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Abstract

In the last decades finite time chaos indicators have been used to com-
pute the phase-portraits of complex dynamics as well as the center, stable
and unstable manifolds originating at the partially hyperbolic equilibria,
and the Lagrangian Coherent Structures of aperiodic flows. While the
definition of most chaos indicators is clearly inspired by the Character-
istic Lyapunov Exponent theory, their use is oriented to extract all the
information which is contained in the solutions of the variational equa-
tions in short time intervals. We here review through examples why the
computation of short time chaos indicators is particularly powerful for
those systems whose solutions may have an asymptotic behaviour very
different from the short-term one, as it can be the case of sequences of
close encounters in gravitational systems and the advection of particles in
aperiodic flows. The main case study here considered is the computation
of transit orbits in the restricted three-body problem.

1 Introduction

In the last decades finite time chaos indicators have been used to compute the
phase-portraits of complex dynamics as well as the center, stable and unstable
manifolds originating at the partially hyperbolic equilibria, and the Lagrangian
Coherent Structures of aperiodic flows. In the literature we find the definition
of several finite time chaos indicators: here we mention the Fast Lyapunov In-
dicator (FLI) [11], the Finite Time Lyapunov Exponent (FTLE) [40], the Mean
Exponential Growth of Nearby Orbits (MEGNO) [8]. Despite the differences
in the definition of these chaos indicators, all of them are obtained from the
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characteristic Lyapunov exponents theory. For a system of first-order ordinary
differential equations:1

ẋ = F (x), (1)

where x ∈ D ⊆ Rn with D open set, and F : D → Rn is a smooth vector field
on D, the Lyapunov Characteristic Exponent of an initial condition x0 ∈ D and
of an initial tangent vector v0 ∈ Rn\0, is defined by

LCE(x0, v0) = lim
t→+∞

1

t
ln
‖v(t)‖
‖v0‖

(2)

where v(t) is the solution of the variational equation:

v̇ =

[
∂F

∂x
(x(t))

]
v (3)

with initial conditions v(0) = v0, and x(t) is the solution of (1) with initial
conditions x(0) = x0. Since the ratio ‖v(t)‖/‖v(0)‖ provides an estimate of
the amplification of the separation at time t of the solutions with initial condi-
tions x0 and x0 + εv(0) for any suitably small |ε|, the Lyapunov exponents (2)
characterize the exponential separation of the solutions with initial conditions
close to x0. With mild hypotheses on the differential equation (1) the limit in
eq. (2) exists for almost all initial conditions x0 and provides at most n pos-
sible different values. Moreover, the largest LCE for the initial condition x0 is
expected for all the vectors v0 ∈ Rn\0, except possibly for those belonging to
an hyperplane of Rn. As a consequence, a random choice of v0 provides the
largest LCE, and is suitable for the computation of the strongest asymptotic
law of separation of solutions with close initial conditions (we refer to [2] for the
numerical computation of all the LCE). While the LCE provide the asymptotic
law of separation, the finite time chaos indicators exploit as much as possible the
information which can be extracted from the growth of ‖v(t)‖ on “short” time
intervals (see Figure 1). In particular, the computation of finite time chaos indi-
cators provides information which is lost in the limit of t tending to infinity for
those systems whose solutions may have an asymptotic behaviour very different
from the short-term one, as it can be the case of sequences of close encounters
in gravitational systems and the advection of particles in aperiodic flows. A
remarkable example is provided by the dynamics of the comets of the Jupiter
family, having sequences of close encounters with Jupiter which possibly change
the orbital parameters during the short time of the close encounter, and also can
expel the comet from the Solar System. In this context the LCE are not signifi-
cant to analyze the dynamics of the comet, since the most interesting dynamics
is occurring in the transient time interval in which the comet is visiting the inner
Solar System. A case study has been the comet 67P/Churyumov-Gerasimenko,
the target of the recent mission Rosetta, whose past orbit has been analyzed
with Fast Lyapunov Indicators [17, 18].

One of the simplest chaos indicators is indeed the so called Fast Lyapunov
Indicator (from [11] and subsequent modifications, see [10, 28]): the FLI of an
initial condition x0, of an initial tangent vector v0, at time T is defined by

FLI(x0, v0;T ) = max
0≤t≤T

log10

‖v(t)‖
‖v0‖

1The analog definition of Lyapunov characteristic exponents for the dynamics defined by
the iterations of a map will be given in Section 2.1.
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Figure 1: Typical time evolution of 1
t ln ‖v(t)‖‖v0‖

converging to a positive value of

the LCE (see eq. (2)). While the convergence of the function to the LCE is
appreciated after quite a long time t ∼ 106, the finite time chaos indicators are
computed using much smaller time intervals.

where v(t) is the solution of the variational equation (3) with initial conditions
v(0) = v0, defined for the solution x(t) of (1) with initial conditions x(0) = x0.
The closely related quantity:

λT (x0) = max
0≤t≤T

sup
‖v(0)‖=1

log10

‖v(t)‖
‖v(0)‖

characterizes the maximum separation of orbits with initial conditions close to
x0 in the time interval [0, T ], and can be used to estimate the reliability of a
numerical computation of the solution x(t) in the time interval [0, T ]. In fact,
the possible exponential divergence of the solutions with close initial conditions
is responsible also of the divergence of the numerically computed solutions of a
differential equation from the target solution, determining an amplification of
the errors that we introduce with the numerical scheme at each integration step,
or simply with the computer floating point representation. In addition, when
the initial conditions are known only within an experimental error, we have an
error already at time t = 0 which is amplified by the dynamics. As already
remarked, the ratio ‖v(t)‖/‖v(0)‖ provides an estimate of the amplification of
the separation at time t of the solutions with initial conditions x0 and x0+εv(0)
for any suitably small ε. Therefore, the quantity λT (x0), which is obtained by
taking the maximum over all possible directions v(0) and over all the times
t ∈ [0, T ], provides an estimate of the amplification in the interval [0, T ] of the
errors discussed above by a factor 10λT (x0). Therefore, λT (x0) provides the loss
of precision digits due to the numerical computation of the solution in the time
interval [0, T ].
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For the differential equations whose transient dynamics can be very differ-
ent with respect to the asymptotic ones, λT (x0) may be very different from the
asymptotic value estimated from the LCE. In figure 2 we report one of these
cases, with the transient time evolution of the finite time chaos indicator ΛT (x0)
(whose definition is very similar to λT (x0), see the caption of figure 2 for details)
representing the loss of precision digits in the backward numerical computation
of the orbit of comet 67P/Churyumov-Gerasimenko. The comet could be ob-
served from Earth for the first time in 1959, after a close encounter with Jupiter
which changed the orbit by reducing the perihelion distance to about 1.2 au (see
Figure 2, right panel). At this perihelion distance the comet has an important
emission of dust and gas, which reflect the light of the Sun and it becomes so
bright to be observed from the Earth. At previous epochs, due to larger perihe-
lion distances, the comet was darker and has not been observed from Earth, and
therefore the only possibility of reconstructing its past orbit relies on numerical
computations. The computation of chaos indicators constrains the time interval
of validity of numerical integrations to few centuries: numerical integrations on
longer time spans have a statistical interpretation, that can be analyzed with
an additional FLI analysis [18]. In fact, the loss of precision digits that we
have during a numerical integration is localized in the phase-space at certain
hyperbolic dynamical structures, such as, for example, the stable and unstable
manifolds of hyperbolic periodic orbits, or the collision manifolds with a massive
body.

In the different context of fluid dynamics, finite time chaos indicators have
provided original insights to the study of aperiodic flows, defined by non au-
tonomous ODE:

ẋ = F (x; t), (4)

with vector field F (x; t) depending explicitly on the time [40, 33, 24, 25, 37, 41,
29]. For those models, equation (4) typically represents the motion of passive
particles advected by a fluid, with F (x; t) representing the velocity field of the
fluid (at the point x and time t). For typical problems, such as the transport
of particles in the atmosphere or in the ocean, the velocity field F (x; t) is non-
periodic, and therefore it is hard to recover asymptotic results based on the
existence of invariant periodic orbits of hyperbolic tori. Nevertheless, rather
than using the chaos indicators as a tool to compute the stable and unstable
manifolds of invariant periodic orbits, they have been used to define structures,
called Lagrangian Coherent Structures ([33, 24, 25, 37, 41, 29], see also [26]
and references therein) where the separation of the solutions with nearby initial
conditions is the strongest one during finite time intervals.

This Chapter is organized as follows: in Section 2 we describe through ex-
amples some basic applications of the fast Lyapunov indicator; in Section 3 we
describe a major modification to the FLI that we specifically introduced to im-
prove the detection of stable and unstable manifolds; Section 4 is dedicated to
the description of applications of the FLI and modified FLI to the restricted
three-body problem; Section 5 specifically focuses on the spatial three-body
problem; Section 6 is dedicated to transit orbits.
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Figure 2: Left panel: The quantity Λ := ΛT (x0) =
max0≤t≤T maxj=1,...,6 ‖wj(t)‖, where wj(t) are solutions of the variational

equations with initial conditions w1(0), . . . , w6(0) forming a basis of R6 (see
[18] for more details), represents the loss of precision digits in the backward
numerical computation of the orbit of comet 67P (general relativity and non-
gravitational forces included). Please note that in this particularly complex
case, the indicator ΛT , slightly different from λT , has been the preferred
choice. Right panel: change of the orbit of comet 67P due to the 1959
close encounter with Jupiter (only one revolution of the comet before and
after the close encounter is represented in the picture; Jupiter is symbolically
represented in its location at the epoch of the close encounter). The left panel
is reprinted from Guzzo M., Lega E., Scenarios for the dynamics of comet
67P/Churyumov-Gerasimenko over the past 500 kyr, MNRAS 469, S321–S328,
2017, Figure 1.

2 The fast Lyapunov indicator in simple model
examples

2.1 The standard map

The simplest examples to introduce applications of the FLI are provided by
smooth symplectic maps. So, for convenience, we first refer to the dynamics
defined by the iteration of a smooth map:

Φ : D −→ D

x 7−→ Φ(x)

with D ⊂ Rn. For any initial condition x0 ∈ D the sequence xk+1 = Φ(xk)
defines the orbit of initial condition x0, and for any x0 ∈ D and any initial
vector v0 ∈ Tx0

D the iterations of the tangent map:

TΦ : TD −→ TD
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(x, v) 7−→
(

Φ(x),
∂Φ

∂x
(x)v

)
defined by the sequences:

xk = Φ(xk−1)

vk =
∂Φ

∂x
(xk−1)vk−1

provide the time evolution of the tangent vectors, which are used to define the
chaos indicators. For example we have:

LCE(x0, v0) = lim
t→+∞

1

t
ln
‖vt‖
‖v0‖

as well as the finite time indicators:

FLI(x0, v0;T ) = max
0≤t≤T

log10

‖vt‖
‖v0‖

, λT (x0) = max
0≤t≤T

sup
‖v0‖=1

log10

‖vt‖
‖v0‖

.

Since the variational equations are linear, for any initial condition x0 we have
a complete knowledge of the tangent dynamics by computing the iterations of
the tangent map with initial tangent vectors forming a basis e1, . . . , en ∈ Tx0

D
of the tangent space.

Let us consider as model example the standard map:

R× T1 −→ R× T1

(I, ϕ) 7−→ (I ′, ϕ′) = Φ(I, ϕ)

with T1 = R/(2πZ), defined by:

ϕ′ = (ϕ+ I)mod(2π)
I ′ = I + ε sin(ϕ+ I) (5)

In the top-left panel of Figure 3 we represent the phase-portrait of this map
for ε = 0.6, obtained by computing numerically the orbits of a sample of initial
conditions: we appreciate the well known typical phase-portrait characterized
by invariant curves and chaotic motions. In the top-right panel we represent the
values of the indicator λT computed on a very refined grid of initial conditions
regularly spaced on the phase-space; the values of the chaos indicator are repre-
sented using a color scale: on each point (ϕ, I) of the grid, we represent a pixel
with a color corresponding to the value of λT (ϕ, I) (the color scale is reported
on the bottom). From this panel we appreciate much more details of the distri-
butions of regular and chaotic motions. On the bottom panel we plot the values
of λT (ϕ, I) versus ϕ, for all the points of the grid used to compute the top-right
panel. The distribution of most of the points in the lower part of the panel
allows to recognize that most of the orbits in the previous panel are numerically
computed with high accuracy: in fact, for almost all the initial conditions we
have λT < 14. Since λT provides an estimate of the loss of precision digits
due to the numerical integration in the time interval [0, T ], the corresponding
orbits are computed with high accuracy using a quadruple floating point pre-
cision, despite the strong exponential separation of nearby orbits detected for
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Figure 3: Numerical experiments on the standard map defined in eq. (5) for
ε = 0.6. Top-left panel: phase-portrait of the map (5), where ϕ, I are the
horizontal and vertical coordinates on the panel respectively. Top-right panel:
representation of the indicator λT computed for T = 100 iterations on a very
refined grid of initial conditions regularly spaced on the phase-space; the value
of λT is represented using a color scale: on each point (ϕ, I) of the grid, we
represent a pixel with a color corresponding to the value of λT : λT = 0 is
reported in black; λT ≥ 6 is reported in yellow; the values intermediate between
0 and 6 are reported with the color scale represented below the panel. Bottom
panel: for all the points of the two-dimensional grid used for the top-right
panel, we plot the values of λT versus ϕ.
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some of the initial conditions. It is also evident that the largest values of λT are
found in the chaotic area generated by the stable and unstable manifolds of the
hyperbolic fixed point (ϕ, I) = (0, 0). In the left panels of Figure 4 we report
the time evolution of λT , for increasing values of T , computed for four selected
initial conditions: a regular libration orbit (red orbit in the top-right panel), a
regular circulation orbit (blue orbit in the top-right panel), a strongly chaotic
orbit (violet orbit in the top-right panel) and a weekly chaotic orbit (black orbit
in the top-right panel). For all the orbits the value of λT increases step-wise, but
for the two regular orbits the increments accumulate to a logarithmic growth,
while for the two chaotic orbits the increments accumulate to a linear law. The
asymptotic laws are clearly identified already for T > 50 (top-left panel) for the
regular and the strongly chaotic orbits, while it requires T > 1000 for the weakly
chaotic one (bottom-left panel). Despite the fact that we need time intervals
of T > 1000 to extrapolate reliable values for the slope of the linear law for
the weakly chaotic orbit, much smaller time intervals of T ∼ 60 are sufficient
to discriminate it from the two regular ones. As a matter of fact, the top-right
panel of Figure 3 computed for T = 100 (here reproduced in the bottom-right
panel with the four orbits highlighted in black) allowed clearly to identify many
weakly chaotic regions related to hyperbolic periodic orbits, including the re-
gion containing the selected weakly chaotic orbit. Therefore, the computation
of chaos indicators allows one to discriminate regular orbits from chaotic ones
in the shortest integration times.

2.2 The double gyre

The double gyre defined below has been used since [37] as a model problem of
fluid dynamics to be analyzed with finite time chaos indicators. It was defined
by the planar incompressible flow:

ẋ =
∂ψ

∂y
(x, y; t)

ẏ = −∂ψ
∂x

(x, y; t) (6)

associated to the stream function:

ψ(x, y, t) = − sin(πf(x, t)) sin(πy)

where:
f(x, t) = x [1 + ε(x− 2) sin(2πt)]

and ε is a small parameter. The phase–space variables (x, y) ∈ D = {(x, y) :
x ∈ [0, 2] , y ∈ [0, 1]} represent Cartesian variables in a rectangular box D,
where the flow is defined, and the solutions of (6) represent motions in the
box of particles advected by the velocity field defined by the stream function
ψ. For ε = 0 the stream function ψ is autonomous and defines an integrable
Hamiltonian system on the phase-space D, with phase-portrait represented in
the top left panel of Figure 5 (all the panels represent the Poincaré map of the
flow defined at the time T = 1). For ε 6= 0 the system is not integrable, and
we appreciate the appearance of chaotic motions on the phase portraits of the
Poincaré map (see the top-right and bottom panels of Figure 5). In particular,
for ε = 0.25, chaotic orbits spread apparently over most of the phase-space.
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Figure 4: Left panels: Time evolution of λT for four selected orbits of the
standard map defined by ε = 0.6 (top-left panel for T ∈ [0, 100], bottom-left
panel for T ∈ [0, 10000]). Top-right panel: the four orbits whose FLI evolution
is represented on the left panels; the color of each orbit is associated to a curve
on the left panels. Bottom-right panel: the four orbits are represented in
black on the color map representation of the indicator λT .

It is interesting to compare the numerically computed phase portraits of the
Poincaré map with the computation of a finite time chaos indicator at different
integration times T . In [37] it was shown that short integration times reveal
the appearance of a peculiar structure in the phase-space D, identified as a
Lagrangian coherent structure, associated to the initial conditions providing
the orbits with the strongest separation of the nearby solutions in the time
interval [0, T ]. In Figure 6 we report the values of the chaos indicator λT
computed on the phase-space D for the short integration times T = 1, 2, 3, 4 as
well as for the longer times T = 10, 100. As the integration time T increases,
the structure which is already clearly visible for T = 1, rapidly fills the phase-
space. For T = 10 (bottom-left panel) the structure almost fills the phase-space
and for T = 100 (bottom-right panel) we do not have enough resolution to
appreciate its unfolding in the box D, so that the initial conditions with the
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Figure 5: Phase portraits of the Poincaré map of the double gyre defined by the
flow of (6) at time T = 1 for ε = 0 (top-left panel), ε = 0.05 (top-right panel),
ε = 0.1 (bottom-left panel), ε = 0.25 (bottom-right panel).

largest FLI values appear as a uniform area. While the FLI computation at
T = 100 reaches the goal of computing the phase-portrait of the Poincaré map,
the intermediate computations reveal the appearance of a structure which could
not be appreciated from the computation of the phase-portraits. The structure,
which is closely related to the stable manifold of a periodic orbit constrained
on the bottom side of the phase-space, appears as the ridge of the finite time
chaos indicator, and it has been identified in [37] as an example of Lagrangian
coherent structure.

Let us recall the mathematical meaning of ridge which is used in the analysis
of Lagrangian coherent structures with finite time chaos indicators. There are in
the literature several definitions, adapting to different dimensions of the phase-
space and solving specific issues related to the problem of transport in fluid
dynamics. We here provide the simplest definition for a ridge of a function
of two variables F : R2 → R, as a curve Γ having a family of curves γη(s)
transverse to Γ at γη(0) and such that F (γη(s)) has a strict maximum at s = 0.
Therefore, let us consider the ridge of the chaos indicator λT computed for
the double gyre with T = 10, and represented in the panels of Figure 7 with
different zoom levels. To appreciate the structure of the ridge of λT we need to
zoom into the phase–space, so the small black rectangular box highlighted in the
top panel is first enlarged in the center-left panel; we still need to zoom in the
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Figure 6: Color representation of the chaos indicator λT computed for the double
gyre defined by ε = 0.25 on a refined grid of regularly-spaced initial conditions
on the xy plane. The integration times are T = 1 (top-left panel), T = 2
(top-right panel); T = 3 (center-left panel), T = 4 (center-right panel); T = 10
(bottom-left panel), T = 100 (bottom-right panel).
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Figure 7: Top and center panels: Color representation of the chaos indicator
λT computed for the double gyre defined by ε = 0.25 on a refined grid of
regularly-spaced initial conditions, and different zoom levels. The integration
time is T = 10. Bottom-left panel: Representation of λT computed on a
one-dimensional grid of initial conditions having the same value of y; the grid is
defined close to the point marked with a cross in the bottom left panel. Bottom-
right panel: Representation of the two orbits with initial conditions in the one-
dimensional grid defined for the bottom center panel, and there highlighted by
bold points. The two orbits are represented with green color as long as they are
so close that cannot be distinguished on the picture (this happens in the time
interval [0, 9]); when their separation is sufficiently large one orbit is represented
in blue and the other one in red (this happens in the time interval [9, 15]). The
separation of the orbits occur within the time interval [9, 10], consistently with
the computation of the chaos indicator for T = 10.
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panel and therefore a new black rectangular box highlighted in the center-left
panel is enlarged in the center-right panel. In all these zoomed panels the set of
initial conditions with λT ≥ 6 appears resolved into many curves, which we are
able to associate to a ridge of the indicator λT with high precision. In fact, by
selecting a point close to one of these curves, for example the point highlighted
with a cross in the center-right panel, and by computing the indicator on a very
refined one-dimensional grid of initial conditions having the same value of y,
we clearly find the point on the top of the ridge with an high precision. In the
bottom-left panel of the Figure we represent the result of such a computation,
and we identify the point on the ridge with a precision of at least 9 digits (the
precision can be sharply improved by repeating the computation on smaller
refined intervals close to the maximum). For the use of the computed ridge in
the analysis of the dynamics, it is important to identify the points which are on
opposite sides of the ridge. In fact, let us consider the solutions of the equations
of motion of the double gyre with initial conditions identified by the two points
highlighted in the bottom-left panel of Figure 7, which have the same value
of y and a difference in the x coordinate of about 10−7. In the bottom-right
panel of the same Figure we report both orbits: the initial conditions are in the
bottom-left part of the box, and cannot be distinguished on the picture. For a
certain time interval both orbits (represented in green) remain very close, and
cannot be distinguished on the picture. The evident separation of the two orbits
occurs as they approach an hyperbolic periodic orbit constrained in the bottom
side of the box: from this moment we represent one orbit in red and the other
in blue. Therefore the ridge of the chaos indicator sharply separates the initial
conditions whose orbits will be deviated in opposite directions as a consequence
of a close approach with an hyperbolic periodic orbit.

These numerical experiments suggested that the intersection of the stable
manifolds of hyperbolic periodic orbits (or hyperbolic tori) with two dimensional
surfaces of the phase-space can be computed as the ridges of finite time chaos
indicators. In [16], Guzzo and Lega have shown that this heuristic statement
can be transformed into a rigorous one only if strong hypotheses are satisfied
by the dynamical system, unless a major modification in the definition of chaos
indicators is considered. In the next section we first analyze with more detail
additional examples and counterexamples of this heuristic statement, and then
we introduce a major modification in the definition of chaos indicators which
enlarges the possibility of their use to detect the stable/unstable manifolds.

3 Modified Chaos Indicators

In [16, 27, 19] we introduced a major modification to the FLI to specifically
improve the detection of stable and unstable manifolds in model systems and
the three-body problem; in [17, 18] and [36] the method has been adapted to the
study of the collisional manifolds of comet 67P and to the detection of libration
orbits around the Lagrangian point L3 of the Sun-Earth system respectively, in a
model of the solar system which is compatible with the JPL digital ephemerides.
In this Section we review through some basic examples the definition and use
of these modified FLI.
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3.1 Stable manifolds and the ridges of chaos indicators: a
very basic example

Let us first consider the mechanical pendulum of Hamiltonian:

h(I, ϕ) =
I2

2
− cosϕ (7)

and represent the chaos indicator λT computed for T = 100, for a grid of initial
conditions defined by ϕ(0) = 0 and I(0) ∈ [−4, 4]. The intersection of the
separatrices with the segment ϕ(0) = 0, I(0) ∈ [−4, 4] appears clearly from the
highest values of λT represented in the top panel of Figure 8. Let us zoom
on the one-dimensional grid of initial conditions close to a maximum of λT :
we first consider 25 initial conditions with ϕ(0) = 0, I(0) ∈ [1.95, 2.05], and
represent their orbits (middle-right panel) as well as the related time evolution
of λT (middle-left panel). Then, we consider a more refined grid of 100 initial
conditions with ϕ(0) = 0, I(0) ∈ [1.95, 2.05], and represent their orbits (bottom-
right panel) as well as the related time evolution of λT (bottom-left panel). The
light blue color identifies the orbits and the time evolution of λT corresponding
to the initial conditions of the grids with the largest values of λ100. With
evidence, for both grids of initial conditions the maximum value of λT is obtained
for the points which are closer to the separatrix value I(0) = 2. From the time
evolution of λT of all the points in the grids (middle-left and bottom-left panels),
we appreciate that the value of the chaos indicator increases stepwise: precisely,
the value increases when the orbit approaches the hyperbolic equilibrium; then,
the orbit is scattered by the equilibrium and the value of λT stabilizes; when
the orbits returns close to the equilibrium λT increases again. The values of the
increments depend on the distance of the orbit from the separatrix: orbits closer
to the separatrix spend longer time intervals close to the hyperbolic equilibrium;
in such a time interval the chaos indicator increases with the largest slope. As
a consequence, the initial conditions with the largest value of the λT are closer
to the separatrix. The condition max0≤t≤T in the definition of

λT (I0, ϕ0) = max
0≤t≤T

log10 sup
‖(vI0 ,v

ϕ
0 )‖=1

‖(vϕt , vIt )‖ (8)

is important for this discussion. Let us in fact consider the following chaos
indicator defined without the condition max0≤t≤T :

λ̃T (I0, ϕ0) = log10 sup
‖(vI0 ,v

ϕ
0 )‖=1

‖(vϕT , v
I
T )‖. (9)

The values of this chaos indicator are reported in Figure 9: on libration and
circulation orbits, the value of the chaos indicator (9) increases when the orbit
approaches the hyperbolic equilibrium and decreases when the orbit goes far
away from it. While the neat growth is well captured by the indicator defined
in (8), the large oscillations of the indicator defined in (9) make the final result
strongly dependent on the choice of the integration time, and as we appreciate
in the left panel of Figure 9 the correspondence between the values of the chaos
indicator at some time T and the distance from the separatrix is partially lost
for λ̃T .
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Figure 8: Top-panel: Values of the chaos indicator λT computed for the me-
chanical pendulum (7) for T = 100, in a grid of initial conditions defined by
ϕ(0) = 0 and I(0) ∈ [−4, 4]. Middle-left panel: Representation of the time
evolution of λT for a grid of 25 initial conditions close to the maximum. Middle-
right panel: Orbits corresponding to the 25 initial conditions selected for the
previous panel. Bottom-left panel: Representation of the time evolution of
λT for a grid of 100 initial conditions close to the maximum. Bottom-right
panel: Orbits corresponding to the 100 initial conditions selected for the pre-
vious panel. In the middle and bottom panels the light blue color identifies the
orbits and the time evolution of λT corresponding to the initial conditions of
the grids with the largest value of λ100.

3.2 Stable manifolds and the ridges of chaos indicators:
counter-examples

Despite the many examples given in the literature where the localization of
stable/unstable manifolds with chaos indicators is successful, there are cases
where it does not work at all. We here present a trivial example and a more
subtle case, introduced in [16], which motivate the need of a major modification
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Figure 9: Left-panel: Values of the chaos indicator λ̃T defined in (9) computed
for the mechanical pendulum (7) for T = 100, in a grid of 100 initial conditions
defined by ϕ(0) = 0 and I(0) close to the maximum. Right-panel: Represen-
tation of the time evolution of λ̃T for the 100 initial conditions selected for the
previous panel.

in the definition of the chaos indicators.
Trivial examples are obtained from the consideration that for all the linear

equations, for example the hyperbolic linear saddle:

ẋ1 = x2
ẋ2 = x1

the solution to the variational equations (and so the values of chaos indicators)
are the same for all the initial conditions x(0). Therefore, the possibility to
detect the stable/unstable manifolds with chaos indicators must be due to the
non-linear properties of the systems. This is well understood from the following
two maps:

• Map (A):
ϕ′ = ϕ+ I

I ′ = I + 3
2

sin(ϕ′)
(− cosϕ′+2)2

(10)

• Map (B):
ϕ′ = ϕ+ I

I ′ = I + 3
2

sin(ϕ′)
(cosϕ′+2)2

(11)

having both an hyperbolic saddle fixed point at (ϕ, I) = (0, 0). Therefore, for
both maps the origin has one-dimensional stable and unstable manifolds. Let
us investigate the detection of these stable manifolds with chaos indicators. In
Figure 10 we report the values of the chaos indicator λT computed for the map
(A) (left panels) and the map (B) (right panels) on a refined grid of regularly-
spaced initial conditions, and different integration times (T = 10 for the top
panels, T = 15 for the middle panels and T = 25 for the bottom panels). For
the map (A), for increasing integration times T we appreciate the appearance
of a ridge (the yellow curve in the left panels) which is easily identified with the
stable manifold of the origin. For the map (B), the computation of the chaos
indicator (right panels) does not highlight any curve which can be identified
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with the stable manifold of the origin. In [16] the difference in the behavior of
chaos indicators for the two maps has been identified in the different variation
of the norm of the tangent map along the unstable manifold of the origin: for
the map (A) this norm has a local maximum at the origin, for the map (B)
this norm has a local minimum. The first case has been associated to a success
in the determination of the stable manifold with chaos indicators, the second
case has been associated to a failure; we refer to [16] for a more definite and
quantitative formulation.

3.3 Modified FLI

Since it is not practical to verify if the condition on the tangent map is satisfied or
not for a generic system, the problem has been overcome by a major modification
in the definition of the chaos indicator obtained by including in the computation
of the chaos indicators of an initial condition x(0) only the increments occurring
when the orbit x(t) is in a suitable neighbourhood B of a target hyperbolic set
(see [16]).

For example, in [16] we have defined the modified FLI:

mFLIu(x(0), v(0), T ) = max
t∈[0,T ]

∫ t

0

u(x(s))
v(s) · v̇(s)

‖v(s)‖2
ds (12)

where u(x) is a test function for the set B, called window function hereafter.

Remark. The integral definition of the mFLI is required to weight the growth
of the chaos indicator accordingly to the distance of x(t) from the set B. In fact,
since from standard calculus we have:

d

ds
ln ‖v(s)‖ =

v(s) · v̇(s)

‖v(s)‖2
,

we first notice that we can rewrite the traditional FLI in integral form:

max
t∈[0,T ]

ln
‖v(t)‖
‖v(0)‖

= max
t∈[0,T ]

(ln ‖v(t)‖ − ln ‖v(0)‖) = max
t∈[0,T ]

∫ t

0

v(s) · v̇(s)

‖v(s)‖2
ds,

so that for small ∆t we identify the contribution ∆FLI = v(t)·v̇(t)
‖v(t)‖2 ∆t as the

growth of the chaos indicator in the time interval [t, t+∆t]. Let us now consider
a test function u(x) for the set B: this means that u(x) = 1 for all x ∈ B, while
outside B the function decreases rapidly to u(x) = 0. In the modified FLI
defined in Eq. (12) the growth ∆FLI is weighted by the function u(x(t)), so
that if x(t) ∈ B then u(x(t)) = 1, and the growth is fully accounted; if x(t) is
suitably far from B then u(x(t)) = 0, and in the interval [t, t + ∆t] there is no
contribution to the integral.

When we use functions u(x) which are test functions of a subset B of the
phase-space, the mFLI is higher when computed on initial conditions of solutions
which spend most of the time interval [0, T ] inside the set B and close to an
hyperbolic set of B. When the set B is a suitable neighbourhood of an hyperbolic
invariant set γ, for example an hyperbolic or partially hyperbolic periodic orbit
or invariant torus, the mFLI is higher when computed on points which are on
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the stable manifold of γ. For example, when γ is an equilibrium or a periodic
orbit we compute its stable/unstable manifolds using the test function:

u(x) =


1 if |x− γ| ≤ r

2
1
2 [cos(( |x−γ|r − 1

2 )π) + 1] if r
2 < |x− γ| ≤

3r
2

0 if |x− γ| > 3r
2

(13)

with a suitable parameter r > 0. Instead, to compute the stable/unstable
manifolds of center manifolds (as for the spatial three–body problem [19]) the
test function is constructed using a preliminary analytic computation of the
Hamiltonian normal form obtained following the methods of reduction to the
center manifold [14, 20, 7, 5, 35]. In addition, one also may consider mFLIs
by including in the definition a maximum computed on all the vectors v(0)
satisfying ‖v(0)‖ = 1, as in the definition of λT (x0) (see Section 1).

We remark that for an effective definition of the mFLI we do not need to
localize in advance the target invariant hyperbolic set with high precision: low
order perturbation theories provide good definitions of the set B and of the
function u(x).

In Figure 11 we compare the values of λT with the values of a modified FLI
for the map (B): while the largest values of λT identify only a large neighbour-
hood of the stable manifold (the yellow area in the left panel), the ridge of the
modified FLI sharply identifies the stable manifold of the origin in the right
panel.

The efficiency of the modified FLI to detect the stable manifolds has been
proved in a quite general framework, we refer to [16] for all the technical details.
We remark that, if mild hypotheses are satisfied by the dynamical system, the
mFLI has a small quasi-constant plateau at the top of the ridge (whose ampli-
tude shrinks by extending T ), and its value decreases by increasing the distance.
In a suitable range for the distance, the decrement that we have between two
points at distances 10−N1 , 10−N2 is proportional to |N1 −N2|.

4 FLI and the restricted three-body problem

The circular restricted three-body problem (CR3BP hereafter) is defined by the
motion of a massless body P in the gravity fields of two massive bodies P1

and P2, the primary and secondary body respectively, which rotate uniformly
around their common center of mass. In a rotating frame the problem has five
equilibria, the so called Lagrangian points L1, . . . , L5, which are the only known
simple solutions of the equations of motion of P :

ẍ = 2ẏ + x− (1− µ)x+µ
r31
− µx−1+µ

r32
ÿ = −2ẋ+ y − (1− µ) y

r31
− µ y

r32
z̈ = −(1− µ) z

r31
− µ z

r32
,

(14)

where the units of masses, lengths and time have been chosen so that the
masses of P1 and P2 are 1 − µ and µ, their coordinates are (−µ, 0, 0) and
(1 − µ, 0, 0) and their revolution period is 2π; r1 =

√
(x+ µ)2 + y2 + z2 and

r2 =
√

(x− 1 + µ)2 + y2 + z2 denote the distances of P from P1, P2. In a series
of papers [16, 27, 19] we developed modified chaos indicators which are suitable
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Figure 10: Color representation of the chaos indicator λT computed for the map
(A) (left panels) and the map (B) (right panels) defined in (10) and (11) on a
refined grid of regularly-spaced initial conditions, and different integration times
(T = 10 for the top panels, T = 15 for the middle panels and T = 25 for the
bottom panels).

to detect the stable and unstable manifolds of the center manifolds originating
at the Lagrange equilibria L1 and L2, which are known to play a relevant role
in the definition of transit motions for the CR3BP.

Let us first review some basic properties of the dynamics of the CR3BP.
Since equations (14) have an integral of motion, the Jacobi constant:

C(x, y, z, ẋ, ẏ, ż) = x2 + y2 + 2
1− µ
r1

+ 2
µ

r2
− ẋ2 − ẏ2 − ż2, (15)

for any given value C of C we consider its level set MC in the phase-space
(x, y, z, ẋ, ẏ, ż), so that we have (x, y, z, ẋ, ẏ, ż) ∈MC along the motions as well
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Figure 11: Color representation of the chaos indicator λT (left panel) and the
modified FLI (right panel) computed for the map (B) for T = 20. The modified
indicator is defined by the window function u(x) as in (13) with r = 0.05.

Figure 12: Representation of examples of intersection of the sets ΠMC defined
in eq. (16) with the planes z = 0 (left panel) and y = 0 (right panel) for values
of C smaller than C2 (the shaded areas are in the realm of forbidden motions).

as (x, y, z) ∈ ΠMC where:

ΠMC = {(x, y, z) ∈ R3\0 : x2 + y2 + 2
1− µ
r1

+ 2
µ

r2
≥ C}. (16)

The boundary BC of ΠMC separates the so called realm of possible motions
ΠMC from the realm of forbidden motions. The Lagrangian equilibria are
critical points for the Jacobi constant; the values C1, C2, ..., C5 of C at the La-
grange equilibria L1, . . . , L5 correspond to topological changes of the set BC . If
C > C1, BC disconnects the space into a neighbourhood of P1, a neighbourhood
of P2, and a region external to both bodies P1, P2; therefore no transits between
these regions are possible. The neighbourhoods of P1 and P2 are connected if
C < C1, so transits between neighbourhoods of P1 and neighbourhoods of P2

are possible. These neighbourhoods are connected also to the external region if
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C < C2. Therefore, values of C slightly smaller than C2 are the larger values of
C for which the realm of possible motions connects a region around P1, a region
around P2, and a region external to the binary system P1, P2.

In Figure 12 we represent an example of intersection of the set ΠMC with the
planes z = 0 (left panel) and y = 0 (right panel) for a value C smaller than C2

(the shaded areas are in the realm of forbidden motions). As it happens for the
cases represented in the figure, the connection between these regions is realized
through two bottlenecks of BC , where we find the Lagrange points L1 and L2.
The transit of motions through the bottlenecks is guided by the stable-unstable
manifolds of the center manifolds W c

1 ,W
c
2 originating at the equilibria L1,L2,

which are partially hyperbolic. The intersections of these stable and unstable
manifolds withMC have been identified as separatrices for the transit of motions
through the bottlenecks of BC connecting the region of internal and the region
of external motions, see [9, 38, 21, 27] (for the planar three-body problem) and
[13, 1, 19] (for the spatial three-body problem). The computation of the stable-
unstable manifolds is therefore essential to compute the different kind of transit
orbits. There is a rich literature about the computation of these manifolds and
the related dynamics (see for example [38, 14, 13, 21, 32, 7, 5, 35, 42, 34]). We
shall focus on the method of computation formulated with chaos indicators.

The case study that we review here, which is particularly important for the
dynamics of comets, is represented by the Sun-Jupiter mass ratio and by values
of the Jacobi constant slightly smaller than2 C2.

Let us first consider the planar case, which is often studied on the section:

ΣP (C) = {(x, 0, 0, ẋ, ẏ, 0) : C(x, 0, 0, ẋ, ẏ, 0) = C} (17)

parameterized by the variables x, ẋ. A first snapshot of the dynamics is provided
by the computation of the traditional FLI in a very refined grid of initial condi-
tions in ΣP (C), such as the ones represented in Figure 13. Since the orbits with
such initial conditions may have close encounters with the secondary body, it is
more convenient to define the FLI using the equations of motion of the planar
CR3BP regularized with respect to the body P2 [6, 15, 16, 27, 19]. A convenient
regularization of the planar problem is the Levi-Civita regularization [30]. In
Figure 13 we report the computation of the FLI for a specific value of C, on a
grid of initial conditions of ΣP (C) with final integration time T equal to half
(left panel) and twice (right panel) of Jupiter’s period. Even using such short
integration times we appreciate the strong divergence of solutions with initial
condition in this window of the phase–space. From these pictures we have only
a vague idea of the structures forming the chaotic region, which we know are
correlated to the stable manifolds originating at the Lyapunov orbits of L1, L2,
but to compute them out of all the chaotic initial conditions we need to use
modified chaos indicators.

4.1 Modified FLI for the planar CR3BP

In the planar CR3BP the center manifolds W c
i originating at L1 or L2 are

two-dimensional manifolds, and close to the Lagrangian point are foliated by a

2For the Sun-Jupiter mass ratio we have C1 = 3.0387..., C2 = 3.0374...; for the numerical
experiments we use C = 3.0368.... We remark that the values of the Jacobi constant C1, C2 are
very close, and in particular small changes of C close to C1, C2 determine important changes
in the shape of the realm of possible motions.
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Figure 13: Color representation of the (non modified) FLI computed on a grid
of initial conditions on the Section ΣP (C) with C = 3.0368... and ẏ > 0; the
integration time T is half Jupiter’s period (left panel) and twice Jupiter’s period
(right panel). The left panel is reprinted from: Physica D, vol. 325, Lega E. and
Guzzo M., Three-dimensional representations of the tube manifolds of the planar
restricted three-body problem, 41-52, Fig. 2, Copyright 2016, with permission
from Elsevier.

family of periodic orbits, called planar Lyapunov orbits. Therefore, for values
C of the Jacobi constant slightly smaller than Ci the intersection of the center
manifold W c

i with the level set MC contains a planar Lyapunov orbit, that we
denote by Li(C). The orbits Li(C) are libration orbits around the equilibrium
Li, are located in the bottleneck formed by the boundary BC at Li, and have
stable and unstable manifolds, hereafter denoted W s

Li
,Wu
Li

, which extend on
both sides of the bottleneck. Orbits transiting from one side to the other side
of the bottleneck can be constructed by shadowing the two branches of the
manifolds W s

Li
,Wu
Li

on the left and on the right of Li(C) (see [9]). Modified
FLI have been specifically designed in [16, 27, 19] to detect the intersection of
the manifolds W s

Li
,Wu
Li

with two-dimensional sections of the three–dimensional
level set MC .

Definition of the mFLI. Following [16], we define the mFLI using the equa-
tions of motions of the planar CR3BP formulated using the Levi-Civita regular-
ization with respect to the secondary body P2. The Levi-Civita regularization
is defined by the space transformation{

x− (1− µ) = u21 − u22
y = 2u1u2

(18)

complemented by the time transformation:

dt = r2ds, (19)

where t is the physical time and s is called the proper time. The equations of
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Figure 14: mFLI computation of the unstable manifold of L1(C) and the stable
manifold of L2(C) for the Sun-Jupiter systems and C = 3.0368.... The panels
represent the values of the modified FLI (26) computed on the section ΣP (C)
(initial conditions with ẏ > 0): on each point of the panel we represent its
mFLI value with a color scale, so that both the unstable manifold of L1(C)
and the stable manifold of L2(C) appear as the yellow curves. The left panel
is obtained for T1 = T2 = 5, the right panel with T1 = T2 = 100. On the
left-panel we also identify with a black square and with a black circle a selected
set of curves belonging to the unstable manifold of L1(C) or the stable manifold
of L2(C) respectively. The left panel is reprinted from: Guzzo M., Lega E.,
Evolution of the tangent vectors and localization of the stable and unstable
manifolds of hyperbolic orbits by Fast Lyapunov Indicators, SIAM J. APPL.
MATH., Vol. 74, No. 4, pp. 1058-1086, 2014, Fig. 5; Copyright 2014 Society
for Industrial and Applied Mathematics; Reprinted with permission. The figure
is here represented with some graphic filters in order to appreciate more clearly
the manifolds.

motion in the variables u1, u2, and proper time s are (see for example [39]):{
u′′1 = 1

4 [(a+ b)u1 + cu2]
u′′2 = 1

4 [(a− b)u2 + cu1]
(20)

where the primed derivatives denote derivatives with respect to the proper time
s, and a, b, c are functions of u, u′ which are regular as u tends to 0 (this condition
corresponds to a collision with P2). After rewriting equations (20) as first order
differential equations: 

u′1 = v1
u′2 = v2
v′1 = 1

4 [(a+ b)u1 + cu2]
v′2 = 1

4 [(a− b)u2 + cu1]

(21)

and denoting them by:
ζ ′ = F (ζ) (22)
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Figure 15: On the top panel we report the representation of the indicator (26)
computed with T1 = 5, and select the heteroclinic point in the black box to
compute with higher precision. In the bottom-left panel we represent again the
indicator (26) computed on an extremely small box (of side 10−15) around the
heteroclinic point selected in the top panel (the values of x, ẋ corresponding to
the heteroclinic point are denoted with xh, ẋh in the labels). In such a way we
identify the heteroclinic point with a precision of more than 16 digits. On the
bottom-right panel we report the projection on the plane (x, y) of the orbit with
initial conditions corresponding to the numerically computed heteroclinic point.
The panels are reprinted from: Guzzo M., Lega E., Evolution of the tangent
vectors and localization of the stable and unstable manifolds of hyperbolic orbits
by Fast Lyapunov Indicators, SIAM J. APPL. MATH., Vol. 74, No. 4, pp.
1058-1086, 2014, Fig. 4 and Fig. 6; Copyright 2014 Society for Industrial and
Applied Mathematics; Reprinted with permission.
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with ζ = (u1, u2, v1, v2), the solutions w(s) of the variational equations of (22):

w′ =
∂F

∂ζ
(ζ)w, (23)

are used to define the mFLI. Precisely, by denoting with

(x, y, ẋ, ẏ) =W(u1, u2, v1, v2)

the transformation from the Levi-Civita to the Cartesian variables:
x− (1− µ) = u21 − u22
y = 2u1u2
ẋ = 2

r2
(u1v1 − u2v2)

ẏ = 2
r2

(u1v2 + u2v1),

(24)

for any initial condition ξ0 = (x0, y0, ẋ0, ẏ0) we consider a solution ζ(s) of (22)
with initial condition ζ0 such that ξ0 = W(ζ0), and the transformation s :=
σ(ξ0, t) between any physical time t and the proper time s for this solution.
Then, for a given physical time T , we define the modified FLI by

mFLIu(ξ0, w0, T ) = max
t∈[0,T ]

∫ σ(ξ0,t)

0

u(W(ζ(s))
w(s) · ẇ(s)

‖w(s)‖2
ds (25)

where the window function u(ξ) is defined as in eq. (13), by identifying γ with
the Lyapunov orbit Li(C).

Grid computations of the mFLI: heteroclinic orbits. As a demonstration
of the use of the new indicator mFLI in the computation of the stable and
unstable manifolds of the Lyapunov orbits, in [16] we computed heteroclinic
orbits in Wu

L1(C)∩W
s
L2(C), i.e. orbits which converge in the past to the Lyapunov

orbit L1(C) and in the future to the Lyapunov orbit L2(C). First, we obtained
representations of the intersections of both manifolds Wu

L1(C),W
s
L2(C) with the

two-dimensional section ΣP (C) by computing two mFLI, which we denote by
mFLI1,mFLI2, on the same refined grid of initial conditions of ΣP (C), using the
same initial tangent vector w0, the same parameter r = 10−3 in the definition
of the window function u, and:

• a negative time −T1 < 0, and γ = L1(C), in the definition of the window
function u for the indicator mFLI1;

• a positive time T2 > 0, and γ = L2(C), in the definition of the window
function u for the indicator mFLI2.

Therefore, the ridges of mFLI1 identify the manifold Wu
L1(C) while the ridges

of mFLI2 identify the manifold W s
L2(C). Finally, to appreciate both manifolds

Wu
L1(C), W

s
L2(C) on the same picture (and therefore to identify their intersec-

tions) we represent a weighted average of the two indicators:

p mFLI1 + mFLI2
(p+ 1)

, (26)

for a convenient choice of the weight parameter p > 0. The results are rep-
resented in Figure 14: the stable and unstable manifolds appear on the two
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panels, obtained for different times, as the ridges of the indicator (26). We
clearly appreciate different lobes of both manifolds, as well as many intersec-
tion points, providing initial conditions of heteroclinic orbits. The number of
lobes and heteroclinic intersections increases very rapidly for increasing times
T1. The computation of the indicator (26) has been repeated by zooming close
to a selected intersection point of the manifolds Wu

L1(C), W
s
L2(C), in order to

detect the initial condition providing the heteroclinic orbit with all the desired
precision which is necessary for a numerical computation of the orbit (in Figure
15, the heteroclinic point is obtained with more than 15 digits of precision). In
Figure 15, bottom-right panel, we report the orbit corresponding to the initial
conditions in the intersection of the two manifolds.

4.2 Extraction of the ridges of the mFLI

The precision of the computation of the ridges of the mFLI presented in the
previous subsections is limited by the stepsize α of the two-dimensional grids
of initial conditions defined on the section ΣC(P ). If one aims to compute
long parts of the stable and unstable manifolds with an high precision (for
example the precision α < 10−15 obtained in the computation of Figure 15), it
is convenient to follow a specific strategy indicated, for example, in [12, 31]. In
Figure 16 we sketch the main ideas of the strategies that we have implemented
in the papers [27, 19] to compute ordered sequences of points π0, π1, π2, . . . on
a ridge of the mFLI on the two dimensional sections of MC . Let us consider
different connected sets of points with positive value of mFLI on the same two
dimensional section Σ of MC . For each connected set, we select a point π̃0
which is a candidate to be close to a ridge of the mFLI, and we compute again
the mFLI on a much more refined one-dimensional grid in Σ centered in π̃0
(see figure 16). The maximum value of the mFLI on this grid provides a much
better estimate of the point π0 on the ridge of the mFLI. The second point π1
on the ridge is obtained by computing the mFLI on another one-dimensional
grid of points of Σ obtained by changing only one coordinate of π0. The point
with the maximum mFLI on this second grid provides π1. The third point π2
is computed from a one-dimensional grid of N points defined on an arc whose

vertex is in π1 + ε (π1−π0)
|π1−π0| , with some small step-size α (see figure 16). The

point with maximum mFLI on the arc is denoted by π2. The procedure is then
iterated, providing us an ordered sample of points π0, π1, π2, . . . on a ridge of the
mFLI on the two dimensional section Σ. The values of the parameters ε,N, α
are adjusted at each step, as well as the total integration time.

Examples of ridges computed with this method in [27] are reported in Figure
17, where we represent six different ridges of the mFLI on the planar section
ΣP (C): two of them, which we denote by µ1, µ2, are in the realm of motions
around the primary body P1; a ridge denoted λ1 intersects L1(C) and extends
on both sides of this Lyapunov orbit; three ridges, denoted λ2, λ3, λ4, are in
the realm of motions around P2; the red curves represent the projection on the
section ΣP (C) of sample orbits connecting two ridges. Since the target orbit γ
in the definition of the mFLI is the Lyapunov orbit L1(C), and the indicator
is computed using positive times T , the computed ridges are approximation of
the stable manifold W s

L1
. Therefore, the points with initial conditions on the

ridges λ1, λ2, λ3, λ4, µ1, µ2 have been numerically integrated, to reconstruct (a
part of) this stable manifold.
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Figure 16: Sketch of the algorithm to compute a sequence of points π0, π1, π2, . . .
on a ridge of the mFLI. The blue circle represents the starting point, that is
a point of the section ΣP (C) with a high value of the modified FLI, obtained
from a computation on a 2-dimensional grid of initial conditions. Then, we
refine the position of the starting point by re-computing the mFLI on a much
more refined 1-dimensional grid marked by red circles centered on the blue one.
The black circle corresponds to the point of this grid with the maximum value
of the mFLI. Then, we consider a second 1-dimensional grid centered at a point
obtained from the previous black circle, and shifting one coordinate of a small
quantity ε. We mark again with a black circle the point of this grid with the
largest value of the mFLI. The third point π2 is computed from a 1-dimensional

grid of N points chosen on an arc whose vertex is in π1 + ε (π1−π0)
|π1−π0| , with some

small step-size. The maximum mFLI on the arc grid provides the point π2.
The procedure is now iterated, providing us an ordered sample of points on a
ridge of the mFLI. Figure reprinted from: Physica D, vol. 325, Lega E. and
Guzzo M., Three-dimensional representations of the tube manifolds of the planar
restricted three-body problem, 41-52, Fig. 3, Copyright 2016, with permission
from Elsevier.

4.3 Reconstruction of the stable manifolds

The stable manifold of the selected Lyapunov orbit L1(C) has been computed in
[27] from the forward and backward numerical computations of the orbits with
initial conditions on the curves λj and µj introduced in the previous Subsection.

Let us briefly analyze how these orbits connect the different curves µ1, µ2,
λ1, λ2, λ3, λ4. The lobe λ1 (represented with a bold curve in the bottom-right
panel of Figure 17) is different from all the others, since the orbits with initial
conditions on λ1 converge directly to L1 without performing circulations around
the primary or secondary body. Instead λ4, λ3, λ2 and λ1 are connected by
orbits which perform a given number of half circulations around P2, in the
sequence indicated above (see the red curves in the panels of Figure 17); µ2,
µ1, λ1 are connected by orbits which perform half circulations around P1, in
the sequence indicated above (see the red curves in the panels of Figure 17).
In Figure 18 we represent the projection on the xy plane of orbits with initial
conditions on λ2, numerically computed forward (red curves, we appreciate that
all of these curves converge to L1(C)) and backward (blue curves) in time. In
Figure 19 we represent the projection of sample orbits with initial conditions
in λ2 in the three-dimensional space x, y, ẋ: the pink surface is obtained from
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Figure 17: The panels represent with different zoom levels six ridges denoted
µ1, µ2 (on the left of L1) and λ1, λ2, λ3, λ4 of the mFLI (25) computed for the
Sun-Jupiter system on the planar section ΣP (C), for C = 3.0368.... The target
orbit γ in the definition of the mFLI is the Lyapunov orbit L1(C). The red
curves represent the projection on the section ΣP (C) of sample orbits connect-
ing two ridges; the arrows indicate the positive time-direction on the orbits. Top
and bottom left panels reprinted from: Physica D, vol. 325, Lega E. and Guzzo
M., Three-dimensional representations of the tube manifolds of the planar re-
stricted three-body problem, 41-52, Fig. 8, Copyright 2016, with permission
from Elsevier. Bottom right panel reprinted from: Physica D, vol. 373, Guzzo
M. and Lega E., Geometric chaos indicators and computations of the spheri-
cal hypertube manifolds of the spatial circular restricted three-body problem,
38-58, Fig. 2, Copyright 2018, with permission from Elsevier.

the forward integration and the violet surface is obtained from the backward
integration. From the representation it appears clearly how the computed orbits
connect the curve λ2 to the curves λ1, λ3. As we extend the integration time of
the orbits with initial conditions on the curves λj we appreciate the complicate
development of the stable manifold of the Lyapunov orbit; for additional pictures
(also for the manifolds related to L2(C)) we refer to [27]. We here review how
the heteroclinic orbits, which are in the intersections of the stable manifolds of
one Lyapunov orbit, for example L2(C), and of the unstable manifold of the
other Lyapunov orbit, for example L1(C), provide an idea of the complicate
structure of the stable and unstable manifolds.

In Figure 20, top–left panel, we represent on the x, ẋ plane some connected
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Figure 18: Projection on the xy plane of orbits with initial conditions on λ2,
numerically computed forward (red curves) and backward (blue curves) in time.
The bold red curves represent the Lyapunov orbits L1(C),L2(C); the bold blue
curve connect the endpoints of the blue curves; the shaded area represents the
realm of forbidden motions. Figure reprinted from: Physica D, vol. 373, Guzzo
M. and Lega E., Geometric chaos indicators and computations of the spherical
hypertube manifolds of the spatial circular restricted three-body problem, 38-58,
Fig. 3, Copyright 2018, with permission from Elsevier.

components of the intersection of both stable and unstable manifolds of the
Lyapunov orbits L1(C) and L2(C) with the section ΣP (C), computed as the
ridges of the mFLI. The black curves in the figure highlight two pieces of the
stable manifold of L1(C) and of the unstable manifold of L2(C), which intersect
transversely. The intersection points belong therefore to an heteroclinic orbit
connecting all the neighbourhoods of the two Lyapunov orbits. On the top–right
and the bottom panels we report the three-dimensional part of the stable and
unstable manifolds obtained by numerically computing the orbits with initial
conditions on the black curves (only some parts of these strips are represented,
in order to obtain a better visualization).

5 Modified FLI and the spatial CR3BP

In the spatial CR3BP the center manifolds W c
1 , W c

2 originating at the La-
grangian points L1, L2 intersect the set MC in surfaces diffeomorphic to three-
dimensional spheres (provided that C < Ci and |C − Ci| is suitably small),
which we denote by CC1, CC2; their stable and unstable manifolds are there-
fore four dimensional hypertubes. In [19] we provided examples of different
computations and visualizations of these manifolds obtained from the compu-
tations of mFLI for the spatial CR3BP. Let us recall the main differences of
the mFLI method introduced to study the spatial with respect to the planar
CR3BP.
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Figure 19: Projection on the x, y, ẋ space of a set of orbits obtained from back-
ward numerical integrations of initial conditions of λ2 (the xy plane is the hori-
zontal one in the pictures, the ẋ axis is the vertical direction). The pink surface
is obtained from the forward integration of orbits with initial condition on λ2;
the violet surface is obtained from the backward integration of the same initial
conditions; the sets λ2, λ3, λ4 as well as the Lyapunov orbit L1(C) (the per-
spective is such that the positive direction of the x axis points to the left) are
highlighted as the border of blue, pink, cyan, green flat surfaces. The trans-
parent mesh is used to represent the border of the level set MC in the x, y, ẋ
space.

5.1 Definition of the mFLI

The definition of the mFLI for the spatial CR3BP uses the Kustaanheimo-Stiefel
regularization [22, 23] at P2, KS hereafter, which is the spatial extension of the
Levi-Civita regularization (see also [3, 4]). The KS regularization is defined by
the projection map π : (u1, u2, u3, u4) 7→ (x, y, z): x = 1− µ+ u21 − u22 − u23 + u24

y = 2(u1u2 − u3u4)
z = 2(u1u3 + u2u4)

and by the time transformation dt = r2ds where t is the physical time and s
is called the proper time. The KS transformation regularizes the equations of
motion of the spatial CR3BP for any fixed value C of the Jacobi constant, asso-
ciating to the equation of motions (14) represented in the Cartesian variables,
the equation of motions which we denote by:

u′′ = F (u, u′;C) (27)

represented in the regularized u = (u1, u2, u3, u4) variables; the function F (u, u′;C)
depends parametrically on C and is regular at u = 0 (corresponding to the sin-
gularity P2). In addition, eq. (27) is complemented by the non-holonomic
relation:

u1u
′
4 − u2u′3 + u3u

′
2 − u4u′1 = 0.

In [19], we defined the chaos indicators for the spatial CR3BP from the solutions
w(s) ∈ R8 of the variational equations of eq. (27):

w′ = [F(u, u′)]w , w ∈ R8. (28)
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Figure 20: Top-left panel: representation on the x, ẋ plane of some connected
components of the intersection of both stable and unstable manifolds of the
Lyapunov orbits L1(C) (the red curves) and L2(C) (the blue curves) with the
section ΣP (C), computed as the ridges of the mFLI. The bold curves highlight
initial conditions which are numerically integrated to provide the top-right and
the bottom panels. Top-right panel: the violet surface represents λ2; the blue
surface represents the forward time evolution of the part of Wu

L2(C) highlighted
in bold black in the top-left panel; the yellow surface represents the backward
time evolution of the part of Wu

L2(C) highlighted in bold black in the top-left
panel; the light-blue surface represents the forward time evolution of the part
of W s

L1(C) highlighted in bold black in the top-left panel; the transparent mesh
represents the boundary of the admissible region in the space x, y, ẋ. Bottom
panel: we represent with pink color also the backward time evolution of the part
of W s

L1(C). Figure reprinted from: Physica D, vol. 325, Lega E. and Guzzo M.,
Three-dimensional representations of the tube manifolds of the planar restricted
three-body problem, 41-52, Fig. 14 and 15, Copyright 2016, with permission
from Elsevier.
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Precisely, detections of the stable and unstable manifolds of CC1, CC2 have
been obtained using the mFLI:

mFLIφ(ξ, w(0), T ) = max
t∈[0,T ]

∫ s(t)

0

φ(ζ(s))
w(s) · w′(s)
‖w(s)‖2

ds (29)

depending on a point ξ = (x, y, z, ẋ, ẏ, ż) in the Cartesian phase-space of the
spatial CR3BP; an initial tangent vector w(0) ∈ R8; a physical time T and
a window function φ. The function ζ(s) = (u(s), u′(s)) is a solution of the
regularized equations (27) with3 π(u(0)) = (x, y, z); w(s) is a solution of the
variational equations w′ = [F(ζ(s))]w. The main modification with respect
to the planar problem is in the construction of the filter function φ(ζ). In
fact, since in the spatial problem we deal with three-dimensional subsets of the
center manifolds CC1, CC2, it is not computationally convenient to define a
neighbourhood of the sets CC1, CC2 from a sample of their points. Rather, we
prefer to construct the window functions φ(ζ) using the Hamiltonian reductions
to the center manifolds [14, 20, 7, 5, 35]. The reduction to the center manifold
define approximations of the center manifolds from the construction of phase-
space coordinates γ, η, such that the approximated manifold is obtained as the
level sets ηj = 0. Therefore, the numerical computation of

∑
j |ηj | defines a

convenient distance from the manifold, which is used to define the function
φ(ζ).

5.2 Sections of the stable manifolds

In [19] we computed the ridges of the mFLI defined in (29) on the two dimen-
sional vertical sections:

ΣV (C) = {(x, 0, z, 0, ẏ, 0) : C(x, 0, z, 0, ẏ, 0) = C},

using two window functions φ1(ζ), φ2(ζ) constructed to detect the stable/unstable
manifolds of CC1 and CC2 respectively. As for the planar case, for a fixed value
of C we obtained a family of curves characterized by a given number of revo-
lutions around P2 before converging to CC1 or CC2; with evidence, each ridge
of the vertical section intersects the corresponding ridge of the planar section
ΣP (C).

Figure 21, top panel, represents a sample of ridges of the indicator mFLI
defined in (29), computed in the vertical section ΣV (C), representing connected
components of the intersection of both stable and unstable manifolds of CC1

(black curves) and CC2 (blue curves) with the section; a magnification is rep-
resented in the bottom-left panel, where we highlight in blue two connected
components of the ridge λ4, characterized by initial conditions whose orbits
converge to CC1 after two revolutions around P2. The bottom-right panel re-
ports in the x, ẋ, z space the ridge λ4 computed in the vertical section ΣV (C),
as well as the ridge λ4 previously computed in the planar section ΣP (C) (see
Figure 17), and we appreciate their intersections on the line z = 0, ẋ = 0. The
development of the stable and unstable manifolds of CC1 and CC2 can be ob-
tained from the numerical integrations of the solutions with initial conditions

3The definition depends on the local inversion map used to choose ζ(0): the indicators (29)
are therefore locally defined; as a matter of fact it is sufficient to use a couple of indicators
mFLI±φ (ξ, w(0), T ) to cover the phase-space, see [19].
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Figure 21: Top panel: Ridges of the mFLI defined in (29), computed in the
vertical section ΣV (C), representing connected components of the intersection of
both stable and unstable manifolds of CC1 and CC2 with the section. Bottom
panels: The ridges in the red box are magnified in the bottom-left panel. In the
bottom-right panel we represent in the x, ẋ, z space the ridge λ4, computed for
the planar problem (red curve) and the two ridges λ4 computed for the spatial
problem (blue curves). We appreciate the intersection of the spatial curves with
the planar one along the line z, ẋ = 0. Panels reprinted from: Physica D, vol.
373, Guzzo M. and Lega E., Geometric chaos indicators and computations of
the spherical hypertube manifolds of the spatial circular restricted three-body
problem, 38-58, Fig. 6 and 8, Copyright 2018, with permission from Elsevier.

on the computed ridges of the mFLI. In Figure 22 we represent the projection of
the orbits associated to solutions with initial conditions in the lobe λ2 of ΣV (C)
on the x, y plane (top-left panel), on the x, z plane (top-right panel) and on the
x, y, z space (bottom panel). For additional computations and representations
we refer to the paper [19].

6 Transit orbits

The stable and unstable manifolds of CC1, CC2 (as well as of the Lyapunov
orbits L1(C),L2(C) for the planar problem) are separatrices for the transit
of motions through the bottlenecks in the realm of admissible motions which
open at L1, L2 for values of the Jacobi constant slightly smaller than C1 or C2
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Figure 22: Representation of the projection of the orbits associated to solutions
with initial conditions in the lobe λ2 of Figure 21 on the x, y plane (top-left
panel), on the x, z plane (top-right panel) and on the x, y, z space (bottom
panel). Figures reprinted from: Physica D, vol. 373, Guzzo M. and Lega
E., Geometric chaos indicators and computations of the spherical hypertube
manifolds of the spatial circular restricted three-body problem, 38-58, Fig. 11,
Copyright 2018, with permission from Elsevier.

respectively.
For typical applications to Celestial Mechanics, such as the dynamics of

comets and the space mission design, we are interested in the computation of
orbits performing transits occurring within given time intervals. Also, it is
important to quantify the numerical errors that we have in the computation of
the stable/unstable manifolds. Let us analyze in this Section these two issues
with some more detail.

Since the computation of the stable and unstable manifolds is always affected
by ( possibly very small) numerical errors, the orbits with initial conditions ξ on
the numerically computed stable manifold of CC1 will approach the set CCi but
then (due to numerical errors) may transit on the other side of the bottleneck
opened at CCi, or may bounce back, depending on which side of the stable
manifold the initial condition ξ actually is. As a matter of fact, the meaning
of the numerical computation of each ridge of mFLI is the determination of an
annulus σ in the two dimensional section ΣP (C) or ΣV (C) delimited by an inner
curve and an outer curve, whose points are at distance from the ridge larger than
the numerical error, and have a well defined transit property. Let us consider,
for example, the ridge λ2 in the planar section ΣP (C) and the very thin annulus
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Figure 23: Projection on the xy plane of orbits with initial conditions in the
inner border (left panel) and in the outer border (right panel) of the annulus
σ ⊆ ΣP (C) containing the ridge λ2 of the planar CR3BP. Panels reprinted
from: Physica D, vol. 373, Guzzo M. and Lega E., Geometric chaos indicators
and computations of the spherical hypertube manifolds of the spatial circular
restricted three-body problem, 38-58, Fig. 13, Copyright 2018, with permission
from Elsevier.

σ ⊆ ΣP (C) containing λ2 and identified as indicated above. In Figure 23 we
represent the projection on the xy plane of orbits with initial conditions in the
inner border (left panel) and in the outer border (right panel) of the annulus.
All the orbits with initial conditions in the inner border approach the Lyapunov
orbit L1(C) and then transit to the left of the orbit, while all the orbits with
initial conditions in the outer border approach the Lyapunov orbit L1(C) and
then bounce back. In Figure 24 we represent with colors the transit properties,
within a fixed integration time T , of the orbits with initial conditions in the
vertical Section ΣV (C): violet represents initial conditions whose orbit transits
towards P1 within the time T ; orange represents initial conditions whose orbit
transits towards the external region within the time T (see the caption of Figure
24 for more details).

The result provides a clear correlation between the transit properties with
the computation of some of the ridges λjΣV (C) previously provided by the
computation of the mFLI defined for the spatial problem. The orbits which do
not transit in the time interval [0, T ] (yellow color in the picture) may of course
transit in longer time intervals, so that by increasing the integration time T
additional ridges have to be considered to define the transit properties in the
section ΣV (C).
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