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DEFORMATION SPACES OF COXETER TRUNCATION POLYTOPES

SUHYOUNG CHOI, GYE-SEON LEE, AND LUDOVIC MARQUIS

ABSTRACT. A convex polytope P in the real projective space with reflections in the facets
of P is a Coxeter polytope if the reflections generate a subgroup Γ of the group of projective
transformations so that the Γ-translates of the interior of P are mutually disjoint. It follows
from work of Vinberg that if P is a Coxeter polytope, then the interior Ω of the Γ-orbit of P
is convex and Γ acts properly discontinuously on Ω. A Coxeter polytope P is 2-perfect if P ∖Ω
consists of only some vertices of P.

In this paper, we describe the deformation spaces of 2-perfect Coxeter polytopes P of dimen-
sion d ⩾ 4 with the same dihedral angles when the underlying polytope of P is a truncation
polytope, i.e. a polytope obtained from a simplex by successively truncating vertices. The de-
formation spaces of Coxeter truncation polytopes of dimension d = 2 and d = 3 were studied
respectively by Goldman and the third author.
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1. INTRODUCTION

Let X be a homogeneous space of a Lie group G. A (G, X)-structure on a manifold or an
orbifold O is an atlas of coordinate charts on O valued in X such that the changes of coor-
dinates locally lie in G. It is a natural question to ask whether or not one can put a (G, X)-
structure onO and, if so, how one can parametrize the space of all possible (G, X)-structures
onO, up to a certain equivalence, called the deformation space of (G, X)-structures onO (see
Thurston [Thu97] and Goldman [Gol88]).

This paper studies convex real projective structures on orbifolds. A convex real projective
structure on a d-orbifold O is a (PGLd+1(R), RPd)-structure on O, where RPd is the real
projective d-space and PGLd+1(R) is the group of projective automorphisms of RPd, such
that its developing map dev ∶ Õ → RPd is a homeomorphism from the universal cover Õ of
O onto a convex domain of RPd. Hyperbolic structures provide examples of convex real
projective structures since the projective model of the hyperbolic d-space Hd is a round open
ball B in RPd, which is convex, and the isometry group Isom(Hd) of Hd is the subgroup
PO(1,n) of PGLn+1(R) preserving B.

We particularly focus on a class of orbifolds, called Coxeter truncation orbifolds. A Cox-
eter orbifold is an orbifold whose underlying space is a convex polytope with some faces of
codimension ⩽ 2 deleted and whose singular locus is its boundary. We do not need the techni-
cality of orbifold in order to define the deformation space of convex real projective structures
on a Coxeter orbifold since it may be identified with the space of isomorphism classes of
Coxeter polytopes realizing an appropriate labeled polytope, which can be easier to define
(see Section 2 for basic terminology). We will motivate why we are interested in Coxeter
truncation orbifolds in the following subsection.

1.1. How truncation polytopes were used to construct new hyperbolic Coxeter
polytopes. A hyperbolic d-polytope is a convex d-polytope P in an affine chart of RPd such
that every facet of P has a nonempty intersection with Hd. A hyperbolic polytope with dihe-
dral angles integral submultiples of π, i.e. π/m for some m ∈ {2,3, . . . ,∞}, is called a hyperbolic
Coxeter polytope. By Poincaré’s polyhedron theorem, the subgroup ΓP of Isom(Hd) generated
by the reflections in the facets of P is discrete, and the ΓP -translates of P ∩Hd form a tiling
of Hd. The quotient orbifold Hd/ΓP

is a hyperbolic Coxeter d-orbifold.

Since this procedure is a very pleasant method to build discrete subgroups of Isom(Hd),
many people have made progress toward a far-reaching goal: the classification of all compact
or finite volume hyperbolic Coxeter d-polytopes. Until now it has been achieved only when
the dimension d or the number of facets n is small. The case d = 2 is classical (see e.g.
Beardon [Bea83]), and the case d = 3 follows from the work of Andreev [And70a, And70b].
Starting from d = 4, only partial results are available. We refer the reader to the web page
of Felikson1 for a detailed survey.

Compact (resp. finite volume) d-polytopes with n = d +1 facets, i.e. simplices, were clas-
sified by Lannér [Lan50] (resp. Koszul [Kos67] and Chein [Che69]), hence those polytopes

1http://www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html

http://www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html
http://www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html
http://www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html
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are said to be Lannér (resp. quasi-Lannér). Note that Lannér (resp. quasi-Lannér) Coxeter
d-simplices exist only when d = 2,3,4 (resp. d = 2,3, . . . ,9).

To build more examples of compact or finite volume hyperbolic Coxeter polytopes, we can
use a simple and effective operation, called truncation. First, find a hyperbolic Coxeter d-
polytope P such that every edge of P intersects Hd and at least one vertex of P is hyperideal,
i.e. in the complement of the closure Hd in RPd. Second, for each hyperideal vertex v,
take the dual hyperplane Hv with respect to the quadratic form that defines Hd. Then
Hv intersects perpendicularly all the edges containing v. Finally, truncate all the hyperideal
vertices of P via their dual hyperplanes in order to obtain a new polytope of finite volume (see
Vinberg’s survey [Vin85, Prop. 4.4]). In 1982, Maxwell [Max82] classified all the hyperbolic
Coxeter simplices such that all their edges intersect Hd. We call them 2-Lannér. A complete
list of 2-Lannér Coxeter simplices can be found in Chen–Labbé [CL15a]. Since this list
is essential for this paper, we reproduce it in Appendix C. Note that 2-Lannér Coxeter d-
simplices exist only when d = 2,3, . . . ,9.

Furthermore, after truncating the hyperideal vertices of these Coxeter simplices, one may
glue them together to obtain new Coxeter polytopes if the new facets in place of the hyper-
ideal vertices match each other. For example, using this technique Makarov [Mak68] built
infinitely many compact hyperbolic Coxeter polytopes of dimension d = 4,5.

The last two paragraphs motivate the following definition: a truncation polytope is a poly-
tope obtained from a simplex by successively truncating vertices, or equivalently obtained
by gluing together once-truncated simplices along some pairs of the simplicial facets (see
Kleinschmidt [Kle76] for this equivalence). Here by an once-truncated simplex, we mean a
polytope obtained from a simplex ∆ by truncating each vertex of ∆ at most once. For exam-
ple, a polygon with n sides is always a truncation 2-polytope, and it is an once-truncated
2-simplex if and only if n = 3,4,5 or 6.

A truncation polytope can be characterized by a combinatorial invariant. We recall that
a d-polytope G is simple if each vertex of G is adjacent to exactly d facets. Any truncation
polytope is a simple polytope. If we denote by f (resp. r) the number of facets (resp. ridges)
of a d-polytope G, then

g2(G) = r−d f + d(d+1)
2

is an invariant of G. In [Bar73], Barnette proved that if G is simple, then g2(G) ⩾ 0. In
addition, in the case d ⩾ 4, a simple polytope G is a truncation polytope if and only if g2(G) =
0 (see e.g. Brøndsted [Brø83]). So, truncation polytopes are in some sense the polytopes
with the “least complexity”. In [Dav08, Rem. 6.10.10], Davis mentioned that it might be
a reasonable project to determine all possible hyperbolic Coxeter truncation polytopes of
dimension d ⩾ 4. This paper indeed provides how to classify 2-perfect hyperbolic Coxeter
truncation d-polytopes P, i.e. each edge of P intersects with Hd (see Remark 5.8).

1.2. Deformation space of Coxeter polytopes. The main object of this paper is a gen-
eralization of hyperbolic Coxeter polytopes. A convex polytope P of RPd together with the
projective reflections in the facets of P is a projective Coxeter polytope, or simply Coxeter
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polytope, provided that if ΓP is the subgroup of PGLd+1(R) generated by those reflections,
then

Int(P)∩γ ⋅ Int(P) =∅ for each non-identity element γ ∈ΓP ,

where Int(P) denotes the interior of P. It follows from work of Vinberg [Vin71] that the
interior ΩP of the union of all ΓP -translates of P is a convex domain of RPd and that the
group ΓP acts properly discontinuously on ΩP . Then the quotient orbifold ΩP/ΓP

is a convex
real projective Coxeter orbifold.

It is well known that if two finite volume hyperbolic Coxeter polytopes of dimension d ⩾ 3
have the same dihedral angles, then they are isometric, i.e. one is conjugate by an isometry
of Hd to the other, by Mostow’s rigidity theorem (or the uniqueness theorem of Andreev
[And70a] for compact hyperbolic polytopes with non-obtuse dihedral angles). But in contrast
to hyperbolic geometry, projective geometry allows for some Coxeter polytopes of dimension
d ⩾ 3 to deform into non-PGLd+1(R)-conjugate Coxeter polytopes with the same dihedral
angles (see Section 2.2 for the definition of dihedral angle). An interesting phenomenon in
projective geometry, which cannot appear in hyperbolic geometry, is that some finite volume
hyperbolic simplices of dimension d ⩾ 3 with at least one ideal vertex, i.e. a vertex in the
boundary ofHd, can deform so that the ideal vertices become truncatable. Thus, a new family
of Coxeter polytopes may be obtained by truncating such vertices of the deformed simplices
and gluing the truncated simplices together. This is a strong motivation to understand the
deformation space of Coxeter polytopes with fixed dihedral angles, more precisely, the space
C(G) of isomorphism classes [P] of Coxeter polytopes P realizing a labeled polytope G, i.e. a
polytope whose ridges are labeled with dihedral angles (see Section 2.4).

In hyperbolic geometry, a common hypothesis for the truncation process is that all the
edges of a polytope meet the hyperbolic space. This hypothesis then implies that the trun-
cated polytope has finite volume. In convex projective geometry, this hypothesis become that
all the edges of a polytope P meet the open convex domain ΩP . By Theorem 2.2.(5), it is
equivalent to P being 2-perfect that we define now.

A Coxeter polytope P is m-perfect provided that for each face f of dimension (m−1) in
P, the subgroup of ΓP generated by the reflections in the facets containing f is finite. It is
equivalent to the fact that the faces of P not intersecting ΩP have dimension ⩽ m−2. In
particular, P is 1-perfect, simply called perfect, if and only if P ⊂ΩP . If P is 2-perfect, then
any face of P not intersectingΩP has to be a vertex. The m-perfectness of a Coxeter polytope
P is a property of the underlying labeled polytope of P (see Remark 2.8).

In this paper, we describe the deformation space of Coxeter polytopes realizing a 2-perfect
labeled truncation d-polytope. We restrict ourselves to dimension d ⩾ 4 because the cases
d = 2 and d = 3 were already done by Goldman [Gol77] and by the third author [Mar10a]
respectively.

Theorem A. Let G be an irreducible, large, 2-perfect labeled truncation polytope of dimen-
sion d ⩾ 4 and let C(G) be the deformation space of G. Assume that C(G) is nonempty. Then:

● the dimension d is less than or equal to 9;
● the space C(G) is a union of finitely many open cells of dimension b(G) ∶= e+(G)−d,

where e+(G) is the number of ridges with label ≠ π/2 in G;
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● there exists a hyperbolic Coxeter polytope realizing G if and only if C(G) is connected,
i.e. C(G) is an open cell.

Remark 1.1. The number κ(G) of connected components of C(G) can be explicitly computed
since the parametrization of C(G) is concretely constructed (see Theorem 6.2).

Remark 1.2. In Theorem C, we also give a characterization of irreducible, large, 2-perfect
labeled truncation polytopes being hyperbolizable, i.e. realized by a hyperbolic Coxeter poly-
tope, or convex-projectivizable, i.e. realized by a projective Coxeter polytope.

Remark 1.3. It was proved by Choi–Lee [CL15b] and Greene [Gre13] that if G is a per-
fect labeled truncation d-polytope realized by a hyperbolic Coxeter polytope P, then C(G) is
smooth at [P] and of dimension b(G) = e+(G)−d.

Remark 1.4. If the labeled polytope G is not a truncation polytope, then C(G) may not
be a union of open cells. For example, there exist perfect labeled 4-polytopes G1 and G2
such that C(G1) is homeomorphic to a circle (see Choi–Lee–Marquis [CLM20]) and C(G2) is
homeomorphic to {(x, y) ∈ R2 ∣ xy = 0} (see Choi–Lee [CL15b]). In particular, C(G2) is even
not a manifold.

1.3. Divisible and quasi-divisible convex domain. Every properly convex domain Ω

admits a Hilbert metric dΩ so that the group Aut(Ω) of projective automorphisms preserving
Ω acts on Ω by isometries for dΩ. Among such metric spaces (Ω,dΩ), we are particularly
interested in the one having the following property: there exists a discrete subgroup Γ of
Aut(Ω) such that Ω/Γ is compact or of finite volume with respect to the Hausdorff measure
induced by dΩ. In the case that Ω/Γ is compact (resp. of finite volume), we call Ω divisible
(resp. quasi-divisible) by Γ. A natural question to ask is what kinds of (quasi-)divisible
domains exist. We will give a short history of (quasi-)divisible domains.

A properly convex domain Ω of RPd is decomposable if a cone of Rd+1 lifting Ω is a non-
trivial direct product of two smaller cones. So, only indecomposable convex domains are of
interest to us, and all properly convex domains in this subsection are assumed to be inde-
composable. Note that a strictly convex domain is always indecomposable.

First, there are homogeneous (quasi-)divisible domains, i.e. the group Aut(Ω) acts tran-
sitively on Ω. All such domains except hyperbolic space are not strictly convex. They corre-
spond to the symmetric spaces of the quasi-simple Lie groups SLm(k) for k the real, complex
or quaternionic field or of the exceptional one E6,−26 (see [Vin63, Koe99]).

Second, the existence of inhomogeneous, strictly convex, divisible (resp. quasi-divisible
but not divisible) domains Ω in any dimension follows from the works of Koszul [Kos68],
Johnson–Millson [JM87] and Benoist [Ben04] (resp. Ballas–Marquis [BM20]). In these ex-
amples, the group Γ (quasi-)dividing Ω is isomorphic to the fundamental group of a finite
volume hyperbolic manifold M, and (Ω,Γ) is obtained by deforming the developing map and
the holonomy of the hyperbolic structure on M, called bending or bulging.

Third, there exist inhomogeneous, strictly convex, divisible d-domains Ω by Γ such that Γ
is not isomorphic to any lattice of Isom(Hd), by Benoist [Ben06b] for d = 4 and by Kapovich
[Kap07] for any dimension d ⩾ 4. But, it is still an open question whether there exist inho-
mogeneous, strictly convex, quasi-divisible not divisible domains Ω of any dimension d ⩾ 4
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by a group Γ non-isomorphic to a lattice of Isom(Hd). If a quasi-divisible 2- or 3-domain Ω
by Γ is strictly convex, then Γ has to be isomorphic to a lattice of Isom(H2) or Isom(H3).

Fourth, the examples of inhomogeneous, non-strictly convex, divisible d-domains Ω by Γ
were found first by Benoist [Ben06a] for d = 3, . . . ,7, and later by the authors [CLM20] for
d = 4, . . . ,8. It is also interesting to find such domains for any dimension d > 8. Note that in-
homogeneous, non-strictly convex, quasi-divisible 2-domain cannot exist by Benzécri [Ben60]
and the third author [Mar10b]. Except in dimension 3 (see [BDL18]), all the known exam-
ples were built from Coxeter groups Γ, each of which is relatively hyperbolic with respect to
a collection of virtually free abelian subgroups of rank r1, . . . , rk ⩾ 2 for some k ∈N∖{0}. In
the Benoist’s examples, r i = d−1 for all i = 1, . . . ,k, but in the other examples, r i < d−1.

Finally, we consider inhomogeneous, non-strictly convex, quasi-divisible not divisible do-
mains Ω by Γ. It is slightly more complicated to explain them since non-trivial segments on
the boundary ∂Ω may come from the ends or from the interior of the manifold (or orbifold)
Ω/Γ. To describe ends, Cooper, Long and Tillman [CLT15, CLT18] and Ballas, Cooper and
Leitner [BCL20a, BCL20b] developed a theory of generalized cusps, which can be of type
m ∈ {0,1, . . . ,d}. Thanks to [BM20, Bal21, Bob19], we know that there exist inhomogeneous,
non-strictly convex, quasi-divisible domains Ω by Γ such that Ω/Γ has generalized cusps of
type m, for m = 1, . . . ,d−2. In those examples, the non-trivial segment in ∂Ω occurs because
of the generalized cusp, and Ω/Γ is obtained again by bending cusped hyperbolic manifold.
Note that the cusp of type 0, which appears in hyperbolic geometry, cannot produce a non-
trivial segment, and the cusp of type ⩾ d − 1 prevents Ω/Γ from being finite volume (see
[BCL20a, Th. 0.6]).

This paper exhibits examples of inhomogeneous, non-strictly convex, divisible (resp. quasi-
divisible not divisible) domains Ω of dimension d = 4,5,6,7 (resp. d = 4,8) by Γ. If such do-
main is not divisible, then Ω/Γ has only cusps of type 0 and Γ is relatively hyperbolic with
respect to a family of virtually Zd−1 subgroups.

Theorem B. In dimension d = 4 and 8, there exist indecomposable, inhomogeneous, non-
strictly convex, quasi-divisible d-domains Ω by Γ such that Ω/Γ has only generalized cusps
of type 0.

Remark 1.5. Such d-domains as in Theorem B also exist in dimension 3, 5, 6 and 7 (see
Remark 9.6).

1.4. Geometrization. From the point of view of geometrization "à la Thurston", this pa-
per provides the characterization of hyperbolization and convex-projectivization for Coxeter
truncation orbifolds. The precise statement is somewhat technical, but nevertheless, we
compare the surfaces and the truncation polytopes briefly for helping the reader to under-
stand Theorem C.

To study the geometry and the topology of surfaces S with negative Euler characteris-
tic, one considers a finite collection of disjoint simple closed curves cutting S into pairs of
pants. Similarly, for irreducible, large, 2-perfect, labeled truncation d-polytopes G, we can
find a finite collection of disjoint prismatic circuits which decompose G into irreducible once-
truncated d-simplices Gi (see Section 5). If a labeled polytope is considered as a Coxeter
orbifold, then prismatic circuits may be identified with incompressible suborbifolds.
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Each pair of pants admits hyperbolic structures, but it is not true that each once-truncated
d-simplex Gi is hyperbolizable or convex-projectivizable. We need an extra condition on the
prismatic circuits of Gi. To each prismatic circuit δ of Gi is associated a Coxeter group Wδ.
Then (i) Gi is hyperbolizable if and only if the Coxeter group Wδ is Lannér for each δ, and
(ii) Gi is convex-projectivizable if and only if Wδ is either Lannér or Ãd−1 for each δ (see
Appendix A for the spherical and affine Coxeter groups). After once-truncated simplices Gi
are geometrized, they may be glued together whenever the geometry at the prismatic circuits
matches up, analogous to gluing pairs of pants. This leads to a geometrization of G.

Theorem C. Let G be an irreducible, large, 2-perfect, labeled truncation polytope of dimen-
sion d ⩾ 4, and let P be the set of prismatic circuits of G. Then:

● G is hyperbolizable if and only if Wδ is Lannér for each δ ∈P ;
● G is convex-projectivizable if and only if Wδ is Lannér or Ãd−1 for each δ ∈P .

In particular, in the case that G is perfect, it is hyperbolizable if and only if it is convex-
projectivizable and WG is word-hyperbolic.

Organization of the paper. Section 2 recalls the background material including Vinberg’s
theory of discrete reflection groups. Section 3 discusses the deformation spaces of Coxeter
simplices realizing an irreducible, large, 2-perfect labeled simplex of dimension d ⩾ 4. In
Section 4, we introduce two important operations on polytope, which are dual to each other:
truncation and stacking. Section 5 explains how to glue two Coxeter polytopes and how
to do the reverse operation: to split one Coxeter polytope into two, and gives the proofs
of Theorems C and A. In Section 6, we count connected components of deformation space.
Section 7 describes the deformation space of each individual labeled truncation polytopes of
dimension d ⩾ 6 and Section 8 shows some features of truncation 5-polytopes. In Section 9,
we explain some geometric properties of discrete reflection groups constructed in this paper,
and give the proof of Theorem B.

Finally, in five appendixes, we collect various Coxeter diagrams: the irreducible spherical
or affine Coxeter diagrams (in Appendix A), the Lannér Coxeter diagrams of rank 4 (in
Appendix B), the 2-Lannér Coxeter diagram of rank ⩾ 5 with colored nodes to encode their
geometric properties (in Appendix C), the diagrams of 2-perfect Coxeter prisms of dimension
d = 6,7,8 (in Appendix D), and the diagrams of exceptional Coxeter 5-prisms (in Appendix
E).
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2. PRELIMINARY

In this section, we recall background material including Vinberg’s results [Vin71], which
are essentially used in this paper (see also Benoist [Ben09]).

2.1. Coxeter groups. A Coxeter matrix M on a finite set S is a symmetric S ×S matrix
M = (Mst)s,t∈S with entries Mst ∈ {1,2, . . . ,∞} such that the diagonal entries Mss = 1 and the
others Mst ≠ 1. To a Coxeter matrix M is associated a Coxeter group WS: the group presented
by the set of generators S and the relations (st)Mst = 1 for each (s, t) ∈ S ×S with Mst ≠∞.
The cardinality ♯S of S is called the rank of the Coxeter group WS.

All the information of a Coxeter group WS is encoded in a labeled graph DW , which we
call the Coxeter diagram of WS: (i) the set of nodes2 of DW is S, (ii) two nodes s, t ∈ S are
connected by an edge st if and only if Mst ∈ {3,4, . . . ,∞}, (iii) the label of the edge st is Mst.
It is customary to omit the label of the edge st if Mst = 3.

For any subset S′ of S, the S′×S′ submatrix of M is a Coxeter matrix M′ on S′. Since the
natural homomorphism WS′ →WS is injective, we may identify WS′ with the subgroup of WS
generated by S′. Such a subgroup is called a standard subgroup of WS.

The connected components of the Coxeter diagram DW are Coxeter diagrams of the form
DWSi

, where the Si form a partition of S. The subgroups WSi are called the components of WS.
A Coxeter group WS is spherical (resp. affine) if each component of WS is finite (resp. infinite
and virtually abelian), and it is irreducible if DW is connected. Note that every irreducible
Coxeter group WS is spherical, affine or large, i.e. WS has a finite index subgroup with
a non-abelian free quotient (see Vinberg–Margulis [MV00]). We often use the well-known
classification of the irreducible spherical or irreducible affine Coxeter groups (see Appendix
A).

2.2. Coxeter polytopes. Let V =Rd+1 and let S(V) be the projective sphere, i.e. the space
of half-lines in V emanating from 0. The automorphism group of S(V) is the group SL±(V)
of matrices of determinant ±1. We use the notation Sd to indicate the dimension of S(V).
For example, the projective 0-sphere S0 consists of two points.

A projective reflection σ is an element of SL±(V) of order 2 which fixes a projective hyper-
plane of S(V) pointwise. In other words, there exists a vector b ∈V and a linear functional
α ∈V∗, the dual vector space of V , such that

σ = Id−α⊗b with α(b) = 2, i.e. σ(v) = v−α(v)b ∀v ∈V .

We denote by Ŝ the natural projection of V ∖{0} to S(V), and let S(W) ∶= Ŝ(W∖{0}) for any
subset W of V . The support and the pole of the reflection σ are the hyperplane S(ker(α))
and the point [b] ∶=S(b) of S(V) respectively.

2We prefer using the word “node” rather than “vertex” for the Coxeter diagram in order to distinguish a node
of a diagram from a vertex of a polytope.
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The complement of a projective hyperplane in S(V) consists of two connected components,
each of which we call an affine chart of S(V). A subset C of S(V) is convex if there exists
a convex cone3 U of V such that C = S(U), properly convex if it is convex and its closure
lies in some affine chart, and strictly convex if in addition its boundary does not contain any
nontrivial projective line segment. A projective polytope is a properly convex subset P of
S(V) with nonempty interior such that

P =
n
⋂
i=1
S({x ∈V ∣ αi(x) ⩽ 0})

for some nonzero αi ∈ V∗. Recall that a face of codimension 1 (resp. 2) in P is a facet (resp.
ridge) of P. Two facets s, t of P are adjacent if the intersection s∩ t is a ridge of P. We always
assume that P has n facets, i.e. in order to define P, we need all the n linear functionals
(αi)n

i=1.

Definition 2.1. A Coxeter polytope is a pair (P,(σs)s∈S) of a projective polytope P with the
set S of its facets and the reflections (σs = Id−αs⊗bs)s∈S with αs(bs) = 2 such that:

● for each facet s ∈ S, the support of σs is the supporting hyperplane of s;
● for each pair of facets s ≠ t of P,

⋅ αs(bt) and αt(bs) are both zero or both negative,
� αs(bt)αt(bs) ⩾ 4 or αs(bt)αt(bs) = 4cos2(π/mst) for some mst ∈N∖{0,1}.

We often denote the Coxeter polytope simply by P. For every pair of distinct facets s, t of
P, the composite σsσt acts trivially on the subspace U = ker(αs)∩ker(αt) of codimension 2,
hence σsσt induces an element of SL(V/U), which is conjugate to the following matrix:

(C) (λ 0
0 λ−1) for some λ > 0 if αs(bt)αt(bs) > 4;

(♡) (1 1
0 1

) if αs(bt)αt(bs) = 4;

(�) (cos( 2π
mst

) −sin( 2π
mst

)
sin( 2π

mst
) cos( 2π

mst
)) if αs(bt)αt(bs) = 4cos2( π

mst
).

In the case (�) the two facets s, t are adjacent by Vinberg [Vin71, Th. 7]. For each pair
of adjacent facets s, t of P, the dihedral angle of the ridge s∩ t is said to be π/mst in the case
(�) and to be 0 in the cases (C) and (♡). To a Coxeter polytope P is associated a Coxeter
matrix M on S: (i) the set of facets of P is S; (ii) for each pair of distinct facets s, t of P, we
set Mst = mst in the case (�) and Mst =∞ otherwise. We denote by WP the Coxeter group
associated to this Coxeter matrix M.

2.3. Tits–Vinberg’s Theorem. If P is a Coxeter polytope and f is a face of P, then we let
S f = {s ∈ S ∣ f ⊂ s}.

Theorem 2.2 (Tits [Bou68, Chap. V] for the Tits simplex and Vinberg [Vin71, Th. 2]). Let
P be a Coxeter polytope of S(V) with Coxeter group WP , and let ΓP be the group generated by
the projective reflections (σs)s∈S. Then the following hold:

⋅ the homomorphism σ ∶WP →ΓP ⊂SL±(V) defined by σ(s) =σs is an isomorphism;

3By a cone we mean a subset of V which is invariant under multiplication by positive scalars.
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� the group ΓP is a discrete subgroup of SL±(V);
∴ the union of the ΓP -translates of P is a convex subset CP of S(V);
 if ΩP is the interior of CP , then ΓP acts properly discontinuously on ΩP ;
� an open face f of P lies in ΩP if and only if WS f is spherical.

As a consequence of Theorem 2.2, the following are equivalent:
⋅ CP is open in S(V);
� WSv is spherical for each vertex v of P;
∴ the action of ΓP on ΩP is cocompact.

Following Vinberg, we call such P perfect (see [Vin71, Def. 8]).

2.4. Deformation space of labeled polytope. The face poset F(P) of a projective poly-
tope P is the poset of all the faces of P partially ordered by inclusion. Two polytopes P and
P′ are combinatorially equivalent if there exists a bijection φ between F(P) and F(P′) such
that φ preserves the inclusion relation, i.e. for every f1, f2 ∈F(P), f1 ⊂ f2 ⇔ φ( f1) ⊂ φ( f2).
We call φ a poset isomorphism. A combinatorial polytope is a combinatorial equivalence class
of polytopes. A labeled polytope is a pair of a combinatorial polytope G and a ridge labeling
on G, which is a function of the set of ridges of G to {π/m ∣ m = 2,3, . . . ,∞}.

Let G be a labeled d-polytope. A Coxeter polytope realizing G is a pair (P,φ) of a Coxeter
d-polytope P of Sd and a poset isomorphism φ between F(G) and F(P) such that the label
of each ridge r of G is the dihedral angle of the ridge φ(r) of P. Two Coxeter polytopes
(P,φ ∶ F(G)→ F(P)) and (P′,φ′ ∶ F(G)→ F(P′)) realizing G are isomorphic if there exists
a projective automorphism ψ of Sd such that ψ(P) = P′ and ψ̂○φ = φ′, where ψ̂ is the poset
isomorphism between F(P) and F(P′) induced by ψ.

Definition 2.3. The deformation space C(G) of a labeled d-polytope G is the space of isomor-
phism classes of projective Coxeter d-polytopes realizing G.

For convenience in notation, we often delete the poset isomorphism φ in the Coxeter poly-
tope (P,φ ∶F(G)→F(P)) realizing G, and rely on the context to make clear which of these
poset isomorphism is intended. And, we denote simply by [P] the isomorphism class of a
Coxeter polytope P realizing G.

Remark 2.4. In the same way as Definition 2.3, we may introduce the space Hyp(G) of iso-
morphism classes of hyperbolic Coxeter polytopes realizing G. Here, two hyperbolic Coxeter
polytopes (P,φ ∶F(G)→F(P)) and (P′,φ′ ∶F(G)→F(P′)) realizing G are in the same iso-
morphism class if there exists an isometry ψ between P and P′ such that ψ̂○φ =φ′, where ψ̂
is the poset isomorphism induced by ψ.

Remark 2.5. A labeled polytope G and its deformation space C(G) (resp. Hyp(G)) may
be considered as a Coxeter orbifold O and the deformation space of convex real projective
structures (resp. hyperbolic structures) on O (see e.g. [CL15b, CLM18]).

2.5. Cartan matrix of Coxeter polytope. A matrix A = (A i j) of size n× n is a Cartan
matrix4 if

4The term “Cartan matrix” may have several meanings in the literature. In this paper, we follow Vinberg
[Vin71].
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(i) A ii = 2 ∀i = 1, . . . ,n; (ii) A i j ⩽ 0 ∀i ≠ j; (iii) A i j = 0⇔ A ji = 0;
(iv) for all i ≠ j, A i j A ji ⩾ 4 or A i j A ji = 4cos2(π/m) with some m ∈N∖{0,1}.

A Cartan matrix A is reducible if (after a reordering of the indices) A is the direct sum
of smaller (square) matrices A1 and A2, i.e. A = ( A1 0

0 A2
). Otherwise, A is irreducible. The

Perron–Frobenius theorem implies that an irreducible Cartan matrix A has a simple eigen-
value λA which corresponds to an eigenvector with positive entries and has the smallest
modulus among the eigenvalues of A. We say that A is of positive, zero or negative type when
λA is positive, zero or negative, respectively. Every Cartan matrix A is the direct sum of
irreducible submatrices, each of which we call a component of A. We denote by A+ (resp. A0,
resp. A−) the direct sum of the components of positive (resp. zero, resp. negative) type of A.
Obviously, the Cartan matrix A is the direct sum of A+, A0 and A−.

Let R∗+ be the set of positive real numbers. A Coxeter polytope

(P, (σs = Id−αs⊗bs)s∈S))

determines the pairs (αs,bs)s∈S in (V∗×V)S, unique up to the following action of (R∗+)S on
(V∗×V)S:

(λs)s∈S ⋅ (αs,bs)s∈S↦ (λsαs,λ−1
s bs)s∈S

This action leads to define an equivalence relation on Cartan matrices: two Cartan matrices
A and A′ of the same size are equivalent if there exists a positive diagonal matrix D such
that A′ = DAD−1. We denote by [A] the equivalence class of A. A Cartan matrix A is
symmetrizable if it is equivalent to a symmetric matrix.

Now, to a Coxeter polytope P is associated an S×S Cartan matrix AP defined by (AP)st =
αs(bt) for each pair of facets s, t of P. Here the Cartan matrix AP depends on the choice of
the pairs (αs,bs)s∈S, but the equivalence class [AP] does not. We call AP a Cartan matrix of
P.

Definition 2.6. A Coxeter polytope P of Sd is elliptic if AP = A+
P , parabolic if AP = A0

P and
AP is of rank d, and loxodromic if AP is of negative type and of rank d+1.

Note that the Cartan matrix AP is irreducible if and only if the Coxeter group WP is
irreducible. The following theorem shows how important the Cartan matrix is:

Theorem 2.7 (Vinberg [Vin71, Cor. 1]). Let A be a Cartan matrix. Assume that A is irre-
ducible, of negative type and of rank d+1. Then there exists a Coxeter d-polytope P unique
up to automorphism of Sd such that AP = A.

2.6. Perfect, quasi-perfect and 2-perfect polytopes. Let P be a Coxeter polytope of di-
mension d. For each vertex v of P, we shall construct a new Coxeter polytope Pv of dimension
d−1, which is the Coxeter polytope “seen” from v. We call Pv the link of P at v. First con-
sider the set Sv of facets containing v. Second notice that for each s ∈ Sv, the reflection σs
acts trivially on the subspace ⟨v⟩ of Rd+1 spanned by v, hence σs induces a reflection of the
projective sphere S(Rd+1/⟨v⟩) of dimension d−1. Finally the projective polytope

⋂
s∈Sv

S({x ∈Rd+1/⟨v⟩ ∣αs(x) ⩽ 0})
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together with the induced reflections gives us the link Pv of P at v. A Coxeter polytope P is
2-perfect if for each vertex v of P, the link Pv is perfect. This definition of 2-perfectness is
equivalent to the one in the introduction by Theorem 2.2.(5). If all vertex links are elliptic or
parabolic, then P is said to be quasi-perfect. If P is quasi-perfect, then P is 2-perfect because
every elliptic or parabolic Coxeter polytope is perfect.

In the case that G is a labeled polytope, the link Gv of G at a vertex v is simply the link
of the underlying combinatorial polytope together with the obvious ridge labeling induced
from G. To a labeled polytope G is naturally associated a Coxeter group WG , which we call
the Coxeter group of G. A labeled polytope G is spherical, affine or large when so is WG
respectively. A labeled polytope G is perfect (resp. 2-perfect) if the link Gv is spherical (resp.
perfect) for each vertex v of G.

Remark 2.8. Let G be a labeled polytope and P a Coxeter polytope realizing G. Theorem
2.2.(5) implies that P is perfect (resp. 2-perfect) if and only if G is perfect (resp. 2-perfect).

Another construction of new Coxeter polytope from old ones is the join of two Coxeter
polytopes. We denote by Ŝd the natural projection Rd+1∖{0}→Sd, and letS−1

d (A) ∶= Ŝ−1
d (A)∪

{0} for any subset A of Sd. Given two Coxeter polytopes (P,(σs)s∈S) and (P′,(σs′)s′∈S′) of
dimension d and d′ respectively, we construct a Coxeter polytope of dimension (d+d′ +1),
denoted by P⊗P′: the projective polytope Sd+d′+1(S−1

d (P)×S−1
d′ (P′)) together with (♯S+♯S′)

reflections (σs × Id)s∈S and (Id×σs′)s′∈S′ in SL±d+d′+2(R). For example, the join of a Coxeter
d-polytope P and a Coxeter 0-polytope is a Coxeter (d+1)-polytope, denoted by P⊗⋅ , whose
underlying polytope is the cone over P, i.e. the pyramid with base P. Here the Coxeter 0-
polytope is a point of S0 with Coxeter group Z/2Z. We can also define the join Ω⊗Ω′ of two
convex subsets Ω and Ω′.

The following theorem allows us to focus on irreducible, large, 2-perfect labeled polytopes
by giving the complete description of the deformation space of any 2-perfect labeled polytope
except large ones.

Theorem 2.9 (Vinberg [Vin71, Prop. 26] for perfect polytopes and Marquis [Mar17, Prop. 5.1]).
Let G be a 2-perfect labeled d-polytope with Coxeter group WG . Assume that the deformation
space C(G) is nonempty. Then:

⋅ if WG is spherical, then C(G) consists of only one isomorphism class [P], which is
elliptic, and ΩP =Sd;

� if WG = Ãd, then C(G) consists of one parameter family of isomorphism classes [P]:
● either P is parabolic and ΩP is an affine chart Ad of Sd,
● or P is irreducible and loxodromic, and ΩP is a simplex ∆d of dimension d;

∴ if WG = Ãd−1×A1, then C(G) consists of one parameter family of classes [P] = [Q⊗⋅]:
● either Q is parabolic and ΩQ is an affine chart Ad−1 (so ΩP =Ad−1⊗S0),
● or Q is irreducible and loxodromic, and ΩQ is a simplex ∆d−1 (so ΩP =∆d−1⊗S0);

 if WG is infinite and virtually abelian but is neither Ãd nor Ãd−1 × A1, then C(G) =
{[P]}:
● either P is parabolic and ΩP =Ad,
● or P =Q⊗⋅ with Q parabolic, and ΩP =Ad−1⊗S0;
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� otherwise, WG is large, and for each [P] ∈ C(G),
● either P is irreducible and loxodromic, and ΩP is properly convex,
● or P =Q⊗⋅ with Q irreducible and loxodromic, andΩP =ΩQ⊗S0 withΩQ properly

convex.
Moreover, if G is perfect, then each [P] ∈ C(G) is either elliptic, parabolic, or irreducible and
loxodromic.

Remark 2.10. In the case WG = Ãd, a class [P] ∈ C(G) is parabolic if and only if det(AP) =
0. In Section 3, we introduce a more interesting invariant R ∶ C(G) → R such that R is a
homeomorphism, and [P] is parabolic if and only if R([P]) = 0.

2.7. Invariant of Cartan matrix. Let G be a labeled polytope with Coxeter group WS, and
let P be a Coxeter polytope realizing G with Cartan matrix A. A k-tuple of distinct elements
of S is called a k-circuit of WS. For each k-circuit C = (i1, i2, . . . , ik), we define a number

C(A) = A i1 i2 A i2 i3⋯A ik i1

which does not change upon the cyclic permutation of C and upon the choice of a representa-
tive in the class [A]. Such a number is called a cyclic product of A. From now on, a k-circuit
of WS is always considered as the k-circuit up to cyclic permutation, i.e.

(i1, i2, . . . , ik−1, ik) = (i2, i3, . . . , ik, i1) =⋯ = (ik, i1, . . . , ik−2, ik−1).

The cyclic products are useful because of the following:

Theorem 2.11 (Vinberg [Vin71, Prop. 16]). Let G be a labeled d-polytope. Assume that two
Coxeter d-polytopes P and P′ realize G. Then the following are equivalent:

● the Coxeter polytopes P and P′ are isomorphic;
● the Cartan matrices AP and AP′ are equivalent;
● all the cyclic products of AP and AP′ are equal.

To avoid redundant cyclic products, we are motivated to introduce the following: A k-
circuit C of WS is relevant if C corresponds to a cycle of the underlying graph of DW or to an
edge of label ∞ in DW . Note that for any [P] ∈ C(G),

● in the case k = 1, C(AP) is always 2, which justifies that C is not relevant;
● in the case k = 2, if C is not relevant, then C(AP) = 4cos2(π/m) for a fixed m;
● in the case k ⩾ 3, if C is not relevant, then C contains two consecutive elements i, j

such that (AP)i j = (AP) ji = 0, so C(AP) = 0.

A slightly modified cyclic product is more useful than the original one when WS has no
edge of label ∞ : let C = (i1, i2, . . . , ik) be a relevant k-circuit of WS and C = (ik, ik−1 . . . , i1),
which we call the opposite circuit of C or the circuit with opposite orientation. A normalized
cyclic product of C is defined by:

RC(AP) = log(C(AP)
C(AP)

)

Since there is no edge of label∞ inDW , the quantity C(AP)C(AP) is constant only depending
on WS. So the normalized cyclic product RC(AP) contains the same amount of information
as C(AP). Clearly, RC(AP)+RC(AP) = 0.
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Remark 2.12. The topological properties of the underlying graph UW of DW are important,
hence we say that the Coxeter group WS is of type “something” if the graph UW is “some-
thing”. For example, the word “something” can be replaced by “tree”, “cycle”, and so on.

2.8. Tits simplices. Given a Coxeter group WS, we build a labeled polytope SW and a Cox-
eter polytope ∆W . Their underlying polytopes are simplex of dimension ♯S−1.

The construction of SW is straightforward. Suppose WS is associated to a Coxeter matrix
M on S. The underlying combinatorial polytope of SW is simplex with ♯S facets, the set of
facets of SW identifies with S, and for every pair of distinct facets s, t of S, the label of the
ridge s∩ t of SW is π/Mst.

We now construct the Coxeter simplex ∆W of S(RS). A key observation is that to any
Cartan matrix A = (Ast)s,t∈S can be associated a Coxeter simplex ∆A of S(RS) as follows:

● for each t ∈ S, we set αt = e∗t , where (e∗t )t∈S is the canonical dual basis of RS;
● for each t ∈ S, we take the unique vector bt ∈RS such that αs(bt) = Ast for all s ∈ S;
● the Coxeter simplex ∆A is the pair of the projective simplex

⋂
s∈S
S({x ∈RS ∣αs(x) ⩽ 0})

and the set of reflections (σs = Id−αs⊗bs)s∈S.

Remark 2.13. An S×S Cartan matrix A is compatible with a Coxeter group WS if for every
s, t ∈ S, Ast Ats = 4cos2(π/Mst) if Mst ≠∞, and Ast Ats ⩾ 4 otherwise. If this is the case, then
[∆A] ∈ C(SW).

Let ΓA ∶= Γ∆A be the discrete subgroup of SL±(RS) generated by the reflections (σs)s∈S
(see Theorem 2.2). In particular, if A is symmetric, then by Vinberg [Vin71, Th. 6], there
exists a ΓA-invariant symmetric form BA on VA such that BA(bs,bt) = Ast for every s, t ∈ S,
where VA is the subspace of RS spanned by (bs)s∈S. For example, for any Coxeter group WS,
the S×S Cosine matrix Cos(W) with entries

(Cos(W))st =−2cos( π

Mst
)

is a symmetric Cartan matrix compatible with WS. We call ∆W ∶=∆Cos(W) the Tits simplex of
WS and BW ∶= BCos(W) the Tits symmetric form of WS. If BW is nondegenerate, then ΓW is a
subgroup of the orthogonal group O(BW) of the form BW on RS.

Remark 2.14. Each vertex v of SW has a unique opposite facet sv ∈ S, since the polytope SW
is a simplex. The link of SW at v is isomorphic to SWS∖{sv} .

A Coxeter group WS is Lannér (resp. quasi-Lannér)5 if it is large and WS∖{s} is spherical
(resp. spherical or irreducible affine) for each s ∈ S. These are classical terms, and those Cox-
eter groups were classified by Lannér [Lan50], Koszul [Kos67] and Chein [Che69]. Note that
quasi-Lannér Coxeter groups are irreducible. We now introduce a less classical terminology:
a Coxeter group WS is 2-Lannér if it is irreducible, large, and WS∖{s,t} is spherical for every
s ≠ t ∈ S. The 2-Lannér Coxeter groups were classified by Maxwell [Max82] (see Theorem
2.19). He actually enumerated the list of all Lorentzian Coxeter groups WS, i.e. WS∖{s,t}

5Sometimes quasi-Lannér Coxeter groups are called Koszul Coxeter groups.
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is spherical or irreducible affine for every s ≠ t ∈ S. The following easy lemmas justify our
terminology:

Lemma 2.15. A labeled simplex S is perfect (resp. 2-perfect), irreducible and large if and
only if the Coxeter group WS is Lannér (resp. 2-Lannér).

Lemma 2.16. Let WS be an irreducible, large Coxeter group. Then WS is Lannér (resp. quasi-
Lannér, resp. 2-Lannér) if and only if the Tits simplex ∆W is perfect (resp. quasi-perfect, resp.
2-perfect).

Lemma 2.15 implies that there exists a one-to-one correspondence between the irreducible,
large, 2-perfect labeled d-simplices and the 2-Lannér Coxeter groups of rank d+1.

Remark 2.17. In general, the signature of the Tits symmetric form BW of a Coxeter group
WS can be arbitrary. However, Maxwell [Max82, Th. 1.9] proved that if WS is 2-Lannér, then
BW is nondegenerate and of signature (p,1) with p = ♯S −1. In other words, the group Γ∆
generated by the reflections of ∆W is conjugate to a discrete subgroup of O+

p,1(R), which is
isomorphic to Isom(Hp), and hence ∆W is a hyperbolic Coxeter simplex.

Remark 2.18. If P is a loxodromic perfect Coxeter d-simplex, then the Coxeter group WP is
either Lannér or Ãd by Theorem 2.9 and Lemma 2.15.

2.9. Classification of Lannér, quasi-Lannér and 2-Lannér Coxeter groups. Recall
that if a Coxeter group WS has rank d+1, then the labeled polytope SW and the Tits simplex
∆W of W has dimension d.

Dimension d = 1,2,3. It is obvious that there exists no Lannér Coxeter group of rank 2.
Every irreducible large Coxeter group WS of rank 3 is quasi-Lannér, and it is Lannér if and
only if the Coxeter diagram DW has no edge of label ∞. An irreducible large Coxeter group
WS of rank 4 is 2-Lannér if and only if DW has no edge of label ∞.

Dimension d ⩾ 4.

Theorem 2.19 (Maxwell [Max82]). Let d ∈ N. If 4 ⩽ d ⩽ 9, then there exist finitely many 2-
Lannér Coxeter groups of rank d+1. The numbers of such Coxeter groups are given in Table
1. The complete list can be found in Chen–Labbé [CL15a] or Appendix C. If d ⩾ 10, then there
is no 2-Lannér Coxeter group of rank d+1.

3. DEFORMATION SPACE OF 2-PERFECT SIMPLEX

The aim of this section is to parametrize the deformation space C(S) of an irreducible,
large, 2-perfect labeled simplex S of dimension d ⩾ 4. The parameterization is explicitly
described in the proof of Theorem 3.1. Recall that a Coxeter d-polytope P of Sd is hyperbolic
if the reflection group ΓP lies in a conjugate of O+

d,1(R) ⊂SL±d+1(R).

Theorem 3.1. Let S be an irreducible, large, 2-perfect labeled simplex of dimension d ⩾ 4,
and W its Coxeter group. If e+ denotes the number of edges of W , then the deformation space
C(S) is an open cell of dimension b(S) = e+−d ∈ {0,1,2}. Moreover, C(S) contains exactly one
isomorphism class of hyperbolic Coxeter d-simplex, which is the Tits simplex ∆W of W .
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Dimension ♯ of ♯ of 2-Lannér ♯ of quasi-Lannér ♯ of Lannér
d 2-Lannér not quasi-Lannér not Lannér Coxeter groups

4 45 31 9 5
5 23 11 12 0
6 3 0 3 0
7 4 0 4 0
8 4 0 4 0
9 3 0 3 0

TABLE 1. The numbers of 2-Lannér Coxeter groups

In the case that S is perfect, the similar statement for Theorem 3.1 can be found in Nie
[Nie15]. The proof essentially follows from a simple computation, together with some results
of Vinberg [Vin71] and classification Theorem 2.19.

Proof. By Lemma 2.15, the Coxeter group W is a 2-Lannér Coxeter group of rank ⩾ 5. Hence,
Theorem 2.19 implies that W is of type either tree, cycle, pan or K2,3 (see Appendix C and
Figure 1).

FIGURE 1. A 5-cycle, a 4-pan and K2,3 from left to right

Since the Coxeter diagram DW has no edge of label ∞, we may use normalized cyclic
products instead of cyclic products to parametrize the space C(S). We now claim that:

⋅ if W is of tree type, then C(S) is a singleton;
� if W is of cycle type or pan type, then C(S) is homeomorphic to R;
∴ if W is of K2,3 type, then C(S) is homeomorphic to R2.

⋅ In the case of tree type, there is no relevant circuit of W . So, Theorem 2.11 implies
that C(S) = {[∆W]}.

� In the case of cycle or pan type, there exist only two relevant circuits C and C in W . If
W is of cycle type (resp. of pan type), then C is a (d+1)-circuit (resp. d-circuit). The
map R ∶ C(S)→R defined by R([P]) =RC(AP), the normalized cyclic product of C, is a
homeomorphism since R is injective and surjective respectively by Theorem 2.11 and
Remark 2.13. Clearly R([∆W]) = 0.

∴ In the case of K2,3 type, there exists three pairs of relevant circuits {(Ci,C i)}i=1,2,3.
Such circuits have length d and d = 4. For each [P] ∈ C(S), we denote by R([P]) ∈ R3

the triple of the normalized cyclic products (RCi(AP))i=1,2,3. We choose the orienta-
tions of {Ci}i=1,2,3 coherently so that ∑3

i=1 RCi(AP) = 0. For example, if C1 = (2,5,4,3),
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C2 = (1,4,5,2) and C3 = (1,2,3,4) as in the left diagram of Figure 2, then:

RC1(AP)+RC2(AP)+RC3(AP)

= log( A25A54A43A32

A23A34A45A52
)+ log( A14A45A52A21

A12A25A54A41
)+ log( A12A23A34A41

A14A43A32A21
) = 0

1

2

3

4

5 ↻↻ ↻ 1

2

3

4

5 ↺↺ ↺

FIGURE 2. Two choices of coherent orientations

Theorem 2.11 and Remark 2.13 again show that the map R ∶ C(S)→ H is a homeo-
morphism, where H = {(x1, x2, x3) ∈R3 ∣ x1+ x2+ x3 = 0}. Again, R([∆W]) = 0.

By Remark 2.17, the Tits simplex [∆W] in C(S) is hyperbolic. Moreover, if the Coxeter
simplex [P] ∈ C(S) is hyperbolic, then AP is symmetrizable hence R([P]) = 0. Then by the
previous paragraph, [P] = [∆W]. Finally, observe that e+−d is the dimension of C(S). �

The parametrization described in the proof will be used in the sequel.

Remark 3.2. A labeled polytope G (resp. a Coxeter group WS) is rigid if C(G) (resp. C(SW))
is a singleton. Otherwise, it is flexible. For a 2-Lannér Coxeter group WS, a node s ∈ S
is “something” if WS∖{s} is “something”. In Appendix C, some important properties of the
nodes are encoded in color: a node s ∈ S is colored in black, orange, blue or green when
WS∖{s} is rigid affine, flexible affine, rigid Lannér, or flexible Lannér respectively. In other
words, a node is Ãn for some n ⩾ 2 (resp. Lannér) if and only if it is colored in orange (resp.
green or blue). A Lannér node is of cycle type (resp. tree type) if and only if it is green (resp.
blue).

Color Property of the node s ∈ S
White Spherical
Black Irreducible affine of tree type,

i.e. not Ãn, so SWS∖{s} is rigid.
Orange Irreducible affine of cycle type,

i.e. Ãn, so SWS∖{s} is flexible.
Blue Lannér of tree type,

so SWS∖{s} is rigid.
Green Lannér of cycle type,

so SWS∖{s} is flexible.
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4. TRUNCATION AND STACKING

4.1. Truncation and stacked polytopes. Let G be a combinatorial polytope, and let v
be a vertex of G. A truncation of G at v is the operation that cuts the vertex v, creating
a new facet s in place of v (see Figure 3). We denote by G†v the polytope obtained by the
truncation of G at v. A polytope is a truncation d-polytope if it is built from a d-simplex by
successively truncating vertices. For example, a d-prism is a truncation d-polytope obtained
by truncating a d-simplex at one vertex.

v

G

↝ s

G†v

FIGURE 3. A truncation of a polytope G at a vertex v

For a labeled polytope G, after truncating a vertex v of G, we additionally attach the labels
π/2 to all the new ridges of G†v to obtain a new labeled polytope, which we denote again by
G†v. Similarly, given a set V of some vertices of G, we denote by G†V the labeled polytope
obtained by successively truncating all the vertices v ∈V .

Remark 4.1. Let G be a labeled polytope and let v be a vertex of G. Each vertex w in the
new facet of G†v corresponds to a vertex w′ of the link Gv of G at v, and

W(G†v)w
=W(Gv)w′ ×Z/2Z

So, every vertex in the new facet of G†v is elliptic if and only if Gv is perfect. As a consequence,
if G is 2-perfect then so is G†v.

The dual concept of truncation is useful for the later discussion: two combinatorial d-
polytopes G and G∗ are dual to each other if there exists an inclusion-reversing bijection φ

between the face posetsF(G) andF(G∗). The map φ is called the dual isomorphism between
G and G∗.

Let G be a combinatorial polytope and s a facet of G. A stacking of G at s is the gluing of a
pyramid with base s onto the facet s of G (see Figure 4).
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s

G

↝

FIGURE 4. A stacking of a polytope G at a facet s

The truncation of G at the vertex v is dual to the stacking of the dual polytope G∗ at the
facet φ(v), which is dual to v. So the polytope G†v is dual to the polytope obtained from G∗ by
stacking at the facet φ(v). A d-polytope is a stacked polytope if it is built from the d-simplex
by a finite number of stacking operations.

Remark 4.2. A stacked d-polytope has a natural triangulation given by the successive
stacking operations. This triangulation satisfies the following property (⋆): all the interior
faces6 of the triangulation are of codimensions 0 or 1. We know from work of Kleinschmidt
[Kle76] that if d is bigger than 2, then there exists a unique triangulation of a stacked
d-polytope satisfying (⋆). Hence from now on, we call this triangulation the stacking trian-
gulation or simply the triangulation.

4.2. Truncatable vertex. We introduce the “geometric” truncation of a Coxeter polytope,
which is comparable with the “combinatorial” truncation of a labeled polytope in Section 4.1.

Definition 4.3. Let P be a Coxeter polytope of Sd, v a vertex of P and Sv the set of facets
of P containing v. The vertex v of P is truncatable if the projective subspace Πv spanned by
the poles {[bs]}s∈Sv

is a hyperplane such that for each edge e containing v, the intersection
of Πv and the relative interior of e is a singleton.

Suppose P is a Coxeter polytope and v is a truncatable vertex of P. We define a new
Coxeter polytope P†v as follows: let Π+v (resp. Π−v ) be the connected component of Sd ∖Πv
which contains v (resp. which does not contain v), and let Π−v be the closure of Π−v . The
underlying polytope of P†v is P ∩Π−v , which has one new facet given by the hyperplane Πv
and the old facets given by P. The reflection in the new facet of P†v is determined by the
support Πv and the pole v, and the reflections in the old facets are unchanged. The following
properties of P†v can be easily checked:

● the dihedral angles of the ridges in the new facet of P†v are all π/2;
● the hyperplane Πv is preserved by the reflections in the facets in Sv, and P ∩Πv is a

Coxeter polytope in Πv, which is isomorphic to Pv.

Definition 4.4. Let P be a Coxeter polytope and let V be a set of some vertices of P. The set
V is truncatable if each vertex v ∈ V is truncatable and P ∩Πv ∩Πw =∅ for any two vertices
v ≠w ∈V . In other words, the new facets do not intersect each other.

The following theorem provides a simple criterion when V is truncatable or not. Recall
that a vertex v of a polytope G is simple if the link Gv is a simplex, and a polytope is simple
if all its vertices are simple.

6A face f of a triangulation of G is interior if the relative interior of f lies in the interior of G.
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Theorem 4.5 (Marquis [Mar17, Prop. 4.14 & Lem. 4.17]). Let P be an irreducible, loxo-
dromic, 2-perfect Coxeter polytope. Assume that V is a set of some simple vertices of P. Then
V is truncatable if and only if the vertex link Pv is loxodromic for each v ∈V .

Remark 4.6. Let G be a labeled polytope. A vertex v of G is “something” if the link Gv or its
Coxeter group WGv is “something”. For example, the word “something” can be replaced by
“Lannér”, “Ã” and so on.

Recall that if W is of cycle type and DW has no edge of label ∞, then W has a unique pair
(C,C) of relevant circuits. The following is a consequence of Remark 2.18 and Theorem 4.5.

Corollary 4.7. Let G be an irreducible, large, 2-perfect labeled simple polytope of dimension
d ⩾ 4, and let v be a vertex of G. Assume that [P] ∈ C(G). Then:

● if v is a truncatable vertex of P, then v is Lannér or Ãd−1;
● if v is Lannér, then v is a truncatable vertex of P;
● if v is Ãd−1, then v is a truncatable vertex of P if and only if the normalized cyclic

product RCv(AP) ≠ 0, where Cv is a relevant circuit of WGv .

The following is now immediate:

Corollary 4.8. Let G be an irreducible, large, 2-perfect labeled simple polytope of dimension
d ⩾ 4, VA the set of all Ãd−1 vertices of G, and V a set of some vertices of G. Define

C(G)†V = {[P] ∈ C(G) ∣ RCv(AP) ≠ 0 for each v ∈V ∩VA}.

Then the map C(G)†V → C(G†V) induced by the truncation is a homeomorphism. In particular,
if the link Gv is Lannér for each v ∈V , then C(G) is homeomorphic to C(G†V) .

Finally, we parametrize the deformation space of once-truncated simplex.

Proposition 4.9. Let S be an irreducible, large, 2-perfect labeled simplex of dimension d ⩾ 4
and W its Coxeter group. Let VLA be the set of Lannér or Ãd−1 vertices of S, and V a subset of
VLA. Then:

● if W is the left Coxeter group in Figure 5 and V = VLA, then C(S†V) is the union of six
open cells of dimension b(S) = 2.

● otherwise, C(S†V) is the union of 2kA open cells of dimension b(S) ∈ {0,1,2}, where kA
is the number of Ãd−1 vertices in V .

In particular, C(S†V) is non-empty.

Proof. Assume that W is the left Coxeter group in Figure 5 and V = VLA. By (the proof of)
Theorem 3.1 and Corollary 4.8, the space C(S†V) is homeomorphic to

{(x1, x2, x3) ∈R3 ∣ x1+ x2+ x3 = 0 and x1, x2, x3 ≠ 0}.

Thus it is the union of six open cells of dimension 2. The proof of the other cases also follows
from Theorem 3.1 and Corollary 4.8 easily. For example, if W is the right Coxeter group in
Figure 5 and V =VLA, then C(S†V) is homeomorphic to

{(x1, x2, x3) ∈R3 ∣ x1+ x2+ x3 = 0 and x1 ≠ 0},

which is the union of two open cells of dimension 2. �
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4

FIGURE 5. Examples of 2-Lannér Coxeter groups of type K2,3

5. GLUING AND SPLITTING THEOREM

5.1. Definitions. Let G1 and G2 be two combinatorial polytopes. For each i ∈ {1,2}, let vi be
a vertex of Gi, and (Gi)vi the link of Gi at vi. Given an isomorphism φ between (G1)v1 and
(G2)v2 , we define the gluing of G†v1

1 and G†v2
2 via φ as follows (see Figure 6):

● take the dual polytope G∗i of Gi for each i ∈ {1,2};
● glue G∗1 and G∗2 using the induced isomorphism φ∗ of φ between the dual facets of v1

and v2 to obtain a new polytope G∗ =G∗1 ∪φ∗ G∗2 ;
● take the dual polytope G of G∗.

G1 G2

v1 v2

G

↝

FIGURE 6. Gluing two polytopes G†v1
1 and G†v2

2 to obtain G

We say that G is obtained by gluing G†v1
1 and G†v2

2 via φ, and we denote it by G†v1
1 ♯φG†v2

2 .
Note that if G1 and G2 are truncation polytopes, then the dual facet of vi in the staked
polytope G∗i become an interior face of codimension 1 in the triangulation of G∗.

Remark 5.1. More directly, we may construct the polytope G by gluing the truncated poly-
topes G†vi

i of Gi at vi via the induced isomorphism of φ between the new facets of G†vi
i so that

each old facet of G†v1
1 formerly containing v1 amalgamates with the corresponding old facet

of G†v2
2 formerly containing v2.

Let G be a combinatorial d-polytope, and let ψ be the dual isomorphism between G and
G∗. A prismatic poset of G is a subposet δ̂ of the face poset F(G) of G such that:

● the subposet ψ(δ̂) of F(G∗) is isomorphic to the face poset of the boundary of (d−1)-
simplex;

● there is no f ∈F(G∗) such that the poset ψ(δ̂)∪{ f } is isomorphic to the face poset of
(d−1)-simplex.

The set δ of facets in a prismatic poset is called a prismatic circuit. In more geometric
way, δ consists of exactly d facets of G such that:

● the convex hull ∆δ of the dual vertices of δ in G∗ is a (d−1)-simplex;
● the relative interior of ∆δ lies in the interior of G∗ (see Figure 7).
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↝

G G∗

∆δ

FIGURE 7. A prismatic circuit of a polytope G

Remark 5.2. If G is a truncation polytope, then the prismatic circuits of G are in correspon-
dence with the interior faces of codimension 1 in the triangulation of G∗.

Now, given a prismatic circuit δ of G, we define the splitting of G along δ as follows:
⋅ take the dual polytope G∗ of G;
� using the convex hull ∆δ in G∗, we decompose G∗ into two polytopes G∗1 and G∗2 with

the new facets ∆δ,1 and ∆δ,2 corresponding to ∆δ respectively (see Figure 8);
∴ take the dual polytope Gi of G∗i and truncate Gi at the vertex vi dual to ∆δ,i, for each

i ∈ {1,2}.

G∗1 G∗2 G†v1
1 G†v2

2

v1 v2∆δ,1 ∆δ,2 ↝

FIGURE 8. The splitting of G into G†v1
1 and G†v2

2

The original polytope G is the gluing of G†v1
1 and G†v2

2 via the obvious isomorphism between
the links (G1)v1 and (G2)v2 . For labeled polytopes, we take care of the ridge labels in an
apparent way to define the gluing and splitting operations.

5.2. Property of prismatic circuit. In this subsection, we use the same notation as in
Section 5.1. Let G be a labeled d-polytope and δ a prismatic circuit of G. Suppose G splits
along δ into G†v1

1 and G†v2
2 . A prismatic circuit δ of G is

● useless if both G1 and G2 are simplices, and for each i ∈ {1,2}, the facet si of Gi opposite
to vi is orthogonal to δ, i.e. the dihedral angle between si and s is π/2 for each facet s
of Gi that contains vi;

● non-essential if there exists a unique i ∈ {1,2} such that Gi is a simplex and the facet
si of Gi opposite to vi is orthogonal to δ;

● essential, otherwise.

The following is immediate from the definition:

Lemma 5.3. Let G be a labeled polytope and δ a prismatic circuit of G. Suppose that G splits
along δ into G†v1

1 and G†v2
2 . Then:
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● if δ is useless, then G†v1
1 =G†v2

2 =G and WG =Wδ× Ã1. In particular, G is not irreducible.
● if δ is non-essential, then there exist i ≠ j ∈ {1,2} such that WGi =Wδ× Ã1 and G†v j

j =G.

π/2

π/2

π/2

π/2

π/2

π/2

δ0

δ1

Reglage des triangles avec les points K et M
Reglage ellipse autour des triangles avec U,T,V

Centre de la figure G

δ2

δ3

π/2
π/2

π/2

π/2

π/2
π/3

FIGURE 9. Examples of useless, non-essential or essential prismatic circuits:
δ0 is useless, δ1 is non-essential, and δ2 and δ3 are essential. The ridges
with no label may have any label, and it does not affect the properties of the
prismatic circuits.

Lemma 5.4. Let G be an irreducible, large, 2-perfect labeled polytope of dimension d ⩾ 4 and
δ a prismatic circuit of G. Assume that G splits along δ into G†v1

1 and G†v2
2 . If G is convex-

projectivizable, i.e. C(G) ≠∅, then the following hold:
⋅ the polytopes G1 and G2 are 2-perfect;
� the Coxeter group Wδ is Lannér or Ãd−1;
∴ if δ is essential, then G1 and G2 are also irreducible and large.

Proof. Suppose (P, (σs = Id−αs⊗bs)s∈S) is a Coxeter d-polytope realizing G. Since the inter-
section of the facets of P in δ is empty, the group Wδ is infinite by Vinberg [Vin71, Th. 4]. We
denote by Πδ the subspace spanned by (bs)s∈δ, by σδs the induced reflection of σs on Πδ, and
by Γδ the subgroup of SL±(Πδ) generated by (σδs)s∈δ. Then by [Mar17, Lem. 8.19],

Pδ ∶=⋂
s∈δ
S({x ∈Πδ ∣αs(x) ⩽ 0})

is a perfect Coxeter (d−1)-simplex such that the Γδ-orbit of Pδ is a properly convex domain
ΩP ∩S(Πδ) of S(Πδ). So, the vertex link of Gi at vi is perfect, and by Theorem 2.9 and
Proposition 2.15, Wδ is Lannér or Ãd−1.

Now, assume that δ is essential. There is no facet of Gi orthogonal to δ and Wδ is irre-
ducible. Thus WGi is also irreducible. Finally, since Wδ is Lannér or Ãd−1, and since Wδ is a
proper standard subgroup of WGi , the group WGi must be large. �

5.3. The splitting of Coxeter polytope. Let G be an irreducible, large, 2-perfect labeled
polytope of dimension d ⩾ 4, S the set of facets of G, and δ an essential prismatic circuit of
G. Assume that G splits along δ into G†v1

1 and G†v2
2 . Then G = G†v1

1 ♯φG†v2
2 for the induced

isomorphism φ between the links (G1)v1 and (G2)v2 . For each i = 1,2, we denote by Si the
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subset of S consisting of the facets of G that correspond to the facets of Gi. Then S = S1∪S2
and δ = S1∩S2.

Now, we define a splitting map

Cutδ ∶ C(G)→ C(G†v1
1 )×C(G†v2

2 )

by sending [P] ∈ C(G) with P = ⋂s∈SS({x ∈ V ∣ αs(x) ⩽ 0}) to ([P†v1
1 ],[P†v2

2 ]) ∈ C(G†v1
1 ) ×

C(G†v2
2 ), where Pi = ⋂s∈SiS({x ∈ V ∣ αs(x) ⩽ 0}) for each i ∈ 1,2. By definition, P = P1 ∩P2.

The spliting map is well-defined again by [Mar17, Lem. 8.19]: for each [P] ∈ C(G), the sub-
space Πδ of V spanned by (bs)s∈δ is a hyperplane, and the intersection of S(Πδ) and the
relative interior of e is a singleton, for each edge e of P in the prismatic poset associated to δ.
Hence the vertex vi of Pi is truncatable and P†vi

i lies in C(G†vi
i ). Moreover, the links (P1)v1

and (P2)v2 are isomorphic.

Let δi be the set of facets of Gi that contain vi. Since Wδ is Lannér or Ãd−1 by Lemma 5.4,
Wδ =Wδi is of cycle type or of tree type. If Wδ is of cycle type, it has only two relevant circuits
Cδ and Cδ. Otherwise, it has no relevant circuit. We denote by Rδi the normalized cyclic
product of Cδi if Wδ is of cycle type, and 0 otherwise. Then we may choose an orientation of
Cδi so that Rδ1([P

†v1
1 ]) = Rδ2([P

†v2
2 ]). So, we introduce the following subspace of C(G†v1

1 )×
C(G†v2

2 ):

C(G†v1
1 )⊠φ C(G†v2

2 ) ∶= {([P†v1
1 ],[P†v2

2 ]) ∈ C(G†v1
1 )×C(G†v2

2 ) ∣ Rδ1([P
†v1
1 ]) =Rδ2([P

†v2
2 ])}

Since the image of the map Cutδ lies in C(G†v1
1 )⊠φC(G†v2

2 ), we shall restrict the range of Cutδ
accordingly.

Lemma 5.5. Let G be an irreducible, large, 2-perfect labeled polytope of dimension d ⩾ 4,
and let δ be an essential prismatic circuit of G. Suppose that G splits along δ into G†v1

1 and
G†v2

2 . Then there exists an R-action Ψ on C(G) such that Cutδ is a Ψ-invariant fibration onto
C(G†v1

1 )⊠φ C(G†v2
2 ) and Ψ is simply transitive on each fiber of Cutδ.

The above lemma was proved by the third author [Mar10a, Lem. 4.36] in dimension d = 3.
One can extend the proof to any dimension d ⩾ 4 without difficulty, but we give an outline of
a proof for the reader’s convenience.

Proof. We first define the R-action Ψ on C(G). Given any [P] ∈ C(G), we have Coxeter poly-
topes P†v1

1 and P†v2
2 such that P = P1 ∩P2 and Cutδ([P]) = ([P†v1

1 ],[P†v2
2 ]). Let (e i)d+1

i=1 be
the canonical basis of Rd+1 and (e∗i )d+1

i=1 its dual basis. We may assume that the supporting
hyperplanes of the facets in δ are {S(ker(e∗i ))}d

i=1 and that the subspace ΠP
δ

spanned by
(bs)s∈δ equals ker(e∗d+1), where (σs = Id−αs ⊗ bs)s∈S is the set of reflections of P. Now, if
gu ∈SL±d+1(R) is the diagonal matrix with entries eu, . . . , eu, e−du, then

Ψu([P]) ∶= [P1∩ gu(P2)] ∈ C(G)
lies in the same fiber of Cutδ as [P] = Ψ0([P]). It gives us the required R-action Ψ that
preserves each fiber of Cutδ.

To show that Ψ is free on each fiber of Cutδ, we may choose a facet s in δ, s′ of G1 not in
δ, and s′′ of G2 not in δ such that the dihedral angles between s and s′ and between s and
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s′′ are different from π/2. If we denote by Au the Cartan matrix of Ψu([P]), then the map
R ∶R→R given by

R(u) = log(
Au

ss′A
u
s′s′′A

u
s′′s

Au
ss′′A

u
s′′s′A

u
s′s

)

is a homeomorphism. So, the action on each fiber is free.

Finally we show thatΨ is transitive on each fiber. Let [P],[Q] ∈ C(G) be on the same fiber,
i.e. P = P1∩P2, Q =Q1∩Q2 and ([P†v1

1 ],[P†v2
2 ]) = ([Q†v1

1 ],[Q†v1
2 ]). Then we may assume that

Q1 = P1 and Q2 = g(P2) for some g ∈SL±d+1(R), that the supporting hyperplanes of the facets
of P (hence also of Q) in δ are {S(ker(e∗i ))}d

i=1, and that the subspace ΠP
δ

(hence also ΠQ
δ

)
equals ker(e∗d+1). The restriction of g on S(ker(e∗d+1)) is the identity and g([ed+1]) = [ed+1]
because [ed+1] =∩d

i=1S(ker(e∗i )). In other words, g = gu for some u, hence Φu([P]) = [Q]. �

Remark 5.6. A similar construction as in this section may be found in one of Fenchel-
Nielsen coordinates that parametrize hyperbolic structures on surface. An essential simple
closed curve on the surface (resp. the length of the unique geodesic isotopic to that curve)
plays a role of the essential prismatic circuit of polytope (resp. the cyclic product). The cut-
ting and gluing operations along the geodesic are analogous to cutting and gluing along the
essential prismatic circuit. And, there is a gluing parameter called the Dehn twist parame-
ter. Instead, in the case of hyperbolic polygon, a pair of nonadjacent edges (resp. the distance
between those edges) plays a role of the essential prismatic circuit (resp. the cyclic product),
but there is no gluing parameter. In our case, there is a gluing parameter, called bending
(or bulging) which comes from projective geometry. One can find a description of bending
deformation for convex projective manifold in [JM87] or [Gol13], and a lemma [Gol90, Lem.
5.3] for convex projective surface, analogous to Lemma 5.5.

Let G be an irreducible, large, 2-perfect labeled polytope of dimension d ⩾ 4 and let δ be a
prismatic circuit of G. As in the proof of Lemma 5.4, one can show that if G is hyperbolizable,
then Wδ is Lannér. Assume that δ is essential and that G splits along δ into G†v1

1 and G†v2
2 .

One can also define the splitting map

Cuthyp
δ

∶ Hyp(G)→Hyp(G†v1
1 )⊠φHyp(G†v2

2 )

similar to the splitting map Cutδ of C(G). Clearly, Cuthyp
δ

is bijective.

Proof of Theorem C. Let G be an irreducible, large, 2-perfect, labeled truncation polytope of
dimension d ⩾ 4, P the set of prismatic circuits of G, and Pe the set of essential prismatic
circuits of G.

By Lemma 5.4, if G is convex-projectivizable, then Wδ is Lannér or Ãd−1 for each δ ∈ P .
Conversely, suppose that Wδ is Lannér or Ãd−1 for each δ ∈P . The polytope G splits along Pe
into once-truncated d-simplices {S†Vi

i }ke+1
i=1 , where each Si is an irreducible, large, 2-perfect

labeled simplex, Vi is a set of vertices in Si that correspond to P , and ke = ♯Pe. By Proposition
4.9, each once-truncated simplex S

†Vi
i is convex-projectivizable and by Lemma 5.5, G is also

convex-projectivizable.

In the similar fashion, one can show that G is hyperbolizable if and only if Wδ is Lannér
for each δ ∈P .
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We now assume that G is perfect. It is well-known that if G is hyperbolizable, then WG
is word-hyperbolic. Conversely, suppose that G is convex-projectivizable and WG is word-
hyperbolic. The previous statements show that Wδ is Lannér or Ãd−1 for each δ ∈ P . But
Wδ cannot be Ãd−1. Otherwise, the word-hyperbolic group WG would contain a virtually
free abelian group Ãd−1 of rank d −1 ⩾ 2. Thus G is hyperbolizable, again by the previous
statements. �

Definition 5.7. The set of once-truncated labeled simplices {S†Vi
i }ke+1

i=1 in the proof of Theo-
rem C is called the decomposition of G along the essential prismatic circuits, and each Si is a
block of G. Note that WSi is a 2-Lannér Coxeter group.

Remark 5.8. The proof of Theorem C explains how to obtain the complete list of convex-
projectivizable or hyperbolizable, irreducible, large, 2-perfect labeled truncation polytopes of
dimension d ⩾ 4 from the list of 2-Lannér Coxeter groups of rank ⩾ 5 in Appendix C.

5.4. Evaluation map. Let G be a convex-projectivizable, irreducible, large, 2-perfect la-
beled truncation polytope of dimension ⩾ 4. We denote by {S†Vi

i }ke+1
i=1 the decomposition of G

along the essential prismatic circuits. A prismatic circuit δ (resp. a vertex v, resp. a block
Si) is “something” if the Coxeter group Wδ (resp, WSv , resp, WSi ) is “something”. For example,
the block Si can have four different types: tree, circle, pan, or K2,3. We now introduce the
following notation:

● P f L is the set of flexible Lannér prismatic circuits of G, and kL(G) = ♯P f L;
● PA is the set of Ãd−1 prismatic circuits of G, and kA(G) = ♯PA;
● V f is the set of flexible vertices of G, and kv(G) = ♯V f ;
● Bc is the set of blocks Si of circle type, and kc(G) = ♯Bc;
● BK is the set of blocks Si of K2,3 type, and kK(G) = ♯BK .

A map
Θ ∶ C(G)→Y (G) ∶=RkL(G)×(R∗)kA(G)×Rkv(G)×Rkc(G)

is given by the evaluation of [P] ∈ C(G) on the circuits that correspond to the elements in
P f L, PA, V f and Bc. More precisely, if δ ∈ P f L ∪PA (resp. v ∈ V f , resp. Si ∈ Bc), then the
Coxeter group Wδ (resp. WSv , resp. WSi ) is of cycle type. So, it has a unique relevant circuit
up to orientation, denoted by Cδ (resp. Cv, resp. Ci). Then

Θ([P]) ∶= ((RCδ(AP))δ∈P f L ,(RCδ(AP))δ∈PA ,(RCv(AP))v∈V f ,(RCi(AP))Si∈Bc) ,

where RC denotes the normalized cyclic product of C.
Each S j ∈BK has three relevant circuits {C`j }`=1,2,3 up to orientation. And, C`j is either Cδ

(δ ∈ P f L ∪PA), or Cv (v ∈ V f ) again up to orientation. We may choose the orientations of Cδ
(δ ∈P f L∪PA) and Cv (v ∈V f ) coherently so that each C`j equals Cδ or Cv with orientation and
that ∑3

`=1 RC`j (AP) = 0. Then we consider the following subspace of Y (G):

X(G) = { y ∈Y (G) ∣
3
∑
`=1

y`j = 0 for every block S j ∈BK },

where y`j is the δ-coordinate of y if C`j = Cδ, or the v-coordinate of y if C`j = Cv. Since the image
of the map Θ lies in X(G), we shall restrict the range of Θ accordingly. Now, (the proof of)
Proposition 4.9 and Lemma 5.5 show that:
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Proposition 5.9. Let G be a convex-projectivizable, irreducible, large, 2-perfect labeled trun-
cation polytope of dimension d ⩾ 4. Then there exists an Rke -action Ψ on C(G) such that Θ is
a Ψ-invariant fibration onto X(G) and Ψ is simply transitive on each fiber of Θ.

Proof of Theorem A. Let G be a convex-projectivizable, irreducible, large, 2-perfect labeled
truncation polytope of dimension d ⩾ 4. We denote by e+(G) the number of ridges with label
≠ π/2 in G, by Pe the set of essential prismatic circuits, and by {S†Vi

i }ke+1
i=1 the decomposition

of G along Pe.

We first claim that d ⩽ 9. Indeed, each Si is an irreducible, large, 2-perfect d-simplex, and
such a simplex exists only in dimension d ⩽ 9, by Theorem 2.19, as claimed.

Proposition 5.9 shows that C(G) is a union of finitely many open cells and that C(G) is
connected if and only if kA(G) = 0, i.e. Wδ is Lannér for each prismatic circuit δ of G. This is
equivalent to require that G is hyperbolizable, by Theorem C.

We finally compute the dimension of C(G). Again, by Proposition 5.9, we have that

dimC(G) = kL(G)+kA(G)+kv(G)+kc(G)−kK(G)+ke(G)
We now prove that dimC(G) = e+(G)−d by induction on the number ke of essential prismatic
circuits. If ke(G) = 0, then G = S†Vi

i with i = 1. Proposition 4.9 shows dimC(S†Vi
i ) = e+(S†Vi

i )−d,
or it may readily verified as follows:

● if Si is of tree type, then k∗(S†Vi
i ) = 0 for ∗ ∈ {L, A,v, c,K , e};

● if Si is of cycle type, then kc(S†Vi
i ) = 1 and k∗(S†Vi

i ) = 0 for ∗ ∈ {L, A,v,K , e};
● if Si is of pan type, then (kL +kA +kv)(S†Vi

i ) = 1 and k∗(S†Vi
i ) = 0 for ∗ ∈ {c,K , e};

● if Si is of K2,3 type, then (kL + kA + kv)(S†Vi
i ) = 3, kK(S†Vi

i ) = 1 and k∗(S†Vi
i ) = 0 for

∗ ∈ {c, e}.

If ke(G) > 0, then the polytope G splits along δ ∈ Pe into two polytopes G j ( j = 1,2) with
ke(G j) < ke(G). There are two cases to consider: (i) δ is rigid, and (ii) δ is flexible.

In the case (i), we have e+(G1 ♯G2) = e+(G1)+ e+(G2)−(d−1). Then

e+(G)−d = (e+(G1)−d)+(e+(G2)−d)+1

= dimC(G1)+dimC(G2)+1 by induction hypothesis

= kL(G)+kA(G)+kv(G)+kc(G)−kK(G)+ke(G)
= dimC(G)

The second last equality follows from the fact that ke(G) = ke(G1)+ ke(G2)+1 and k∗(G) =
k∗(G1)+k∗(G2) for ∗ ∈ {L, A,v, c,K}.

In the case (ii), we have e+(G1 ♯G2) = e+(G1)+ e+(G2)−d. Then

e+(G)−d = (e+(G1)−d)+(e+(G2)−d)
= dimC(G1)+dimC(G2) by induction hypothesis

= dimC(G)
The last equality follows from the fact that (kL +kA)(G) = (kL +kA)(G1)+(kL +kA)(G2)−1,
ke(G) = ke(G1)+ke(G2)+1, and k∗(G) = k∗(G1)+k∗(G2) for ∗ ∈ {v, c,K}. �
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6. COMPONENTS OF DEFORMATION SPACE

The purpose of this section is to calculate the number κ(G) of connected components of
the deformation space of a labeled polytope in dimension d ⩾ 4. Let Wexc be the left Coxeter
group in Figure 5, and Sexc ∶= SWexc the associated labeled simplex. The simplex Sexc has
two spherical vertices and three Ã3 vertices. We denote by S†

exc the once-truncated simplex
obtained by truncating those three Ã3 vertices. Proposition 4.9 shows that the deformation
space of S†

exc has 6 connected components not 8 = 23, which makes it difficult to compute
κ(G). The technique we shall use is very similar to the one in [Mar10a].

6.1. The forest of labeled truncation polytope. Let G be a convex-projectivizable, ir-
reducible, large, 2-perfect labeled truncation polytope of d ⩾ 4. We denote by P the set of
prismatic circuits of G (both essential and non-essential). The polytope G splits along P into
once-truncated simplices {S†Vi

i }k+1
i=1 , where each Si is a 2-perfect labeled simplex (not neces-

sarily irreducible or large), Vi is the set of vertices in Si that correspond to P , and k = ♯P . If
vi ∈ Vi and v j ∈ V j both correspond to δ ∈P , then δ is called the common prismatic circuit of
S†Vi

i and S†V j
j , and S†Vi

i and S†V j
j share the prismatic circuit δ.

We now introduce a tool to compute the number of connected components of C(G). The
forest FG (resp. orange forest Fo

G , resp. green forest Fg
G) of G is a graph with edge coloring

such that:

● the set of nodes consists of all simplices Si such that S†Vi
i has a flexible (resp. Ãd−1,

resp. flexible Lannér) prismatic circuit of G;
● two nodes Si and S j are connected by an edge SiS j if and only if S†Vi

i and S†V j
j share

a flexible (resp. Ãd−1, resp. flexible Lannér) prismatic circuit;
● the edge SiS j is orange in color if the common prismatic circuit δ of S†Vi

i and S†V j
j is

Ãd−1, and it is green if δ is flexible Lannér.

Each node of FG has valence 1, 2 or 3. The orange forest Fo
G and the green forest Fg

G may
be considered as subgraphs of FG , and their union is then FG . A function from the set of
edges of a forest F to {+,−} is called a sign function of F. A sign function is good if there
exists no node v of valence 3 such that all three edges incident on v have the same sign. A
sign function of Fo

G is admissible if it may be extended to a good sign function of FG .

Lemma 6.1. Let G be a convex-projectivizable, irreducible, large, 2-perfect labeled truncation
polytope of dimension d ⩾ 4. Then the number κ(G) of connected components of C(G) equals
the number of good sign functions of Fo

G .

Proof. We consider the evaluation map Θ ∶ C(G)→ X(G) defined in Section 5.4. In particular,
the evaluation of [P] ∈ C(G) on the circuits that correspond to the Ãd−1 prismatic circuits is
positive or negative. So, it gives us a good sign function φo

[P] of Fo
G . Then [P] and [Q] lie

in the same connected component of C(G) if and only if φo
[P] =φ

o
[Q], because each component

of X(G) is a convex subset of a vector space. Given a good sign function φo of Fo
G , there

exists [P] ∈ C(G) such that φo
[P] = φo, when φo is admissible. Thus κ(G) equals the number

of admissible sign functions of Fo
G .
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Now, it only remains to show that any good sign functions of Fo
G is admissible. Let ψo be

any good sign function of Fo
G . Since Fg

G is a forest, we can define a good sign function ψg of Fg
G

so that for any node v of valence 2, two edges incident on v have different signs. Combining
ψo and ψg, we obtain a good sign function of FG , since each vertex of valence 3 in FG is
incident to three edges in Fo

G , or to two edges in F
g
G and one edge in Fo

G , by the classification
of 2-Lannér Coxeter groups (see Theorem 2.19). �

We denote by n2(G) (resp. n3(G)) the number of nodes of valence 2 (resp. 3) in Fo
G , and by

nc(G) the number of connected components of Fo
G (see Figure 10).

Theorem 6.2. Let G be a convex-projectivizable, irreducible, large, 2-perfect labeled trunca-
tion polytope of dimension d ⩾ 4. Then the number κ(G) of connected components of C(G)
is

2n2(G)+nc(G) ⋅3n3(G)

Proof. Let {Fo
G, j}

nc(G)
j=1

be the set of connected components of Fo
G . It is easy to see that the

number of good sign functions of Fo
G, j equals 2n2, j+1 ⋅ 3n3, j , where ni, j (i = 2,3) denote the

number of nodes of valence i of Fo
G, j. Thus the number of good sign functions of Fo

G equals

nc(G)
∏
j=1

2n2, j+1 ⋅3n3, j = 2n2(G)+nc(G) ⋅3n3(G),

since ∑ j ni, j = ni(G). Our theorem follows from Lemma 6.1. �

FIGURE 10. The forest FG and the orange forest Fo
G of a labeled polytope G.

The number κ(G) equals 25 ⋅33, since n2(G) = 3, n3(G) = 3 and nc(G) = 2.

7. DIMENSION ⩾ 6

Due to the rarity of 2-perfect labeled simplices in dimension d > 5, it is easy to describe the
deformation spaces of each individual 2-perfect labeled polytopes in those dimension. So, we
exhibit them in the decreasing order of dimension d.

7.1. Dimension beyond 9. By Theorem A, there exists no convex-projectivizable, irre-
ducible, large, 2-perfect labeled truncation polytope in dimension d > 9.
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7.2. Dimension 9. There are three 2-Lannér Coxeter groups of rank 10 (see Theorem 2.19
and Table 6). All are of tree type, and quasi-Lannér not Lannér. We denote them by W9i
(i = 1,2,3) and let S9i ∶= SW9i .

Theorem 7.1. In dimension 9, there exist only three convex-projectivizable, irreducible, large,
2-perfect labeled truncation polytopes: S9i (i = 1,2,3). Each labeled simplex S9i is hyperboliz-
able and rigid.

Proof. Let G be a convex-projectivizable, irreducible, large, 2-perfect labeled truncation poly-
tope of dimension 9. We denote by Pe the set of essential prismatic circuits of G and by
{S†V j

j }ke+1
j=1 the decomposition of G along Pe. Then each S j equals S9i for i ∈ {1,2,3}. Every

vertex of S9i is either spherical, or affine but not Ã. Thus Pe =∅, by Lemma 5.4, and G = S9i
for i ∈ {1,2,3}. Each simplex S9i is hyperbolizable and rigid, by Theorem A. �

7.3. Dimension 8. There are four 2-Lannér Coxeter groups of rank 9 (see Theorem 2.19
and Table 7). Three of them, W8i (i = 1,2,3), are of tree type and one of them, W8τ, is of pan
type. All are quasi-Lannér but not Lannér. We set S8i ∶= SW8i and S8τ ∶= SW8τ .

Theorem 7.2. In dimension 8, there exist ten convex-projectivizable, irreducible, large, 2-
perfect labeled truncation polytopes: S8i (i = 1,2,3), S8τ, S†

8τ and S†
8τ ♯φ j S

†
8τ ( j = 1, . . . ,5).7

⋅ each simplex S8i (i = 1,2,3) is hyperbolizable and rigid;
� the simplex S8τ is hyperbolizable, and C(S8τ) ≃R;8

∴ the prism S†
8τ is not hyperbolizable, and C(S†

8τ) ≃R⋆;
 each prism S†

8τ ♯φ j S
†
8τ ( j = 1, . . . ,5) is not hyperbolizable, and C(S†

8τ ♯φ j S
†
8τ) ≃R⋆×R.

Proof. Let G be a convex-projectivizable, irreducible, large, 2-perfect labeled truncation poly-
tope of dimension 8. We denote by {S†V j

j }ke+1
j=1 the decomposition of G along the essential

prismatic circuits. Then each S j is equal to S8i (i = 1,2,3) or S8τ. There are two cases to
consider: (i) one of S j equals S8i (i = 1,2,3) and (ii) all S j equal S8τ.

In case (i), G = S8i for i ∈ {1,2,3}, as in the proof of Theorem 7.1.

In case (ii), only one vertex of S8τ, say v, is Ã7, and the other vertices are either spherical
or affine but not Ã7. Thus ke = 0 or 1, by Lemma 5.4. If ke = 0, then G = S8τ or S†

8τ ∶= S†v
8τ.

Otherwise, G = S†
8τ ♯φ j S

†
8τ for j = 1, . . . ,5 (see Table 12 for their Coxeter groups). Here, φ j

indicates that there exist five different gluing of two copies of S†
8τ.

Theorem A completes the proof. �

7.4. Dimension 7. There are four 2-Lannér Coxeter groups of rank 8 (see Theorem 2.19
and Table 8). Three of them, W7i (i = 1,2,3), are of tree type and one of them, W7τ, is of pan
type. All are quasi-Lannér but not Lannér. We set S7i ∶= SW7i and S7τ ∶= SW7τ . The situation
is very similar to the one in dimension 8:

Theorem 7.3. In dimension 7, there exist nine convex-projectivizable, irreducible, large, 2-
perfect labeled truncation polytopes: S7i (i = 1,2,3), S7τ, S†

7τ and S†
7τ ♯φ j S

†
7τ ( j = 1, . . . ,4).9

7The definition of labeled polytopes S†
8τ and S†

8τ ♯φ j S
†
8τ ( j = 1, . . . ,5) is given in the proof.

8By X ≃Y , we mean that two spaces X and Y are homeomorphic.
9The definition of polytopes S†

7τ and S†
7τ ♯φ j S

†
7τ is analogous to the one in the proof of Theorem 7.2.
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⋅ each simplex S7i (i = 1,2,3) is hyperbolizable and rigid;
� the simplex S7τ is hyperbolizable, and C(S7τ) ≃R;
∴ the prism S†

7τ is not hyperbolizable, and C(S†
7τ) ≃R⋆;

 each prism S†
7τ ♯φ j S

†
7τ ( j = 1, . . . ,4) is not hyperbolizable, and C(S†

7τ ♯φ j S
†
7τ) ≃R⋆×R.

Proof. The proof is similar to the one of Theorem 7.2. See Table 13 for the Coxeter groups of
the four different prisms S†

7τ ♯φ j S
†
7τ ( j = 1, . . . ,4). �

7.5. Dimension 6. There are three 2-Lannér Coxeter groups of rank 7 (see Theorem 2.19
and Table 9). Two of them, W6i (i = 1,2), are of tree type and one of them, W6τ, is of pan
type. All are quasi-Lannér but not Lannér. The situation is again very similar to the one in
dimension 8.

Theorem 7.4. In dimension 6, there exist eight convex-projectivizable, irreducible, large, 2-
perfect labeled truncation polytopes: S6i (i = 1,2) S6τ, S†

6τ and S†
6τ ♯φ j S

†
6τ ( j = 1, . . . ,4).10

⋅ two simplices S6i are hyperbolizable and rigid;
� the simplex S6τ is hyperbolizable, and C(S6τ) ≃R;
∴ the prism S†

6τ is not hyperbolizable, and C(S†
6τ) ≃R⋆;

 four prisms S†
6τ ♯φ j S

†
6τ are not hyperbolizable, and C(S†

6τ ♯φ j S
†
6τ) ≃R⋆×R.

Proof. The proof is similar to the one of Theorem 7.2. See Table 14 for the Coxeter groups of
the four different prisms S†

6τ ♯φ j S
†
6τ ( j = 1, . . . ,4). �

8. DIMENSION 5

The situation in dimension 5 is richer than that in higher dimensions. There are twenty
three 2-Lannér Coxeter groups of rank 6 (see Theorem 2.19 and Table 10). Eighteen of
them, W5i (i = 1, . . . ,9) and W5ti (i = 1, . . . ,9), are of tree type, two of them, W5ci (i = 1,2), are
of cycle type, and three of them, W5τ and W5pi (i = 1,2), are of pan type. We set S∗ ∶= SW∗ for
∗ ∈ {5i,5ti,5ci,5τ,5pi}. Unlike higher dimensions, there exist irreducible, large, 2-perfect
labeled simplices in dimension 5 that have at least two Lannér vertices. This makes it
possible to build infinitely many truncation 5-polytopes.

Theorem 8.1. Let G be a convex-projectivizable, irreducible, large, 2-perfect labeled trunca-
tion 5-polytope. Then C(G) is homeomorphic to R∗, R∗×R or Rm for m ∈N∪{0}. More precisely,
the following hold:

⋅ G = S†
5τ if and only if C(G) ≃R∗;

� G = S†
5τ ♯φ j S

†
5τ ( j = 1,2,3) if and only if C(G) ≃R∗×R;

∴ otherwise, G is hyperbolizable and C(G) ≃Rb(G).
In addition, for any m ∈N∪{0}, there exists an irreducible, large, perfect labeled truncation
5-polytope G such that C(G) ≃Rm.

Proof. By Theorems A and C, the space C(G) is disconnected if and only if there exists an
Ã4 prismatic circuit of G. This is equivalent to require that one of S j equals S5τ, i.e. G = S†

5τ
or G = S†

5τ ♯φ j S
†
5τ ( j = 1,2,3) (see Table 15). All three items of Theorem 8.1 then follow again

from Theorem A.
10The definition of those polytopes is analogous to the one in Section 7.3.
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The labeled simplices S5t1, S5t3, S5t7 and S5t9 have only spherical or Lannér vertices, and
each of them has two or three Lannér vertices. For each ∗ ∈ {5t1,5t3,5t7,5t9}, the once-
truncated simplex S†∗ obtained from S∗ by truncating all its Lannér vertices is perfect. So, if
a polytope G is obtained by gluing m+1 copies of S†∗, then G is also perfect. Since m is the
number of essential prismatic circuits of G, the space C(G) is homeomorphic to Rm, by (the
proof of) Theorem A. �

9. GEOMETRIC INTERPRETATION

Let P be an irreducible, loxodromic Coxeter polytope, ΓP the group generated by the reflec-
tions in the facets of P, and ΩP the interior of the union of ΓP -translates of P. Then ΩP is a
properly convex domain, hence it admits a Hilbert metric dΩP . The polytope P is said to be of
finite volume if P∩ΩP has finite volume with respect to the Hausdorff measure µΩP induced
by dΩP , convex-cocompact if P ∩C(ΛP) ⊂ ΩP , geometrically finite if µΩP(P ∩C(ΛP)) < ∞,
where ΛP is the limit set of ΓP and C(ΛP) is the convex hull of ΛP in ΩP . Those notions are
studied in details in [Mar17].

The action of ΓP on ΩP is cocompact if and only if P is perfect. In this case, the convex
domainΩP is strictly convex if and only if ΓP is word-hyperbolic, by work of Benoist [Ben06b,
Prop. 2.5]. The following theorems state analogous results for 2-perfect Coxeter polytopes.

Theorem 9.1 ([Mar17, Th. A]). Let P be an irreducible, loxodromic, 2-perfect Coxeter poly-
tope. Then:

● P is geometrically finite;
● P is convex cocompact if and only if the link Pv of each vertex v of P is elliptic or

loxodromic;
● P is of finite volume if and only if P is quasi-perfect.

Theorem 9.2 ([Mar17, Th. E]). Let P be an irreducible, loxodromic, quasi-perfect Coxeter
polytope, and V the set of all parabolic vertices of P. Then the convex domain ΩP is strictly
convex if and only if the group ΓP is relatively hyperbolic with respect to the collection {Γv}v∈V
of the subgroups Γv generated by the reflections in the facets of P that contain v.

As in the proof of [Mar17, Th. F], one can prove the following lemma:

Lemma 9.3. Let P be an irreducible, loxodromic, quasi-perfect Coxeter truncation d-polytope,
and V the set of all parabolic vertices of P. If P has an Ãd−1 prismatic circuit, then P is not
relatively hyperbolic with respect to {Γv}v∈V .

Remark 9.4. The converse of Lemma 9.3 also holds: if all the prismatic circuits of P are
Lannér, then P is relatively hyperbolic with respect to {Γv}v∈V .

The space of finite volume (resp. convex-cocompact, resp. geometrically finite) Coxeter
polytope realizing G is denoted Cvf (G) (resp. Ccc(G), resp. Cgf (G)).

Proposition 9.5. Let G be an irreducible, large, 2-perfect labeled truncation d-polytope, and
VÃ the set of Ãd−1 vertices of G. Then:

● C(G) = Cgf (G);
● Ccc(G) is an open subset of C(G). Moreover, Ccc(G) = C(G†VÃ);
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● Cvf (G) is a submanifold of C(G).

Proof. The first item is a consequence of the first item of Theorem 9.1.

For each v ∈VÃ, the subspace

Σv ∶= {[P] ∈ C(G) ∣ RCv([P]) = 0}
is a hypersurface of C(G), where Cv is the circuit that corresponds to v. By the second item of
Theorem 9.1, the complement of ⋃v∈VÃ

Σv in C(G) is Ccc(G) and also equals C(G†VÃ) thanks
to Corollary 4.8.

Theorem 9.1 implies that if G has a Lannér vertex, then Cvf (G) =∅. Assume that G has no
Lannér vertex. By the third item of Theorem 9.1 and Remark 2.10, the intersection ⋂v∈VÃ

Σv

is Cvf (G). In the coordinates defined in Section 5.4, the hypersurface Σv is a hyperplane. So
Cvf (G) is a submanifold of C(G). �

Proof of Theorem B. Let P be a Coxeter polytope of dimension d = 8 realizing the labeled
prism S†

8τ or S†
8τ ♯φ j S

†
8τ ( j = 1, . . . ,5) of Table 12, or a Coxeter polytope of dimension d = 4

realizing the prism S†
4τ or S†

4τ ♯φ j S
†
4τ ( j = 1, . . . ,3) of Figure 2. Then P is an irreducible, lox-

odromic, quasi-perfect Coxeter d-polytope with one Ãd−1 prismatic circuit, and hence ΓP is
not relatively hyperbolic with respect to {Γv}v∈V , by Lemma 9.3. So, ΩP is an indecompos-
able, inhomogeneous, non-strictly convex, quasi-divisible d-domain by ΓP such that ΩP/ΓP
has only generalized cusps of type 0, by Theorems 9.1 and 9.2. �

Remark 9.6. There exists an irreducible, loxodromic, quasi-perfect Coxeter d-polytope Pd
whose reflection group Γ is not relatively hyperbolic with respect to {Γv}v∈V in dimension
d = 3, by [Mar17, Th. F], and in dimension d = 5 and 7, by [CLM20] (see the left and the
middle diagrams of Figure 3). A computation similar to the one in the proof of [CLM20,
Prop. 7.1] can show that such a Coxeter polytope Pd exists also in dimension d = 6 (see the
right diagram of Figure 3).

S†
4τ

4∞

S†
4τ ♯φ1S

†
4τ

4

4

∞

S†
4τ ♯φ2S

†
4τ

4

4

∞

S†
4τ ♯φ3S

†
4τ

4

4

∞

TABLE 2. The Coxeter diagrams of the labeled 4-prism S†
4τ or S†

4τ ♯φ j S
†
4τ

m ⩾ 7 m ⩾ 7

TABLE 3. The Coxeter diagrams of P5, P7 and P6 from left to right



34 SUHYOUNG CHOI, GYE-SEON LEE, AND LUDOVIC MARQUIS

APPENDIX A. SPHERICAL AND AFFINE COXETER GROUPS

For the reader’s convenience, we reproduce below the list of all irreducible spherical Cox-
eter diagrams and irreducible affine Coxeter diagrams in Table 4. As usual we omit the label
3 of edges from Coxeter diagrams.

For spherical Coxeter groups, the index (in particular the n for An, Bn or Dn) is the num-
ber of nodes of the diagram. But, for affine Coxeter groups, the index (in particular the n for
Ãn, B̃n, C̃n or D̃n) is one less than the number of nodes.

I2(p) (p ⩾ 5) p Ã1
∞

An (n ⩾ 1) Ãn (n ⩾ 2)

Bn (n ⩾ 2) 4 B̃2 = C̃2
4 4

H3
5 B̃n (n ⩾ 3) 4

H4
5 C̃n (n ⩾ 3) 4 4

Dn (n ⩾ 4) D̃n (n ⩾ 4)

F4
4 F̃4

4

G̃2
6

E6 Ẽ6

E7 Ẽ7

E8 Ẽ8

TABLE 4. The irreducible spherical Coxeter diagrams on the left and the irre-
ducible affine Coxeter diagrams on the right.
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APPENDIX B. LANNÉR COXETER GROUPS OF RANK 4

We reproduce the list of all Lannér Coxeter diagrams of rank 4 in the Table 5.

4 5 4

4

5

4

5

5

5 5 4 5 5 5

TABLE 5. Lannér Coxeter groups of rank 4

APPENDIX C. 2-LANNÉR COXETER GROUPS OF RANK ⩾ 5

We reproduce below the complete list of 2-Lannér Coxeter groups of rank 10, 9, 8, 7, 6, 5
respectively in Tables 6, 7, 8, 9, 10, 11. This list is extracted from [Max82, CL15a].

There is a bijection between the set of 2-Lannér Coxeter groups WS of rank d + 1 and
the set of irreducible, large, 2-perfect labeled simplex SW of dimension d. Each facet of SW
corresponds to s ∈ S, i.e. a node of the Coxeter diagram DW . Since the polytope SW is a
simplex, each vertex v has a unique opposite facet, hence corresponds to an element sv ∈ S.
The link of SW at v is isomorphic to SWS∖{sv} . Each node sv is colored in black, orange, blue,
green, depending on the property of the link of SW at v.

spherical rigid affine flexible affine rigid Lannér flexible Lannér

rigid quasi-Lannér

W91

W92 W93
4

TABLE 6. The diagrams of the 2-Lannér Coxeter groups of rank 10
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flexible quasi-Lannér rigid quasi-Lannér

W81

W8τ
W82

4

W83

TABLE 7. The diagrams of the 2-Lannér Coxeter groups of rank 9

flexible quasi-Lannér rigid quasi-Lannér

W7τ

W71

W72
4

W73

TABLE 8. The diagrams of the 2-Lannér Coxeter groups of rank 8

flexible quasi-Lannér rigid quasi-Lannér

W6τ W61 W62
4

TABLE 9. The diagrams of the 2-Lannér Coxeter groups of rank 7
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flexible quasi-Lannér

W5τ W5c1

4

W5c2

4

4

rigid quasi-Lannér

W51
4 4 W52

4

W53

W54
4 W55

4 4 W56
4

W57 W58
4 W59

4

flexible 2-Lannér

W5p1

4

W5p2 4

rigid 2-Lannér

W5t1
5 W5t2

5 4 W5t3
5 5

W5t4
5

W5t5
5 3 W5t6

5 4 W5t7
5 5

W5t8
4 5 W5t9

5

TABLE 10. The diagrams of the 2-Lannér Coxeter groups of rank 6
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flexible Lannér rigid Lannér
4

5 3,4,5 5

rigid quasi-Lannér

4
4

4
4

4

4 4

flexible quasi-Lannér

4

4

4

flexible 2-Lannér

4 5

4

4

5

4

5

5

4

5 5

5

5

4,5 3,4,5

4

5
5

3,4,5

4,5
5

5
4

4
4

rigid 2-Lannér

5

4,5

5
5

4
5

5 4,5 5 5 4 5

TABLE 11. The diagrams of the 2-Lannér Coxeter groups of rank 5



DEFORMATION SPACES OF COXETER TRUNCATION POLYTOPES 39

APPENDIX D. PRISMS IN DIMENSION 6, 7 AND 8

Tables 12, 13 and 14 provide the Coxeter diagrams of convex-projectivizable, irreducible,
large, 2-perfect labeled prisms of dimension d = 6,7,8 (see Theorems 7.2, 7.3 and 7.4).

S†
8τ

∞
S†

8τ ♯φ1S
†
8τ

∞ S†
8τ ♯φ2S

†
8τ

∞

S†
8τ ♯φ3S

†
8τ

∞ S†
8τ ♯φ4S

†
8τ

∞ S†
8τ ♯φ5S

†
8τ

∞

TABLE 12. The Coxeter diagrams of the 8-prims

S†
7τ

∞
S†

7τ ♯φ1S
†
7τ

∞ S†
7τ ♯φ2S

†
7τ

∞

S†
7τ ♯φ3S

†
7τ ∞ S†

7τ ♯φ4S
†
7τ

∞

TABLE 13. The Coxeter diagrams of the 7-prisms

S†
6τ

∞
S†

6τ ♯φ1S
†
6τ

∞ S†
6τ ♯φ2S

†
6τ

∞

S†
6τ ♯φ3S

†
6τ

∞ S†
6τ ♯φ4S

†
6τ

∞

TABLE 14. The Coxeter diagrams of the 6-prisms
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APPENDIX E. EXCEPTIONAL PRISMS IN DIMENSION 5

We collect below the Coxeter diagrams of convex-projectivizable, irreducible, large, 2-
perfect labeled 5-prisms whose deformation space is disconnected.

S†
5τ

∞

S†
5τ ♯φ1S

†
5τ

∞

S†
5τ ♯φ2S

†
5τ

∞

S†
5τ ♯φ3S

†
5τ

∞

TABLE 15. The Coxeter diagrams of the exceptional 5-prisms
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