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ABSTRACT

Zero modes are symmetry protected ones whose energy eigenvalues have zero real parts. In Hermitian arrays, they arise as a
consequence of the sublattice symmetry, implying that they are dark modes. In non-Hermitian systems, that naturally emerge
in gain/loss optical cavities, particle-hole symmetry prevails instead; the resulting zero modes are no longer dark but feature
π/2 phase jumps between adjacent cavities. Here we report on the direct observation of zero modes in a non-Hermitian three
coupled photonic crystal nanocavity array containing quantum wells. Unlike the Hermitian counterparts, the non-Hermitian
zero modes can only be observed for small sublattice detuning, and they can be identified through far-field imaging and
spectral filtering of the photoluminescence at selected pump locations. We explain the zero mode coalescence as a parity-time
phase transition for small coupling. These zero modes are robust against coupling disorder, and can be used for laser mode
engineering and photonic computing.

Introduction

Majorana zero modes, a captivating concept originally pro-
posed in the study of neutrinos, have intrigued physicists
over the past eighty years. Being their own anti-particles
and hosting non-Abelian braiding properties, their experimen-
tal demonstration is being actively pursued in high-energy
physics and condensed matter physics1–5. The existence of
these zero-energy excitations is warranted by particle-hole
symmetry, in the form that the (Hermitian) Hamiltonian anti-
commutes with an anti-linear operator6.

Recently, there have been several proposals to realize
particle-hole symmetry in non-Hermitian systems7, especially
on integrated photonic platforms where the spatial arrange-
ment of optical gain and loss8, as well as asymmetric cou-
plings between different elements9, plays an important role.
These findings are quite surprising because photons are bosons
and cannot form “particle-hole” pairs in general. However,
by realizing that these effective “particles" and “holes” have
complex energies in a non-Hermitian system, they do not need
to adhere to Fermi-Dirac statistics as their condensed matter
counterparts do. To highlight this difference, we will refer
to such symmetries as non-Hermitian particle-hole (NHPH)
symmetry.

Although the resulting zero modes of NHPH symmetry
differ from Majorana zero modes in several key aspects, they
have two desirable properties in many photonic applications:
their symmetry protection not only exists at the origin of the
complex energy plane but also extends to the entire imagi-

nary axis; they can also be conveniently excited in standard
arrays of optical cavities or waveguides, without requiring the
existence of Hermitian counterparts when non-Hermiticity is
removed.

Thanks to the flexibility of designing optical elements, these
properties of photonic zero modes can also be induced by
pseudo-anti-Hermiticity10: ηH†η−1 = −H, where H is the
Hamiltonian and η a linear operator. If we consider a system
consisting of two sublattices A and B, where couplings only
take place between two cavities belonging to different sublat-
tices, pseudo-anti-Hermiticity coincides with NHPH symme-
try when H is symmetric, but it is distinct otherwise such as
in a topological insulator laser11, 12, where an effective gauge
field is realized by staggered couplings in a two-dimensional
array.

Despite these theoretical advances in the non-Hermitian do-
main, the observations of photonic zero modes with the afore-
mentioned properties have been restricted to arrays that resem-
ble their Hermitian counterparts, such as the Su-Schrieffer-
Heeger (SSH) lattice13–16. A recent demonstration of a laser
mode switching in a coupled photonic crystal cavity could
also be explained on the basis of Hermitian dark modes17. Ac-
tive photonic crystal cavity arrays are outstanding platforms to
access the non Hermitian realm because they naturally enable
in-situ realization of gain/loss configurations and coupling
engineering18. Remarkably, they have recently led to the
observation of exceptional points in two coupled nanocavi-
ties19, 20.

In order to show the potential of exciting and controlling a



photonic zero mode in a broader range of systems, especially
those without a topological origin8, 21, here we report on its
observation in a minimal system consisting of three coupled
photonic crystal cavities with NHPH symmetry. Interestingly,
while Hermitian zero modes are robust against frequency
detuning between the two extreme cavities (sublattice A) and
the central one (sublattice B) in a linear array –that we refer
to as sublattice detuning, ∆ω–, non Hermitian zero modes are
not. In our coupled cavity system, the intercavity coupling g is
modified by design, allowing to feature both large (|g|& |∆ω|)
and small (|g|< |∆ω|) coupling regimes. Hereby we will show
that, when entering into the large detuning phase, the zero
mode first looses its properties because it is no longer NHPH
symmetry protected, and eventually coalesces with another
lattice mode through a parity-time phase transition.

This paper is organized as follows. In Section 1 we provide
a simple theoretical framework based on coupled mode theory
(CMT) to understand zero modes in gain/loss cavity arrays
warranted by NHPH symmetry. In Section 2 we describe our
photonic crystal three cavity array with controllable coupling
by means of the so-called barrier engineering technique. We
also provide an experimental characterization of the linear
Hermitian modes though resonant scattering experiments. In
Section 3 we move into non Hermitian mode characterization
by incoherently pumping the system, and we report on the
direct observation of the zero mode in the small sublattice
detuning regime. Such observation is based on photolumines-
cence intensity maps under the spatial scanning of the pump
spot combined with a Fourier imaging technique. In Section
4 we provide a detailed analysis of the phase transitions in the
system as both the coupling and the sublattice detuning are
changed; a systematic comparison with linear and nonlinear
CMT modeling allows us to explain the coalescence of the
zero mode as a result of a parity time spontaneous symmetry
breaking mechanism. Conclusions are given in Section 5.

1 Theoretical background: non-Hermitian
zero modes

A simple theoretical modal analysis of evanescently coupled
cavity lattices can be carried out in the framework of the
Coupled Mode Theory (CMT) formalism. In the case of N
resonant optical cavity lattices, the CMT is valid under the hy-
pothesis of negligible coupling between non-adjacent cavities
and weak coupling overall. It assumes that the system can be
accurately described with both the isolated (real) cavity fre-
quencies ωn∈[1,N] and the coupling strength to their neighbor-
ing cavities. The resulting hybrid mode frequencies and field
distributions become the eigenvalues and eigenvectors of a
Hamiltonian operator H, which does not need to be Hermitian.
This is naturally the case of optical cavities in the presence
of loss and/or gain7: a lattice can be described in CMT by
a Hamiltonian H whose matrix elements are Hnn = ω̃n and
Hnm = gnm (n 6= m), where ω̃n are the complex frequencies
of the isolated cavities and gnm are the nearest-neighbor inter-
cavity coupling parameters. In a closed Hermitian system,

ω̃n = ωn are real, while in a non-Hermitian gain/loss optical
system ω̃n = ωn− i/τn, where τn is the n−th cavity lifetime,
which can be negative for net gain. Also gnm can become
complex in general in a non-Hermitian framework22; here we
will consider real gnm for simplicity, i.e. we will neglect loss
splitting23, 24.

Although our analysis can be extended to large cavity net-
works, in this work we will focus on a small array of three
coupled cavities as the minimal system containing a zero
mode. Figure 1 illustrates a simple case where three cavities
are aligned along the x-direction, while the resonant intra-
cavity field oscillates back and forth in the y-direction (see
schematics in Fig. 1(c)]. We assume they all have the same
resonant frequency ω0 chosen as the reference frequency, near-
est neighbor coupling gnm = g = 2, and intrinsic field decay
time τ0 = 1 due to optical losses. Let us point out that the zero
mode has the same frequency as a standalone cavity. One of
the extreme cavities, say the top one, is incoherently pumped,
therefore introducing a variable gain γ , see Fig. 1(a). The
complex eigenvalues of H and their evolution with increasing
γ are depicted in Fig. 1(b). Red symbols correspond to the
eigenvalues ε j ( j = 1,2,3) evolving as the pump is increased
from γ = 0 (red square at the starting point) to γ = 1.8 (red
cross at the end point). We call M1 and M3 the lowest and
highest frequency modes, respectively, both having a nearly
symmetric field distribution, while M2 is the central mode
featuring π/2 phase jumps between adjacent cavities [Fig.
1(b), inset].

A zero mode that can be realized in photonics is often
the result of the sublattice (or chiral) symmetry in Hermitian
lattices, where eigenvalues are real. Hermitian chiral arrays
ensure εk =−ε j and a zero mode with j = k verifies ε j = 0.
These are known as dark modes, because the intensity in one
of the sublattices vanishes. On the other hand, eigenvalues
are complex in general in non-Hermitian arrays. While chiral
symmetry can still be realized in this case6, a more prevail-
ing symmetry that leads to a zero mode in a non-Hermitian
lattice is NHPH symmetry, giving rise to εk = −ε∗j . A zero
mode ( j = k), which always exists in the case of an odd num-
ber of cavities, leads to Re(ε j) = 0. This is the case of M2,
whose frequency does not depend on γ because of the NHPH
symmetry protection, while M1 and M3 frequencies do. It is
worthwhile noting that such a frequency change for M1 and
M3 is a pure non Hermitian effect, not related to any nonlinear
refractive index effect, as is usual in semiconductors; in Secs.
3 and 4 we will include such carrier-induced refractive index
effects to model our experimental results more realistically.

Unlike the Hermitian counterparts, the zero mode is no
longer a dark one under single cavity-pumping, see Fig. 1(b):
no light extinction occurs in the central one. The exact π/2
phase shift between adjacent cavities distinguishes the wave
function of a zero mode from all other modes, and dramat-
ically impacts the photoluminescence far-field imaging in
experiments, as will be shown later on.

Non-Hermitian zero modes warranted by NHPH symmetry
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Figure 1. Non Hermitian zero mode in a three coupled cavity array: CMT model. (a) Non-Hermitian Hamiltonian. (b)
Eigenvalues and eigenvectors. Inset: intensity and phase spatial distribution at M2-laser threshold. (c) Logarithmic spectral
intensity as a function of the center of a gaussian pump spot, computed from Eq. 2 in the text. The pump spot profile is
P(x;X) = exp[−(x−X)2/σ2]γ , with σ = 30 and γ = 1.5, i.e. below laser threshold. Solid lines correspond to Re(ε j) for j = 1
(M1, blue), j = 2 (M2, burgundy) and j = 3 (M3, orange).

have the freedom to evolve along the Im(ε)-axis. In partic-
ular, at γ = 1.8, Im(ε2) also becomes zero, so that the gain
compensates the losses. Thus, the linear CMT model predicts
zero-mode lasing in three coupled cavity systems as one of
the extreme cavities is pumped8. Even though the zero mode
can be clearly excited and identified by spatial localization
of a single pump spot, semiconductor refractive index non-
linearities will generally prevent laser operation (see Section
3).

Here we will restrict our analysis to the spontaneous
emission regime –i.e. below laser threshold and neglecting
amplification–, in which a linear non-Hermitian CMT is valid.
We assume a (gaussian) pump spot profile P(x;X) centered
at a given X-position, therefore γn(X) = P(xn;X), where xn
are the central positions of the cavities. As a result, ε j de-
pends not only on the pump power but also on the pump
position, ε j = ε j(X). The spontaneous emission in the cav-
ities is | f 〉 ( fn ∝ γ

1/2
n ), and the modal excitation amplitudes

f j(X) = 〈Φ j| f 〉, 〈Φ j| being the left eigenvectors of H. In this
spontaneous emission regime the total emitted spectral inten-
sity can be calculated as the incoherent superposition of the
N mode intensities, each one contributing with a Lorentzian
peak of amplitude f j(X), resonant frequency Re[ε j(X)] and

width Im[ε j(X)]:

I(ω;X) =

∣∣∣∣∣∣∑j

f j(X)

(ω−Re [ε j(X)]) i+ Im [ε j(X)]

∣∣∣∣∣∣
2

(1)

' ∑
j

| f j(X)|2

(ω−Re [ε j(X)])2 +(Im [ε j(X)])2 .(2)

Figure 1(c) shows the spectral intensity map I(ω;X) under
spatial scanning of a gaussian pump spot, computed from
Eq. 2. The signatures of the zero mode are the two central
lobes corresponding to M2 in Fig. 1(c). Such intensity map,
together with systematic far-field measurements, constitutes a
tool to experimentally investigate zero-mode radiation in the
active cavity array.

2 Three-coupled photonic crystal cavities:
design and characterization of Hermitian
modes

Photonic crystal (PhC) cavities with embedded quantum wells
(QWs) are a suitable platform to experimentally investigate
zero-mode photonics. This is due to the multiple degrees of
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Figure 2. Three coupled photonic crystal cavities. (a) Artist view of the system, featuring controllable coupling by means of
the two barriers (highlighted with dashed boxes) in which holes are modified. Two sublattices A and B can be defined, where
couplings only take place between cavities belonging to different sublattices. Bottom: schematic representation showing how
the presence of the barriers modifies the cavity detuning. The sublattice detuning is then ∆ω . (b) 3D-FDTD simulation results
of three coupled PhC cavities showing the evolution of the mode resonant wavelengths (symbols, left axis) as a function of the
barrier parameter. Solid lines (right axis) are CMT predictions using polynomial approximations of g(h) and ∆(h) obtained
from two-coupled cavity FDTD simulations (see Section III, Supplementary Material). Two regions can be distinguished: the
low (light green, |g|& |∆ω|) and high sublattice detuning regions (light blue, |g|< |∆ω|); the near zero coupling region is
highlighted with striped background. (c) SEM image of a sample of three coupled L3 InP-based photonic crystal cavities. Inset:
QW photoluminescence. (d) Normalized reflectivity spectra as a function of the barrier parameter, from resonant scattering
experiments. These results can be interpreted as the optical response of the coupled cavity system in the Hermitian limit.

freedom provided by the design parameters, as well as the
intrinsic and controllable gain/absoption features. Three cou-
pled PhC L3 cavities [three missing holes in the ΓK direction
of a triangular air hole lattice, see Fig. 2(a)] are separated by
three rows of holes in the ΓM direction, leading to evanescent
coupling. The two extreme cavities of the linear array couple
to the middle cavity only. In order to control the inter-cavity
coupling we implement the so-called barrier engineering tech-
nique, by virtue of which the coupling strength (and even its
sign) can be changed modifying the middle row separating
two adjacent cavities18, 24. We have designed the central hole-
row in the barriers with radius r3 = r0(1+h), r0 being the hole
radius of the underlying PhC lattice. We call the parameter h
the barrier perturbation. Importantly, h has a strong impact
on the cavity frequencies due to its influence on the effective
refractive index surrounding the cavities. Since the barrier in-

duces a frequency detuning ∆ω(h) in a contiguous nanocavity,
a good approximation is to consider the two extreme cavities
as having the same frequency ω0 +∆ω(h) and ω0 +2∆ω(h)
for the central cavity [see schematics in Fig. 2(a), bottom, and
Section III of the Supplementary Material for further details].

In order to predict the influence of the barrier parameter
in the coupled mode structure we have carried out 3D-Finite
difference Time Domain (FDTD) simulations. First, g(h) and
∆ω(h) have been obtained by polynomial fitting datasets of
a two coupled cavity system separated by a barrier with per-
turbation h (Fig. S1, Supplementary Material). Importantly,
two regions of h can be distinguished: the large detuning
region, |∆ω(h)| > |g(h)| for h < −5% or h > 10%, and the
small detuning region, |∆ω(h)|. |g(h)| for −5% . h≤ 10%.
Subsequently, 3D-FDTD simulation with three cavities have
been carried out. The mode frequencies as a function of h are
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depicted in Fig. 2(b), together with the Hermitian CMT pre-
dictions using the fitted parameters ∆ω(h) and g(h), showing
very good agreement.

We have fabricated the PhC cavity array of Fig. 2(a) in
a suspended InP membrane of 280 nm-thickness containing
four InGa0.17As0.76P quantum wells (QWs), featuring a pho-
toluminescence peak at λ ≈ 1514 nm [Fig. 2(c)]. The details
on the fabrication can be found in Ref.24. The hole radius
is r0 = 0.266a and a, the period of the triangular lattice, lies
in the range 400− 420 nm. The two holes limiting each
cavity have a reduced radius r1 = r0 − 0.06a and are dis-
placed away by s = 0.16a, in order to increase the Q-factor25.
Also holes around the cavities are modified with a period
2a by r2 = r0 +0.05a in order to improve the beaming qual-
ity of the emitted light and hence the collection efficiency26;
consequently, beaming holes inside the barrier have radius
r4 = r2(1 + h). Only samples with h ≤ 0 have been real-
ized, which suffices to largely tune the inter-cavity coupling
strength g. The resonance wavelengths of the samples range
from 1500 nm to 1600 nm depending on the lattice period.
The quality factor of the cavity resonances is Q ∼ 4000 at
λ = 1580 nm, i.e. far form the QW absorption.

Two kind of experimental characterizations have been car-
ried out: reflectivity spectra and photoluminescence experi-
ments, both with controlled spatial positions of the illumina-
tion spots. For the reflectivity spectra a single mode tunable
laser is used, the reflected signal is coupled into a single mode
optical fiber and sent to a femtowatt photodetector; the back-
ground reflectivity is highly suppressed using polarization
optics (see Methods). In these experiments the cavity wave-
lengths, lying in the range 1560−1600 nm, are red-detuned
from the QW absorption, and the illumination power is low
enough to be considered as linear reflectivity experiments.
Hence, these can be interpreted as optical characterizations of
linear Hermitian modes [Fig. 2(d)]. Unlike standard resonant
scattering experiments leading to Fano resonances, the reflec-
tivity background suppression allows us to clearly identify
modes as Lorentzian-like peaks.

The spectral position of the measured resonances is in very
good agreement with the FDTD calculations of Fig. 2(b).
Noticiably, three modes are clearly distinguished for h = 0%
and h =−5%, corresponding to the low sublattice detuning
region, while the middle peak is not apparent for−25%≤ h≤
−10%. This interval is within a crossover region where g is
small and changes sign [−25%≤ h≤−5% corresponding to
−2.17THz≤ g≤ 1.26THz, dashed region in Fig. 2(b)], with
a crossing point (g = 0) at h≈−15%. As a consequence, M1
and M2 frequencies are slightly split in this region. Finally,
M2 resonances re-emerge for h ≤ −30%. While this M2
mode is expected to remain a dark mode and possess chiral
symmetry in the Hermitian limit despite the large sublattice
detuning, it will no longer be protected by NHPH symmetry,
as will be discussed in the following.

3 Direct observation of the non-Hermitian
zero-mode

In addition to the reflectivity spectra of the previous Section,
which characterize Hermitian modes, we have also performed
photoluminescence (PL) experiments where the pump laser
wavelength is now λ = 980 nm: the laser beam is mainly
absorbed in the quantum barriers and thus it can be considered
as an incoherent pump. We use a pulsed laser (100 ps-duration
and 1 MHz repetition rate) in order to reduce thermal effects.
As in the reflectivity experiments, the pump spot is focused
down to nearly the diffraction limit so as to achieve a pump
configuration with a localized gain profile across the cavity
array, meaning that essentially one cavity is pumped when
aligning the pump beam at its center. The radiated PL is
collected in the free space and spectrally resolved with a
spectrometer coupled to an InGaAs 1D detector array. A
piezoelectric-driven stage holding the sample allows us to
externally control the sample position with respect to the
pump spot with sub-micron resolution. The results are shown
in Figs. 3-4.
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Figure 3. Spatially-resolved photoluminescence
measurements in the large detuning regime. (a) Experimental
results showing spectral intensity maps upon spatial scanning
of a pump spot for a = 416 nm and h =−20%, and (b)
nonlinear CMT predictions. The horizontal position of the
sample is changed by means of the piezo-electric voltage.
Nearfield [(a)-i to (a)-v, (b)-i to (b)-iii] and farfield [(a)-vi to
(a)-x, (b)-iv to (a)-vi] images are displayed at the selected
pump spot positions marked with horizontal dashed lines.

The spectral intensity as a function of the sample posi-
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tion reveals two distinct typical patterns depending on the
value of the barrier parameter h. For h <−5%, the detuning
|∆ω(h)| is larger that the coupling strength |g(h)|; we can
then expect that the two extreme cavities become effectively
decoupled from the central one, specially for h≤−20%. The
spectral map of Fig. 3(a) (h = −20%) is consistent with
this prediction: as long as the pump excites the QWs in
one of the extreme cavities, a resonant mode is observed at
λ0 ≈ 1558.2 nm, and when pumping the middle cavity a mode
red shifted by ∆λ ≈ 7.7 nm∼ 6 THz comes out, consistent
with the |∆ω(h =−20%)| ≈ 7 THz detuning obtained from
the numerical simulations. The near-field images [Fig. 3(a)-i
to (a)-v] show that the emission essentially comes from the
pumped cavity provided only one mode is excited. Note that
two near-field lobes can be observed for intermediate posi-
tions, where two resonances are simultaneously present in the
spectrum [Fig. 3(a)-ii,iv]. The far-field images [Fig. 3(a)-vi
to (a)-x] confirm this observation always revealing only one
central lobe, consistent with a localized cavity mode. It is
even the case for two near-field lobes, for which the radiation
pattern becomes the incoherent superposition of two centered
single-cavity far-field lobes [Fig. 3(a)-vii,ix].

This analysis allows us to conclude that the two external
cavities are decoupled from the central one for large sub-
lattice detuning. The experimental results are in very good
agreement with CMT calculations including carrier-induced
refractive index changes, that blue-shift the cavity resonance
as a function of the pump power. We will refer to such a more
realistic model for a semiconductor cavity as nonlinear CMT
in the sense of a carrier-induced Kerr effect by an incoherent
pump beam [Fig. 3(b), see Section IV of the Supplementary
Material for further details].

Interestingly, although the zero mode would still exist in the
case of large ∆ω in Hermitian systems, it is no longer observ-
able in our non-Hermitian system with detuning using a single
localized pump spot. This is because Hermitian zero-modes
warranted by sublattice symmetry are dark ones; therefore,
they remain unaffected if the detuning takes place only in the
cavities where the amplitude of the zero-modes is zero. On
the other hand, the non-Hermitian zero modes are not dark
ones in general. Here in our non-Hermitian system, a single
localized pump spot results in an imaginary detuning that
acts together with the real (frequency) detuning to eliminate
the NHPH symmetry and its zero-modes (see Supplementary
material, Section I). Therefore, within this high sublattice de-
tuning regime the system is generally not protected neither by
sublattice nor by particle-hole symmetry and as a consequence
there is no zero-mode that can be exploited.

To experimentally address a zero-mode, we change the
barrier parameter so that to enter into the low detuning regime,
h ∼ 0%. Within this regime the spectral intensity pattern
totally differs from the large detuning case where localized
modes prevailed [Fig 3(a)]. For−5% . h≤ 10% , |∆ω(h)|.
|g(h)| [Fig 2(b)], and the three coupled cavities effectively
behave as a whole. In the spectral intensity map [Fig. 4(a),
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Figure 4. Observation of the zero mode in the low detuning
regime. (a) Experimental results showing spectral intensity
maps upon spatial scanning of a pump spot for a = 408 and
h = 0%, and (b) nonlinear CMT predictions. The horizontal
position of the sample is changed by means of the
piezo-electric voltage. Nearfield [(a)-i to (a)-iv, (b)-i to
(a)-iii] and farfield [(a)-v to (a)-viii, (b)-iv to (a)-vi] images
are displayed at the selected pump spot positions marked
with horizontal dashed lines. Spectral filters are used in order
to remove contributions from other modes, the spectral
bandwidth being represented by the horizontal extension of
dashed boxes.

h = 0%] we can observe a pattern with the mode of highest
energy M3 being excited independently of the sample position;
it has a higher intensity compared to the two other modes. The
central mode M2, on the other hand, attains two maxima in
between the extreme cavities and the central one. The lowest
energy mode M1 is the weakest one and it is only observed
when pumping near the central cavity, a feature that was
already present in the simplified calculation of Fig. 1(c).

In these conditions we have measured the near-field and
far-field patterns setting the pump spot positions at the local
maxima of the modes and using pass-band filters to filter out
all other spectral components. From the near and far-field
images of the highest [M3, Fig. 4(a)-ii and (a)-vi] and lowest
[M1, Fig. 4(a)-iii and (a)-vii] energy modes we conclude that
those are approximately symmetric modes, with M1 being
the fundamental one, in agreement with the CMT and FDTD
calculations. In particular, the nearfield images [Figs. 4(a)-ii
and (a)-iii] show that the emission of those two modes comes
from all three cavities, with a higher intensity in the middle
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Figure 5. Phase diagram underlying the transition from sublattice delocalization and zero modes, to sublattice localization
and mode coalescence. From (a) to (e): experimental PL intensity maps under pump spot position scanning across the coupled
cavity system. (a)-(c) a = 416 nm, Ppump = 0.8 µW; (d)-(e) a = 408 nm, Ppump = 1.1 µW. From (f) to (j) nonlinear, and from
(k) to (o) linear CMT calculations, with parameters Q = 4000, λ0 = 1550 nm, αH = 3, σ = 30. (f) and (k) γ = 1.05, (g)-(h)
and (l)-(m) γ = 1, (i) and (n) γ = 1.2, (j) γ = 1.45 and (o) γ = 1.55.

for M3 and in the extreme ones for M1. The central mode, on
the other hand, features a far-field intensity node at the center
[M2, Fig. 4(a)-v,viii]; its near-field is more intense in the two
extreme cavities, [Fig. 4(a)-i,iv], while the intensity is below
our detection limit in the central cavity region. These observa-
tions are compatible with the non-Hermitian zero mode M2 of
Section 1. In particular, the π/2 phase jump between adjacent
cavities predicted for a non-Hermitian zero mode is translated
into a π phase difference between the two extreme cavities,
giving rise to an antisymmetric-like far-field profile, as it has
already been observed for two coupled cavities27.

Figure 4(b) shows the nonlinear CMT calculations. The
carrier-induced refractive index effects have an important
impact on the PL map, as compared to Fig. 1(c). Although
the main qualitative features are already captured by a linear
non Hermitian CMT, in the nonlinear CMT the blue-detuned
mode M3 strongly dominates over the two other modes. This
can be explained as a consequence of the frequency blue-shift
of a cavity resonance under optical pumping: we can therefore
expect that the blue most detuned hybrid mode will be more
efficiently excited, since its spectral overlap with the pumped
cavity resonance increases. This explains the enhancement

of the high energy mode M3 in this low sublattice detuning
regime, even though the zero mode is clearly measurable.
Importantly, the zero mode might be brought to laser operation
as long as a two spot pumping scheme is implemented, as will
be reported elsewhere.

4 Zero mode coalescence and phase tran-
sitions

In this section we unveil the underlying physical mechanisms
that lead to the extinction of zero modes as the barrier param-
eter h is decreased from h = 0% to h = −25%, i.e. as the
intercavity coupling |g| goes from above to below the sub-
lattice detuning |∆ω|. Indeed, the non Hermitian zero mode
is only observed in the |∆ω| . |g| regime (Fig. 4), while it
is missing in the |∆ω| > |g| regime (Fig. 3). First of all, let
us recall that, in the large sublattice detuning regime, NHPH
symmetry no longer warrants zero modes for single cavity
pumping. But even if M2 looses its symmetry protection, the
question arises of whether M2 still exists but remains unde-
tectable, or it coalesces through a phase transition. Let us also
recall that, in the Hermitian limit, the zero mode is observ-
able for large sublattice detuning [Fig. 2(d), h =−30%, and
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h =−35%].
The full picture of the different non Hermitian phases as

a function of the barrier parameter is represented in Fig. 5;
this completes the experimental PL maps for various h pa-
rameters [Fig. 5(a)-(e)], and depicts nonlinear [Fig. 5(f)-(j)]
as well as linear [Fig. 5(k)-(o)] CMT calculations. The ex-
perimental cases already analyzed in the previous section
are reproduced in Fig. 5(b) (h = −20%) and in Fig. 5(e)
(h = 0%). We first identify two phases, corresponding to ef-
fective coupling/decoupling of the central cavity with respect
to the two extreme ones: the sublattice delocalized phase
corresponds to |∆ω|. |g| (−5% . h≤ 0%), in which M2 is
observable and becomes the zero mode because of NHPH sym-
metry; conversely, the sublattice localized phase corresponds
to |∆ω|> |g| (h≤−10%), in which M2 is no longer observ-
able. Interestingly, within this sublattice localized phase, there
is a sub-region corresponding to the crossover of g, from posi-
tive to negative, vanishing at h≈−15%. At such a crosssover
M1 and M3 exchange symmetries, in the sense that M1 goes
from a quasi symmetric mode with zero phase jumps between
the cavities for g > 0, to a quasi symmetric mode with π phase
flips between the cavities for g < 0.

More importantly, for very small g a parity time symme-
try breaking is predicted as one extreme cavity is pumped.
Within this broken PT symmetry phase (−20% . h .−10%),
the central cavity (sublattice B) –already effectively decou-
pled from the two extreme ones– does not play an important
role; at the same time, the two extreme ones (sublattice A)
weakly interact with each other, such that a gain unbalance
may undergo an exceptional point (EP). This is depicted in
Figs. 5(l) and (m): the real part of the eigenvalues of modes
M2 and M3 undergo EPs when pumping in the proximity of
an extreme cavity. Within a pumped cavity of sublattice A, as
it is apparent in Fig. 5(m), the real parts of the eigenvalues of
M2 and M3 coalesce in a single branch; there, only one mode
is observable –the one with higher gain–, and it is localized in
the pumped cavity.

Of course, in a semiconductor material under gain/loss
operation, parameters can only be tuned to some extent near an
EP. This is because, in addition to imperfect symmetries in real
systems, semiconductors exhibit carrier-induced frequency
shift that, in general, explicitly breaks the inversion symmetry
of the real part of the dielectric constant. Therefore, the
otherwise EP bifurcation results in an imperfect symmetry
breaking [Figs. 5(g) and (h)]28. As already discussed, such
a frequency shift enhances light localization in an extreme
cavity when it is optically pumped. Therefore, within this
broken PT symmetry region, light localization in the real
device is a combination of both the underlying PT symmetry
breaking and nonlinear effects, while outside this region [Figs.
5(a), (f) and (k)], localization in one extreme cavity arises
because of pure carrier induced refractive index effects. As
a matter of fact, even if not detected in Figs. 5(a), the theory
still predicts the M2 mode to be observable [see Figs. 5(f) and
(k)].

5 Conclusion
We have reported on the direct observation of non Hermi-
tian zero modes warranted by non Hermitian particle hole
(NHPH) symmetry in a minimal cavity array: three coupled
photonic crystal nanocavities in a gain/loss configuration un-
der spatially localized optical pumping. Because the number
of cavities is odd, the Lieb’s theorem ensures the existence of
a zero mode, and there is no need to generate them through,
for instance, NHPH symmetry restoration. The nature and
properties of these non Hermitian zero modes differ from their
chiral Hermitian counterparts in two main aspects. Firstly,
unlike Hermitian zero modes, non Hermitian ones are more
robust in the sense that they are not restricted to the origin of
the complex plane, but they may exist along the imaginary
axis, still benefiting from symmetry protection. More specif-
ically, and analogously to chiral modes, they are immune to
random coupling perturbations in the cavity array. Secondly,
although non Hermitian zero modes are not dark ones, in the
sense that there is no light extinction in one of the sublattices,
these zero modes feature π/2 phase jumps between adjacent
cavities. These constitute unambiguous physical signatures
that distinguish their wavefunctions from any other ones in
the array, and enables experimental protocols to detect them.
Here we have shown that a photoluminescence (PL) inten-
sity map under spatial scanning of the pump spot provides
a clear fingerprint of zero modes in the form of PL maxima
in between cavities. At those PL maxima, a Fourier imaging
technique allows us to identify phase jumps as destructive
interference in the far field. Specifically, the π/2 phase jumps
between contiguous cavities result in a π phase difference
between the extreme cavities, which can be detected as nodes
at the far field center (k = 0).

We have identified different regimes that arise as the cou-
pling barrier of the photonic molecule is systematically modi-
fied through the perturbation parameter h, that varies the hole
radius of a row within the photonic barrier. Such a barrier
modification simultaneously changes the coupling g and the
sublattice detuning ∆ω , giving rise to two important regimes:
|∆ω|> |g| leading to sublaticce localization, and |∆ω|. |g|
leading to sublattice delocalization and zero modes. Remark-
ably, we have identified the transition from zero mode obser-
vation to its extinction as h is decreased as a combination of
both an underlying parity time symmetry breaking and carrier
induced blue shift nonlinearities, that strongly localize the PL
in a single cavity. Outside this PT-symmetry broken phase,
and within the strong sublattice detuning region, the Hermi-
tian zero modes do exist even though the system is no longer
chiral, which we have shown from reflectivity resonances in
a linear resonant scattering experiment (h≤−35%). On the
other hand, the non Hermitian zero mode cannot be observed
in this regime with a single pump spot because of symmetry
mismatch under symmetric excitation. Moreover, carrirer in-
duced blue shift effects enhance the PL emission within the
highest energy mode, hindering the central resonance M2.

In spite of the tremendous theoretical advances in the non-
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Hermitian domain, observations of photonic zero modes have
been restricted so far to waveguide or cavity arrays that ressem-
ble their Hermitian counterparts, such as the Su-Schrieffer-
Heeger (SSH) lattice. Although experimental demonstrations
of non Hermitian phenomena such as PT symmetry breaking
and exceptional points are coming to maturity, with special
focus in two resonator systems, the physical realization of non
Hermitian symmetries beyond PT such as NHPH in large cav-
ity arrays –a unique playground for non Hermitian photonics–
is still in its infancy. We believe that further developments in
this direction would enable promising applications of non Her-
mitian symmetry protected modes, ranging from laser array
mode engineering to photonic computing.
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Methods

Linear reflectivity experiments
We characterize the behavior of the linear Hermitian modes
in our system by performing linear reflectivity experiments
as briefly described in the main text. The quasi-resonant in-
jection beam is obtained from a Tunics T100s-HP, and its
polarization is managed by means of a polarizing beam split-
ter combined to a subsequent half-wave plate that ensures
linear horizontal polarization. The injection beam reaches the
injection/detection beam splitter (80 % reflectivity), a half-
wave plate and is finally injected through a 0.95 numerical
aperture microscope objective (Olympus MPLAN x100 IR).
The fast axis of the half-wave plate is rotated at 22.5◦ from the
injection beam allowing an injection at 45◦ from the cavities
polarization and an according polarization separation between
the non-injected and the injected beams. An additional lens
with 100 cm focal is located prior to injection so as to facil-
itate mode matching with the cavities. We then separate the
non-injected and injected beams after the injection/detection
beam splitter using a half-wave plate—in order to select the
detected polarization—and a polarizing beam splitter. We
finally inject a monomode optical fiber with the three cavity
systems’ emission and detect the signal using a Femtowatt
Photoreceivers (New Focus 2153) connected to a 12-bits os-
cilloscope (Tektronix MSO64).

During a single realization of the experiment, the injection
beam is first centered onto the considered nanocavity array,
and subsequently sweep over either 20 or 40 nm with different

starting wavelengths [as presented in Figure 2 (d)] depending
on the barrier parameter.
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