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This paper mainly study Z2Z4[u]-additive codes. A Gray map from

4 is defined, and we prove that is a weight preserving and distance preserving map. A MacWilliams-type identity between the Lee weight enumerator of a Z2Z4[u]-additive code and its dual is proved. Some properties of one-weight Z2Z4[u]additive codes and two-weight projective Z2Z4[u]-additive codes are discussed. As main results, some construction methods for one-weight and two-weight Z2Z4[u]-additive codes are studied, meanwhile several examples are presented to illustrate the methods.

INTRODUCTION

Constant weight (or N -weight) codes play an important part in the area of coding theory due to many applications in strongly regular graphs and projective point-sets [START_REF] Brouwer | Some new two-weight codes and strongly regular graphs[END_REF][START_REF] Clerck | Two-weight Codes, partial geometries and Steiner systems[END_REF], and have aroused great interest for researchers. Bonisoli studied the structure of one-weight linear codes over finite fields in [START_REF] Bonisoli | Every equidistant linear code is a sequence of dual Hamming codes[END_REF] and proved that every equidistance linear code is a sequence of simplex codes, where the simplex codes are the duals of Hamming codes. Ever since the prominent paper [START_REF] Hammons | The Z4-linearity of Kerdock, Preparata, Goethals and related codes[END_REF] by Hammons et al. came out, where algebraic structures were presented for some well-known nonlinear binary codes via a Gray map, the study of linear codes over various rings have attracted wide attention. For the N -weight codes over the rings, Carlet considered one-weight linear codes over Z 4 in [START_REF] Carlet | One-weight Z4-linear codes[END_REF]. Wood studied one-weight codes over Z M for various weights in [START_REF] Wood | The structure of linear codes of constant weight[END_REF]. Later, Sari et al. [START_REF] Sari | One-homogeneous weight codes over finite chain rings[END_REF] generalized the results to the finite chain rings, etc. For more properties, algebraic structures and construction methods for N -weight codes the reader may refer to [START_REF] Brouwer | Some new two-weight codes and strongly regular graphs[END_REF][START_REF] Calderbank | The geometry of two-weight codes[END_REF][START_REF] Clerck | Two-weight Codes, partial geometries and Steiner systems[END_REF][START_REF] Shi | One-weight and two-weight Z2Z2[u, v]-additive codes[END_REF] and references therein for more information.

The application of additive codes to steganography was proposed by Rifà et al. [START_REF] Rifà | Perfect Z2Z4-linear codes in steganography[END_REF] and later an improved version which combines two Hamming codes by tensoring their generator matrices were presented by Rifà and Ronquillo [START_REF] Rifà | Product perfect Z2Z4-linear codes in steganography[END_REF]. The mixed alphabet approach has brought other possible choices and new directions to be explored. In 1973, Delsarte [START_REF] Delsarte | An Algebraic Approach to Association Schemes of Coding Theory[END_REF] defined additive codes as subgroups of the underlying abelian group. In 2010, Borges et al. [START_REF] Borges | Z2Z4-linear codes: generator matrices and duality[END_REF] investigated the generator matrices and duality for Z 2 Z 4 -additive codes. In 2013, Aydogdu and Siap [START_REF] Aydogdu | The structure of Z2Z2s -additive codes: bounds on the minimum distance[END_REF] generalized these additive codes to the codes over Z 2 × Z 2 s and determined rich algebraic structures via Gray map. Soon, Abualrub et al. [START_REF] Abualrub | Z2Z4-additive cyclic codes[END_REF] introduced Z 2 Z 4 -cyclic codes in 2014. While in 2016, based on former work [START_REF] Borges | Z2Z4-linear codes: generator matrices and duality[END_REF], Borges et al. [START_REF] Borges | Z2Z4-additive cyclic codes, generator polynomials and dual codes[END_REF] studied the generator polynomials and the duals of Z 2 Z 4 -cyclic codes. A new class of additive codes which is referred to as Z 2 Z 2 [u]-additive codes were introduced in [START_REF] Aydogdu | On Z2Z2[u]-additive codes[END_REF]. Later, Shi et al. determined the algebraic structures of one-weight codes and two-weight Z 2 Z 2 [u, v]-additive codes in [START_REF] Shi | One-weight and two-weight Z2Z2[u, v]-additive codes[END_REF]. Motivated by the above work we will consider the codes over the ring Z 2 Z 4 [u] in the present paper. It is worth noting that rings with parameters usually require careful attention when considering the Lee weights of the elements.

A class of projective linear two-weight codes over finite fields have drawn the attention of researchers due to their combinatorial connections with structured graphs and designs. Bouyukliev et al. [START_REF] Bouyuliev | Projective two-weight codes with small parameters and their corresponding graphs[END_REF] discussed the relationship between projective codes and two-weight codes. Carderbank and Kantor [START_REF] Calderbank | The geometry of two-weight codes[END_REF] studied the geometry of two-weight codes. A note on one weight codes and two weight projective codes over Z 4 was presented by Shi et al. in [START_REF] Shi | A note on one weight and two weight projective Z4-codes[END_REF]. We think that it is worth further investigation on the projective two-weight codes over rings.

In this paper, we mainly focus on Z 2 Z 4 [u]-additive codes, where u 2 = 0. The outline of this paper is as follows. Section 2 introduces some basic notation and defines a Gray map which is weight preserving and distance preserving. Section 3 is devoted to the study of the properties and the MacWilliams-type identity for one-weight of Z 2 Z 4 [u]-additive codes. In Section 4 we discuss the projective twoweight Z 2 Z 4 [u]-additive codes. As another important part of the paper, in Section 5 and Section 6 we give some construction methods for one-weight and two-weight

Z 2 Z 4 [u]
-additive codes, respectively, and several examples are followed to illustrate the results. In addition, we compute some parameters of some Gray images of the Z 2 Z 4 [u]-additive codes in Examples 5.3-6.6. In the Appendix, we compare them with the codes in http:/www.Z4codes.info/.

PRELIMINARIES

Let Z 2 and Z 4 be the rings of integers modulo 2 and 4, respectively. Let Z n 2 be the set of all binary vectors of length n. The set

Z 4 [u] = Z 4 + uZ 4 = {a + ub | a, b ∈ Z 4 }
is a commutative ring with 16 elements, where

u 2 = 0. It is obvious that Z 2 is a subring of the ring Z 4 [u]. The notation Z α 2 × Z β 4 [u] denotes the set of all elements of the form c = (a | b) = (a 0 , a 1 , • • • , a α-1 | b 0 , b 1 , • • • , b β-1 ), where a i ∈ Z 2 , b j ∈ Z 4 [u], i = 0, 1, • • • , α -1, j = 0, 1, • • • , β -1, and α and β are the positive integers. A code C is called a Z 2 Z 4 [u]- additive code if it is a subgroup of Z α 2 × Z β 4 [u]. Define the scalar multiplication for the codewords in Z α 2 × Z β 4 [u] by the elements in Z 4 [u] as follows lc = l(a | b) = (ra 0 , ra 1 , • • • , ra α-1 | lb 0 , lb 1 , • • • , lb β-1 ), where c = (a | b) ∈ Z α 2 × Z β 4 [u], l = r + uq ∈ Z 4 [u] and r ≡ r(mod2). A Z 2 Z 4 [u]- additive code is said to be linear if it is a Z 4 [u]-submodule of Z α 2 × Z β 4 [u] with respect
to the scalar multiplication defined above.

Let (a | b) ∈ Z α 2 × Z β 4 [u], where a = (a 0 , • • • , a α-1 ) ∈ Z α 2 and b = (b 0 , • • • , b β-1 ) ∈ Z β 4 [u]. We define a Gray map ϕ from Z 4 [u] to Z 2 4 as ϕ(a + ub) = (b, a + b). Then the extended Gray map Φ from Z α 2 × Z β 4 [u] to Z α+2β 4 is defined as Φ(a | b) = (a 0 , a 1 , • • • , a α-1 | ϕ(b 0 ), ϕ(b 1 ), • • • , ϕ(b β-1 )).
In general, one can define a Gray map ψ :

Z 4 [u] → Z 2 4 , such that ψ(a + ub) = (a, b)A,
where A is a nonsingular matrix with entries are 0 or 1. Furthermore, that Gray map can be extended to Ψ :

Z α 2 × Z β 4 [u] → Z α+2β 4 defined by Ψ(a, b) = (a 0 , • • • , a α-1 | ψ(b 0 ), • • • , ψ(b β-1 )
). In this paper we only discuss the Gray map ϕ and its extended Gray map Φ defined above for the case when

A = 0 1 1 1 . For s = (s 1 , • • • , s α | s α+1 , • • • , s α+β ), t = (t 1 , • • • , t α | t α+1 , • • • , t α+β ) ∈ Z α 2 × Z β 4 [u]
, the inner product is defined as s, t = 2u α i=1

s i t i + α+β j=α+1 s j t j ∈ Z 4 + uZ 4 . The dual code of C is defined as C ⊥ = {t ∈ Z α 2 × Z β 4 [u] | s, t = 0, ∀s ∈ C}. The code is called self-orthogonal if C ⊂ C ⊥ and self-dual if C = C ⊥ . It is easy to check that the dual code C ⊥ of a Z 2 Z 4 [u]-additive code C is also a Z 2 Z 4 [u]-additive code. For any codeword c = (a | b) = (a 0 , a 1 , • • • , a α-1 | b 0 , b 1 , • • • , b β-1 ) ∈ Z α 2 × Z β 4 [u],
the Lee weight of c is denoted by w

L (c) = α-1 i=0 w L (a i )+ β-1 j=0 w L (b j ). Note that w L (a i ) = w H (a i ) for 0 ≤ i ≤ α -1 over Z 2 . For the Z 4 [u] part, the Lee weight of element b ∈ Z 4 [u] is defined as follows: if b = 0, then w L (b) = 0; if b ∈ U i , then w L (b) = i,
where U 1 = {1, 1 + 3u, 3, 3 + u}, U 2 = {u, 3u, 2, 2 + u, 2 + 2u, 2 + 3u}, U 3 = {1 + u, 1 + 2u, 3 + 2u, 3 + 3u}, U 4 = {2u}. By the Gray map ϕ defined above, we have

w L (b) = w L (ϕ(b)).
The Gray map also defines a Lee distance

d L (x, y) = w L (x -y) on Z 2 Z 4 [u] for x, y ∈ Z α 2 × Z β 4 [u].
For the above extended Gray map Φ, we conclude that it is a weight preserving and distance preserving map.

Theorem 2.1. The Gray map Φ is a weight preserving map from (Z

α 2 × Z β 4 [u], Lee weight) to (Z α+2β 4 , Lee weight), i.e. w L (c) = w L (Φ(c)) for all c ∈ Z α 2 × Z β 4 [u], and 
Φ is a distance preserving map from (Z α 2 ×Z β 4 [u], Lee distance) to (Z α+2β 4 , Lee distance), i.e. d L (x, y) = d L (Φ(x), Φ(y)) for all x, y ∈ Z α 2 × Z β 4 [u]. Proof. For any c = (c 1 , • • • , c α | c α+1 , • • • , c α+β ) ∈ Z α 2 × Z β 4 [u], c α+i = a i + ub i ∈ Z 4 [u], i = 1, • • • , β.
From the definition of Gray map Φ we have

w L (Φ(c)) = α j=1 w L (c j ) + β i=1 w L (ϕ(a i + ub i )) = α j=1 w L (c j ) + β i=1 w L (a i + ub i ) = α+β j=1 w L (c j ) + β i=1 w L (c α+i ) = w L (c).
Similarly, we can prove Φ is a distance preserving map.

ONE-WEIGHT Z2Z4[u]-ADDITIVE CODES

From now on, we discuss the Lee weight of Z 2 Z 4 [u]-additive codes and for convenience we sometimes call it weight simply. In this section we determine the properties and the MacWilliams-type identity for one-weight of Z 2 Z 4 [u]-additive codes. (ii) the column contains 0, 2, 2u, 2 + 2u equally often;

(iii) the column contains 0, 2 + u, 2 + 3u, 2u equally often;

(iv) the column contains 0, u, 2u, 3u equally often;

(v) the column contains 0, 2u equally often.

Let k 1 be the number of columns in which r i ∈ Z 4 [u] are balanced, k 2 be the columns which contains 0, 2, 2u, 2 + 2u equally often, k 3 be the column contains 0, 2 + u, 2 + 3u, 2u equally often, k 4 be the column contains 0, u, 2u, 3u equally often, k 5 be the column contains 0, 2u equally often, where

k 1 + k 2 + k 3 + k 4 + k 5 = β.
Hence the sum of the Lee weights of all the codewords of C is

c∈C w L (c) =α | C | 2 + k 1 | C | 16 × 4 + 2 × | C | 16 × 6 + 3 × | C | 16 × 4 + 4 × | C | 16 + k 2 2 × | C | 4 + 4 × | C | 4 + 2 × | C | 4 + k 3 2 × | C | 4 + 2 × | C | 4 + 4 × | C | 4 + k 4 2 × | C | 4 + 4 × | C | 4 + 2 × | C | 4 + k 5 4 × | C | 2 = | C | 2 (α + 4β). Theorem 3.3. Let C be a one-weight additive code in Z α 2 × Z β 4 [u] with weight m.
Then there exists a unique positive integer

λ such that m = λ |C| 2 , α+4β = λ(| C | -1). Proof. By Theorem 3.2, c∈C w L (c) = |C| 2 (α + 4β). On the other hand, it is clear that c∈C w L (c) = m(| C | -1), therefore |C| 2 (α + 4β) = m(| C | -1). Clearly, | C | is a power of 2, so gcd(| C | -1, |C| 2 ) = 1, hence there exists a unique positive integer λ such that m = λ |C| 2 , α + 4β = λ(| C | -1). Corollary 3.4. Let C be a one-weight additive code in Z α 2 × Z β 4 [u] with weight m. If m is odd, then C = {(0 α | 0 β ), (1 α | 2u β )}
, where 0 α and 1 α with the length α, 0 β and 2u β with the length β.

Proof. By Theorem 3.3, it is clear that λ and |C| 2 are odd if m is odd. Since | C | is a power of 2, | C |= 2. Then α + 4β = λ(| C | -1) = λ = m. For all the codewords in Z α 2 × Z β 4 [u], {(1 α | 2u β )} is the only codeword with weight α + 4β. Therefore, C = {(0 α | 0 β ), (1 α | 2u β )}.
Next, we discuss the dual code of one-weight

Z 2 Z 4 [u]-additive codes.
Let C be a one-weight code in

Z α 2 × Z β 4 [u], N = α + 4β and {A 0 , A 1 , • • • , A N } be
its Lee weight distribution. Then the Lee weight enumerator of an additive code C is defined as

Lee C (x, y) = c∈C x N -w L (c) y w L (c) = N i=0 A i x N -i y i = x N + (| C | -1)x N -m y m . Let a + bu ∈ Z 4 [u], then χ(a + bu) = (-1) b is a character function on Z 4 [u]
, which is nontrival. Similar to the discussion in [START_REF] Shi | One-weight and two-weight Z2Z2[u, v]-additive codes[END_REF], we have the following two lemmas and their proofs are omitted here.

Lemma 3.5. Let r ∈ Z α 2 × Z β 4 [u]
and let χ be the character of Z 4 [u] defined above.

Then s∈Z α 2 ×Z β 4 [u] χ( r, s )x N -w L (s) y w L (s) = (x + y) N -w L (r) (x -y) w L (r) . Lemma 3.6. Let C be a linear code in Z α 2 × Z β 4 [u] and C ⊥ be its dual code. Define f (e) = t∈Z α 2 ×Z β 4 [u] χ( e, t )f (t). Then t∈C ⊥ f (t) = 1 |C| e∈C f (e).
According to two lemmas above, we can obtain the MacWilliams-type identity on the Lee weight enumerator between C and its dual as follows.

Theorem 3.7. Let C be a one-weight linear code in

Z α 2 × Z β 4 [u]
, the relation between the Lee weight enumerator of C and its dual code is

Lee C ⊥ (x, y) = 1 |C| Lee C (x + y, x -y).
Let {B 0 , B 1 , • • • , B N } be the Lee weight distribution of C ⊥ . Then we have

x N + (| C | -1)x N -m y m = 1 | C ⊥ | N i=0 B i (x + y) N -i (x -y) i . (1) 
Let x = 1, then by differentiating (1) with respect to y and setting y = 1, we obtain 

| C |= 1 | C ⊥ | 2 N , (2) 
m(| C | -1) = | C | 2 (N -B 1 ), (3) 
m 2 (| C | -1) = | C | 2 N 2 (N + 1) -N B 1 + B 2 . (4 
C = {(0, 0 |), (1, 1 |)}. Proof. Since m = λ |C| 2 and N = α + 4β = λ(| C | -1), then m(| C | -1) = λ |C| 2 (| C | -1) = |C| 2 N . By (3), we have m(| C | -1) = |C| 2 (N -B 1 ), so B 1 = 0 and d L (C ⊥ ) ≥ 2.
By (4), we have 

m 2 (| C | -1) = |C| 2 [ N 2 (N + 1) -N B 1 + B 2 ], so B 2 = N 2 (λ -1). It is obvious that B 2 = 0 and d L (C ⊥ ) ≥ 3 if λ = 1. If λ = 2, B 2 = N 2 (λ-1) = N 2 =| C | -1. Then | C ⊥ |= B 0 + B 2 =| C |, because C ⊥ is a one-weight additive code. By (2), | C |= 1 |C ⊥ | 2 N , so we conclude that m =| C |= N = 2. Thus α = 2, β = 0, then (1, 1 |) is the only codeword with weight 2. So C = C ⊥ and C = {(0, 0 |), (1, 1 |)}. Definition 3.9. Let C be a Z 2 Z 4 [u]-additive code. If Lee C (x, y) = Lee C ⊥ (x, y), then C is called a Z 2 Z 4 [u]-
(i) If m is even, then m = 2 and C = C ⊥ = {(0, 0 |), (1, 1 |)}. (ii) If m is odd, then m = 1 and C = {(0, 0 |), (0, 1 |)} and C ⊥ = {(0, 0 |), (1, 0 |)} or C = {(0, 0 |), (1, 0 |)} and C ⊥ = {(0, 0 |), (0, 1 |)}.
Proof. The proof is alike to that of Theorem 11 in [START_REF] Shi | One-weight and two-weight Z2Z2[u, v]-additive codes[END_REF], so it is omitted.

Example 3.11. Let C = {(0, 0 |), (0, 1 |)}. It is clear that C ⊥ = {(0, 0 |), (1, 0 |)},
and

Lee C ⊥ (x, y) = Lee C (x, y) = x 2 + xy. So C is a formally self-dual code but not self-dual.

TWO-WEIGHT PROJECTIVE Z2Z4[u]-ADDITIVE CODES

In this section we study properties of two-weight projective Z 2 Z 4 [u]-additive codes.

Recall that a code over Z 2 Z 4 [u] is said to be projective code if the nonzero minimum Lee weight of its dual code is at least three. 

A 0 + A m 1 + A m 2 =| C |= 1 | C ⊥ | 2 N , (5) 
m 1 A m 1 + m 2 A m 2 = | C | 2 (N -B 1 ), (6) 
m 2 1 A m 1 + m 2 2 A m 2 = | C | 2 N 2 (N + 1) -N B 1 + B 2 . ( 7 
)
Then we have the following theorems.

Theorem 4.2. Let C be a two-weight projective Z 2 Z 4 [u]-additive code with weight m 1 and m 2 . Assume N = α + 4β, then

N 2 -N (2m 1 + 2m 2 -1) + m 1 m 2 (4 - 4 | C | ) = 0, (8) 
A m 1 = |C| 2 N -m 2 (| C | -1) m 1 -m 2 , A m 2 = |C| 2 N -m 1 (| C | -1) m 2 -m 1 . (9) 
Proof. Since C is a two-weight projective Z 2 Z 4 [u]-additive code, so A 0 = 1 and

B 1 = B 2 = 0. Let us consider the integral coefficient polynomial (x -m 1 )(x -m 2 ) = a 0 + a 1 x + x 2 , where a 0 = m 1 m 2 and a 1 = -(m 1 + m 2 ). Note that a 0 + a 1 m 1 + m 2 1 = 0 and a 0 + a 1 m 2 + m 2 2 = 0.
Then, computing the combination of equations ( 5), ( 6), [START_REF] Bouyuliev | Projective two-weight codes with small parameters and their corresponding graphs[END_REF] as a 0 • (5) + a 1 • (6) + ( 7), the equation ( 8) is obtained immediately. Finally, by solving the linear system of ( 5) and ( 6), we can obtain (9). Proof. The discriminant of (8

) is = (2m 1 + 2m 2 -1) 2 -4m 1 m 2 (4 -4 |C| ). Suppose that m 1 m 2 = ω | C | for some natural number ω, then = (2m 1 + 2m 2 -1) 2 - 16(m 1 m 2 -ω).
Since N is an integer, must be a square. So we have =

(2m 1 -2m 2 -1) 2 , m 1 = |C| 2 when ω = m 2 2 . Thus N = (2m 1 +2m 2 -1)±(2m 1 -2m 2 -1)

2

, that

is N = 2m 1 -1 or N = 2m 2 . When N = 2m 1 -1, then m 1 = N +1
2 , and we have

m 1 = |C| 2 above, so N + 1 =| C |. In (9), A m 2 = |C| 2 N -m 1 (|C|-1) m 2 -m 2
, thus A m 2 = 0, this contradicts the definition of the two-weight codes. Thus N = 2m 2 is the only case, then m 2 = N 2 .

CONSTRUCTION OF ONE-WEIGHT Z2Z4[u]-ADDITIVE CODES

In this section and the next, we give the construction methods of one-weight and two-weight Z 2 Z 4 [u]-additive codes. The methods are similar to those in [START_REF] Shi | One-weight and two-weight Z2Z2[u, v]-additive codes[END_REF]. 

w L (c) = w L (bc) = a + 2(a 1 + a 2 + a 3 + a 4 + a 5 + a 6 ) + 4a 7 , (10) 
w L (uc) = w L (3uc) = 4(a 3 + a 4 + a 5 + a 6 ), (11) 
w L (2c) = w L ((2 + 2u)c) = 4(a 1 + a 2 + a 4 + a 6 ), (12) 
w L ((2 + u)c) = w L ((2 + 3u)c) = 4(a 1 + a 2 + a 3 + a 5 ), (13) 
where b ∈ U 2 × U 4 . Then we have the following theorem. 1, where

k 1 = a 1 + a 2 , k 2 = a 3 + a 5 , k 3 = a 4 + a 6 .
Proof. We only prove one feasible case. If w L (c) = w L (uc) = w L (2c) = w L ((2 + u)c) = 0, by equations ( 10)-( 13), we have

k 1 = k 2 = k 3 , then w L (c) = a + 6k 1 + 4a 7 , w L (uc) = 8k 1 . If a + 6k 1 + 4a 7 = 8k 1 , then C is a one-weight additive code with weight 8k 1 in Z α 2 × Z β 4 [u]
. Other cases can be proved similarly and are omitted. The related results are showed in Table 1. [START_REF] Shi | One-weight and two-weight Z2Z2[u, v]-additive codes[END_REF].

Table 1: One-weight Z 2 Z 4 [u]-additive codes Cases Weight Remark w L (c) = w L (uc) = w L (2c) = w L ((2 + u)c) = 0 8k 1 a + 4a 7 = 2k 1 w L (c) = w L (uc) = w L (2c) = 0, w L ((2 + u)c) = 0 4k 3 a + 4a 7 = 2k 3 w L (c) = w L (uc) = w L ((2 + u)c) = 0, w L (2c) = 0 4k 2 a + 4a 7 = 2k 2 w L (c) = w L (2c) = w L ((2 + u)c) = 0, w L (uc) = 0 4k 1 a + 4a 7 = 2k 1 w L (c) = w L (uc) = 0, w L (2c) = w L ((2 + u)c) = 0 / / w L (c) = w L (2c) = 0, w L (uc) = w L ((2 + u)c) = 0 / / w L (c) = w L ((2 + u)c) = 0, w L (uc) = w L (2c) = 0 / / w L (c) = 0, w L ((2 + u)c) = w L (2c) = w L (uc) = 0 a + 4a 7 / Example 5.3. (i) If C is generated by (1, 1, 1, 1 | u, 3u),
We denote

T 1 = {1, 3}, T 2 = {1+3u, 3+u}, T 3 = {u, 3u, 2, 2+u, 2+2u, 2+3u}, T 4 = {1 + u, 3 + 3u}, T 5 = {1 + 2u, 3 + 2u}, T 6 = {2u}. Define T i • T j = {t i • t j | t i ∈ T i , t j ∈ T j , 1 ≤ i, j ≤ 6}, then we have T 1 • T i = T i , 1 ≤ i ≤ 6, T 2 • T 4 = T 5 • T 5 = T 1 , T 4 • T 5 = T 2 , T 2 • T 3 = T 3 • T 4 = T 3 • T 5 = T 3 , T 3 • T 6 = {0}, T 2 • T 5 = T 4 , T 2 • T 2 = T 4 • T 4 = T 5 , T 2 • T 6 = T 4 • T 6 = T 5 • T 6 = T 6 , T 3 • T 3 = {0, 2u}. Let G i ∈ T n i i , then the
components in G i come from T i and the number of elements in T i appear equally in 

G i . Set I i = (1, 1, • • • , 1) with length n i , i = 1,
= 8(n 1 + n 2 ) in Z α 2 × Z β 4 [u] if and only if a + 4n 6 = n 1 + n 2 = n 4 + n 5 = n * 3 .
Proof. For c ∈ C, we have the following equations:

w L (c) = w L (t 1 c) = a + n 1 + n 2 + 2n 3 + 3(n 4 + n 5 ) + 4n 6 , (14) 
w L (t 2 c) = a + n 1 + 3n 2 + 2n 3 + n 4 + 3n 5 + 4n 6 , (15) 
w L (t 3 c) = 2n 1 + 2n 2 + 4n * 3 + 2n 4 + 2n 5 , (16) 
w L (t 4 c) = a + 3n 1 + n 2 + 2n 3 + 3n 4 + n 5 + 4n 6 , (17) 
w L (t 5 c) = a + 3n 1 + 3n 2 + 2n 3 + n 4 + n 5 + 4n 6 , (18) 
w L (t 6 c) = 4n 1 + 4n 2 + 4n 4 + 4n 5 , (19) 
where t i ∈ T i . Since c is a one-weight additive code, then by equations ( 14)-( 17) we get n 1 = n 5 , n 2 = n 4 . By equations ( 16) and ( 19), we have 2n

* 3 = n 1 + n 2 + n 4 + n 5 = 2(n 1 + n 2 ), so n * 3 = (n 1 + n 2 ). If C is a one-weight additive code in Z α 2 × Z β 4 [u]
and the elements in T 3 appear in c equally often, it is easy to see that 2n 3 = 3n * 3 by considering the number of 2u in t 3 c. Thus

n 1 + n 2 = n 4 + n 5 = n * 3 = 2n 3 3 . Therefore w L (t 1 c) = a + 7(n 1 + n 2 ) + 4n 6 = w L (t 2 c) = w L (t 4 c) = w L (t 5 c), w L (t 3 c) = 8(n 1 + n 2 ) = w L (t 6 c).
Then C is a one-weight additive code with m = 8(n 

1 + n 2 ) in Z α 2 × Z β 4 [u] if and only if a + 4n 6 = n 1 + n 2 = n 4 + n 5 = n * 3 . Example 5.5. Denote 1 = (1, 1, 1, 1), A = (1, 3, 1 + 3u, 3 + u, u, 3u, 2, 2 + u, 2 + 2u, 2 + 3u, 1 + u, 3 + 3u, 1 + 2u, 3 + 2u), then (i) If C is generated by (1 | A), then C is a one-weight additive code with m = 32 in Z 4 2 × Z 14 4 [u]; (ii) If C is generated by (| A, 2u),
G i ∈ T n i i (i = 1, • • • , 5). If its generator matrix G is G = 1 G 1 G 2 G 4 G 5 G 3 2u 0 2uI 1 2uI 2 2uI 4 2uI 5 0 0 ,
and its first row satisfies a + 4n 6 = n 1 + n 2 = n 4 + n 5 = 2n 3 3 , then C is a one-weight

Z 2 Z 4 [u]-additive code of length n = a + n 1 + n 2 + n 3 + n 4 + n 5 + n 6 with weight 8(n 1 + n 2 ), where 1 = (1, 1, • • • , 1) with length a, 2u = (2u, 2u, • • • , 2u) with length n 6 .
Proof. Let c i be the i-th row of the generator matrix G, i = 1, 2. For any c ∈ C, then

c = k 1 c 1 + k 2 c 2 ,
where

k 1 = r + uq ∈ Z 4 [u] and k 2 ∈ Z 2 . Denote k 1 c 1 + k 2 c 2 = (r1 | A 1 , A 2 , A 4 , A 5 , A 3 , k 1 2u
), where r ≡ r(mod2) and

A i ∈ (Z 4 [u]
) n i , i = 1, 2, 3, 4, 5. We discuss for the following two cases:

(i) If k 2 = 1. When k 1 ∈ T 1 , then the elements in A 1 belong to T 5 , elements in A 2
belong to T 4 , elements in A 4 belong to T 2 , elements in A 5 belong to T 2 , and elements in

A 3 belong to T 3 , hence w L (k 1 c 1 +k 2 c 2 ) = a+3n 1 +3n 2 +n 4 +n 5 +2n 3 +4n 6 = 8(n 1 +n 2 ).
Similarly, when

k 1 ∈ T 2 , w L (k 1 c 1 +k 2 c 2 ) = a+3n 1 +n 2 +3n 4 +n 5 +2n 3 +4n 6 = 8(n 1 + n 2 ). When k 1 ∈ T 3 , then the elements in A i belong to T 3 , i = 1, 2, 4, 5, elements in A 3 belong to {0, 2u}, hence w L (k 1 c 1 + k 2 c 2 ) = 2n 1 + 2n 2 + 2n 4 + 2n 5 + 4n * 3 = 8(n 1 + n 2 ); when k 1 ∈ T 4 , w L (k 1 c 1 + k 2 c 2 ) = a + n 1 + 3n 2 + n 4 + 3n 5 + 2n 3 + 4n 6 = 8(n 1 + n 2 ); when k 1 ∈ T 5 , w L (k 1 c 1 + k 2 c 2 ) = a + n 1 + n 2 + 3n 4 + 3n 5 + 2n 3 + 4n 6 = 8(n 1 + n 2 );
when k 1 ∈ T 6 , then the elements in A i belong to {0}, i = 1, 2, 3, 4, 5 and elements in

k 1 2u belong to {0}, hence w L (k 1 c 1 + k 2 c 2 ) = 0.
(ii) If k 2 = 0, then by Theorem 4.4, C is a one-weight additive code with weight

8(n 1 + n 2 ) in Z α 2 × Z β 4 [u].
Therefore, C is a one-weight Z 2 Z 4 [u] additive code with length n = a + n 1 + n 2 + n 3 + n 4 + n 5 + n 6 and with weight 8(n 1 + n 2 ).

Example 5.7. Let C be an additive code in Z 4 2 × Z 16 4 [u] generated by

G = 1 G 1 G 2 G 4 G 5 G 3 2u 0 2uI 1 2uI 2 2uI 4 2uI 5 0 0 , then C is a one-weight additive code with weight 32 in Z 4 2 × Z 16 4 [u], where 1 = (1, 1, 1, 1), G 1 = (3), G 2 = (1 + 3u, 3 + u, 3 + u), G 4 = (1 + u, 1 + u, 3 + 3u), G 5 = (3 + 2u), G 3 = (u, 3u, 2, 2 + u, 2 + 2u, 2 + 3u).

CONSTRUCTION OF TWO-WEIGHT Z2Z4[u]-ADDITIVE CODES

This section is dedicated to the construction of two-weight Z 2 Z 4 [u]-additive codes. (ii) the coordinates in the Z 4 [u] part only from T 2 ;

(iii) the coordinates in the Z 4 [u] part only from T 4 ;

(iv) the coordinates in the Z 4 [u] part only from T 5 ;

(v) the coordinates in the Z 4 [u] part only from T 1 , T 2 , T 4 and T 5 equally often.

Proof. If the number of 1's in the

Z 2 part is a. Since C is a two-weight additive code in Z α 2 × Z β 4 [u]
, let the nonzero weight of C be m 1 and m 2 . We can check that w L (2uc) = 4s and w L (uc) = 2s. So we denote m 1 = 4s and m 2 = 2s. Furthermore, it is easy to check that

w L (t 1 c) = a + s 1 + s 2 + 3s 4 + 3s 5 , w L (t 2 c) = a + s 1 + 3s 2 + s 4 + 3s 5 , w L (t 4 c) = a + 3s 1 + s 2 + 3s 4 + s 5 , w L (t 5 c) = a + 3s 1 + 3s 2 + s 4 + s 5 ,
where t i ∈ T i , i = 1, 2, 4, 5. Then we can discuss as follows. 2. 

(i) If m 1 = w L (t 1 c) = w L (t 2 c) and m 2 = w L (t 4 c) = w L (t 5 c), then s 1 = s 2 = s 4 = 0 and s 5 = a = s. Hence, C is a two-weight additive code with m 1 = 4s and m 2 = 2s in Z α 2 × Z β 4 [u]. (ii) If m 1 = w L (t 1 c) = w L (t 4 c) and m 2 = w L (t 2 c) = w L (t 5 c), then s 1 = s 2 = s 5 =
Table 2: Two-weight Z 2 Z 4 [u]-additive codes Cases m 1 m 2 Remark w L (c) = w L (uc) = w L (2c) = 0, w L ((2 + u)c) = 0 4(k 1 + k 3 ) 8k 1 a = 2k 3 -4a 7 , k 1 = k 3 w L (c) = w L (uc) = w L ((2 + u)c) = 0, w L (2c) = 0 4(k 1 + k 2 ) 8k 1 a = 2k 2 -4a 7 , k 1 = k 2 w L (c) = w L (2c) = w L ((2 + u)c) = 0, w L (uc) = 0 4(k 1 + k 2 ) 8k 2 a = 2k 1 -4a 7 , k 1 = k 2 w L (uc) = w L (2c) = w L ((2 + u)c) = 0, w L (c) = 0 a + 6k 1 + 4a 7 8k 1 a + 4a 7 = 2k 1 w L (c) = w L (uc) = 0, w L (2c) = w L ((2 + u)c) = 0 4(k 1 + k 2 ) 8k 2 a = 4k 2 -2k 1 -4a 7 , k 1 = k 2 w L (c) = w L (2c) = 0, w L (uc) = w L ((2 + u)c) = 0 4(k 1 + k 2 ) 8k 1 a = 4k 1 -2k 2 -4a 7 , k 1 = k 2 w L (c) = w L ((2 + u)c) = 0, w L (2c) = w L (uc) = 0 4(k 1 + k 3 ) 8k 1 a = 4k 1 -2k 3 -4a 7 , k 1 = k 3 w L (c) = w L (uc) = 0, w L (2c) = 0, w L ((2 + u)c) = 0 / / / w L (c) = w L (2c) = 0, w L (uc) = 0, w L ((2 + u)c) = 0 / / / w L (uc) = w L (2c) = 0, w L (c) = 0, w L ((2 + u)c) = 0 a + 2k 3 + 4a 7 4k 3 a + 4a 7 = 2k 3 w L (c) = w L (uc) = 0, w L ((2 + u)c) = 0, w L (2c) = 0 / / / w L (c) = w L ((2 + u)c) = 0, w L (uc) = 0, w L (2c) = 0 / / / w L (uc) = w L ((2 + u)c) = 0, w L (c) = 0, w L (2c) = 0 a + 2k 2 + 4a 7 4k 2 a + 4a 7 = 2k 2 w L (c) = w L (2c) = 0, w L ((2 + u)c) = 0, w L (uc) = 0 / / / w L (c) = w L ((2 + u)c) = 0, w L (2c) = 0, w L (uc) = 0 / / / w L (2c) = w L ((2 + u)c) = 0, w L (c) = 0, w L (uc) = 0 a + 2k 1 + 4a 7 4k 1 a + 4a 7 = 2k 1 w L (c) = 0, w L (uc) = 0, w L (2c) = w L ((2 + u)c) = 0 / / / w L (c) = 0, w L (2c) = 0, w L (uc) = w L ((2 + u)c) = 0 / / / w L (c) = 0, w L ((2 + u)c) = 0, w L (2c) = w L (uc) = 0 / / / Example 
G = 1 G 1 G 2 G 4 G 5 G 3 2u 0 0 0 0 0 2uI 3 0 , where 1 = (1, 1, • • • , 1)
m 1 = 8(n 1 + n 2 ) and m 2 = 6(n 1 + n 2 ) in Z α 2 × Z β 4 [u].
Proof. Let c i be the i-th row of G , i = 1, 2. For c ∈ C, it can be expressed as

k 1 c 1 + k 2 c 2 , where k 1 = r + uq ∈ Z 4 [u] and k 2 ∈ Z 2 . Denote k 1 c 1 + k 2 c 2 = (r1 | A 1 , A 2 , A 4 , A 5 , A 3 , k 1 2u), where r ≡ r(mod2) and A i ∈ (Z 4 [u]) n i , i = 1, 2 , 3, 4, 5. 
(i) If k 2 = 0, by Theorem 4.4, then C is a one-weight additive code with weight

8(n 1 + n 2 ) in Z α 2 × Z β 4 [u]. (ii) If k 2 = 1. When k 1 ∈ T 1 ∪ T 2 ∪ T 4 ∪ T 5 , then k 1 G 3 ∈ T 3 , T 3 + 2uI 3 ∈ T 3 , so the elements in A 3 belong to T 3 , thus w L (k 1 c 1 + k 2 c 2 ) = 8(n 1 + n 2 ); when k 1 ∈ T 3 ∪ T 6 ,
then there are 2n 3 3 coordinates equal to 0 in A 3 , thus w L (k Let

1 c 1 + k 2 c 2 ) = 2(n 1 + n 2 + n 4 + n 5 ) + 4 × n 3 3 = 6(n 1 + n 2 ).
G = 1 G 1 G 2 G 4 G 5 G 3 2u 0 0 0 0 0 2uI 3 0 , then C 
H 1 ∈ T n 1 2 1 , H 2 ∈ T n 1 2 1 , H 3 ∈ T n 2 2 2 , H 4 ∈ T n 2 2 2 , H 5 ∈ T n 3 3 3 , H 6 ∈ T n 3 6 
3 . Denote 

H i = H i + 2uI i , i = 1, 2,
G =   1 H 1 H 2 H 1 H 2 H 3 H 4 H 3 H 4 H 5 H 5 H 6 H 6 2u 0 2uI 1 0 2uI 1 0 2uI 3 0 2uI 

) Theorem 3 . 8 .

 38 Let C be a one-weight Z 2 Z 4 [u]-additive code with weight m. If there is no zero column in the generator matrix of C, then d L (C ⊥ ) ≥ 2. If λ = 1, then d L (C ⊥ ) ≥ 3. If λ = 2 and C ⊥ is a one-weight additive code, then C = C ⊥ and

  additive formally self-dual code. Theorem 3.10. Let C be a one-weight Z 2 Z 4 [u] formally self-dual code with weight m. Then we have following results.

Definition 4 . 1 .

 41 A Z 2 Z 4 [u]-additive code is called to be a two-weight projective Z 2 Z 4 [u]-additive code if the cardinality of the set of nonzero weight is two and the minimum weight of its dual code is at least three. Let C be a two-weight projective Z 2 Z 4 [u]-additive code with weight m 1 and m 2 . Similar to Eqs.(1)-(4), we have

Theorem 4 . 3 .

 43 Let C be a two-weight projective Z 2 Z 4 [u]-additive code with N = α + 4β. Then there exists a two-weight projective Z 2 Z 4 [u]-additive code with nonzero weights N 2 and |C| 2 .

Theorem 5 . 1 .

 51 Let C be a nontrivial additive code in Z α 2 × Z β 4 [u] generated by c. If the coordinates in the Z 4 [u] part of c are only from U 1 and U 3 , then C is not a one-weight additive code in Z α 2 × Z β 4 [u]. Proof. Let C be an additive code in Z α 2 × Z β 4 [u] generated by c. We assume that the number of units in the Z 4 [u] part is s. We can check that w L (2uc) = 4s and w L (uc) = 2s. This shows that C is not a one-weight additive code in Z α 2 × Z β 4 [u] when s > 0, which completes the proof. If C is a one-weight additive code in Z α 2 × Z β 4 [u] and all the coordinates in the Z 4 [u] part of the codewords in C are only from U 2 ∪ U 4 . Let a be the number of 1's in the Z 2 part of the codewords in C. For c ∈ C, let a i (i = 1, 2, 3, 4, 5, 6, 7) be the number of u, 3u, 2, 2 + u, 2 + 2u, 2 + 3u, 2u in C, respectively. We have

Theorem 5 . 2 .

 52 Let C be a one-weight additive code with weight m in Z α 2 × Z β 4 [u] generated by c. If the coordinates in the Z 4 [u] part of c are only from U 2 and U 4 , then the weight m of C has forms in Table

2 , 3 , 4 , 5 ,Theorem 5 . 4 .

 234554 and n 1 ≡ 0 mod 2, n 2 ≡ 0 mod 2, n 3 ≡ 0 mod 6, n 4 ≡ 0 mod 2, n 5 ≡ 0 mod 2. Then we get the weight of one-weight additive codes as follows. Let C be an additive code in Z α 2 × Z β 4 [u] generated by c. Let a be the number of 1's in the Z 2 part of c, n i be the number of elements from T i in the Z 4 [u] part of c and n * 3 be the number of 2u in bc where b ∈ T 3 ,i = 1, 2, 3, 4, 5, 6. If the elements in T 3 appear in c equally often, then C is a one-weight additive code with weight m 1

Theorem 5 . 6 .

 56 then C is a one-weight additive code with m = 32 in Z 15 4 [u]; (iii) If C is generated by (1 | A, A, 2u), then C is a one-weight additive code with weight m = 64 in Z 4 2 × Z 29 4 [u]. Let C be a Z 2 Z 4 [u]-additive code and

Theorem 6 . 1 .

 61 Let C be a two-weight additive code in Z α 2 × Z β 4 [u] generated by c. If the Z 4 [u] part of c are only from T 1 ∪ T 2 ∪ T 4 ∪ T 5 and the number of units in the Z 4 [u] part is s = s 1 + s 2 + s 4 + s 5 , where s i denotes the number of units from T i , i = 1, 2, 4, 5. Then the only two nonzero weights are m 1 = 4s and m 2 = 2s if C satisfies one of the following five coordinates: (i) the coordinates in the Z 4 [u] part only from T 1 ;

0 and s 4 =Theorem 6 . 3 .

 463 a = s. Hence, C is a two-weight additive code with m 1 = 4s and m 2 = 2s in Z α 2 × Z β 4 [u]. (iii) If m 1 = w L (t 1 c) = w L (t 5 c) and m 2 = w L (t 2 c) = w L (t 4 c), then a = s = 0. (iv) If m 1 = w L (t 2 c) = w L (t 4 c) and m 2 = w L (t 1 c) = w L (t 5 c), then a = s = 0. (v) If m 1 = w L (t 2 c) = w L (t 5 c) and m 2 = w L (t 1 c) = w L (t 4 c), then s 1 = s 4 = s 5 = 0 and s 2 = a = s. Hence, C is a two-weight additive code with m 1 = 4s andm 2 = 2s in Z α 2 × Z β 4 [u]. (vi) If m 1 = w L (t 4 c) = w L (t 5 c) and m 2 = w L (t 1 c) = w L (t 2 c), then s 2 = s 4 = s 5 = 0 and s 1 = a = s. Hence, C is a two-weight additive code with m 1 = 4s and m 2 = 2s in Z α 2 × Z β 4 [u]. (vii) If w L (t 1 c) = w L (t 2 c) = w L (t 4 c) = w L (t 5 c), then s 1 = s 2 = s 4 = s 5 . Hence, C is a two-weight additive code with m 1 = 4s and m 2 = 2s in Z α 2 × Z β 4 [u].Example 6.2. (i) Let C be generated by (1, 1, 1 | 1 + 2u, 3 + 2u, 1 + 2u), then C is a two-weight additive code with m 1 = 12 and m 2 = 6 in Z 3 2 × Z 3 4 [u]. (ii) Let C be generated by (1, 1, 1, 1, 1, 1, 1, 1 | 1, 1 + 3u, 3 + 3u, 3 + 2u), then C is a two-weight additive code with m 1 = 16 and m 2 = 8 in Z 8 2 × Z 4 4 [u]. Let C be a two-weight additive code in Z α 2 × Z β 4 [u] generated by c, and assume the Z 4 [u] part of c are only from U 2 and U 4 . Then we can get its weight distribution shown in Table2, where a is a non-negative integer,k 1 = a 1 + a 2 , k 2 = a 3 + a 5 , k 3 = a 4 + a 6 .Proof. For c ∈ C, since C is a two-weight additive code in Z α 2 × Z β 4 [u], we only prove one feasible case. If w L (c) = w L (uc) = w L (2c) = 0, w L ((2 + u)c) = 0 and w L (c) = w L ((2 + u)c). From equations (10)-(13), we have k 1 = k 2 , so w L (c) = a + 2(2k 1 + k 3 ) + 4a 7 , w L (uc) = w L (2c) = 4(k 1 + k 3 ), and 2k 3 = a + 4a 7 . Therefore, the weight distribution of C is 4(k 1 + k 3 ) and 8k 1 , where k 1 = k 2 = k 3 . Other cases can be proved similarly. The results are showed in Table

  is a two-weight additive code of length 24 with weight m 1 = 48 and m 2 = 36 in Z 2 2 × Z 22 4 [u], where 1 = (1, 1), G 1 = (1, 3, 3), G 2 = (1 + 3u, 3 + u, 3 + u), G 4 = (1 + u, 1 + u, 3 + 3u), G 5 = (1 + 2u, 3 + 2u, 3 + 2u), G 3 = (u, u, u, 3u, 2, 2, 2 + 2u, 2 + 3u, 2 + 3u), 2u = (2u).

where 1 = ( 1 , 1 ,

 111 • • • , 1) with length a, 2u = (2u, 2u, • • • , 2u) with length n 6 and the first row satisfies a+4n 6 = n 1 +n 2 = n 4 +n 5 = 2n 3 3 , and H i and H i are as above. Then C is a two-weight Z 2 Z 4 [u]-additive code of length n = a + n 1 + n 2 + n 3 + n 4 + n 5 + n 6 with nonzero weights 8(n 1 + n 2 ) and 20 3(n 1 + n 2 ) in Z α 2 × Z β 4 [u].Proof. Let c i be the i-th row of the generator matrix G (i = 1, 2, 3). For c ∈ C,then c = k 1 c 1 + k 2 c 2 + k 3 c 3 , where k 1 = r + uq ∈ Z 4 [u], k 2 , k 3 ∈ Z 2 .Let g st be the t-th coordinates in H s and g st = g st + 2u in H s . Denote c = (D 0 | D 1 , D 2 , D 1 , D 2 , D 3 , D 4 , D 3 , D 4 , D 5 , D 5 , D 6 , D 6 , D 7 ), where D 0 = (r, r, • • • , r) with length a, in which r ≡ r(mod2), and D i = D i + 2ui for i = 1, 2, 3, 4, 5, 6. Then we discuss the following three cases. (i) If k 1 ∈ T 1 , then w L (D 0 ) + w L (D 5 ) + w L (D 5 ) + w L (D 6 ) + w L (D 6 ) + w L (D 7 ) = 4(n 1 + n 2 ). When k 2 = k 3 = 0, w L (c) = 4(n 1 + n 2

where 1 =

 1 (1, 1, 1, 1), 2u = (2u, 2u), H 1 = (1, 3, 3), H 2 = (1, 1, 3), H 3 = (1 + 3u, 1 + 3u, 3 + u), H 4 = (3 + u, 3 + u, 3 + u), H 5 = (u, 3u, 2, 2 + u, 2 + 2u, 2 + 3u), H 6 = (u, 2, 2 + u),then C is a two-weight additive code of length 48 with weights 96 and 80 in Z 4 2 × Z 44 4 [u].

7 CONCLUSION

 7 In this paper a class of Z 2 Z 4 [u]-additive codes is introduced. The Lee weights of the elements in the ring Z 2 Z 4 [u] and a suitable Gray map are defined, and then we deduce that the extended Gray map fromZ α 2 × Z β 4 [u] to Z α+2β4 is a weight preserving and distance preserving map. A MacWilliams-type identity between the Lee weight enumerator of a Z 2 Z 4 [u]-additive code and its dual is proved. Some properties of oneweight Z 2 Z 4 [u]-additive codes and two-weight projective Z 2 Z 4 [u]-additive codes are discussed. Finally we give some construction methods for one-weight and two-weight Z 2 Z 4 [u]-additive codes. The paper expands some of the previous related work. Next we are going to consider the cyclic and quasi-cyclic codes over the ring Z 2 Z 4 [u].

  Gray weight additive code with weight m 1 = 12 and m 2 = 13 in Z 3 2 × Z 4 4 [u].Assume G i ∈ T n i i and the elements in T i appear equally in G i ,I i = (1, 1, • • • , 1) with length n i , i = 1,2, 3, 4, 5. Inspired by the above results, the following theorems give the methods for the construction of two-weight additive codes in Z α 2 × Z β 4 [u]. Theorem 6.5. Let C be a Z 2 Z 4 [u]-additive code. If its generator matrix is

6.4. (i) If C is generated by (1, 1 | 2 + u, 2 + u, 2 + 3u, 2u, u, 3u, 2, 2 + 2u), then C is a two-Gray weight additive code with weight m 1 = 16, m 2 = 20 in Z 2 2 ×Z 8 4 [u].

(ii) Let C be generated by (1, 1, 1 | 2 + u, 2 + u, 2 + 3u, 2u), then C is a two-

  with length a, 2u = (2u, 2u, • • • , 2u) with length n 6 and its first row satisfies a + 4n 6 = n 1 + n 2 = n 4 + n 5 = 2n3 3 , and G i are as above. Then C is a two-weight additive code of length n = a + n 1 + n 2 + n 3 + n 4 + n 5 + n 6 with weight

  Therefore, C is a two-weight additive code of length n = a+n 1 +n 2 +n 3 +n 4 +n 5 +n 6 with nonzero weight m 1 = 8(n 1 + n 2 ) and m 2 = 6(n 1 + n 2 ).

	Example 6.6. Let C be an additive code in Z 2 2 × Z 22 4 [u] generated by

  3, 4, 5, 6. Assume elements in T 1 appear equally in H 1 ∪ H 2 , elements in T 2 appear equally in H 3 ∪ H 4 , elements in T 3 appear equally often in H 5 ∪ H 6 ∪ H 5 ∪ H 6 . Then we have the following result.

Theorem 6.7. Let C be a Z 2 Z 4 [u]-additive code and the form of its generator matrix is

  ) + n 1 2 + 3n 1 2 + n 1 2 + 3n 1 2 + n 2 2 + 3n 2 2 + n 2 2 + 3n 2 2 = 8(n 1 + n 2 ); when k 2 = 1, k 3 = 0, w L (c) = 4(n 1 + n 2 ) + 3n 1 2 + n 1 2 + n 1 2 + 3n 1 2 + 3n 2 2 + n 2 2 + n 2 2 + 3n 2 2 = 8(n 1 + n 2 ); when k 2 = 0, k 3 = 1, w L (c) = 8(n 1 + n 2 ); when k 2 = k 3 = 1, w L (c) = 8(n 1 + n 2 ).(ii) If k 1 ∈ T 2 , T 4 , T 5 or T 6 , similar to the discussion in (i) above, we can check thatw L (c) = 8(n 1 + n 2 ). (iii) If k 1 ∈ T 3 ,we can show w L (c) = 8(n 1 + n 2 ) or 20 3 (n 1 + n 2 ) similarly. Example 6.8. Let C be an additive code in Z 4 2 × Z 44 4 [u] generated by

			1 H 1	H 2	H 1	H 2	H 3	H 4	H 3	H 4	H 5	H 5 H 6 H 6 2u
	G =		0 2uI 1	0	2uI 1	0	2uI 3	0	2uI 3	0	2uI 5 2uI 5 0	0	0
			0	0	2uI 2	0	2uI 2	0	2uI 3	0	2uI 4 2uI 5	
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APPENDIX

We provide some parameters for the Gray images of the Z 2 Z 4 [u]-additive codes in Examples 5.3-6.6, and compare them with the codes in http://www.Z4codes.info/ in the following table.