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Abstract
The spectre of increasing impacts on exploited fish stocks in consequence of warmer 
climate conditions has become a major concern over the last decades. It is now im-
perative to improve the way we project the effects of future climate warming on 
fisheries. While estimating future climate-induced changes in fish distribution is an im-
portant contribution to sustainable resource management, the impacts on European 
small pelagic fish—representing over 50% of the landings in the Mediterranean and 
Black Sea between 2000 and 2013—are yet largely understudied. Here, we inves-
tigated potential changes in the spatial distribution of seven of the most harvested 
small pelagic fish species in Europe under several climate change scenarios over the 
21st century. For each species, we considered eight Species Distribution Models 
(SDMs), five General Circulation Models (GCMs) and three emission scenarios (the 
IPCC Representative Concentration Pathways; RCPs). Under all scenarios, our re-
sults revealed that the environmental suitability for most of the seven species may 
strongly decrease in the Mediterranean and western North Sea while increasing in 
the Black and Baltic Seas. This potential northward range expansion of species is 
supported by a strong convergence among projections and a low variability between 
RCPs. Under the most pessimistic scenario (RCP8.5), climate-related local extinctions 
were expected in the south-eastern Mediterranean basin. Our results highlight that a 
multi-SDM, multi-GCM, multi-RCP approach is needed to produce more robust eco-
logical scenarios of changes in exploited fish stocks in order to better anticipate the 
economic and social consequences of global climate change.
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1  | INTRODUC TION

European Small Pelagic Fish (SPF) species have a key economic 
and ecological role (Checkley et al., 2009; Fréon et al., 2005). SPFs 
are the main harvested fish group worldwide, representing be-
tween 20% and 30% of the global commercial landings, depend-
ing on yearly environmental fluctuations and fishing effort (FAO, 
2011). These species accounted for 17% of the E.U. catches in 2015 
(European Commission & DG-MARE, 2018) and up to 53% of the 
Mediterranean and Black Sea landings between 2000 and 2013, but 
most of them are significantly impacted by overfishing (FAO, 2016). 
They are also the main prey of most piscivorous fishes, cetacean and 
seabirds (Bachiller & Irigoien, 2015; Cury et al., 2011), transferring 
organic matter from the base of the food web to upper trophic lev-
els (Cury, 2000). Abundantly found in upwelling ecosystems (Cury, 
2000), SPFs cover a wide range of regions, therefore overlapping 
with a large range of environmental conditions (Checkley et al., 
2009). European Seas, especially the Mediterranean Sea host a high 
diversity of SPFs, including both temperate-cold and temperate-
warm water species (Ben Rais Lasram et al., 2010; Coll et al., 2010). 
In the context of climate change, a potential range shift of SPFs may 
induce (a) major economic and social consequences—especially for 
countries that rely on fisheries for protein supply (Tacon & Metian, 
2009)—and (b) deep changes in ecosystem and food web functioning 
(e.g. Chaalali et al., 2016). Predicting climate-induced range shifts of 
these largely harvested species is therefore essential for sustainable 
resource management and food security (Cheung et al., 2013).

Contemporary fisheries management is mainly based on stock 
assessment models (e.g., Methot & Wetzel, 2013) that estimate pop-
ulational parameters (e.g., recruitment, abundance and sustainable 
harvesting rate) for a given fish stock. Over the last decade, several 
modelling procedures were developed to include environmental vari-
ability in fish stock assessment by focusing on the environment–re-
cruitment relationship (e.g., MacKenzie et al., 2008; Tommasi et al., 
2017). Considering environmental uncertainty in stock recruitment 
is a preliminary step towards a possible integration of global climate 
change impacts on stock dynamics, however (Edgar et al., 2019; Lee 
et al., 2018; Punt et al., 2014). In the context of ecosystem-based fish-
eries management (EBFM), several modelling techniques have been 
developed to integrate trophic, environmental and societal factors 
(e.g., Romagnoni et al., 2015; Smith et al., 2015) in order to thoroughly 
evaluate the status of fish stocks (Forrest et al., 2015). One caveat is 
that robust stock assessment or EBFM requires data-intensive mod-
els (Hilborn, 2011; Pauly, 2000; Wetzel & Punt, 2011), an approach 
not yet applicable to routine use at large-scale and long-term (Edgar 
et al., 2019). There is therefore an urgent need for basin-scale long-
term management plans that include the combined effects of fishing 
pressure and climate change, for effective conservation of SPFs and 
sustainable fisheries management (Faillettaz et al., 2019).

Over the last decades, species distribution modelling has been in-
tensively used to project the effects of past and future climate change 
on the distribution of suitable habitat for species of conservation 
concern. (Beaugrand et al., 2019; Bellard et al., 2013; Cheung et al., 
2009). Species Distribution Models (SDMs), statistical tools based on 

the niche-biotope duality (Colwell & Rangel, 2009; sensu Hutchinson, 
1978) to conceptualize and investigate biogeographical patterns in re-
lation to environmental conditions, are a popular way to assess which 
species will be under most threat in a near future and/or which regions 
will be the most impacted by a reorganization of communities (Sinclair 
et al., 2010). While stock assessments are based on parameters re-
lated to stock dynamics (e.g. spawning biomass, recruitment, growth, 
mortality), these techniques model the ecological niches of species 
using (a set of) environmental conditions where the species has been 
observed. The modelled niche can then be used to project potential 
distribution of species under different environmental conditions on a 
broad temporal and spatial scale (Colwell & Rangel, 2009), allowing the 
investigation of potential future range shifts. The capacity of SDMs 
to produce long-term, large-scale and comparable (i.e. between spe-
cies, regions or management zones and periods) future projections 
is of major importance for species conservation and management 
(Hollowed et al., 2013). The main objective of SDM-based approaches 
is the production of robust scenarios of future species distribution 
for reliable management and conservation perspectives (Cheung, 
Frölicher, et al., 2016; Goberville et al., 2015; Stock et al., 2011) and 
best practices recommend multimodel ensemble projections (Buisson 
et al., 2010), that is the use of a large set of SDMs and climate models 
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(e.g. General Circulation Model, GCM; Wilby & Dessai, 2010). Most 
SDM applications on European SPFs did not include long-term distri-
butional range projections at the regional or European scales (Brown 
et al., 2006; Maynou et al., 2020; Sabatés et al., 2006; Tsikliras, 2008), 
however, and a few studies addressed this challenge at the European 
scale (Lenoir et al., 2011; Raybaud et al., 2017) but only for a few SPFs.

Our study aims to address this gap in knowledge by examining (a) 
long-term and (b) large-scale distributional range projections under dif-
ferent climate change scenarios (IPCC Representative Concentration 
Pathways; RCP) for a set of seven largely harvested European Small 
Pelagic Fish (SPF) species of major ecological and economic impor-
tance (Checkley et al., 2009; Fréon et al., 2005): Atlantic horse mackerel 
(Trachurus trachurus, Carangidae), European pilchard (Sardina pilchardus, 
Clupeidae), European sprat (Sprattus sprattus, Clupeidae), European an-
chovy (Engraulis encrasicolus, Engraulidae), Mediterranean horse mack-
erel (Trachurus mediteraneus, Carangidae), round sardinella (Sardinella 
aurita, Clupeidae) and bogue (Boops boops, Sparidae). Based on the 
contemporary SPFs distribution retrieved from Schickele et al. (2020) 
and using a multi-SDM, multi-GCM and multi-RCP approach, we inves-
tigated future potential range shifts of these largely harvested species 
at the European scale. To evaluate expected changes at a manageable 
level (Zeller et al., 2016), we then aggregated our results per Exclusive 
Economic Zones (Flanders Marine Institute, 2019; EEZ; U.N. General 
Assembly, 1982eneral Assembly, 1982) and discussed possible economic 
consequences of climate change on the allocation of fishing effort.

2  | MATERIAL AND METHODS

2.1 | Description of the modelling framework

We used the future Environmental Suitability Index (ESI; i.e. spatial-
ized index ranging from 0 to 1, based on suitability estimated from 

contemporary 1990–2017 conditions) of the seven SPFs, retrieved from 
Schickele et al. (2020). This recently developed modelling framework 
includes (a) a spatial and environmental sampling bias reduction, (b) the 
use of the convex hull method to generate pseudo-absence, (c) a numeri-
cal and ecological evaluation of model outputs and (d) the quantification 
of uncertainties associated to the selection of SDMs. Environmental 
parameters used to assess contemporary species distribution (Table 1), 
the calibration procedure and how we selected the most accurate mod-
els (Table 2) are therefore only briefly discussed in this section.

Contemporary (1990–2017) distributions of SPFs were obtained 
using an ensemble forecasting framework that select—among eight 
different statistical algorithms—the models that best reproduce the 
observed spatial distribution of each species (Araújo & New, 2007; 
Buisson et al., 2010; Pearson et al., 2006). To account for the source of 
uncertainty related to the choice of a given species distribution model, 
we considered seven algorithms computed from the Biomod2 pack-
age (Thuiller et al., 2009, 2016): (i) Generalized Linear Model (GLM), (ii) 
Generalized Additive Model (GAM), (iii) Generalized Boosting Model 
(GBM), (iv) Artificial Neural Network (ANN), (v) Flexible Discriminant 
Analysis (FDA), (vi) Multiple Adaptive Regression Splines (MARS) and 
(vii) Random Forest (RF), plus (viii) the Non-Parametric Probabilistic 
Ecological Niche (NPPEN) model from Beaugrand et al. (2011). We 
therefore considered a large range of modelling techniques (see de-
tails and references in Supplementary Material 1), including regres-
sion-based (i.e., GLM; GAM, MARS), machine learning (i.e., GBM, 
ANN, RF, FDA) and profile (i.e., NPPEN) methods.

To model each of the seven contemporary distribution, we first 
constructed an ecologically and statistically meaningful set of en-
vironmental parameters by calculating their respective explicative 
power using a bootstrap method (Leroy et al., 2014). The follow-
ing environmental parameters were tested: (a) mean annual Sea 
Surface Temperature (SST), (b) annual SST range, (c) monthly SST 
variance, (d) Primary Production (PP), (e) mean annual Sea Surface 

TA B L E  1   Description of the environmental parameters considered in the ensemble model procedure and corresponding references

Environmental parameter Contemporary Future

Bathymetry: spatial seafloor depth (m) Global seafloor topography (Smith & Sandwell, 1997)

Distance to coast: distance to the 
nearest coast (km)

NASA Goddard Space Flight Center (2009) (https://
ocean color.gsfc.nasa.gov/docs/distf romco ast/)

SSS: sea surface salinity Levitus’ climatology (Levitus, 2011) completed with 
ICES data (http://www.ices.dk/)

Log_PP: log-transformed sea surface 
primary production

IPSL (Dufresne et al., 2013; Hourdin et al., 2013),  
MPI (Giorgetta et al., 2013; Stevens et al., 2013),  
CNRM (Voldoire et al., 2013), HadGEM  
(Jones et al., 2011) and GISS (Schmidt et al., 2014)  
models.

SST: mean annual sea surface 
temperature (°C)

AVHRR Very High Resolution Radiometer (Casey 
et al., 2010)

IPSL (Dufresne et al., 2013; Hourdin et al., 
2013),

MPI (Giorgetta et al., 2013; Stevens et al., 
2013),

CNRM (Voldoire et al., 2013),
HadGEM (C. D. Jones et al., 2011) and
GISS (Schmidt et al., 2014) models.

SSTr: mean annual sea surface 
temperature range (°C)

SSTvar: mean monthly sea surface 
temperature variance (°C)

Note: Empty cells stands for parameters that we considered as constant over time in our simulations.

https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
http://www.ices.dk/
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Salinity (SSS), (f) bathymetry and (g) distance to coast. To reduce 
model over-parametrization, bathymetry and distance to coast 
were included by means of a hierarchical filtering approach (Hattab 
et al., 2014). Because SPFs are strictly planktonophagous species 
and depend on coastal ecosystems for their early lifestages, they 
are distributed in the epipelagic zone (i.e., bathymetrical area where 
photosynthesis takes place) and neritic areas only (Checkley et al., 
2009). Geographical cells were therefore considered as suitable for 
SPF only if suitable environmental conditions were found in ner-
itic areas (i.e., >50 km from the coast, independently of depth) or in 
low-bathymetric (i.e., between 0 and 300 m depth) oceanic regions 
(Schickele et al., 2020). To prevent from multicollinearity and unnec-
essary model complexity (Dormann et al., 2007), only one parame-
ter from clusters of correlated parameters (Pearson’s r correlation 
>0.7) was retained (Leroy et al., 2016).

For each species and combination of environmental parameters, 
the calibration data set was then filtered in an environmental space 
to reduce sampling bias as much as possible (Varela et al., 2014). 
Pseudo-absences were then generated in the same filtered environ-
mental space outside the corresponding convex hull of observation 
(i.e. considered as a proxy of environmental suitable conditions; 
Cornwell et al., 2004; Getz & Wilmers, 2006), excluding the 2.5 and 
97.5 percentiles. Finally, we used the Continuous Boyce Index (CBI; 
Hirzel et al., 2006)—the appropriate evaluation metric for a presence/
pseudo-absence calibration data set—to evaluate the robustness of 
model outputs (see discussion in Leroy et al., 2018): each model with 
a CBI value over 0.5 was retained (e.g., Faillettaz et al., 2019). Finally, 
we calculated the response curve of each environmental parameters 
by keeping other parameters at their mean values for modelled spe-
cies, using the evaluation strip method (Elith et al., 2005). The eco-
logical realism and relevance of the models were then corroborated 
by an expert-based inspection/validation of each response curve in 
order to discard spurious responses to environmental factors (e.g. 
bimodal response to temperature).

2.2 | Future scenarios and General Circulation 
Models (GCMs)

To project the future ESI of each species, we considered five GCMs 
retrieved from the 5th phase of the Coupled Model Intercomparison 
Project (CMIP5; Table 1). Future SST and PP were averaged for three 
different periods to cover: (i) short-to-medium (2030–2039), (ii) mid-
century (2050–2059) and (iii) late-century (2090–2099) range time-
scales. To cover the range of year-2100 radiative forcing values found 
in the literature, that is from 2.6 to 8.5 W/m2, we used three RCPs sce-
narios: (a) the optimistic peak and decline (RCP2.6), the intermediate 
“stabilization” (RCP4.5) and the “business as usual” (RCP8.5) scenarios 
(Meinshausen et al., 2011; van Vuuren et al., 2011). We considered SSS 
as constant over time because its temporal variance is negligible in com-
parison with its spatial variance (Dickson et al., 1988; Faillettaz et al., 
2019; Le Marchand et al., 2020). While the spatial variance of SSS al-
lowed us to discriminate marine from brackish waters (e.g., from 35 to 
15 between the west and the east of the Danish strait), its temporal var-
iance is negligible: for the period 2016–2065, Lavoie et al. (2019) report 
expected salinity trends of +0.063 per decade at the maximum, a value 
comparable to the rise of SSS observed since 1950 (Durack et al., 2012).

2.3 | Pre-treatment of future temperature data

Because temperature-related parameters (Table 1) were retrieved from 
both observation-based (i.e. for the contemporary period) and GCM-
based data (i.e. for the three future periods), our projections may be 
altered. To assess possible bias, we performed Taylor diagrams (Taylor, 
2001) using a common time period (i.e. 2006–2017) to estimate the 
consistency between current and future climate data (Supplementary 
Material 2): the correlation coefficient, the root-mean-square difference 
(RMSD) and the standard deviation (SD) difference were calculated for 
each temperature-related parameter (Table 1). For each GCMs, RCPs, 
and geographical cell, we therefore estimated the difference between 
the two datasets and corrected the model-based temperature data 
accordingly. This process, already applied by Péron et al. (2012) and 
Cristofari et al. (2018), ensured (a) a perfect correlation (Pearson coef-
ficient r = 1), (b) no RMSD and (c) the same SD between the two data 
sets for a common period. Results from the correction procedure and 
corresponding anomalies are shown in Supplementary Material 3.

2.4 | Projection of future environmental suitability

Projections of ESI values were carried out at spatial resolutions suit-
able for either ecological analyses, that is on a 0.1° × 0.1° spatial grid 
obtained from a linear spatial interpolation (Goberville et al., 2015), or 

TA B L E  2   Environmental parameters used to model each SPF 
species. Parameters are ranked according to their explanatory 
power.

Species
Environmental 
parameters

Mediterranean horse mackerel SST, SSTvar, log_PP

Atlantic horse mackerel SST, SSTvar, log_PP

European pilchard SST, SSTr, SSS

Round sardinella SST, SSTr, log_PP

European sprat SST, SSTr, log_PP

European anchovy SST, SSTvar, SSS

Bogue SST, SSTr

F I G U R E  1   Left panels: maps showing the differences in Environmental Suitability Index (ESI) values between 2090–2099 under scenario 
RCP8.5 (Representative Concentration Pathway) and 1990–2017. Middle panels: modelled ESI of the seven small pelagic fish species for the 
period 2090–2099 under scenario RCP8.5. Right panels: standard deviation based on 50 simulations per algorithm (i.e., 10 cross-validation 
runs × 5 general circulation models per algorithm). Note that the figure appears in colour in the online version only [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Future potential environmental 
suitability

Standard deviationDifference with contemporary 
environmental suitability

Atlantic horse mackerel

European pilchard

European sprat

European anchovy

Mediterranean horse mackerel

Round sardinella

Bogue
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policy application, that is in each Exclusive Economic Zone (Zeller et al., 
2016). Among the existing fishery zones, we chose to focus on EEZs—
area stretching from the coastline out to 200 nautical miles over which a 
country has special rights regarding the use of marine resources—as they 
are (a) basic units for fisheries management (e.g. attribution of maximum 
allowed catches by EEZs) and conservation perspectives (Allison et al., 
2009; Cheung, Jones, et al., 2016; Zeller et al., 2016), (b) at a spatial reso-
lution well-adapted for biogeographic research (Claus et al., 2014) and 
(c) commonly used in the literature to project the socioeconomics con-
sequences of climate change on fisheries (Cheung, Jones, et al., 2016; 
Sumaila et al., 2011, 2015). The stock assessment areas considered for 
SPFs (http://www.ices.dk/) overlap with the EEZs of the European Seas 
(Flanders Marine Institute, 2019) as the European Atlantic façade and 
enclosed seas do not include high sea areas (i.e. outside EEZs). In 2014, 
35% of the SPFs were captured by fishing fleet operating outside the 
EEZ of their respective countries (e.g. Denmark, Poland, Spain, Sweden; 
Supplementary Material 4), indicating the importance of international 
fishing agreements within the European Union (i.e. the latest available 
data; SAUP, 2020). Here, the mean ESI value was calculated by aggre-
gating, within each EEZ, the 0.1° × 0.1° geographical cells retained after 
application of the hierarchical filtering approach (see 2.1.).

2.5 | Uncertainties related to future projections

The selection of a GCM may greatly influence the projected distribu-
tions of a species (Goberville et al., 2015): GCMs may diverge for tech-
nical or parameterization reasons, may simulate ocean-atmosphere 
processes in different ways or may vary due to their initial spatial resolu-
tion (Beaumont et al., 2008; Goberville et al., 2015; Wiens et al., 2009). 
Because of their wide variety and complexity, and because we cannot 
identify a model that performs better than another (Martinez-Meyer, 
2005), it is essential to consider a full range of GCMs to examine the full 
range of potential future species distributions (e.g. Friedlingstein et al., 
2013; Shepherd, 2014). In our study, we adapted the ensemble mod-
elling for future projections: for each set of environmental parameters 
and each statistical algorithm, five GCMs and three RCP scenarios were 
considered to project future environmental suitability. For a given period 
and for each RCP, we performed 10 cross-validation runs, leading to the 
production of 50 simulations (5 GCM × 10 cross-validation runs) per 
statistical algorithm. We then computed the corresponding SD among 
SDMs (i.e. the variability related to the calculation of the ecological 
niche) and GCMs (i.e. the intrinsic variability linked to the climate system 
and expected climate conditions) to fully explore the uncertainty related 
to future environmental suitability projections (Goberville et al., 2015).

3  | RESULTS

3.1 | Future environmental suitability

Here, we present for each of the seven SPFs, the projected ESIs in 
the spatial domain ranging from 10 to 70°N and −30 to 45°E. Species 

distributional range under RCP8.5 conditions for the late 21st cen-
tury (2090–2099) are detailed in Figure 1 while other RCPs and pe-
riods are provided in Supplementary Material 5.

3.1.1 | Temperate-cold water species

Strong northward shifts in the distribution of ESI are expected for 
“temperate-cold” water species (Figure 1; i.e. Atlantic horse mack-
erel, European pilchard, European sprat and European anchovy). 
While ESI values increased along the Norwegian and Baltic seas be-
tween +0.2 and +0.6—especially for European anchovy (+0.6)—we 
forecasted a decrease in ESI values that ranged from −0.2 to −0.6 
along the Mediterranean Sea, the Bay of Biscay and the English 
Channel, but to a lesser extent, except for European anchovy. We 
projected a potential local extinction (ESI values <0.05) in the south-
western Mediterranean Sea for all temperate-cold water species, in 
particular for European sprat that may face unsuitable environmental 
conditions in the whole Mediterranean Sea. With ESI values above 
0.4, the distributional centre of the four temperate-cold species may 
range from the North Sea to the southern Norwegian Sea by the 
end of the century. For all temperate-cold species, we projected the 
amplitude of the changes in ESI values to increase through time and 
when the intensity of the radiative forcing increases (Supplementary 
Material 5). The decrease in ESI value (maximum value of −0.6) in 
the Mediterranean Sea, that may potentially lead to local extinctions 
by the end of the century under RCP8.5 conditions, may be limited 
under scenario RCP2.6 with a reduction between −0.1 (2030–2039) 
and −0.4 (2090–2099). The potential range expansion of temperate-
cold species in the Baltic and Norwegian seas is expected to increase 
by +0.4 for all RCPs and periods. The geographical expansion may 
decrease for scenario RCP2.6, however.

3.1.2 | Temperate-warm water species

Expected changes in ESI values for “temperate-warm” water spe-
cies (Figure 1; i.e. Mediterranean horse mackerel, round sardinella 
and bogue) were variable with species-specific patterns. No major 
changes in ESI values were expected for round sardinella but we 
showed a potential increase in the Black Sea (between +0.4 to +0.6). 
For Mediterranean horse mackerel and bogue, we projected an im-
portant increase in ESI values (between +0.2 and +0.6) in northern 
regions (e.g. in the North Sea) and a moderate to high decrease in 
ESI values in the Mediterranean Sea for both species (ranging from 
−0.2 to −0.6 for the Mediterranean horse mackerel and about −0.2 
for the bogue). We expect a range expansion towards the Norwegian 
Sea for both species. With ESI values ranging from 0.6 to 0.8, our 
models also projected a distributional shift of Mediterranean horse 
mackerel towards the Bay of Biscay. For all temperate-warm spe-
cies, projected changes in ESI values may increase in amplitude over 
time, when the magnitude of the warming increases (Supplementary 
Material 5). If global warming is small (RCP2.6), the decrease in ESI 

http://www.ices.dk/
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F I G U R E  2   Changes in the Environmental Suitability Index (ESI) per Exclusive Economic Zone (EEZ) and species in comparison to their 
fish landings. From top to bottom and left to right: the averaged (1990–2017) landings per species and EEZ, the ESI values per EEZ for the 
decade 2090–2099 for Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5. Bar plots for ESI are scaled from 0 to 1, the dashed 
lines correspond to an ESI value of 0.5 and the full line spectre corresponds to the ESI values per EEZ for the period 1990–2017. Countries 
with catches under 20,000 metric tons are not shown. Note that the figure appears in colour in the online version only [Colour figure can be 
viewed at wileyonlinelibrary.com]
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values may range between −0.3 (2030–2039) and −0.4 (2090–2099) 
for Mediterranean horse mackerel in the Mediterranean Sea. By 
limiting global warming to +2°C (i.e. RCP2.6), an expansion of 
Mediterranean horse mackerel and bogue may be negatively af-
fected, despite a maximum increase in ESI value of about +0.4 for 
all RCPs and periods.

3.1.3 | Uncertainties in expected environmental 
suitability

For all SPFs, our projections showed only weak variations, with mean 
SD ranging from 0.1 to 0.4 (Figure 1). This demonstrates the spatial 
convergence of our simulations based on a multi-SDM and multi-
GCM framework. For temperate-cold species, we projected low 
SD values (0.1 in average) in geographical cells where we projected 
low (<0.2) or high ESI values (>0.8). This indicates that our simu-
lations converged towards either potential local extinctions (e.g. in 
the south-east Mediterranean) or shifts in the distribution centre of 
SPFs (e.g. European anchovy in the Norwegian or Baltic seas). Our 
models showed higher (about 0.4) SD values in geographical cells 
that correspond to intermediate ESI values, suggesting a lower con-
fidence in moderate range expansion (e.g. in the Norwegian Sea). For 
all temperate-warm species, we projected similar results between 
SD and ESI values. Because the regions of low and high ESI values 
(<0.2 and >0.8 respectively) are less emphasized for temperate-
warm species, our models showed less convergence in comparison 
with temperate-cold species, except for bogue in the Mediterranean 
Sea (SD values <0.2). The overall, low SD values (<0.4) expected for 
late-century projections, confirms that our models showed compa-
rable estimates of future environmental suitability of SPFs, including 
projected local extinctions.

3.2 | Climatic range shifts between Exclusive 
Economic Zones

Here, we explored the consequences of potential distribution shifts 
at the scale of EEZs (Figure 2), manageable units commonly used 
for projecting the possible socioeconomic impacts of climate change 
on fish stocks (Cheung, Jones, et al., 2016). For each EEZ and SPF, 
we calculated the total value of landings for the period 1990–2017 
(Figure 2, top-left panel) and confronted observed landings with po-
tential changes in ESI by the end of the century for RCP2.6, RCP4.5 
and RCP8.5 (Figure 2, bottom and right panels).

3.2.1 | Temperate-cold water species

The four temperate-cold water species are of major importance in 
European fisheries (FAO, 2020), especially along the Atlantic façade 
(c.a. 50,000 t/year per EEZ), except for European sprat that is largely 
harvested in the Baltic Sea (Figure 2). These species are currently 

mostly captured in regions where we found high ESI values over 
the period 1990–2017 (Figure 2; Schickele et al., 2020). Our mod-
els projected a decrease in the ESI values in southern and western 
Europe (Figure 2). While the Mediterranean EEZs showed a decrease 
in mean ESI values from 0.48 (1990–2017) to 0.39 (RCP2.6) or 0.24 
(RCP8.5), we projected an increase in the EEZs of the Baltic Sea from 
0.43 (1990–2017) to 0.51 (RCP2.6) or 0.59 (RCP8.5; Figure 2). Our 
results highlight that a potential mismatch between current fisher-
ies areas and changes in the species climatic range of temperate-
cold water species could occur by the end of the century; a major 
decrease in ESI values was for example expected in Morocco and 
Turkey (Figure 2), that is where species are currently abundantly cap-
tured. In contrast, we projected that ESI values may remain steadily 
constant over the current century in Denmark, the main fishing area 
for European sprat (Figure 2). At the European scale, the absolute 
variation of ESI values (i.e. relative to 1990–2017) was expected to 
range from 22% (RCP2.6) to 33% (RCP8.5), suggesting a potential 
reallocation of temperate-cold water species population in fisheries 
management zones.

3.2.2 | Temperate-warm species

In European seas, the three temperate-warm water species are less 
harvested than temperate-cold water species (FAO, 2020) (Figure 2, 
top-left panel). For all species except round sardinella, we projected 
important late-century changes in the ESI values at the EEZs scale. 
While we forecasted a moderate decrease in ESI values—from 0.62 
(1990–2017) to 0.54 (RCP2.6) and 0.53 (RCP 8.5)—in the EEZs of 
the Mediterranean Sea (RCP8.5; Figure 2), our simulations revealed 
a moderate to high increase in EEZs of the Atlantic façade, the Black 
Sea and the Baltic Sea. The Baltic Sea EEZs are likely to undergo 
an important expansion of temperate-warm species, with changes 
in ESI values from 0 (1990–2017) to 0.03 (RCP2.6) or 0.22 (RCP8.5), 
and so a major extension of the northern boundary of temperate-
warm species (Figure 2). In contrast, we expect lower ESI values 
throughout their distributional ranges, especially for Mediterranean 
horse mackerel. At the European scale, the absolute variation in ESI 
(i.e. relative to 1990–2017) is predicted to range from 30% (RCP2.6) 
to 51% (RCP8.5). Our simulations therefore suggest a possible major 
reallocation of the suitable environment for temperate-warm spe-
cies along European EEZs.

4  | DISCUSSION

4.1 | Ecological impact of climate change on Small 
Pelagic Fishes

For all climate scenarios and all SPFs—except round sardinella—we 
projected substantial climate-induced northward distributional 
range shifts (Figure 1, Supplementary Material 5; Dulvy et al., 2008; 
Jorda et al., 2020; Perry et al., 2005). The narrow aerobic tolerance of 
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species embryonic and reproduction lifestages—under direct influ-
ence of SST—is the main limiting factor of the physiological activity, 
growth, and survival of SPFs (Dahlke et al., 2020; Peck et al., 2013). 
The projected decrease in ESI value in the Mediterranean Sea, as a 
response of the expected increase in temperature, may be explained 
by a limitation of eco-physiological processes (Dahlke et al., 2020) 
that hinders the survival and/or development of SPFs (Lehodey 
et al., 2006; Perry et al., 2005; Torri et al., 2018). If warming con-
tinues in the Mediterranean Sea (Supplementary Material 3), SPFs 
may experience hypoxia during their reproduction stage (Dahlke 
et al., 2020), leading to lower egg production rates, with putative 
effects on recruitment, and a bottleneck effect towards northern 
regions of the Mediterranean Sea (Ben Rais Lasram et al., 2010). The 
combination of warmer annual and winter temperature in northern 
Europe and the Black Sea rather may allow SPFs to overcome ther-
mal constraints during reproduction and development, with positive 
effects on egg quality (Dahlke et al., 2020). While sea water salinity 
may influence the specific gravity of marine pelagic fish eggs, that 
is their vertical distribution in the water column, egg size of SPFs—
that has a fundamental impact on the capacity of young larvae to 
be active, grow, and survive—is under direct influence of SST (Huret 
et al., 2016; Peck et al., 2013; Torri et al., 2018). SPFs are planktonic 
feeders (Bachiller & Irigoien, 2015) which depend on high productive 
areas such as the gulf of Gabès or the eastern North Sea during early 
development (Rijnsdorp et al., 2009). Despite the projected warming 
in the Mediterranean Sea, temporal changes in primary production 
may remain negligible in comparison with its spatial variance: using 
a multimodel approach, Macias et al. (2015) report a slight increase 
in primary production of about 9.5 mmol N/m2 over the period 
2015–2095. This supports why primary production did not greatly 
influence our projections. At an ecosystem scale, SPFs have a piv-
otal role (Chaalali et al., 2016) in marine food webs, contributing to 
carbon fluxes from lower trophic level to top predators (Cury, 2000). 
Projected distributional range shifts—and potential ensuing changes 
in abundance patterns (Helaouet & Beaugrand, 2009; Kulhanek 
et al., 2011; VanDerWal et al., 2009)—may deeply modify the 
Mediterranean or Baltic seas ecosystems through trophic cascading 
effects on the upper trophic levels which feed on these species, in-
cluding negative effects on their fisheries (Maynou et al., 2014). This 
climatic resilience-related issue may be assessed through the devel-
opment and adaptation of ecosystem management and protection 
strategies (Giakoumi et al., 2017; e.g. McLeod et al., 2009), in regions 
or for species (e.g. SPFs) identified as sensitive to climate-induced 
changes (e.g. the Mediterranean Sea; Figure 2).

4.2 | Management and economic implications

While fishing has expanded into the high seas over the last decades 
as a result of an increasing demand for fish and the overexploita-
tion of coastal waters (Sumaila et al., 2015), quantifying changes in 
the allocation of fisheries catches by maritime country and within 
EEZ waters allows to focus on a spatial scale that is politically and 

economically viable (Cheung, Jones, et al., 2016; Zeller et al., 2016). 
Depending on the EEZ, SPFs may experience high fishing mortalities, 
especially in the Mediterranean Sea (i.e. twice the maximum sustain-
able yield; FAO, 2016), with putative negative impacts on species 
growth, reproduction and stock production (Brander, 2007; Fréon 
et al., 2005; Lehodey et al., 2006). In our study area, 65% of the 
SPFs were captured in 2014 by fishing fleets originating from the 
same EEZ (Supplementary Material 4), mostly low to medium size 
and coastal fishing vessels (FAO, 2016; SAUP, 2020). In comparison, 
European EEZs may experience a variation of suitable environmental 
conditions for SPFs up to 51% (Figure 2). These potential upcoming 
changes in fishing ground location and the magnitude of impacted 
vessels may lead to (a) a redefinition of the European distribution of 
SPF stocks, (b) allocate fishing effort (i.e. licenses, number of boats) 
in a way that explicitly incorporate the influence of climate change 
on SPF stocks and (c) design new international fishing agreements in 
order to allow fishing fleets to operate in areas outside their EEZs 
(Gaines et al., 2018; Link et al., 2011; e.g. based on historical fisher-
ies; Perry et al., 2010). We argue that basing fisheries management 
strategies—such as a progressive and precautious adaptation of fish-
ing fleet (e.g. gear, target or quotas; Grafton 2010)—on an ensemble 
of long-term ecological scenarios that take into account projections 
of climate change effects at the scale of manageable units (i.e. EEZ), 
is a valuable information to mitigate the unsustainability of marine 
fisheries (Lotze et al., 2019). The vulnerability of marine countries 
depends on the state of their fishery (Barange et al., 2014; Sumaila 
et al., 2011): local fisheries (e.g. Morocco, Turkey) may be less re-
silient than long-range fisheries (e.g. Denmark; Supplementary 
Material 4) to a climate-induced range shift on their primary target 
(i.e. SPFs). Our projections at the scale of EEZs may therefore serve 
as a support for future socioeconomic research (e.g. Allison et al., 
2009; Badjeck et al., 2013).

4.3 | Perspectives on modelling small 
pelagic fisheries

Despite their popularity, SDMs have inherent limitations—de-
pending on their application context—such as the assumption of 
niche conservatism (Peterson & Soberón, 2012) and the failure 
to integrate species interactions or dispersal processes (Araújo & 
Guisan, 2006). While recent advances in species distribution mod-
elling proposed to overcome such shortcomings (e.g. dispersal 
constrained SDM; Boulangeat et al., 2012; e.g. joint-SDMs; Harris, 
2015), most of these ecological processes are mainly associated 
with local changes (Beaugrand & Kirby, 2018). These perspectives 
are at the cost of the amount of data needed to calibrate the mod-
els which can impede their broad scale-applicability, one of the 
main strength of SDM (Marmion et al., 2009). Based on our multi-
GCM, multi-SDM and multi-RCP approach that integrated climate 
uncertainty (Friedlingstein et al., 2013; Goberville et al., 2015; 
Shepherd, 2014) and to contribute to increase the probability of 
success in fishery management strategies (Jones et al., 2012), we 
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encourage further research in the regions that we have identified 
as the most vulnerable, such as the Mediterranean Sea. The whole 
Mediterranean Sea ecosystem, including highly impacted regions 
(Bănaru et al., 2013; Hattab et al., 2013; Piroddi et al., 2015), has 
been extensively studied over the last decades, and it is now 
well documented that changes in small pelagic populations—due 
to fishing or natural drivers—will strongly alter ecosystem struc-
ture and functioning (Palomera et al., 2007). Considering results 
from SDMs in combination with ecosystem models for fisheries 
management will help to better anticipate the consequences of 
climate-induced distributional shifts in small pelagic fish on the 
whole ecosystem (Chaalali et al., 2016). The need is urgent as 
many countries in the Mediterranean Sea are directly or indirectly 
dependant on activities that involve exploitation of marine fish re-
sources (Selig et al., 2019).
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