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The automorphism group of the Zetterberg code Z of length 17 (also a quadratic residue code) is a rank three group whose orbits on the coordinate pairs determine two strongly regular graphs equivalent to the Paley graph attached to the prime 17. As a consequence, codewords of a given weight of Z are the characteristic vectors of the blocks of a PBIBD with two associate classes of cyclic type. More generally, this construction of PBIBDs is extended to quadratic residue codes of length ≡ 1 (mod 8), to the adjacency codes of triangular and lattice graphs, and to the adjacency codes of various rank three graphs. A remarkable fact is the existence of 2-designs held by the quadratic residue code of length 41 for code weights 9 and 10.

Introduction

There is an old and well-known connection between codes and designs [START_REF] Ding | Designs from linear codes[END_REF]. Many classical codes hold 2-designs, and some of them, like the Golay codes, 5-designs. The relations between Partially Balanced Incomplete Block designs (PBIBD for short) and codes, have been documented in several publications [START_REF] Crnković | Selforthogonal codes from the strongly regular graphs on up to 40 vertices[END_REF][START_REF] Tonchev | On block designs arising from rank three graphs[END_REF][START_REF] Tonchev | Rank 3 graphs, block designs and unequal error protection codes[END_REF][START_REF] Tonchev | Combinatorial configurations[END_REF][START_REF] Tonchev | Error correcting codes from graphs[END_REF].

PBIBDs are of practical use in statistics [START_REF] Bailey | Association Schemes: designed experiments, algebra and combinatorics[END_REF][START_REF] Bose | Table of PBIBDs with two associate classes[END_REF], and at the origin of the study of association schemes in algebraic combinatorics.

In this note, we give an example of a classical code that constructs eight such designs, the parameters of which are not all in the tables of [START_REF] Bose | Table of PBIBDs with two associate classes[END_REF]. The corresponding two-class association scheme is the metric scheme of the Paley strongly regular graph (SRG) [START_REF] Brouwer | Fragments of a text on strongly regular graphs[END_REF] on 17 vertices. The proof relies on the fact that the automorphism group of the Zetterberg code of length 17 is a rank three group. These groups were historically involved in the classification of finite simple groups [START_REF] Griess | Twelve Sporadic Groups[END_REF]. They were also employed to construct SRG's [START_REF] Brouwer | Fragments of a text on strongly regular graphs[END_REF]. Chapter 11 of [START_REF] Brouwer | Fragments of a text on strongly regular graphs[END_REF] is dedicated to them.

This symmetry argument is generalized in the following way. Any binary code left invariant under a rank three group holds PBIBDs. An infinite class of examples is obtained by considering quadratic residue codes of length ≡ 1 (mod 8). This requires the determination of their automorphism group from [START_REF] Pless | Handbook of Coding theory[END_REF]Chap. 17]. Of special interest is the quadratic residue code of length 41, whose codewords of length 9 hold a 2 -(41, 9, 18) design; the codewords of length 10 holding a 2 -(41, 10, 72) design. The existence of these designs cannot be explained by the Assmus-Mattson theorem, nor by the direct group action argument of [13, p. 308]. It can however, be given a proof by using the techniques of [16, §3.5].

Examples of rank three graphs of combinatorial interest include the triangular and lattice graphs. These graphs are diameter two instances of the Johnson and Hamming graphs, respectively. The 2-designs arising in these graphs can be used to construct unequal error protection codes [START_REF] Tonchev | Rank 3 graphs, block designs and unequal error protection codes[END_REF][START_REF] Tonchev | Combinatorial configurations[END_REF]. More examples are found by combining the information in [5, §11.5], and in [START_REF] Spence | adjacency matrices of SRGs on at most 64 vertices[END_REF].

The material is arranged in the following way. The next section collects the definitions and notions required to understand the following sections. Section 3 studies the example of the Zetterberg code of length 17 in great detail. Section 4 generalizes this example to quadratic residue codes, adjacency codes of triangular codes, lattice codes and other rank three graphs. Section 5 addresses the adjacency codes of various SRGs. Section 6 concludes the article.

2 Background material

Permutation groups

Let G be a permutation group acting on a finite set X. We will denote by x G the unique orbit under the group G that contains x ∈ X. The group G will be called a rank three group if and only if it is transitive on X and any one point stabilizer has three orbits on X including the trivial one. In other words, it has three orbits (classical called orbitals) on the cartesian product X × X including the diagonal. The transposition induces a pairing on orbitals. If an orbital O is self-paired then the graph (X, O) is symmetric and strongly regular.

Association schemes

An association scheme on a set X with s classes is a partition of the cartesian product X × X = ∪ s i=0 R i with the following properties.

1. R 0 = {(x, x) | x ∈ X}; 2. (x, y) ∈ R k if and only if (y, x) ∈ R k ;
3. If (x, y) ∈ R k , the number of z ∈ X such that (x, z) ∈ R i and (z, y) ∈ R j , is an integer p k ij that depends on i, j, k but not on the special choice of x and y.

A consequence of axiom 3 is that each graph R i is regular of degree v i , say. In this note, we will restrict ourselves to two-class association schemes that is to say the case of s = 2. In that case the graph (X, R 1 ) is called strongly regular (shortly SRG). An association scheme is cyclic if it is translation invariant under a cyclic group. In other words, X is the additive group of a residue class ring Z v for some integer v, and the relations are of the form

(x, y) ∈ R k ⇔ x -y ∈ E k for some E k ⊂ X.

Designs

A PBIBD with two associate classes of parameters (b, v, k, r, λ 1 , λ 2 ) is an incidence structure (P, B, I) satisfying the following axioms. 5. There is a two-class association scheme on P such that two i-associate points are both incident to exactly λ i blocks for i = 1, 2.

A similar definition exists for s associates but in this note we will focus on the case s = 2. Note that the case

λ 1 = λ 2 = λ is that of a 2-(v, k, λ) design.
There is a classification of PBIBD into types depending if the association scheme is 1. group divisible; 2. triangular; 3. Latin square type; 4. cyclic; 5. partial geometry type; 6. miscellaneous.

Codes

Let F 2 = {0, 1} denote the finite field of order 2. A binary code of length

n is a F 2 -subspace of F n 2 .
The weight of a vector of F n 2 is the number of its nonzero coordinates. The weight distribution of a code C is the sequence A w of number of codewords of C of weight w. It is written in Magma [20] notation as the list with generic element w, A w where w ranges over the weights of C. A binary code is cyclic if it is invariant under the cyclic shift. Cyclic codes are in one to one correspondence with ideals of the residue class ring F 2 [x]/(x n -1). The generator polynomial of a cyclic code is the generator of the corresponding ideal. The Quadratic residue codes are the cyclic codes of length p, which is an odd prime defined for p ≡ ±1 (mod 8) by the generator polynomial of degree p-1

2 p-1 2 r=1 (x -α 2r ),
where α is a primitive root of order p. Since 2 is a quadratic residue modulo an odd prime p, this polynomial is indeed in

F 2 [x]
. See [START_REF] Macwilliams | The theory of Error Correcting Codes[END_REF]Chap.16] for background.

The automorphism group of a binary code of length n is a subgroup of the symmetric group on n coordinate places that leave the code wholly invariant.

3 The Zetterberg code

Construction

Let q = 16, and

K = F q 2 . Define U = {x ∈ K | x q+1 = 1} = α ,
where α is a primitive root of order 17 in the multiplicative group of K. The coordinates of the codewords of the binary Zetterberg code Z are naturally indexed by U. The columns of its parity-check matrix can be identified with elements of U under the standard isomorphism K ∼ = (F 2 ) 8 . Thus H = [1, α, α 2 , . . . , α 16 ]. The Zetterberg code is in fact a classical cyclic code [11, p. 206 

Symmetry

The permutation group G of Z is of order 2 3 × 17 generated by the shift x → αx and the squaring x → x 2 . Consider the group action on the set P of pairs of indices. Define the sets

• A = {1, 2} G , • B = {1, 8} G .
It can be checked that A and B are disjoint, and both with size 68 = 17 2 /2. Thus their union is P = A B.

Theorem 1 For every weight w ∈ {5, 6, . . . , 12} of Z, there are two constants λ and µ such that each pair in A (resp. B) is covered by λ (resp. µ) codewords of Z of weight w. Further 68(λ + µ) = A w w 2 .

Proof.

The first statement is immediate by group action. The second statement is immediate by double counting.

The constants can be computed in Magma and are listed in the following table. This means that G is a rank three group and therefore the said graphs form a pair of complementary SRGs by [5, §1. 1.5]. By [START_REF]Table of Strongly regular graphs[END_REF], there is a unique SRG on 17 vertices. It is the Cayley graph on the cyclic group Z 17 with generating set the quadratic residues.

We conclude this section with the following result.

Theorem 3 For any weight w of Z, the codewords of weight w hold a PBIBD of cyclic type with two associates of parameters

v = 17, b = A w , r = A w w 17 , λ, µ,
where the constants λ, µ, depend on w and are given in Table 1.

Proof. The design property follows by Theorem 1. The two-class association scheme is the one attached to the SRG of Theorem 2. Since this graph is circulant, the scheme is cyclic. Since G is transitive the replication number r is well-defined, and obtained from the fact that each block has size w.

Remark 1

The parameters for w = 5, 8, 9 do not appear in 

Generalizations

The following result is immediate. Its proof is omitted.

Theorem 4 If C is a binary code with automorphism group G that is a rank three group, then codewords of given weight hold a PBIBD.

A case of application would be the code spanned by the adjacency matrix of the SRG attached to such a group. See Table 10 A in [START_REF] Griess | Twelve Sporadic Groups[END_REF].

In the following examples, the groups of the codes involved are either rank three or doubly transitive.

Quadratic residue codes

Observing that Z is nothing else than the quadratic residue code of length 17, we generalize the observation that the group G is rank three to some quadratic residue codes.

Theorem 5 If C is a binary quadratic residue code of length which is a prime p = 7, 23, then the permutation group of C is a rank three group.

Proof. (sketch) By [13, chap. 17, Th. 6.7 (v) a.], the automorphism group of the extended quadratic residue code of length p + 1 is, under that hypothesis, isomorphic to P SL (2, p). By [START_REF] Macwilliams | The theory of Error Correcting Codes[END_REF]chap. 16,Th. 10], that group is generated by S, V, T where S is the cyclic shift. The other two generators V, T are given by V : x → ρ 2 x (where F × p = ρ ) and T : x → -1

x . We see that they fix the origin. Hence they generate the automorphism group of C. It can be checked that the two non-trivial orbits are, respectively, the set of quadratic residues, and the set of non-residues. What happens when p = 7 or p = 23 is that the permutation group of C is 2-transitive. In particular, when p = 23 that group is the Matthieu group M 23 , which is even four-transitive.

Note that when p ≡ -1 (mod 8), the quadratic residues do not lead to a Paley graph, but give a symmetric Paley-Hadamard design. Thus the result in this paragraph can be used to generate PBIBDs only when p ≡ 1 (mod 8).

For n = 41 we find 2-designs in weights 9, 10 and their complements 31 = 41 -10, 32 = 41 -9. None of these designs can be explained by the standard group action argument of [13, p. 308], or by the Assmus-Mattson theorem [START_REF] Macwilliams | The theory of Error Correcting Codes[END_REF]Chap. 6,Th. 29]. It can be explained by the theorems of [16, §3.5], in particular Theorem 3.5.1 for weight 9, and Theorem 3.5.3 for weight 10. By similar arguments the codes invariant under Higman-Sims, or Hoffman Singleton in [START_REF] Tonchev | Binary codes derived from the Hoffman-Singleton and Higman-Sims graphs[END_REF] can be shown to hold 2-designs. It would be interesting to know if the 3design of [START_REF] Bonnecaze | The extended binary quadratic residue code of length 42 holds a 3-design, Joural of Combinatorial designs[END_REF] or by [START_REF] Tonchev | Combinatorial configurations[END_REF]Lemma 3.6.6]. For n = 5 to 12, the automorphism groups of the adjacency codes are all rank three except for n = 6, where the group is 2-transitive and we obtain 2-designs.

• n = 5, [ 0, 1 , 4, 5 , 6, 10 ] w 4 6 λ 0 3 µ 1 4

• n = 6, [ 0, 1 , 8, 15 ]
The code is the [START_REF] Tonchev | Rank 3 graphs, block designs and unequal error protection codes[END_REF][START_REF] Bose | Table of PBIBDs with two associate classes[END_REF][START_REF] Griess | Twelve Sporadic Groups[END_REF] Simplex code. We obtain a 2-(15, 8, 4) design.

• n = 7, [ 0, 1 , 6, 7 , 10, 21 , 12, 35 ] w 6 10 12 λ 0 4 10 µ 1 5 12 

• n = 8, [ 0, 1 , 12, 28 , 16, 35 ] 

Lattice graphs

The lattice graph of order m 2 is the line graph of the complete bipartite graph K m,m . It can be seen to be the same as the Hamming graph H(2, m). Thus it is distance transitive [5, 1.2.3]. The code has parameters [m 2 , 2(m-1), 2(m-1)] by [START_REF] Key | Permutation decoding for binary codes from lattice graphs[END_REF]. Proof. The minimum weight vectors are the m 2 row vectors of the adjacency matrix. The support s(z) of the row r(z) indexed by z are the graph vertices at distance 1 from z. Given a pair of position {x, y}, the number of z such that {x, y} ⊂ s(z) is equal to the number of z's at distance 1 from both x and y. This number in turn by strong regularity depend only on the distance of x to y. Thus it equals m -2 or 2. 

• m = 5, [ 0,

Conclusion

In this work, we have constructed more than a thousand examples of PBIBDs with two associate classes held by binary codes with a rank three automorphism group. We could have constructed twice as many PBIBDs by simply considering the dual code, which has a different weight distribution in general. One possible extension would be to consider codes over other fields or rings. In another direction, allowing for more than two orbits on pairs of coordinates could lead to more examples of PBIBDs. For instance, the Zetterberg code of length 65 can be shown to hold PBIBDs with three associate classes.

1 .

 1 The set P has v points; 2. The set B has b blocks; 3. Each block is incident to k points; 4. Each point is incident to r blocks;

Theorem 2

 2 The graph on [1..17] with edge set A (resp. B) is strongly regular, and isomorphic to the Paley graph attached to the prime 17. Proof. Write A = (1, 2) G and B = (1, 8) G . It can be checked exhaustively that {{x, y} | (x, y) ∈ A } = A, and likewise, {{x, y} | (x, y) ∈ B } = B.

Proposition 1

 1 The minimum weight codewords hold a 2-(m 2 , 2(m-1), m-2, 2) PBIBD.

  , 5, 34 , 6, 68 , 7, 68 , 8, 85 , 9, 85 , 10, 68 , 11, 68 , 12, 34 , 17, 1 ].

	], [2, p. 161].
	Its parameters are [17, 9, 5] and its weight distribution is computed in Magma
	[20] as
	[ 0, 1

Table 1 :

 1 The value of λ, µ

	w 5 6 7 8 9 10 11 12
	λ 2 7 9 16 21 21 27 16
	µ 3 8 12 19 24 24 28 17

Table VII

 VII 

	-A of
	[4, p. 448].

  can be explained in the same way. The weight distribution of the code is [ 0, 1 , 9, 410 , 10, 1312 , 11, 3034 , 12, 7585 , 13, 16605 , 14, 33210 , 15, 60024 , 16, 97539 , 17, 146370 , 18, 195160 , 19, 232060 , 20, 255266 , 21, 255266 , 22, 232060 , 23, 195160 , 24, 146370 , 25, 97539 , 26, 60024 , 27, 33210 , 28, 16605 , 29, 7585 , 30, 3034 , 31, 1312 , 32, 410 , 41, 1 ]. The triangular graph, of order n 2 , is the line graph of the complete graph K n . The graph is distance transitive as being the Johnson graph J(n, 2) as by [5, 1.2.2]. The adjacency code has parameters [ n

	The parameters of the PBIBD are as follows.		
	w 9 10 11 12	13	14	15	16	17
	λ 18 72 203 610 1575 3681 7668 14256 24234
	µ 18 72 204 611 1584 3690 7704 14292 24318
	w	18	19	20	21	22	23	24
	λ 36372 48330 59084 65310 65310 60172 49224
	µ 36456 48456 59210 65436 65436 60256 49308
	w	25	26	27	28	29	30	31 32
	λ 35667 23772 14211 7650 3755 1609 744 248
	µ 35703 23808 14220 7659 3756 1610 744 248
	4.2 Triangular graphs				

2 , n -1], by [9, §4.1],

  1 , 8, 25 , 10, 20 , 12, 100 , 14, 100 , 20, 10 ] From now on, we indicate the parameters of the SRG as (v -k -λ -µ). • (27 -10 -1 -5), [ 0, 1 , 2, 351 , 4, 17550 , 6, 296010 , 8, 2220075 , 10, 8436285 , 12, 17383860 , 14, 20058300 , 16, 13037895 , 18, 4686825 , 20, 888030 , 22, 80730 , 24, 2925 , 26, 27 ] , 14, 36 , 16, 63 , 18, 56 , 20, 63 , 22, 36 , 36, 1 ] Here is the 180-th SRG with v = 36 in [12]. , 12, 40 , 16, 135 , 20, 672 , 24, 135 , 28, 40 , 40, 1 ] Here is the 6-th SRG with v = 40 in [12]. (40 -12 -2 -4), [ 0, 1 , 8, 45 , 12, 1120 , 16, 15570 , 20, 32064 , 24, 15570 , 28, 1120 , 32, 45 , 40, 1 ]Here is the 26-th SRG with v = 40 in[START_REF] Spence | adjacency matrices of SRGs on at most 64 vertices[END_REF].

	w 6 8 10 12		
	λ 7 16 21 16		
	µ 8 19 24 17		
	• n = 21, [ 0, 1 , 4, 105 , 6, 805 , 8, 3255 , 10, 5481 , 12, 4515 ,
	14, 1935 , 16, 252 , 18, 35 ]	
	The SRG is a triangle graph.	
	w 4 6	8	10	12	14 16 18
	λ 2 57 424 1159 1412 838 144 25
	w 8 10 12 14 20 µ 4 58 444 1190 1426 839 144 26
	λ 2 2 18 30 6		
	µ 3 5 24 31 7		
	• m = 6, [ 0, 1 , 10, 36 , 12, 30 , 16, 225 , 18, 440 , 20, 225 ,
	24, 30 , 26, 36 , 36, 1 ]		
	w 2 4 w 10 12 16 18 20 24 26 36 6 8 10 λ 2 2 40 104 65 12 18 1 λ 1 300 12650 177100 1081575 3268760 5200300 12 14
	µ 4 6 44 108 69 16 20 1 w 16 18 20 22	24 26
	λ 4457400 2042975 480700 53130 2300 25
	• m = 7, [ 0, 1 , 12, 49 , 14, 42 , 20, 441 , 22, 490 , 24, 1225 ,
	26, 1470 , 28, 70 , 32, 294 , 42, 14 ] w 12 14 20 22 24 26 28 32 42 • (36-14-4-6), [ 0, 1 w 14 16 18 20 22 λ 2 2 70 90 250 395 20 120 10 λ 4 12 12 19 12 µ 5 7 75 115 300 410 30 136 11 µ 6 12 16 19 14
	• m = 8, [ 0, 1 , 14, 64 , 16, 56 , 24, 784 , 26, 896 , 30, 3136 , 32, 6510 , 34, 3136 , 38, 896 , 40, 784 , 48, 56 , 50, 64 , 64, 1 ] w 14 16 24 26 30 32 34 38 40 48 50 64 • (40-12-2-4), [ 0, 1 w 12 16 20 24 28 λ 2 2 102 132 630 1555 826 300 298 30 38 1 λ 2 18 160 45 18 µ 6 8 126 188 690 1615 886 356 322 36 42 1 µ 4 22 172 49 20
	• m = 9, [ 0, 1 , 16, 81 , 18, 72 , 28, 1296 , 30, 1512 , 36, 7308 , 38, 9072 , 40, 15876 , 42, 21168 , 44, 2268 , 48, 6048 , 54, 168 , 58, 648 , 72, 18 ] w 16 18 28 30 36 38 40 42 44 48 54 58 72 • w 8 12 16 20 24 28 32 λ 2 2 140 182 1414 1932 3430 5390 630 2072 70 322 14 λ 1 92 2394 7808 5508 540 28 µ 7 9 196 287 1449 2114 3920 5684 791 2240 91 365 15 µ 3 96 2396 7816 5510 544 30

• m = 10, [ 0, 1 , 18, 100 , 20, 90 , 32, 2025 , 34 

Various SRGs

In the following examples, we have proceeded as follows. We have computed the F 2 -linear span of various SRGs from [START_REF] Spence | adjacency matrices of SRGs on at most 64 vertices[END_REF]. If the automorphism group of that code is a rank three group, then we have computed the parameters of the attached PBIBD. Some information on the graphs can be inferred from [5, §11.5].

• n = 9, [ 0, 1 , 4, 9 , 6, 6 ]

The SRG is a lattice graph, equivalent to the Paley graph with the same parameters.

w 4 6 λ 1 2 µ 2 3

The SRG is the celebrated Petersen graph. The two SRGs (16, 6, 2, 2) have equivalent adjacency codes, both with a doubly transitive automorphism group of order 11520.

• n = 17, [ 0, 1 , 6, 68 , 8, 85 , 10, 68 , 12, 34 ] The SRG is a Paley graph. The [START_REF] Tonchev | Binary codes derived from the Hoffman-Singleton and Higman-Sims graphs[END_REF][START_REF] Griess | Twelve Sporadic Groups[END_REF][START_REF] Crnković | Selforthogonal codes from the strongly regular graphs on up to 40 vertices[END_REF] adjacency code is actually the dual of the quadratic residue code [START_REF] Tonchev | Binary codes derived from the Hoffman-Singleton and Higman-Sims graphs[END_REF][START_REF] Haemers | Binary codes of strongly regular graphs[END_REF][START_REF] Brouwer | Fragments of a text on strongly regular graphs[END_REF].