most challenging scenario. In Fig.6 the y
component of relative translational state in LOF reference
frame is shown, with both the estimated position and the
estimated velocity. The pose is acquired at tacqf = 155
seconds. Before tacqf , the navigation function is in range-
only mode and the dynamic translational filter (i.e., violet
dots) uses the raw measurements coming from the Zernike
moment based algorithm (i.e., magenta dots). After tacqf ,
the 6-DOF pose tracking starts and the dynamic translational
filter (i.e., blue dots) uses the measurements coming from
the tracker (i.e., cyan dots). The relative range error (in
percentage) is also shown. Fig.7 shows the angular error of
the estimated attitude. The plot shows the angular error from
t = tacqf (i.e., magenta dots), obtained using the dynamic
filter and the tracker measurements. When the dynamic filter
uses the refined detector measurements to compute the esti-
mated, the error is plotted in violet. When no measurements
are available and the filter evolves in open-loop, the angular
error is plotted in cyan. The angular errors obtained during
the time acquisition window (i.e., tacqi ≤ t ≤ tacqf ) are
displayed in blue. The green dots indicate the angular error
obtained shifting the estimate of π, before the ambiguity on
the symmetry is solved at t = 176 seconds. Note that the
angular error is not always decreasing as the relative distance
decreases (e.g., there is a peak around t = 260 s). This is due

to the fact that the estimation performance does not depend
only on the relative distance, but also on the current attitude of
the target. Table 1 shows the performance in the estimation
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Figure 7. δϕϑψest , angular error of the estimated attitude

Table 1. Comparison of the performance of the 6-DOF pose
estimation algorithm as a function of the range

Rotational dynamics, estimated δϕϑψ [deg]
range [m]: = 40 ∈ ]40, 30] ∈ ]30, 20] ∈ ]20, 10] < 10 overall

CASE A
µ 0.98 1.11 0.39 0.43 1.09 0.80
rms 1.72 1.40 0.45 0.57 1.17 1.28

CASE B
µ 1.30 4.10 1.27 1.02 1.19 1.75
rms 1.44 5.07 1.47 1.23 1.38 2.52

CASE C
µ 3.76 5.92 2.36 2.52 2.16 3.51
rms 4.68 7.22 2.42 2.57 2.23 4.48

Translational dynamics: estimated range error [m]
range [m]: = 40 ∈ ]40, 30] ∈ ]30, 20] ∈ ]20, 10] < 10 overall

CASE A
µ 0.195 0.267 0.107 0.043 0.045 0.150
rms 0.206 0.279 0.115 0.047 0.046 0.180

CASE B
µ 0.591 1.845 0.507 0.192 0.024 0.679
rms 0.649 1.903 0.564 0.224 0.029 0.940

CASE C
µ 0.240 0.422 0.229 0.275 0.366 0.291
rms 0.307 0.430 0.261 0.288 0.369 0.329

of the target attitude and the relative position of all cases, as
a function of the range. The metric used for the rotational
dynamics performance is the angular error δϕϑψ . The metric
used for the translational dynamic is the range error. Both
the mean knowledge error µ (i.e., the MKE, which is the
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mean of the Absolute Knowledge Error AKE according to
[48]) and the root mean square of the AKE are listed. It is
evident how the performance is degraded in cases B and C.
However at close range (i.e., below 20 m), the performance is
satisfying in all the scenarios. For what concerns the transla-
tion estimation performance, it is interesting to notice how the
overall performance of CASE B (i.e., no Earth in background,
simple thresholding) is worse than the overall performance
of CASE C (i.e., Earth in background, background sub-
traction and silhouette post-processing). This suggests that
the post-processing technique proposed in Sec.2 should be
used also in case of deep-space background to enhance the
silhouette extraction. For what concerns the performance
of CASE C, significant improvement could be obtained by
training the background subtractions neural network with a
bigger training dataset and increasing the number of layers in
the network, but this could lead to an augmentation of the
computational load of the algorithm. The performance of
the estimation algorithm on the test CASE C shows that the
navigation solution is quite robust with respect to the presence
of noise and errors on the extracted silhouette. This means
that, in the presence of deformation of the target satellite due
to the flexibility of the appendages or to damaged parts, the
algorithm ensures a certain level of robustness. However,
in the presence of big non-modeled differences, the 3D a
priori model upon which the estimation algorithms rely could
be updated from ground after an inspection phase. In fact,
the segmentation algorithm is the only one which requires
a relatively long training phase on-ground, but it could be
made model-invariant by increasing the training dataset size
with images of different spacecrafts and eventually increasing
the number of the layers. For what concerns the detection
algorithm, the new feature database can be built in less than
a hour once that the new model has been estimated, and then
updated from ground.

Latency of the algorithms

The segmentation stage has been tested on a 2.20 GHz Intel
Core i7 development laptop equipped with a Nvidia GTX
1070 GPU. While real-time performances can be achieved
(e.g., averagely 36 millisecond for each image on the de-
velopment laptop), it is not representative of a real world
scenario were the processing chain must run on a space
embedded target. The process of porting the neural network
on a space compatible FPGA, with the objective of achieving
at least a working frequency of 1 Hz and ideally 10 Hz is on-
going. There are also possibilities to decrease, if needed, the
neural network resource consumption by alleviating it (e.g.,
reducing the number of layers and/or the number of kernel
in the layers) at the cost of its precision, but this could be
compensated by efficient post processing able to correct this.
Moreover, reducing the image size could largely speed up the
processing with acceptable precision trade-off.
The pose estimation algorithms were tested on a 2.70 GHz
Intel Core i7 processor. All the algorithms are autocoded
in C++ from MATLAB code. The average time needed to
compute ZM invariants up to the 9th order is equal to 208
millisecond, 387 milliseconds and 1.16 seconds respectively
at 40 m, 20 m, and 10 m. The latency of the algorithm at 10
m as well as it computational load (i.e., due to the number of
silhouette points to process in order to compute the rotation
invariants) is not compatible with real-time implementation.
However, this computation time can be drastically reduced by
subsampling the image before computing the moment invari-
ants. The results shown in [31] prove that the method is robust
to changes in the resolution of the images. Note however that
this absolute computation time is mostly indicative, since the

computation of moment invariants could be optimized [49],
[50], [51] and could benefit from FPGAs implementation,
which can lead to significant improvements. The time needed
to compute the moment invariants is the dominant part of the
detection algorithm: with a database of the size considered in
this study, the matching requires less than 0.1% of the time
needed to compute the 9th order ZM invariants at 20 m.
On the same processor, the tracking algorithm (from the
Canny edge extraction to the cost function minimization) ,
has an average latency of 60.1 millisecond at 40 m (i.e., 16.64
images/s), 62, 5 millisecond at 20 m (i.e., 16 images/s), and
85.8 millisecond par image (i.e., 11.66 images/s) at 10 m.
In the pose acquisition phase, at each time step, the la-
tency will be the summation of the time needed for the
segmentation and the time needed for the computation of the
ZM invariants. The latency needed to compute the angular
distances between two consecutive measurements and even-
tually correct the ψ angle is almost negligible. At the time
instant where cond1 and cond2 are satisfied, the latency of
the pose acquisition function must take into account also the
execution time of the contour-based tracking algorithm. If the
symmetry must be detected, the latency of the tracker must be
counted twice. The filter initialization function has a latency
that can be neglected with respect to the pose acquisition
function. During the 6DOF tracking, if the detector and the
tracker are executed in parallel (which is possible since they
are independent one from the other), the latency is equal to
the time needed by the segmentation plus the highest latency
among the tracker and the detector. However, if the tracker
measurement isn’t accepted, the detector measurement must
be corrected using the tracker and the latency of the tracker is
therefore doubled.
The performance shown in the previous paragraph has been
obtained in presence of a very high relative dynamics (i.e.,
very high approach velocity of the chaser and the high ro-
tation rate of the target), which is very unlikely to happen
in a real-world scenario. This allows us to state that, if -
after implementation of the algorithm on a space-qualified
processor- the working frequency of 1 Hz is not reached, the
acquisition rate could be slightly decreased without any major
degradation of the estimation performance.

7. CONCLUSION
The current paper has addressed the problem of monocular
model-based pose estimation for close-proximity operations
during space rendezvous using a visible monocular camera.
A complete navigation solution, covering all the navigation
phases from the 6 degrees-of-freedom pose acquisition to
the robust full pose tracking, has been presented and tested
in different scenarios. The tracking relies on a contour-
based recursive tracker which provides very precise mea-
surements and a global-feature based detection algorithm
which allows pose initialization and measurement correction
in case of divergence of the tracker. A background subtraction
algorithm based on convolutional neural network has been
integrated to the navigation algorithms. The method enables
the robust extraction of the target silhouette from the acquired
image, allowing to reach satisfying estimation performance
even in presence of complex background such as the Earth.
The segmentation algorithm would certainly benefit from
the use of multi-spectral images, especially in the thermal
infrared spectrum, and from the increase of the train database
size. With the implementation of this improvements, the
estimation performance in presence of complex background
is likely to get closer to the baseline performance with perfect
silhouettes.
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The proposed estimation chain provides a cost effective so-
lution with a relatively low computational load. The latency
of the navigation functions on standard PC allows to assume
that, after the implementation of the algorithms on a dedi-
cated hardware such as a FPGA, the navigation chain will
satisfy the requirement of 1 Hz acquisition rate. Future works
will focus on the porting of the navigation algorithms on a
space-qualified hardware.
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