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INTRODUCTION

Hydrogeophysical methods are quickly developing and can now be considered as a state of the art tools for critical zone studies (e.g., [START_REF] Binley | The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales[END_REF]. In the hydrogeophysicist tool box one can consider the geoeletrical methods, from DC (Direct Current) to higher frequencies electrical and electromagnetic methods (e.g., [START_REF] Revil | Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology[END_REF][START_REF] Kemna | An overview of the spectral induced polarization method for near-surface applications[END_REF], and the seismic methods (e.g., Clair et al., 2015;[START_REF] Pasquet | Geophysical imaging of shallow degassing in a yellowstone hydrothermal system[END_REF][START_REF] Blazevic | Time-lapse seismic and electrical monitoring of the vadose zone during a controlled infiltration experiment at the ploemeur hydrological observatory[END_REF]. However, only few works have been conducted on the use of the seismoelectrical method in the context of an hydrogeophysical study (e.g., [START_REF] Revil | The seismoelectric method: Theory and application[END_REF][START_REF] Jouniaux | A review on electrokinetically induced seismoelectrics, electro-seismics, and seismo-magnetics for earth sciences[END_REF]. Among other works, one can cite the study of vadose zone hydrology [START_REF] Dupuis | Seismoelectric imaging of the vadose zone of a sand aquifer[END_REF][START_REF] Strahser | Dependence of seismoelectric amplitudes on water content[END_REF], glaciers [START_REF] Kulessa | Active seismoelectric exploration of glaciers[END_REF], or borehole-based characterization of sediments [START_REF] Dupuis | Vertical seismoelectric profiling in a borehole penetrating glaciofluvial sediments[END_REF].

Seismoelectrical signals arise by electrokinetic coupling from the propagation of a seismic wave in a charged porous medium. Constitutive minerals of geological media generally exhibit electrostatic charges at their surfaces, and, when in contact with a pore water electrolyte, an electrical double layer (EDL) develops at these interfaces. The EDL consists in an excess of electric charges in the pore water solution to compensate from the mineral surface charges. When a seismic wave propagates, it generates a relative displacement of the pore fluid with respect to the solid pore walls, moving the charges in solution with respect to the charges at the surface. This creates an electrical current and a resulting electrical field that can be measured remotely at the Earth's surface or within a geological medium and that, most importantly, contains information of interest for hydrogeophysical studies.

The study of physical processes underlying the seismoelectrical signal generation can be tracked back to the late 1930's (e.g., [START_REF] Thomson | A note on the seismic-electric phenomenon[END_REF][START_REF] Frenkel | On the theory of seismic and seismoelectric phenomena in a moist soil[END_REF] but it remains an active research subject (e.g., [START_REF] Pride | Electroseismic wave theory of Frenkel and more recent developments[END_REF][START_REF] Revil | The seismoelectric method: Theory and application[END_REF][START_REF] Jouniaux | A review on electrokinetically induced seismoelectrics, electro-seismics, and seismo-magnetics for earth sciences[END_REF]. The most traditional approach to model the seismoelectric conversion is the use of the electrokinetic coupling coefficient, that is, a frequency-dependent parameter that relates a difference in fluid pressure to a difference in electrical potential. The two most used frameworks to describe the evolution of the coupling coefficient as a function of frequency have been proposed by [START_REF] Packard | Streaming potentials across glass capillaries for sinusoidal pressure[END_REF] and [START_REF] Pride | Governing equations for the coupled electromagnetics and accoustics of porous media[END_REF]. These approaches have been able to reproduce experimental measurements of frequency-dependent streaming potential (e.g., [START_REF] Jouniaux | Frequency-dependent streaming potentials: a review[END_REF][START_REF] Tardif | Frequency-dependent streaming potential of ottawa sand[END_REF] and seismoelectric measurements (e.g., [START_REF] Zhu | Experimental measurements of the streaming potential and seismoelectric conversion in berea sandstone[END_REF].

More recently, following theoretical developments on streaming potentials (e.g., [START_REF] Kormiltsev | Three-dimensional modeling of electric and magnetic fields induced by the fluid flow movement in porous media[END_REF][START_REF] Revil | Constitutive equations for ionic transport in porous shales[END_REF], a new modeling approach for seismoelectric was proposed by [START_REF] Revil | Stochastic inversion of permeability and dispersivities from time lapse self-potential measurements: a controlled sandbox study[END_REF]. It consists in using the excess charge from the EDL as an electrokinetic coupling variable, that is, the excess of charges located in the diffuse layer which are effectively dragged by the relative displacement between the fluid and the solid part of the porous medium. This effective excess charge approach allows to directly relate the electrical current generated through electrokinetic coupling to the fluid movement itself (e.g., Jougnot et al., 2012;Revil and Jardani, 2013;Guarracino and Jougnot, 2018;[START_REF] Soldi | An analytical effective excess charge density model to predict the streaming potential generated by unsaturated flow[END_REF]. This approach has been used to model the seismoelectric conversion in reservoir rocks under saturated (e.g., [START_REF] Mahardika | Waveform joint inversion of seismograms and electrograms for moment tensor characterization of fracking events[END_REF][START_REF] Revil | The seismoelectric method: Theory and application[END_REF] and partially saturated conditions (e.g., [START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF][START_REF] Revil | The seismoelectric method: Theory and application[END_REF] or the effect of wave-induced fluid flow (e.g., [START_REF] Jougnot | Seismoelectric effects due to mesoscopic heterogeneities[END_REF][START_REF] Monachesi | An analytical study of seismoelectric signals produced by 1-d mesoscopic heterogeneities[END_REF][START_REF] Rosas-Carbajal | Seismoelectric signals produced by mesoscopic heterogeneities: spectroscopic analysis of fractured media[END_REF]. Nevertheless, in most of these works, the effective excess charge density is considered to be independent from the frequency. In [START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF], the authors propose an empirical way to account for the dependence of this param-eter to the frequency, that is, they consider a relaxation time constant characterizing the transition between the viscous laminar flow regime to the inertial laminar flow regime of the Navier-Stokes equation. However, the microscopic characteristics relating the effective excess charge density with the frequency remain largely unexplored.

In this work, we present a novel approach that permits to up-scale the effective excess charge density from the pore scale including frequency dependent effects. For that, we make use of the flux-averaging framework proposed by Jougnot et al. (2012), in which the porous medium is conceptualized as a bundle of capillary tubes. First, we introduce the theoretical basis of the proposed model. Then, we analyze its senstivity, compare its results with the models of [START_REF] Packard | Streaming potentials across glass capillaries for sinusoidal pressure[END_REF] and [START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF], and with experimental data from the literature.

THEORETICAL DEVELOPMENT

The proposed up-scaling procedure to obtain the effective excess charge density is summarized in Figure 1. First we describe the properties at the interface scale. Then we assume that, in the presence of a fluid pressure gradient, flow channels are generated within the pore space. These flow channels are conceptualized employing the capillary tube geometry.

Models based on such approach have a long history (e.g., [START_REF] Kozeny | Über kapillare leitung des wassers im boden:(aufstieg, versickerung und anwendung auf die bewässerung[END_REF] and, despite their conceptual simplicity, they have proven to be a highly effective tool for the realistic description of the hydraulic characteristics of porous media (for dynamic permeability, see [START_REF] Solazzi | Dynamic permeability functions for partially saturated porous media[END_REF]. The proposed mechanistic description of oscillatory fluid flow processes, and the corresponding interaction with the EDL, result in a new model for the frequency dependent effective excess charge density at the pore scale. This parameter is then up-scaled at the REV scale following an assumption similar to the classical model of [START_REF] Packard | Streaming potentials across glass capillaries for sinusoidal pressure[END_REF].

Pore scale characterization

Oscillatory fluid motion in a capillary

Let us consider a capillary with a radius R (m) and a length l (m). Let r (m) be the distance from the pore wall (r = 0 m) to the center of the capillary (r = R). We shall also consider that the solid matrix is rigid and that the pore space is saturated with water, which is modeled as an incompressible Newtonian fluid with density ρ w (kg m -3 ) and viscosity η w (Pa s). This capillary is submitted to a infinitesimal time-harmonic pressure gradient

∆P (t) = ∆P * e -iωt , (1) 
where t (s) is the time, ∆P * (Pa) is the pressure difference amplitude between the ends of the capillary, and ω is the angular frequency, which responds to ω = 2πf , with f (Hz) the frequency, and i is the complex unit. Parameters with * denote amplitude variations of harmonic variables and, thus, following previous works in the matter, the harmonic term e -iωt is hereby dropped for ease notation (e.g., Johnson et al., 1987;[START_REF] Reppert | Frequency-dependent streaming potentials[END_REF].

Note that the fluid can indeed be regarded as incompressible at the pore scale provided that the prevailing acoustic wavelengths in the fluid are much larger than the typical pore size (e.g., Johnson et al., 1987).

The water velocity as a function of the distance from the pore wall r and angular frequency ω, v * (m s -1 ), can be obtained solving the Navier-Stokes equation, under the above described conditions, and yields

v * (r, ω) = - 1 η w κ 2 J 0 (κ (R -r)) J 0 (κR) -1 ∆P * l , (2) 
where κ 2 = iω ρw ηw , and where J χ are Bessel functions of the first kind of order χ. The low-frequency limit of equation 2 (i.e., the quasi-static limit: ω → 0 Hz) corresponds to the

v * (r) Poise = 1 4η w R 2 -(R -r) 2 ∆P * l , (3) 
indicating that the velocity profile is parabolic. Note that equation 3 corresponds to the case studied by Jougnot et al. (2012). Integrating equation 2 over the cross-sectional area of the pore, we obtain the average water velocity v * (ω)

v * (ω) = - 1 η w κ 2 2 κR J 1 (κR) J 0 (κR) -1 ∆P * l . (4) 
On can note here that the average water velocity within the capillary is complex and frequency dependent.

Figure 2 shows the distribution of the complex pore water velocity v * (r, ω) within the capillary. Note that both amplitude (Figure 2a) and phase (Figure 2b) are obtained from equation 2, considering ∆P * /l = 1 Pa m -1 . The maximum amplitude of the velocity corresponds to the lowest frequency and at the pore centre. For such a frequency limit the response approaches that of the Poiseuille model (equation 3). A transition frequency exists, above which, amplitude decreases with frequency. This is the so-called transition frequency f t (Hz), which is given by (e.g., [START_REF] Solazzi | Dynamic permeability functions for partially saturated porous media[END_REF])

f t η w πρ w R 2 .
(5)

In the case displayed in Figure 2, that is R = 10 -4 m, the transition frequency is approximately 16 Hz.

Figure 3 shows the evolution of the complex average water velocity v * (ω) with frequency for different capillary radii (obtained from equation 4). Again, we consider that ∆P * /l = 1 Pa m -1 . These spectra show that the maximum velocities are obtained for large R at low frequencies. The absolute value of the velocity is constant for f f t and equal to that associated with Poiseuille-type flow. As expected, water velocity decreases with increasing frequency from f t , which can be clearly identified by the break in the curve in Figure 3a (equation 5). Again, the f t values increase with decreasing R.

Electrical double layer description

Let us consider that the capillary is saturated by a binary symmetric electrolyte (e.g., NaCl)

with a ionic concentration C w i (mol m -3 ) and valence z i = ±1, where i is the considered ion. The capillary inner surface (pore walls) have surface charges (e.g., negative charges for silicate and aluminosilicate minerals under typical conditions). Let us call co-ions the ions with the same charge as the surface (e.g., Cl -) and counter-ions the one with the opposite charge (e.g., Na + ). In order to insure the electro-neutrality of the system, these surface charges are balanced by an excess of counter-ions in the pore water that are distributed in the so-called EDL. Figure 4a shows a sketch of the distribution of the charges in the EDL in the so-called Stern and diffuse layers. The Stern layer is a compact layer of counter-ions with a very restricted thickness (i.e., negligible compare to the pore size of typical soils and permeable rocks). The diffuse layer contains counter-ions and co-ions that can move but with a net excess of charge (e.g., positive in the silicate case: i.e. C N a > C Cl ). We assume that the interface between the Stern layer and the diffuse layer corresponds to the shear plane: the plane that separates the stationary fluid and the moving fluid (e.g., Hunter, 1981;[START_REF] Revil | Electrical properties of zeolitized volcaniclastic materials[END_REF]. We call zeta potential, ζ (V), the electrical potential along this plane.

For a given mineral, this potential depends mainly on the ionic strength, the temperature, and the pH (e.g., [START_REF] Revil | Streaming potential in porous media: 1. theory of the zeta potential[END_REF]Jaafar et al., 2009).

The distribution of ions in the pore water depends on the distribution of the local electrical potential ψ = f (r) (V). Using the assumptions of Debye-Huckel and considering a thin double layer (i.e., the thickness of the double layer is small compared to the pore size), [START_REF] Pride | Governing equations for the coupled electromagnetics and accoustics of porous media[END_REF] expresses the local potential distribution as a function of the distance from the mineral surface:

ψ(r) = ζe -r l D , (6) 
where ζ (V) is the Zeta potential (i.e. the electrical potential at the shear plane), r is the distance from the shear plane (i.e., the pore wall as the Stern layer thickness is neglected), and l D is the Debye length, which is given by

l D = ε w k B T 2C w N aCl e 2 0 N A , (7) 
where Hunter, 1981). Equation 6is only valid for small surface charges and neglects the effects of the charges of the opposite capillary wall (for the case of overlapping diffuse layers, see [START_REF] Leroy | Exploring the electrical potential inside cylinders beyond the debye-hückel approximation: a computer code to solve the poisson-boltzmann equation for multivalent electrolytes[END_REF], which is a valid assumption for most aquifers in environmental conditions, i.e., permeable media and typical water chemical compositions (see discussion in [START_REF] Soldi | An analytical effective excess charge density model to predict the streaming potential generated by unsaturated flow[END_REF]. The excess charge localized in the diffuse layer can be calculated by means of (e.g., Guarracino and Jougnot, 2018):

ε w = ε r ε 0 (F m-1)
Qv (r) = N A e 0 C w N aCl e - e 0 ψ(r) k B T -e e 0 ψ(r) k B T . ( 8 
)
Figure 4b shows the distribution of the excess charge in the diffuse layer as a function of the distance from the pore wall r. One can see that Qv (r) → 0 when the distance from the pore wall increases (r ≥ 4l D ).

Frequency-dependent effective excess charge density

We extend the flux-averaging approach proposed by Jougnot et al. (2012) for Poiseuille flow accounting for inertial effects. The frequency dependent effective excess charge density is obtained from the distribution of the pore water flux v * (r, ω) (equation 2, Figure 4c) and the distribution of the excess charge Qv (r) (equation 8, Figure 4b). For this, we integrate the flux over the total area of the capillary and recover a complex-valued flux-averaged

excess charge QR, * v (R, ω) (C m -3 ), that is, QR, * v (R, ω) = r=R r=0 Qv (r)v * (r, ω)(R -r)dr r=R r=0 v * (r, ω)(R -r)dr , (9) 
which is the effective excess charge carried by the water flux v * (r, ω) in the capillary. Equation 9 is one of the central methodological results of this paper as, for the first time in the literature, we consider the effective excess charge as a frequency dependent parameter QR, * v (R, ω) obtained through flux-averaging up-scaling. It is crucial to distinguish the total excess charge density Qv , which corresponds to all the charges in the diffuse layer (Figure 4b), and the effective (or dynamic) excess charge density Q * v (ω), which responds to the charges that are effectively dragged by the pore water velocity v * (r, ω) (see discussions in [START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF]Jougnot et al., 2020[START_REF] Soldi | An analytical effective excess charge density model to predict the streaming potential generated by unsaturated flow[END_REF].

Upscaled behavior of the frequency dependent effective excess charge at the REV scale

At the Representative Elementary Volume (REV) scale, the electrokinetic coupling is usually described by the electrokinetic coupling coefficient:

C * EK (ω) = ∆V ∆P , (10) 
which links ∆V (V), the measurable electrical potential difference, and ∆P (Pa), the imposed pressure difference at the boundaries of a considered rock sample (e.g., [START_REF] Jouniaux | Frequency-dependent streaming potentials: a review[END_REF]. This parameter is frequency dependent and it can be described as follows:

C * EK (ω) = C 0 EK C rel, * EK (ω), (11) 
where we call C 0 EK (V Pa -1 ) the quasi-static electrokinetic coupling coefficient (i.e., for sufficiently low frequencies ω ω t ) and C rel, * EK (ω) the frequency-dependent relative electrokinetic coupling coefficient, which decreases from 1 to 0 when the frequency increases above the transition frequency (e.g., [START_REF] Jouniaux | Frequency-dependent streaming potentials: a review[END_REF]. This transition occurs at ω ω t = 2πf t , therefore:

C rel, * EK (ω ω t ) = 1. ( 12 
)
For frequencies much smaller than ω t , the quasi-static electrokinetic coupling coefficient at the REV scale can be related to the effective excess charge in the electrical double layer, that is (e.g., [START_REF] Revil | Constitutive equations for ionic transport in porous shales[END_REF][START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF])

C 0 EK (ω ω t ) = - Q0 v k 0 η w σ 0 , (13) 
where Q0 v (C m -3) is the quasi-static effective excess charge of the medium at the REV scale, η w (Pa s) is the dynamic viscosity of the pore fluid, and k 0 (m 2 ) and σ 0 (S m -1 ) are the permeability and the electrical conductivity of the porous medium, respectively. A widely used approach to describe the electrical conductivity of a porous medium is given by:

σ 0 = σ w F + σ s , (14) 
where σ w (S m -1 ) is the electrical conductivity of the pore water that strongly depends on the concentration of ions in the pore water (e.g., [START_REF] Sen | Influence of temperature on electrical conductivity on shaly sands[END_REF], σ s is the surface conductivity, F (-) is the formation factor given by F = φ -m , with φ (-) the medium porosity and m (-) the so-called cementation exponent [START_REF] Archie | The electrical resistivity log as an aid in determining some reservoir characteristics: Transaction of the american institute of mining and metallurgical engineers[END_REF].

Guarracino and Jougnot ( 2018) proposes an analytical model to predict the quasistatic effective excess charge density present in equation 13:

Q0 v = N A e 0 C w N aCl l 2 D -2 e 0 ζ k B T - e 0 ζ 3k B T 3 1 τ 2 φ k 0 , ( 15 
)
where τ is the hydraulic tortuosity in the medium. Particularly, the hydraulic tortuosity of the medium from the porosity and the electrical formation factor are related by [START_REF] Winsauer | Resistivity of brinesaturated sands in relation to pore geometry[END_REF]Jougnot et al., 2020):

τ = F φ. (16) 
The permeability of a porous medium is also a frequency dependent parameter (e.g., Johnson et al., 1987;[START_REF] Pride | Governing equations for the coupled electromagnetics and accoustics of porous media[END_REF], often called dynamic permeability, and it can be expressed as

k * (ω) = k 0 k rel, * (ω). ( 17 
)
where k rel, * (ω) is the dynamic permeability relative to the value of k 0 , such as

k rel ∈ [0;1].
Considering the porous medium is a bundle of capillaries having the same radius, Figure 3 illustrate the frequency behaviour of the dynamic permeability. The analogy of the bundle of capillaries having a given size has been used in previous models (e.g., [START_REF] Packard | Streaming potentials across glass capillaries for sinusoidal pressure[END_REF][START_REF] Reppert | Frequency-dependent streaming potentials[END_REF][START_REF] Solazzi | Dynamic permeability functions for partially saturated porous media[END_REF].

Using the similar analogy of the bundle of capillary, where one capillary size dominates the REV, we can consider that the frequency-dependent effective excess charge at the REV scale is

QREV, * v (ω) = Q0 v Qrel, * v (ω), (18) 
where Q0 v can be obtained using equation 15, while Qrel, * v (ω) can be obtained numerically by solving equation 9 for the capillary size R considered as representative of the porous medium.

The electrical conductivity σ * (ω) can also be considered as a frequency dependent rock property, however this point will not be discussed in the present paper. For more information, one can refer to a very large on the subject (e.g., [START_REF] Chelidze | Electrical spectroscopy of porous rocks: A review-i. theoretical models[END_REF]Jougnot et al., 2010;[START_REF] Revil | Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mhz-1ghz[END_REF].

Considering these assumptions, we can express the frequency dependent electrokinetic coupling coefficient as

C * EK (ω) = - QREV, * v (ω)k * (ω) η w σ * (ω) , (19) 
or

C * EK (ω) = C 0 EK Qrel, * v (ω)k rel, * (ω) σ rel, * (ω) , (20) 
and the relative electrokinetic coupling coefficient can be expressed as

C rel, * EK (ω) = Qrel, * v (ω)k rel, * (ω) σ rel, * (ω) , (21) 
where the "rel " superscript refer to value of the corresponding parameter relative to the associated low frequency value (equation 13).

SENSITIVITY TEST OF THE MODEL

Effect of the pore size and the frequency on QR, * v

In the proposed model, the first step is to compute the frequency dependent effective excess charge density QR, * v . This can be done by modifying the code proposed in Jougnot et al.

(2012) and solving equation 9 numerically for each frequency f and capillary radius R iteratively.

Figure 5 shows the results of the numerical simulations to compute QR, * v as a function of the capillary radius for frequencies between 1 and 10 6 Hz. As expected from the theory, the amplitude of the pore water velocity increases as the capillary radius increases for all the considered frequencies (Figure 5a) until the radius reaches a critical size related to the transition frequency (see equation 7). Following an opposite behavior, the effective excess charge density decreases as the capillary radius decreases (Figure 5b) as predicted and explained in the literature (e.g., Jougnot et al., 2012;Guarracino and Jougnot, 2018).

Around the transition frequency f t , the trend of QR, * v (R, ω) changes as its slopes reduces its steepness.

Figure 6 shows the same simulation results but as a function of the frequency to better understand the spectral behaviour of QR, * v (R, ω). Figures 6a and6b illustrate very clearly the effect of the transition frequency on the pore water velocity and the effective excess charge density, respectively. While the pore water velocity drops for f f t , the effective excess charge density increases by orders of magnitude. This behavior was predicted and discussed in [START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF] but not quantified mechanistically at the pore scale. To the best of the authors knowledge, this is the first time that this parameter is explicitly calculated as a function of frequency. Note that numerical instabilities start to appear in the code above 10 5 Hz for the larger capillaries.

Evolution of the frequency dependent coupling coefficient

The second step in the proposed model is to introduce the computed relative pore water permeability k rel, * (ω) and the relative effective excess charge density Qrel, * v (ω) in equation 21to obtain the frequency dependent relative coupling coefficient. It implies that the porous medium can be described by a bundle of capillaries with a single radius size. Note that this assumption is one of the limitations of the model proposed in this study.

Figure 7 shows the model prediction of the amplitude of k rel, * (ω) (Figure 7a), Qrel, * v (ω) (Figure 7b), and the resulting coupling coefficient C rel, * EK (ω) (Figure 7c). Note that for this example, the frequency dependence of the electrical conductivity is neglected (i.e., σ rel, * (ω) = 1). The results are presented relatively to their quasi-static value (i.e., 0 Hz).

The dynamic permeability decreases and effective excess charge density increases at higher frequencies. The ratio between these two parameters as a function of frequency yields the coupling coefficient, decreasing with the frequency. Note that the inflection on the curve does not occur at exactly the transition frequency, this can be seen quite clearly in the shape of the frequency dependent coupling coefficient as it decreases with the frequency. This behaviour has been previously discussed in the literature (e.g., Reppert et al., 2001,their Figure 2).

RESULTS AND DISCUSSION

Comparison with existing models

As presented in [START_REF] Jouniaux | Frequency-dependent streaming potentials: a review[END_REF], many models already exist to describe the frequency-dependent coupling coefficient. The two most used models are [START_REF] Packard | Streaming potentials across glass capillaries for sinusoidal pressure[END_REF] and [START_REF] Pride | Governing equations for the coupled electromagnetics and accoustics of porous media[END_REF]. [START_REF] Pride | Governing equations for the coupled electromagnetics and accoustics of porous media[END_REF] derives a coupling framework based on first principles and an upscaling approach based on volume averaging. On the other hand, [START_REF] Packard | Streaming potentials across glass capillaries for sinusoidal pressure[END_REF] proposes a model which is based on a porous medium conceptualized as a bundle of capillaries having a singular capillary size, which is similar to the assumptions done in the model described in the previous section. The [START_REF] Packard | Streaming potentials across glass capillaries for sinusoidal pressure[END_REF] model is expressed as follows:

C * EK (ω) = εζ η w σ w 2κ R J 1 (Rκ) J 0 (Rκ) e -iωt . (22) 
Revil and [START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF] propose an alternative model to describe the frequencydependent coupling coefficient under the thin double layer approximation:

C * EK (ω) = C 0 EK √ 1 -iωτ k , (23) 
where the frequency dependence is mainly controlled by a relaxation time:

τ k = k 0 ρ w F µ w . ( 24 
)
This last parameter is calculated using the values of k 0 and F corresponding to a bundle of capillaries with a single size R and the arbitrarily fixed porosity of φ = 0.5. Due to the straightness of the capillaries, m = 1 yields F = φ -m = 2.

Figure 8 shows the comparison between the proposed model (dotted lines) and the prediction from both Packard (1953) (plain lines) and Revil and Mahardika (2013) (dashed lines). One can see that the proposed model, which based on a numerical upscaling of the effective excess charge, reproduces exactly the predictions of the complex coupling coefficient from [START_REF] Packard | Streaming potentials across glass capillaries for sinusoidal pressure[END_REF] for both amplitude (Figure 8a), real part (Figure 8b), and imaginary part (Figure 8c), for different pore radii from 10 -6 to 10 -3 m. This behaviour was expected since the model of [START_REF] Packard | Streaming potentials across glass capillaries for sinusoidal pressure[END_REF] is based on the same hypothesis than the one propose in this work, that is the medium can be approximated by an equivalent pore size. On the other hand, even though the overall results are fairly similar to those predicted by the model of [START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF], one can see that such model and the proposed approach exhibit slightly different values in the transition shape: i.e., the imaginary part of the model predicted by [START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF] is less than 5% smaller than the one predicted by the proposed model. Nevertheless, these comparisons clearly show that the new upscaling procedure proposed to determine the frequency dependent effective excess charge density is consistent with existing models from the literature.

Comparison with published data

In the following, the model predictions are then compared with experimental seismoelectric laboratory data by [START_REF] Zhu | Experimental measurements of the streaming potential and seismoelectric conversion in berea sandstone[END_REF]. They measured the quasi-static and the frequency-dependent coupling coefficient of a sandstone for five different pore-water conductivities and a frequency range from 50 to 120 kHz.

Figure 9a shows the predicted quasi-static effective excess charge using equation 15 for different NaCl concentrations in the pore water, that is C w N aCl = 0.0017, 0.0085, 0.0171, 0.0342, and 0.0684 mol L -1 . The corresponding zeta potentials are obtained using the approach of [START_REF] Revil | Streaming potential in porous media: 1. theory of the zeta potential[END_REF] with the empirical parameters proposed by Jaafar et al. The quasi-static permeability k 0 = 4.44 × 10 -13 m 2 and porosity φ = 0.23 of the sandstone have been measured by the authors. The only unknown parameter is the hydraulic tortuosity, which was set at τ = 3.5 as it was considered to be an acceptable value by [START_REF] Zhu | Seismoelectric measurements in a porous quartzsand sample with anisotropic permeability[END_REF]. Note that [START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF] consider a fixed effective excess charge

density of Q0 v = 1.4 C m -3 .
Figure 9b shows the prediction of the proposed model for the quasi-static coupling coefficient C 0 EK based on equation 13 and the predictions from Q0 v (Figure 9a). Note that, following the work of [START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF], we consider that the electrical conductivity can be described using equation 14 with σ s = 1.2 × 10 -3 S m -1 the surface conductivity and F = 18. One can see that the model reproduces fairly well the behavior of the coupling coefficient. 

Outlook

This new upscaling procedure, adapted from Jougnot et al. (2012) by taking into account the frequency dependent inertial viscous effects in the pore water flow, offers a large flexibility to be applied to any kind of complex media. The most straightforward development is to apply this procedure to the prediction of the coupling coefficient in partially saturated media (e.g., [START_REF] Bordes | Impact of water saturation on seismoelectric transfer functions: a laboratory study of coseismic phenomenon[END_REF] through the use of the modeling approach of Solazzi et al.

(2020). To the best of the authors knowledge, the only existing model is the one proposed by [START_REF] Revil | Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials[END_REF]. The second extension will be toward an improved description of the frequency dependence of the effective excess charge density in fractured media (e.g., [START_REF] Zhu | Seismoelectric and seismomagnetic measurements in fractured borehole models[END_REF], which has not yet been explored.

CONCLUSIONS

The present work proposes a new mechanistic model to predict the frequency dependence of the coupling coefficient for an oscillatory flow. For this, we mechanistically define a frequency-dependent effective excess charge by taking into account the inertial terms in the Navier-Stokes equation at the pore scale. This new upscaling procedure reproduces the behaviour of two existing models that were obtained from completely different approaches.

Finally, the proposed model reproduces very well published data at different pore water salinities. These results pave the way to an improved description of the frequency dependence of the effective excess charge density in complex media such as partially saturated media or fractured media and the development of the seismoelectric method as a more standard tool for hydrogeophysics studies. Jougnot & Solazzi -GEO-2020-0524 to 10 -6 m).
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  is the pore water permittivity with the permittivity of vacuum ε 0 = 8.854 × 10 -12 F m -1 and the relative permittivity of water ε r = 80.1 at T = 20 • C, k B = 1.381 × 10 -23 J K -1 is the Boltzmann constant, T (K) is the absolute temperature, N A = 6.022 × 10 23 is the Avogadro number, and e 0 = 1.6 × 10 -19 C is the elementary charge. The thickness of the diffuse layer can be approximated as four Debye lengths 4l D (
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  Figure 1: Flow chart describing the procedure used in this work to to up-scale the frequency
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 10 Figure 10: (a) Amplitude of the effective excess charge density as a function of the frequency
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