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a b s t r a c t 

In this paper we consider Anomaly Detection in the hyperspectral context, and we extend the popular 

RX detector, initially designed under the standard additive model, to the replacement model case. Indeed, 

in this more realistic framework, the target, if present, is supposed to replace a part of the background. 

We show how to estimate this background power variation to improve the standard RX scheme. The 

obtained Replacement RX (RRX) is shown to be closed-form and outperforms the standard RX on a real 

data benchmark experiment. 
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. Introduction 

Increasing the number of spectral bands of a 2-D image allows 

o recover a rich information from the environment. Thereby, Hy- 

erSpectral Imaging (HSI) has encountered a large field of applica- 

ions, ranging from remote sensing to medicine [1–8] . One of the 

ain processing step consists in separating a target t ∈ R 

N , rarely 

resent in the map, from the background b ∈ R 

N predominant in 

he image. This detection step is subject to one main difficulty, 

amely characterizing properly both the target and the background 

ignatures. 

Concerning the target, two main detection schemes are usually 

onsidered whether the target’s signature is supposed to be known 

r not. In this last case, known as Anomaly Detection (AD), the 

arget’s signature is usually assumed to be deterministic and un- 

nown. In the other case, known as target detection, the target’s 

ignature is usually supposed to be perfectly known, even if in 

ractice there exists a mismatch between the real target’s signa- 

ure and the presumed one. This so-called spectral variability may 

ause significant losses in the detection precessing. The difficulty 

o model this mismatch has led to a two-stages processing, where 

ne conducts first an AD step, relaxing the hypotheses on the tar- 

et in considering t as unknown, followed by a classification step 

o sort out the different targets. In this paper we focus on the first 

tep, namely AD. 
∗ Corresponding author. 

E-mail addresses: olivier.besson@isae-supaero.fr (O. Besson), 

tefania.matteoli@ieiit.cnr.it (S. Matteoli). 
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Now, concerning the background, it is usually modelled as a 

andom vector, whose parameters can be estimated from the so- 

alled training samples. This training samples consist in pixels sur- 

ounding the Pixel Under Test (PUT) and hopefully free of targets. 

The popular way to describe the AD problem is a two- 

ypotheses test, based on the additive model: 

 0 : y = b (1) 

 1 : y = t + b 

here the background is usually assumed to follow a Gaussian dis- 

ribution b ∼ N ( μ, C )) . In this case, the Generalized Likelihood Ra-

io Test (GLRT) leads to the popular RX detector [9] . This bench- 

ark AD scheme simply consists in comparing the log likelihood 

nder H 0 to a threshold. 

Many versions of the RX detector exist. For instance, when 

hoosing a local and limited training window around the PUT, one 

efers to Local RX (LRX), and when using the whole image to es- 

imate the background mean and covariance matrix, one refers to 

lobal RX (GRX). On the one hand, the training samples are surely 

ore representative of the background in the PUT but the small 

umber of samples can conduct to ill-conditioned covariance ma- 

rix estimations. On the other hand, the covariance matrix does not 

uffer from conditioning problems, but could be less representative 

f the background to be described, even if some techniques exist 

or ”cleaning” the training samples from possible outliers, such as 

he BACON technique for instance [10] . 

This difficulty to describe real life spatially moving background 

11–14] has led to the development of many modified RX tech- 

iques [13] , the majority are based on the decomposition of the 

ackground into more homogeneous clusters [15,16] , such as Gaus- 
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ian Markov Random Field (GMRF) AD [17,18] , or Cluster Based (CB) 

D [11,19] . To tackle this problem, other authors also proposed a 

on-linear version of RX, the Kernel RX [4] . 

Nevertheless, all these algorithms are based on the simple addi- 

ive model described in eq. (1) . Yet, in the HSI context, when deal-

ng with reflectance data, more representative models exist, such 

s the popular replacement model [20,21] or the modified replace- 

ent model [22] . Indeed, this last model assumes that the target, if 

resent replaces a part of the background, due to a masking effect: 

 = ηt + βb , where η is the target abundance, with η = (1 − β)

n the standard replacement case, and β < 1 represents the back- 

round reduction. The over-simplified additive model from eq. (1) , 

eing an approximation when the target size is small with respect 

o the pixel’s area (η << 1) . Detection schemes based on this more 

epresentative model have proven their superiority in the target 

etection context [21–24] . But, it seems more difficult to use it in 

he present case of AD, as the number of unknowns would be big- 

er than the size of the data. The goal of this paper is to show

ow to bypass this issue to derive an AD based on the replacement 

odel to improve the performances of the standard RX detector. 

To this end, we will consider two steps. First of all, we will 

onsider that the scaling factor on the background, namely β
s known. Then, in a second step, we will estimate β using a 

ow-rank assumption on the background. Indeed, it is widely ac- 

epted that the background is composed of a few number of rep- 

esentative materials, known as endmembers. In fact, many AD 

chemes exploit this situation, such as the Robust Principal Com- 

onents Analysis (RPCA)AD [9] or the Low-Rank and Sparse Ma- 

rix Decomposition (LRaSMD) AD [25,26] and their improvements 

27,28] . Hence, under such a widespread hypothesis, we will show 

n Section 2 how to get a relevant estimation of β . Then, this pa-

ameter will be plugged into the GLRT derived from the replace- 

ent model, assuming β known. To finish, we will explain why 

his new AD scheme should significantly improve the performance 

ompared to the standard RX. 

The remaining of this paper is organized as follows. We first 

erive the GLRT for the replacement detection problem from eq. 

2) and give some insights to understand the differences with the 

opular RX detector. Then, we compare this detector to the stan- 

ard RX, using a Monte-Carlo simulation based on real data, in 

ection 3 . Finally concluding remarks end this paper in Section 4 . 

. GLRT Derivation for the replacement model 

In the case of AD, as the target signature t is unknown, the two 

eplacement models described in the introduction amount to con- 

ider the same following test, where the target amplitude η has 

een integrated in the unknown signature t : 

 0 : y = b (2) 

 1 : y = t + βb 

As t is assumed to be deterministic, this more realistic model 

xhibits two differences between the distributions under H 0 and 

 1 , namely a change on the mean, as for the additive model (1) ,

ut also a scaling factor on the covariance matrix. We will show 

ow to exploit this last information to improve performances. But 

et’s first recall the GLRT formulation in the standard additive case, 

amely RX detector. 

.1. GLRT For the additive model (RX) 

In the additive case, it is straight-forward to derive the GLRT, 

hat simply consists in comparing the log-likelihood to a threshold: 

X = (y − μ) T C 

−1 (y − μ) = 

∥∥∥C 

− 1 
2 y − C 

− 1 
2 μ

∥∥∥2 

(3) 
2 
here the mean and the covariance matrix of the background, 

amely μ and C should be estimated from the training samples. 

ence, RX amounts to measuring the difference between the data 

nd the mean spectral signature estimated from the secondary 

ata, after a whitening step. This gap being estimated by the 

uadratic norm of this difference. Hence, it only exploits the dis- 

ance from the assumed mean, and not any possible changes in 

erms of background power. Nevertheless, in real life, if a target is 

resent in the PUT, it usually tackles a background power decrease, 

s stated in model (2) . The goal of this section is to derive a de-

ector that both exploits the gap to the mean, but also the gap to 

he secondary data background power, two pieces of information 

llowing to separate the two hypotheses of the detection problem. 

o this end, we first derive the GLRT assuming that the scaling fac- 

or on the background β is known, and then we show how to es- 

imate β based on the low-rank property of the background. 

.2. GLRT For the replacement model with β known 

First of all, like for the standard RX detector, we consider a so- 

alled two-step approach to derive the GLRT [21] , in this paper. 

hat is to say, we assume in a first step that the background pa- 

ameters ( μ, C ) are known, then we replace them with their esti- 

ations from the training samples. Then, in order to simplify the 

erivations, we can simplify model (2) by a whitening step, so that 

he detection problem can be written as follows. 

 0 : x = u (4) 

 1 : x = s + βu 

here x = C 

− 1 
2 y and u = C 

− 1 
2 b are the whitened counterparts of

 and b , so that u ∼ N (m , I )) , with m = C 

− 1 
2 μ, and s = C 

− 1 
2 t the

nknown signal signature. 

Then, the logarithm of the Likelihood Ratio (LR) is shown to be 

 = −N log β + 

1 

2 

[
‖ 

x − m ‖ 

2 − ‖ 

x − βm − s ‖ 

2 

β2 

]
(5) 

ssuming, in this first step, that β is known and s is unknown, 

he Maximum Likelihood (ML) of s leads to removing the last term 

n the previous equation, so that the GLRT, up to a scaling factor, 

ecomes: 

LRT = ‖ 

x − m ‖ 

2 − 2 N log β = RX − 2 N log β (6) 

ence, considering the replacement model instead of the additive 

ne, simply conducts to a modified version of the popular RX de- 

ector, including a correction factor : −2 N log β, based on the back- 

round reduction β . It has to be noticed that this additive term is 

till positive, as β � 1 and null when β = 1 , so that we recover the

tandard RX detector in such a case. Then, we can feel that this 

erm can improve detection, by increasing the test when a power 

eduction appears under H 1 . 

As stated in the introduction, the main issue is that β is not 

nown and could not be estimated as an extra parameter under 

 1 , because we have more unknowns that measurements, in such 

 case. Nevertheless, in the following subsection, we show how to 

btain a closed-form estimation of β . 

.3. β Estimation 

As stated in the introduction, it is a standard assumption to 

onsider that the background is composed of a low-rank main part 

lus an additive white noise, and can be written as follows. 

 = U α + n (7) 

here U ∈ R 

N×K represents the signal subspace of the covariance 

atrix, α is assumed to be Gaussian distributed with a mean μα



Table 1 

RRX algorithm. 

Background parameters estimation Compute ˆ C = 

1 
M 

∑ k = M−1 
k =0 z k z 

T 
k 

and ˆ μ = ̄z 

from secondary data z k ∼ N ( μ, C ) Identify subspace parameters: ˆ C = UR αU 

T + σ 2 I 

for k = 0 , ., (M − 1) Compute μα = 

(
U 

T ˆ C −1 U 

)−1 
U 

T ˆ C −1 z̄ 

Projection on < U > to maximize ˆ β = Min 

[ 
1 

2 K 

(√ 

( μT 
αC −1 

U 
y U ) 2 + 4 Ky T 

U 
C −1 

U 
y U − ( μT 

αC −1 
U 

y U ) 
)
, 1 

] 
the background and estimation of β where y U = U 

T y and C U = R α + σ 2 I 

Test computation RRX = (y − μ) T ˆ C −1 (y − μ) − 2 N log ̂  β

and comparison to a threshold = RX − 2 N log ̂  β
< 
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nd a covariance matrix R α, namely α ∼ N ( μα, R α) , and n is a

ero mean white Gaussian noise with power σ 2 
(
n ∼ N (0 , σ 2 I ) 

)
, 

ndependent from α. In such a case, the background covariance 

atrix writes C = UR αU 

T + σ 2 I , with U 

T U = UU 

T = I , to ensure

niqueness of the decomposition. Hence, according to eq. (2) , un- 

er H 1 , the signal can be written as follows 

 = t ⊥ + t U + β(U α + n ) (8) 

here we have decomposed t in its part belonging to the back- 

round subspace < U >, namely t U = U γ , and an orthogonal part

 ⊥ . It has to be noticed that this last part is the main contribu-

ion in the detection process, as the background-like part, namely 

 U = U γ will be mostly rejected during the whitening step present 

n most processing. Thereby, projecting the data onto < U >, we 

an maximize the background power while minimizing the effects 

f the unknown target signature t , to obtain an estimation of β, as 

hown hereafter. 

As the dimension K of this subspace is supposed to be small 

ompared to N, we consider in a first approximation that t U is neg- 

igible compared to the background power. Then, starting from eq. 

8) and projecting the data y onto the background subspace < U >, 

e have 

 U 
�= U 

T y = γ + β( α + n U ) � β( α + n U ) (9)

here n U = (U 

T n ) ∼ N (0 , σ 2 I ) , and we recall that α ∼ N ( μα, R α) .

Then, from eq. (9) , considering that γ is negligible, the log- 

ikelihood of y U writes 

1 

2 

log 
[
β2 K | C U | 

]
− 1 

2 

[
(y U − βμα) T C 

−1 
U 

(y U − βμα) 

β2 

]
(10) 

here C U = R α + σ 2 I is the covariance matrix of ( α + n U ) . Then,

eriving with respect to β and comparing to zero, it is straight- 

orward to get the ML estimate of β: 

ˆ 
ML = 

1 

2 K 

[√ 

( μT 
αC 

−1 
U 

y U ) 2 + 4 Ky T 
U 

C 

−1 
U 

y U − ( μT 
αC 

−1 
U y U ) 

]
(11) 

o ensure that β is lower than 1 and as a consequence, that the 

orrection term in eq. (6) will be positive, we choose after all ˆ β = 

in [ ̂  βML , 1] . 

It has to be noticed that ˆ β depends on both C U and μα that can 

e easily estimated from the training samples. Indeed, R α and σ 2 

re obtained from the eigen-decomposition of C = UR αU 

T + σ 2 I , 

nd it is straight-forward to derive the ML estimation of μα as 

he secondary data writes z k = U α + n k k = 0 , ., (M − 1) where

 k ∼ N (0 , σ 2 I ) and α ∼ N ( μα, R α) : 

α = 

(
U 

T C 

−1 U 

)−1 
U 

T C 

−1 z̄ (12) 

here z̄ = 

1 
M 

∑ k = M−1 
k =0 

z k . 

.4. Insights 

This expression of ˆ β is valid as soon as t U is negligible with 

espect to the background power. In other words, this approxima- 

ion is accurate as soon as t contains most of its power outside 
3 
he background subspace < U >, whose dimension is usually much 

maller than N. It can be noticed that if it is not the case it will be

ery difficult to detect the target in any cases, as the target has al- 

ost the same signature than the background, and will be mostly 

ejected during the whitening step, always present in most detec- 

ors. Nevertheless, even in such a case, we should observe a back- 

round power change ( ̂  β < 1) . Indeed, as we consider reflectance 

ata y , the power of the data remains the same whatever the hy- 

othesis. Then, the power projected onto < U >, under H 1 , will be

educed by the part of t being outside the background subspace, 

n contrast to H 0 . So even if β would be over-estimated in such a 

ase, it will remain under 1, still improving the standard RX de- 

ector. Although, once again, in this situation none AD scheme will 

chieve good results because target and background get similar sig- 

atures. 

.5. Summary 

To sum-up the derivation presented here-above, the proposed 

rocedure to compute the AD adapted to the replacement model 

s summarize in Table 1 . For convenience reasons and because of 

ts formulation very close to the popular RX detector, we name it 

eplacement RX (RRX). 

. Performance evaluation 

In order to compare the proposed RRX detector with its addi- 

ive model AD counterpart, namely RX, we now conduct a Monte- 

arlo simulation based on a real data experiment. To this end, we 

onsider the airborne Viareggio 2013 trial [29] that took place in 

iareggio (Italy), in May 2013, with an aircraft flying at 1200 me- 

ers so that the nominal spatial resolution of the image is about 

.6 meters. The image is composed of [450 × 375] pixels with 511 

amples in the Visible Near InfraRed (VINR) band (400 − 1000 nm ) . 

Different kinds of vehicles as well as coloured panels served as 

nown targets. For each of these targets, a spectral signature ob- 

ained from ground spectroradiometer measurements is available. 

s can be seen on Fig. 1 , the scene is composed of parking lots,

oads, buildings, sport fields and pine woods. 

In addition, calibration targets can be used to remove all atmo- 

pheric effects and non-uniform sun illumination, to convert the 

aw radiance measurements into reflectance. This so called radio- 

etric compensation is conducted here using the Empirical Line 

ethod (ELM) [30,31] . Then a spectral binning [32] is performed 

o reduce the vector size dimension to N = 128 . 

Based on this real life environment, we will conduct a synthetic 

arget detection benchmark to obtain statistical results. To this end, 

e will randomly insert two different real life target initially not 

resent in the image (the so-called V 4 and V 5 targets), thanks to 

odel (2) and for different values of β . To estimate the Sample 

ovariance Matrix (SCM) ˆ C as well as the mean of the background 

ˆ , we use a 27 × 27 pixels window, corresponding to M = 5 . 7 ×
samples. In order to estimate β, we need to define the main 

ackground subspace < U > . In this experiment, we define it as the 

ubspace containing 99% of the total background energy, so that 



Fig. 1. Complete RGB view of the Viareggio test scene. 

Fig. 2. Exemples of ˆ β estimation under H 0 and H 1 . 

t

t

 

t

a

r

p

r  

n  

i  

a

n

s

1

O

1

t

c

C

r  

Fig. 3. Receiver Operating Characteristic comparison for β = 0 . 5 . 

Fig. 4. Exemples of ˆ β estimation under H 0 and H 1 . 
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he sum of the corresponding eigenvalues represents 99% of the 

race of the covariance matrix C . 

First of all, Fig. 2 represents 50 out of 10 0 0 0 Monte-Carlo es-

imation results for ˆ β (before saturation with 1), both under H 0 

nd H 1 , as well as their estimated mean values. We can notice a 

ather good estimation for β under both hypotheses even if, as ex- 

ected, the estimated values under H 1 are slightly bigger than the 

eal value. Indeed, the mean is near 
¯̂
 β � 0 . 67 for the V 4 target and

ear 
¯̂
 β � 0 . 66 for the V 5 target respectively, whereas the real value

s β = 0 . 5 . We can notice that the estimation of β does not depend

 lot on the target type. Indeed, the main part of the target’s sig- 

ature is eliminated by the projection onto the main background 

ubspace < U > . In the two cases, the estimations remain under 

 and increase the standard RX detector and improve detection. 

n the other hand, the estimated mean value under H 0 is near 

 as expected, producing almost no correction on RRX compared 

o RX, and preserving the false alarm rate. As a consequence, we 

an observe a detection improvement on the Receiver Operating 

haracteristic (ROC) plotted on Fig. 3 . This gain is substantial as it 

eaches more than 2 decades of P fa for a given P d in such a case.
4 
nce again, we can notice that the performance’s gains are almost 

he same whatever the target’s type. 

In the unlikely case where none power variation is induced by 

he presence of the target (pure additive model and β = 1 ), the 

erformance of the proposed RRX is slightly lower than for the RX, 

s represented on Fig. 5 . This is due to possible bad estimations for 

as shown in Fig. 4 , whereas it is known to be 1 using RX. This

s somehow the price to be paid to get a more robust detector. 

In order to determine from which background attenuation un- 

er H 1 it is worth using the proposed RRX rather than the stan- 

ard RX, we now make vary β, as shown on Fig. 6 . This experi-

ent has been conducted with the V 5 target and we compute the 

 fa gain for P d = 0 . 5 , as a figure of merit. This P fa gain is defined as

 = 10 log 
P fa RX (P d =0 . 5) 

P fa RRX (P d =0 . 5) 
. Then, we can observe that it is worth using 

he proposed RRX as soon as β < 0 . 85 , as shown by a positive P fa 

ain. Moreover, this gain can reach more than 20 dB when β = 0 . 5 ,

s already noticed on fig. (3) , whereas the loss is limited to a few

B when the additive model is almost valid ( 0 . 85 < β < 1 ). 



Fig. 5. Receiver Operating Characteristic comparison for β = 1 . 

Fig. 6. P fa Gain for P d = 0 . 5 . 
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. Conclusions 

In this paper, we considered Anomaly Detection using a more 

ealistic model than most of the state of the art detectors, in the 

yperspectral context. Indeed, we derived the GLRT based on the 

eplacement model, and showed that it is a simple correction of 

he benchmark RX scheme. The main issue concerns the estima- 

ion of the background reduction that cannot be obtained through 

 standard ML approach. To circumvent this problem, we project 

he data onto the low-rank background subspace to minimizing the 

nfluence of the unknown target signature. Through numerical sim- 

lations, based on real life hyperspectral data, we show that this 

stimation is valid and that the improvement of the proposed RRX 

ompared to the standard RX can be huge. 
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