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Abstract

Employing machine learning into 6G vehicular networks to support vehicu-
lar application services is being widely studied and a hot topic for the latest
research works in the literature. This article provides a comprehensive re-
view of research works that integrated reinforcement and deep reinforcement
learning algorithms for vehicular networks management with an emphasis
on vehicular telecommunications issues. Vehicular networks have become
an important research area due to their specific features and applications
such as standardization, efficient traffic management, road safety, and in-
fotainment. In such networks, network entities need to make decisions to
maximize network performance under uncertainty. To achieve this goal, Re-
inforcement Learning (RL) can effectively solve decision-making problems.
However, the state and action spaces are massive and complex in large-scale
wireless networks. Hence, RL may not be able to find the best strategy
in a reasonable time. Therefore, Deep Reinforcement Learning (DRL) has
been developed to combine RL with Deep Learning (DL) to overcome this
issue. In this survey, we first present vehicular networks and give a brief
overview of RL and DRL concepts. Then we review RL and especially DRL
approaches to address emerging issues in 6G vehicular networks. We finally
discuss and highlight some unresolved challenges for further study.
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1. Introduction

In the last two decades, vehicular networks rapidly emerged as one of
the hottest topics over which research community is focusing to exploit the
wide range of applications ranging from road safety improvements to traffic
efficiency optimization and from autonomous driving to ubiquitous internet
access on vehicles [1]. This new generation of networks will significantly
impact society and the daily lives of individuals across the world. Lately,
various problems have arisen in vehicular communications and have been
addressed by the research community such as clustering and routing [2, 3],
processing large volume of data [4], content distribution [5], and data for-
warding [6]. Moreover, vehicular networks bring unprecedented challenges
unseen in conventional wireless networks [7] due to:

• Highly dynamic mobility scenarios ranging from low-speed vehicles (for
example, less than 60km/h) to high-speed cars/trains (for example,
500km/h or higher).

• Various data services with different Quality of Service (QoS) require-
ments in terms of reliability, latency, and data rates, for example in-
vehicle multimedia entertainment, video games, ultra-reliable and low-
latency delivery of safety messages, high-precision map downloads, etc.

• Expected explosive growth of vehicular communication devices amid
an increasingly fragmented and congested spectrum.

Meanwhile, with the help of high-performance computing and storage facil-
ities, as well as various advanced on-board sensors such as lidar, radar, and
cameras, vehicles will be more than just a simple means of transportation.
They are generating, collecting, storing, processing, and transmitting large
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Figure 1: An illustrative structure of vehicular networks [1].

amounts of data, which are used to make driving safer and more convenient
[1], as shown in Figure 1. Exploiting this data, machine learning algorithms,
especially Reinforcement Learning (RL) algorithms, have been used to solve
the above-mentioned challenges, because traditional communication strate-
gies are not meant to handle such rich information.

As an important supporting technology of artificial intelligence, machine
learning has been successfully applied in many fields, including computer vi-
sion, medical diagnosis, search engines, and speech recognition [8]. It is a
field of research that allows computers to learn without explicit program-
ming. Machine learning techniques can generally be divided into supervised
learning, unsupervised learning, and reinforcement learning. In supervised
learning, the purpose of the learning agent is to learn to map inputs to
general rules with example inputs and the expected output provided, these
example inputs constitute a labeled data set. In unsupervised learning, there
is no need to label the data, and the agent tries to find some structure from
its inputs. In reinforcement learning, the agent continuously interacts with
the dynamical environment and tries to develop a good strategy based on
the immediate reward/cost of environmental feedback.

Reinforcement learning has recently been used in vehicular networks as
an evolving method to solve different problems and challenges effectively.
In order to achieve the goals of various networks, including, for example,
throughput maximization and energy consumption minimization, network
entities such as vehicles, and base stations need to make local and au-
tonomous decisions, e.g., spectrum access, data rate selection, transmission
power control, and base station association, under unpredictable stochastic
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conditions. Modern networks, however, are large-scale and complex, and
thus the computational complexity of the techniques quickly becomes un-
manageable. As a result, to overcome the challenge, deep reinforcement
learning has been developing to be an alternative solution [9].

Furthermore, 6G aims to connect any smart device, from smartphones
to intelligent vehicles, to the Internet. It will deliver innovative and high-
quality services like holographic communication, augmented reality/virtual
reality, and many others [10]. In addition, It will focus on Quality of Ex-
perience (QoE) to provide rich experiences from 6G technology. Notably,
6G technology will face complex issues and challenges in vehicular networks,
which RL and DRL algorithms will be crucial in resolving.

Although there are some surveys related to machine learning and vehic-
ular networks, they do not focus on the recent advances of the applications
of RL and DRL for vehicular networks management. In [1], the authors pre-
sented some examples of application of machine learning to solve problems
in vehicular networks, but they have not focused on RL algorithms where
only seven articles have been discussed. In [11], Yuan et al. presented
machine learning techniques for Next-Generation Intelligent Transportation
Systems (ITS). Researchers presented in [9] only the application of DRL in
communication and networking in general. A survey on resource allocation
in vehicular networks was presented in [7]. Still, it did not focus on the
part of machine learning where only seven papers were discussed. Finally,
only Multi-Agent Reinforcement Learning (MARL) methods for vehicular
networks were discussed in [12]. There are also some existing surveys on
6G integration with vehicular networks. In [13], Tang et al. provided a sur-
vey on various ML techniques applied to communication, networking, and
security parts in vehicular networks and envision the ways of enabling AI
toward a future 6G vehicular network. They concentrated on presenting
supervised learning techniques and not RL where only four works were re-
viewed. In [14], the authors provided an overview on the recent advances
of machine learning in 6G vehicular networks. They have also identified
a number of key enabling technologies and revolutionary elements of next-
generation 6G-V2X networks. However, they did not focus on RL techniques
where only few works were reviewed. A comprehensive survey on green Un-
manned Aerial Vehicles (UAV) communications for 6G was presented in
[15]. Specifically, the typical UAVs and their energy consumption models
are introduced. Then, the typical trends of green UAV communications are
provided. Still, it only discusses a single work that applies RL.

In our paper, we provide a comprehensive survey of the current state-
of-the-art of application of RL and DRL in vehicular networks and present
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open issues in this area. We introduce these works from two aspects: ve-
hicular resource management and vehicular infrastructure management. A
classification of reviewed works is shown in Figure 2. The contributions of

Vehicular Ressource Management 

Networking Computing and caching Energy

Dynamic spectrum
access

Collision management

Joint user association

Computing

Caching

RSU

Vehicle

Vehicular Infrastructure Management 

RL/DRL Techniques in Vehicular Networks

Traffic  Management Vehicle Management

Traffic Light Control 

Variable Speed Limit
control 

Motion control

Vehicle trajectory
planning

Figure 2: A taxonomy of the application of RL and DRL in vehicular networks.

our survey can be summarized as follows:

• first, we present an overview of vehicular networks;

• second, we present concepts of RL and DRL;

• third, we provide a detailed review of the current state-of-the-art on
the application of RL and DRL to vehicular networks;

• finally, we discuss future trends and research directions on how RL
and DRL can be applied to benefit future 6G vehicular networks.

The structure of the paper is as follows. We start our discourse in sec-
tion 2 with a high-level overview of vehicular networks. Section 3 presents
the introduction to RL and DRL techniques. Section 4 discusses the applica-
tion of RL/DRL for vehicular resource management. Section 5 reviews the
application of RL/DRL for vehicular infrastructure management. Impor-
tant challenges, open issues and future directions are outlined in Section 6.
Section 7 concludes the paper. The list of abbreviations commonly appeared
in this paper is given in Table 1.

2. Vehicular networks

Vehicular networks will enable a wide set of applications and services
within the ITS, for improving road safety, traffic efficiency, infotainment,

6



Abbreviation Description

3DQN Double Dueling Deep Q Network

AC/A3C/SAC Actor Critic/Asynchronous Actor Critic/Soft Actor Critic

AV Autonomous Vehicle

BS Base Station

C-V2X Cellular Vehicle-to-Everything

CNN/DNN/RNN Convolutional Neural Network/Deep Neural Network/Recurrent Neural Network

CW Contention Window

DDPG Deep Deterministic Policy Gradient

DQL Deep Q-Learning

DQN/DRQN/DDQN Deep Q-Network/Deep Recurrent Q-Network/Double Deep Q-Network

DSRC Dedicated Short-Range Communication

EMS Energy Management System

FNN Feed-forward Neural Networks

GVRP Green Vehicle Routing Problem

HetNet/HetVNet Heterogeneous Networks/Heterogeneous Vehicular Networks

HEV/P-HEV Hybrid Electric Vehicles/Plug-in Hybrid Electric Vehicles

IoT/IoV Internet of Things/Internet of Vehicles

ITS Intelligent Transportation System

LSTM Long Short Term Memory

LTE Long Term Evolution

MAC Meduim Access Control

MEC Mobile Edge Computing

MDP/POMDP Markov Decision Process/ Partially Observable MDP

PDR Packet Delivery Ratio

QoS/QoE Quality of Service/Quality of Experience

RB Ressource Block

RL/DRL Reinforcement Learning/Deep Reinforcement Learning

RSU Roadside units

SARL/MARL Single-Agent Reinforcement Learning/Multi-Agent Reinforcement Learning

SNR/SINR Signal to Noise Ratio/Signal to Interference plus Noise Ratio

TDD Time Division Duplex

TLC Traffic Light Control

UAV/USV Unmanned Aerial Vehicles/Unmanned Surface Vehicles

UE User Equipment

UL/DL Uplink/Downlink

URLLC Ultra-Reliable and Low Latency Communications

V2I Vehicle-to-Infrastructure

V2N Vehicle-to-Network

V2P Vehicle-to-Pedestrian

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Everything

VANET Vehicular Ad-Hoc Network

VRU Vulnerable Road User

VSL Variable Speed Limit

VU/VUE-pairs Vehicle User/Vehicle User Equipment-pairs

.

Table 1: List of abbreviations and notations.
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and supporting autonomous driving. To support these services, Vehicle-
to-Everything (V2X) communications enable the exchange of information
between vehicles, infrastructure, and pedestrians, using different wireless
communication technologies [16]. In this section, we first present the vehic-
ular communication modes, and a classification of the use cases of vehicular
networks. We then present the two main vehicular communication technolo-
gies DSRC and C-V2X followed by a focus on the second as it is the main
interest of the article. For more details, a survey on vehicular networks for
smart roads is presented in [17].

2.1. Vehicular communication modes

As shown in Figure 3, 3GPP identifies four types of V2X communication
modes: Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P), Vehicle-to-
Infrastructure (V2I) and Vehicle-to-Network (V2N) [18]. Through the use

V2V V2P

V2I
V2N

Vehicle

BS Application 
Server

Vehicle Pedestrian

Figure 3: Types of V2X application support in 3GPP [19].

of “cooperation awareness”, the above four types of V2X applications can
be used jointly to provide end users with smarter services. For example,
vehicles, pedestrians, application servers, and road infrastructure can ob-
tain local environmental information by receiving messages from sensors in
nearby or other vehicles, enabling smarter services such as autonomous driv-
ing, vehicle warnings, and enhanced traffic management [20, 21]. The four
types of V2X communication modes are as follows:

• V2V and V2P modes cover direct communication between vehicle User
Equipment (UE) and between vehicles and Vulnerable Road Users
(VRU), such as pedestrians, cyclists, motorcycles, and wheelchair users;
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• V2I refers to the communication between the vehicle and the roadside
infrastructure, for example, a RSU implemented in an eNodeB or as a
standalone fixed UE;

• V2N enables vehicular UEs to communicate with an application server
that supports V2N applications, which provides centralized control
and distribution of traffic, road, and service information.

2.2. Vehicular networks use cases

The wide set of vehicular use cases have been categorized in [20] into
four categories as follows:

• Safety and traffic efficiency. V2V/V2P event-driven and periodic mes-
sages hold the transmitting vehicle’s location and kinematics parame-
ters, allowing other vehicles and VRUs to sense the environment and
support applications such as:

– forward collision warning, used to notify the driver of an immi-
nent tail collision with the vehicle ahead;

– cooperative adaptive cruise control system that allows a group of
nearby vehicles to share the same path (also called platooning);

– VRU safety to alert vehicles the presence of VRUs.

• Autonomous driving. In order for autonomous cars to be truly au-
tonomous for navigation, it is essential that the vehicle is aware of its
position, surrounding environment and nearby vehicles [22]. In addi-
tion, these vehicles may be very close to each other and drive at higher
speeds (up to 200km/h).

• Tele-operated driving. Tele-operated driving will be used in environ-
ments that are dangerous or uncomfortable for people, such as nu-
clear accidents, earthquakes, road construction and snow removal, the
drones on the wheels may be used by the driver to perform driving
tasks. In fact, the driver will be located outside the vehicle and will
control it using the camera, status and sensor data.

• Vehicular Internet and infotainment. These applications are intended
for the comfort of the driver and passengers. They essentially provide
services such as mobile Internet access, messaging, discussion between
vehicles, collaborative network games. [23].
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• Remote diagnostics and management. The V2X application server
owned by the car manufacturer or the vehicle diagnostic center can
retrieve the information periodically sent by the vehicle in V2N mode
to track its status for remote diagnosis.

2.3. Vehicular communication technologies

So far, there are two main methods of V2X communications: Dedi-
cated Short-Range Communication (DSRC) and cellular-based vehicular
communication. DSRC is supported by a series of standards, including
the IEEE 802.11p amendment for Wireless Access in a Vehicular Environ-
ments (WAVE), and the IEEE 1609.1-4 standard for resource management,
security, network services, and multi-channel operation [24]. Moreover,
it is known that Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) medium access technique used in IEEE 802.11p is unsuitable
for critical communication scenarios [25], i.e. QoS in vehicular networks ap-
plications cannot be guaranteed for safety-critical messages and other real-
time transmissions. On the other hand, 3GPP has been developing cellular
vehicular communications, also known as Cellular Vehicle-to-Everything (C-
V2X), aimed at operating on cellular networks such as Long Term Evolution
(LTE) and 5G New Radio (5G NR) [7] that can offer high data rate ser-
vices and wide coverage. An overview of vehicular networks is shown in
Figure 4. Both V2X technologies have their own advantages and limitations

RSUBS
Backbone network

Cellular V2V

Cellular V2I

DSRC V2V
DSRC V2I

Figure 4: Overview of vehicular networks [7].
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when used in a vehicular environment. As a result, it has been proposed
to integrate it into heterogeneous vehicular networks to exploit their unique
advantages while addressing their individual disadvantages. The main dif-
ferences between C-V2X and DSRC-V2X is summarized in Table 2.

C-V2X DSRC-V2X

Synchronization Synchronous Asynchronous

Resource Multiplexing
Across Vehicles

Frequency Division Multiplexing
(FDM) and Time Division Multi-
plexing (TDM)

TDM Only

Channel Coding Turbo Convolutional

Waveform Single Carrier FDM (SC-FDM) Orthogonal FDM (OFDM)

Retransmission mecha-
nism

Hybrid Automatic Repeat Request
(HARQ)

No HARQ

Resource Selection Semipersistent transmission with
relative energy-based selection

Carrier Sense Multiple Access with
Collision Avoidance (CSMA-CA)

Advantages Wide coverage and high data rate
services

Support high-density vehicular
communications

Disadvantages Do not support decentralized com-
munication as the networks may be-
come easily overloaded in situation
with very high vehicle density, e.g.
traffic jams

Limited coverage, low data rate,
limited QoS guarantee, unbounded
channel access delay

Table 2: Comparison of C-V2X and IEEE 802.11p [19, 7].

Since the interest of this article is 6G vehicular networks, we will give
more details about Cellular Vehicle-to-Everything (C-V2X) in particular
beyond 5G and 6G V2X in the next subsection.

2.4. Cellular vehicular networks

In this subsection, we first show the evolution of cellular vehicular net-
works. Next, we talk about the need to migrate beyond 5G/6G vehicular
networks to deploy future services. Finally, we present the key upcoming
technologies that will be used, as they form the basis for high data trans-
missions between vehicles and infrastructure.

2.4.1. Evolution of cellular vehicular networks

3GPP Release 12 (Rel. 12) was the first standard to introduce direct
Device-to-Device (D2D) communications using cellular technologies for prox-
imity services (ProSe) [26]. This work was used by 3GPP to develop LTE
V2X, the first cellular V2X (C-V2X) standards based on the 4G Long Term
Evolution (LTE) air interface. LTE V2X was developed under Release 14
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(Rel. 14) [27]. Release 14 focuses on providing data transport services for
fundamental road safety services such as Cooperative Awareness Messages
(CAM), Basic Safety Messages (BSM), or Decentralized Environmental No-
tification Messages (DENM). And it was further enhanced in Release 15
(Rel. 15) (known as LTE-eV2X) in terms of higher reliability (employing
transmit diversity), lower latency (with the aid of resource selection window
reduction), and higher data rates (using carrier aggregation and higher order
modulation e.g., 64-QAM) [14]. 5G New Radio (5G NR) V2X technology
was also launched in Release 15, announced in 2019, to support advanced
V2X services such as vehicle platooning, advanced driver assistance, remote
driving, and extended sensors [28]. Note that in Release 16, the 3GPP an-
nounced the second phase of 5G NR, which intends to improve Ultra Reliable
Low Latency Communication (URLLC) and throughput. The evolution of
V2X communications is summarized in Figure 5.

IEEE 802.11p
DSRC 1st Gen

3GPP Rel 13
LTE D2D

3GPP Rel 13
LTE D2D Enhanced

3GPP Rel 15
5G-NR V2X

Phase 1

3GPP Rel 16
5G-NR V2X

Phase 2

3GPP Rel 14
LTE V2X

IEEE 802.11bd
DSRC 2nd Gen

Jul 2010

Mar 2015

Mar 2016

Mar 2017

Jun 2018

Jan 2019

Jun 2020

Figure 5: Evolution of V2X communications [14].

2.4.2. Migration to beyond 5G/6G vehicular networks

Although 5G-NR V2X provides better performance with advanced ser-
vices, it does so by investing more in spectrum and hardware resources while
inheriting the underlying mechanisms and system architectures of LTE-
based V2X [29]. Meanwhile, due to urbanization, increased living standards,
and technology improvements, it is expected that the number of autonomous
vehicles will significantly expand in the future. Furthermore, the increas-
ing need for a variety of future services in autonomous vehicles, such as
3D displays, holographic control display systems, immersive entertainment,
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and better in-car infotainment, will provide new communication problems
to the V2X network [30]. All of these developments will present new scien-
tific and technical challenges for vehicular networks in terms of data rate,
latency, spectral/energy/cost efficiency, coverage, intelligence level, network-
ing, and security, among other things [13]. As a result, a major paradigm
shift away from traditional communication networks and toward more ver-
satile and diverse network approaches is required. Such a transformation
is expected to begin with the recently proposed beyond 5G/6G wireless
communication network, which aims to combine terrestrial and several non-
terrestrial communication networks. This will enable truly intelligent and
ubiquitous V2X systems with significantly improved reliability and security,
significantly higher data rates, massive and hyper-fast wireless access, and
much smarter, longer, and greener three-dimensional (3D) communication
coverage. It will be similar to 5G but with higher speed, lower latency, and
much-improved bandwidth [31]. It is foreseen that 6G will work in con-
junction with machine learning (ML) not only to reveal the full capacity of
radio signals by evolving into intelligent and autonomous radios, but also
to introduce a series of new features such as enhanced context-awareness,
self-aggregation, adaptive coordination and self-configuration [32].

2.4.3. Essentiel technologies used in cellular vehicular networks

The overall 5G network architecture includes various essential technolo-
gies like Device-to-Device (D2D) communications, Non Orthogonal Multiple
Access (NOMA), Ultra-Dense Network (UDN), Small Cell Access (SCA),
Multiple-Input Multiple-Output (MIMO), massive MIMO, and Cognitive
Radio (CR) [33]. These technologies will focus on meeting all 5G require-
ments which are considered the minimum requirements for 2020. D2D com-
munications solves the cellular system’s network capacity problem by al-
lowing direct device connectivity without involving the network. NOMA
offers higher spectral efficiency by using the same frequency resource for
multiple users. UDN is useful for managing ultra-high density of users while
increasing network capacity. The SCA network increases coverage and of-
floads data traffic. MIMO is useful for increasing the diversity gain in order
to handle a maximum number of users. Massive MIMO is an extension of
traditional MIMO systems and is useful for enabling massive connectivity in
the network. Cognitive Radio is another useful technology for maximizing
the use of available radio bands by adjusting various parameters for simul-
taneous transmission. In 5G NR, two frequency bands have been specified
according to 3GPP release 15. These two frequency bands are FR1 (under
6GHz) and FR2 (over 24GHz) [34]. The millimeter-wave band (mmWave)
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is included in the FR2 band, which uses very high frequencies for enhancing
data rates. Due to the large propagation losses associated with high fre-
quencies, mmWave is limited to small areas. The mmWave limitation can
be overcome by boosting the antenna gain via beamforming. This latter is a
technique of focusing the maximum power of signal towards the direction of
the user. Various other techniques of beamforming like beam merging and
beam broadening help in extending the concept of beamforming in 5G [35].
There are various added features of 5G NR overviewed in [36].

To achieve the ambitious goals mentioned in 2.4.2, beyond 5G/6G will
require the integration of a range of disruptive technologies including more
robust and efficient air interfaces, resource allocation, decision makeing, and
computing. These technologies are introduced in details in [14]. The au-
thors classified them into two categories: revolutionary V2X technologies
and evolutionary V2X technologies. Strength, open challenges, maturity,
and enhancing areas of these technologies are summarized in Table I of [14].

3. Reinforcement learning: an overview

Reinforcement learning (RL) is one of the most successful artificial in-
telligence frameworks and the most similar machine learning paradigm to
human learning. In this section, we first cover the basics of Markov de-
cision processes, Reinforcement Learning (RL), and Deep Learning (DL)
techniques, which are important branches of machine learning. Next, we
discuss Deep Reinforcement Learning (DRL) that combines DL and RL to
produce more effective and stable function approximations, especially for
high-dimensional and infinite-state problems.

3.1. Markov decision process

Markov Decision Processes (MDP) is a discrete-time stochastic control
process [37] that provides a mathematical framework for modeling decision-
making problems. RL is formally defined as an MDP, which consists of:

• S denotes a set of states plus a distribution of starting states p(s0);

• A denotes a set of actions;

• transition dynamics T (st+1|st, at) that map a state-action pair at time
t onto a distribution of states at time t+ 1;

• an immediate/instantaneous reward function R(st, at, st+1);
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• a discount factor γ ∈ [0, 1], where lower values place greater impor-
tance on immediate rewards.

In general, policy π is a mapping from states to a probability distribution
over actions π : S 7→ p(A = a | S). If the MDP is episodic, i.e. the
state is reset after each episode of duration T , then the sequence of states,
actions, and rewards in an episode constitute the policy’s trajectory or roll-
out. Every policy’s trajectory accumulates rewards from the environment,
resulting in the return R =

∑T−1
t=0 γ

trt+1. The aim of RL is to find an
optimal policy π∗ to maximize the expected return from all states:

π∗ = argmax
π

E[R | π]. (1)

Non-episodic MDPs with T =∞ can also be considered. In this case, γ < 1
prevents an infinite sum of rewards from being accumulated. Furthermore,
methods based on complete trajectories are no longer valid, but those based
on a finite set of transitions are. The discount factor γ determines the
importance of future rewards compared with the immediate reward. If γ = 0,
the agent is “myopic”, meaning it only considers maximizing its immediate
reward. In contrast, if γ → 1, the agent will aim for a long-term higher
reward.

The Markov property, which guarantees that only the current state in-
fluences the next state, is a key concept underlying RL. In other words, the
future is conditionally independent of the past provided the present state.
While the majority of RL algorithms make this assumption, it is rather im-
practical since it needs the states to be completely observable. Partially
Observable MDPs [38] (POMDPs) are a generalization of MDPs in which
the agent receives an observation ot ∈ Ω, where the distribution of the obser-
vation p(ot+1 | st+1, at) is determined by the current state and the previous
action. Given the previous belief state, the action taken, and the current
observation, POMDP algorithms usually maintain a belief over the current
state. A more common approach in DL is to use Recurrent Neural Networks
(RNNs), which are dynamical systems as opposed to Feed-forward Neural
Networks (FNNs) [39].

3.2. Reinforcement learning

RL is an important branch of ML that is commonly used in the liter-
ature to solve MDPs. An agent can learn its optimal policy π∗ through
interaction with its environment in a RL process. At each timestamp t, the
agent observes the state st of its environment and performs an action at,
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resulting in a new state st+1 and receiving its immediate reward rt+1 as seen
in Figure 6. The observed information, i.e. the immediate reward and new

Agent

Environment

rewardstate action

Figure 6: Reinforcement learning.

state, is used to adjust the agent’s policy π, and this process will be repeated
until the agent’s policy approaches to the optimal policy π∗, i.e. π → π∗.
RL algorithms can be split into two main kinds of methods as shown in
Figure 7: (i) methods based on value functions “Value-based algorithms”
and (ii) methods based on policy search “Policy-based algorithms”. There
is also hybrid actor-critic approaches that employs both value functions and
policy search.

Value-based algorithms Policy-based algorithms

RL Algorithms

+

Hybrid algorithms 
Q-

Learning
SARSA

DQN

AC 
A3C 

DDPG

PG 
DPG

Figure 7: Kinds of RL Algorithms.

• Value-based algorithms are based upon temporal difference learning to
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obtain the value function Vπ which estimates returns when starting in
state s and following π: V π(s) = E[R | s, π]. The optimal policy π∗

has a corresponding state-value function V ∗(s) = maxπV
π(s) for all

s ∈ S. If V ∗(s) is available then the optimal policy π∗ can be retrieved
by choosing among all actions available at st and picking the action
a that maximizes Est+1 T (st+1|st,a) [V ∗(st+1)]. Since the transition dy-
namics T are unavailable in the RL setting, another function called the
state-action value Qπ(s, a) is built, which is similar to V π except that
the initial action a is provided and r is only followed from the succeed-
ing state onward: Qπ(s, a) = E [R | s, a, π]. For instance Q-Learning,
SARSA, and DQL are three typical value-based RL algorithms.

• Policy-based algorithms directly learn optimal policy π∗ or try to ob-
tain an approximate optimal policy based on the observation. Typ-
ically, a parameterized policy πθ is chosen whose parameters are up-
dated to maximize the expected return E[R | θ] using either gradient-
based or gradient-free optimization. Gradients can provide a strong
learning signal on how to improve a parameterized policy. For exam-
ple, Policy Gradients (PG), Proximal Policy Optimization(PPO), and
Trust Region Policy Optimization (TRPO) are typical policy-based
RL algorithms [40, 41].

• Hybrid algorithms combine value-based algorithms with policy-based
algorithms. Their goal is to represent the policy function by policy-
based algorithms where updates of policy functions depend on value-
based algorithms. For example, Actor Critic (AC), Asynchronous
Actor-Critic Agents (A3C), Deterministic Policy Gradients (DPG) and
Deep Deterministic Policy Gradients (DDPG) are typical hybrid algo-
rithms.

3.3. Deep learning

DL is legendary in many fields, and its success mostly relies on Artifi-
cial Neural Networks (ANNs) [42]. The latter has become a standard tool
for data representation. It consists of a network of interconnected nodes
that are built to mimic the functioning of the human brain. Each node
features a weighted connection to a large number of nodes in neighboring
layers. Individual nodes take the input received from connected nodes and
calculate output values using weights and a simple function. Because of
their high flexibility, non-linearity, and data-driven model building, ANNs,
especially Deep Neural Networks (DNNs), have become attractive inductive
approaches.
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As seen in Table 3, the three major types of neural networks are Fully-
connected Neural Networks (FNNs), Convolutional Neural Networks (CNNs),
and Recurrent Neural Networks (RNNs). CNNs excel at visual tasks such as
exploiting fundamental spatial properties of images and videos. RNNs can
effectively classify data’s temporal correlations, making them superior for
time series tasks. Long Short-Term Memory (LSTM) methods, which use
RNNs as units, can learn order dependence in sequence prediction problems.
Graph Neural Networks (GNNs) [43] is a type of graph structure that mod-
els a collection of nodes (entities) and edges (relationship). Euclidean data
is used to train FNNs, CNNs, and RNNs. GNNs, on the other hand, use
non-Euclidean data structures for deep learning [11]. Generative Adversar-
ial Networks (GAN) [44] are a clever way of training a generative model by
framing the problem as a supervised learning problem with two sub-models:
the generator model, which we train to generate new examples, and the
discriminator model, which tries to classify examples as real or fake.

Type Entities Relations Scenario

FNN Units All-to-all -

CNN Grid elements Local Spatial correlation

RNN Time steps Sequential Time correlation

Table 3: Neural networks comparison [11].

3.4. Deep reinforcement learning

DRL is an advanced model of RL technique first introduced by DeepMind
in [45], in which DL is used as an effective tool to increase the learning rate
for RL algorithms [39]. Specifically, during the real-time learning process,
the obtained experiences will be saved and used to train the neural network.
The latter will be then used to assist the agent in making optimal decisions
in real-time. It should be noted that, in contrast to DL techniques, the
neural network in the DRL will be trained on a regular basis based on
new experiences obtained through real-time interactions with surrounding
environments. Figure 8 describes some RL and DRL algorithms. The Q-
values can be expressed as a table for a finite number of discrete states and
actions. For continuous state spaces, however, function approximators such
as DNNs are needed to represent the Q-values. In DQL, for example, a DNN
maps from the continuous state space to the Q-values of a set of actions.
All available actions’ Q-values must be expected. This prohibits the use of
very large or continuous action spaces. The use of continuous action spaces
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Figure 8: RL, DL, and DRL.

is encouraged by PG methods. In the Soft Actor-Critic (SAC) algorithm,
for example, the critic DNN is trained to predict the Q-values for a state-
action tuple, and the actor is a second DNN that is used to approximate the
Boltzmann distribution over the expected Q-values of available actions.

In this survey paper, some modern DRL algorithms are cited. We list
these algorithms in Table 4 and give references for each technique to get
details if needed.

Techniques Ref

Advanced DQL models

Deep Q-Learning [45]

Double Deep Q-Learning [46]

Deep Q-Learning With Prioritized Experience Replay [47]

Dueling Deep Q-Learning [48]

Asynchronous Multi-Step Deep Q-Learning [49]

Distributional Deep Q-Learning [50]

Deep Q-Learning With Noisy Nets [51]

Rainbow Deep Q-Learning [52]

DRL for extensions of MDPs

Deep Deterministic Policy Gradient [53]

Deep Recurrent Q-Learning [54]

Deep SARSA Learning [55]

Table 4: Modern DRL algorithms.
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4. Vehicular resource management

Resource-intensive use cases, e.g. on-demand multimedia video and live
traffic reports, require efficient resource allocation. In support of these use-
cases, efficient and intelligent management of local and shared resources is
required. To address these issues, RL/DRL was applied to resource manage-
ment. Next, RL/DRL-based resource management techniques are reviewed
considering each resource category: networking, computing and caching,
energy.

4.1. Networking

Entities in vehicular networks must make independent decisions, such
as channel and Base Station (BS) selections, in order to achieve their own
objectives, such as throughput maximization. However, due to the dynamic
and unpredictability of network status, this is difficult. Learning algorithms
like RL/DRL allow network entities to learn and build knowledge about the
networks they are in, allowing them to make the best decisions possible. In
this subsection, we look at how RL/DRL can be used in vehicular networks
to address the following issues:

• Dynamic spectrum access. It allows users to select channels locally to
maximize their throughput. These users may not have complete ob-
servations of the system, such as channel states. As a result, RL/DRL
can be a useful tool for dynamic spectrum access.

• Collision management. To improve the performance of data transmis-
sion in DSRC vehicular networks, RL/DRL techniques were used for
contention window adjustment to minimize the average network delay
in congested infrastructure-less Vehicular Ad-Hoc Networks (VANETs).

• Joint user association and beamforming. User association shall be es-
tablished to determine which user to be assigned to which BS. The
problems are typically combinatorial and non-convex, requiring al-
most complete and accurate network information to achieve an op-
timal strategy. RL/DRL is capable of providing solutions that can be
used effectively to address these issues.

4.1.1. Dynamic spectrum access

Deep Q-Learning (DQL) has been extensively adopted in joint channel
assignment, power allocation design, and transmission mode selection.
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In [56], the authors have developed a new decentralized resource allo-
cation mechanism for cellular V2V communication based on DRL that can
be applied to both unicast and broadcast scenarios. The study focuses on
resource allocation for V2V links under V2V link latency constraints and
minimized interference with V2I links. In order to get the optimal policy,
DQL is implemented in both unicast and broadcast scenarios. In the unicast
scenario, the structure of RL for V2V links is shown in Figure 9. While the
agent corresponds to each V2V link, it interacts with the environment that
includes different components beyond the V2V links. The state for char-

Observe state

State Policy

Agent

Environment

Reward

Take action

Figure 9: SARL for V2V communications [56].

acterizing the environment is defined as a set of the instantaneous channel
information of the V2V link and V2I link, the remaining amounts of traffic,
the remaining time to meet the latency constraints, and the interference
level and selected channels of neighbors in the previous time slot. An ac-
tion refers to the selection of the sub-band and transmission power. The
reward is calculated by the capacity of V2I links and the V2V latency. In
the broadcast scenario, each vehicle is considered as an agent in the system.
In addition to the states of the unicast system, they included the number
of times that the message have been received by the vehicle, and the mini-
mum distance to the vehicles that have broadcast the message. The action
includes determining the massages for broadcasting and the sub-channel for
transmission. The reward function consists of three parts: the capacity of
V2I links, the capacity of V2V links, and the latency condition. Part of this
work has been published in [57, 58] for unicast and broadcast, respectively.
In their implementation, the time for each selection is 2.4 × 10−4s, using
GPU 1080 Ti. This speed can be minimized using methods that reduce the
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computation complexity of the DNNs, such as binarizing the weights of the
network [56].

In [59], authors tackled a Multi-Agent RL (MARL) problem, which is
then solved using a fingerprint-based DQN method that is amenable to a
distributed implementation, to improve spectrum and power allocation in
order to maximize the sum capacity of V2I links and the success probability
of V2V payload delivery. Each V2V link acts as an agent as illustrated in
Figure 10, concurrently exploring the unknown environment. The observa-

V2V Agent 1

Vehicular Environment

RewardObservation

Action

V2V Agent K
Action

Observation Joint action

Figure 10: MARL for V2V communications [59].

tion space of an individual V2V agent contains local channel information,
including its own channel interference from other V2V transmitters, the in-
terference channel from its own transmitter to the BS and the interference
channel from all V2I transmitters. Each action corresponds to a specific
combination of a spectrum sub-band and a power selection. They limited
the power control options to four levels, i.e. {23, 10, 5,−100}. As a result,
the dimension of the action space is 4 ×M where M is the number of dis-
joint sub-bands. The reward function consists of two parts: the capacity
of V2I links, instantaneous sum capacity of all V2I links, and the effective
V2V transmission rate. From the simulation results, the proposed MARL
method achieves significantly better performance than the Single-Agent RL-
based resource sharing scheme (SARL) proposed in [56], but suffers from
noticeable degradation when the payload size grows beyond 4 × 1060 bytes.

The network trainer in [56] trained a single DQN using global states ob-
tained from all agents, whereas in [59], only local states were needed to train
the DQN at each agent with limited parameter exchange. As a result, the
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latter approach is more efficient in training. In the context of platoon-based
C-V2X systems, the researchers in [60] used a MARL with a separate DQN
at each agent for joint channel assignment and power allocation, similar to
[59]. However, they used a different reward function design that makes it
possible to improve the sum-rate of V2I links compared to the reward design
offered in [59] while satisfying the high probability of successful delivery of
V2V payloads.

The aforementioned works do not take into account the vehicle mobility,
which not only affects the channel qualities but also provides the possibility
of frequency sharing among different groups of Vehicle User Equipment-pairs
(VUE-pairs). Considering vehicle mobility, Chen et al. in [61] formulated
the age of information-aware radio resource management problem in a Man-
hattan grid V2V network as a single-agent MDP where the RSU makes de-
cisions regarding frequency band allocation and packet scheduling over time
in order to optimize the expected long-term performance for all VUE-pairs.
However, the local network state space of all VUE-pairs is huge with the
consideration of vehicle mobility, therefore to overcome the partial observ-
ability and the curse of high dimensionality, they resorted to the Long Short
Term Memory technique (LSTM) and the DQN, and propose a proactive
algorithm based on the Deep Recurrent Q-Network (DRQN).

In addition, the authors of [62] modeled the channel allocation problem
in V2X communication networks as a decentralized MDP, in which each
V2V agent decides independently its channel and power level based on the
local environmental observations and global network reward. The best joint
resource allocation solution is then derived using a multi-agent distributed
channel resource multiplexing framework based on DRL. Furthermore, the
prioritized Double DQN (DDQN) algorithm is used to provide a more accu-
rate estimation target for the action evaluation and can effectively minimize
overestimation of Q-values.

However, the aforementioned works in this subsection addressed the re-
source allocation in reuse mode, without jointly considering transmission
mode selection for further performance improvement. In [63], the authors
investigated the joint optimization problem of access mode selection and
spectrum allocation in fog computing-based vehicular networks. They pro-
posed a Q-learning-based access mode selection algorithm and a convex
optimization-based spectrum allocation algorithm. Nevertheless, the large-
scale continuous state space generated by multiple sensing components and
realistic channel gains makes Q-Learning ineffective. Therefore, DQL algo-
rithm was used is [64, 65] to investigate jointly communication mode selec-
tion, Resource Block (RB) assignment, and power control in V2V with the
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purpose of guaranteeing the strict Ultra-Reliable and Low Latency commu-
nications (URLLC) requirements of V2V links while maximizing the sum
capacity of V2I links. In each time step, the agent (V2I link) selects the
communication mode, the RB assignment, and the transmit power level.
Different from [64], the authors in [65] considered resource sharing among
V2V pairs in different transmission modes. However, since the DQL frame-
work may not always be suitable to deal with continuous-valued state and
action spaces in Internet of Vehicles (IoV) networks, the researchers pro-
posed in [64] a decentralized Actor-Critic (AC) RL model with a new reward
function to learn the policy by interacting with the environment. The AC
approach can efficiently deal with the continuous-valued state and action
spaces, where the actor is used to exploit the stochastic actions and the
critic is applied to estimate the state-action value function.

The multi-agent DQN approach was also of interest in [66] under the
optimization objective of maximizing the V2I link capacity while ensuring
the transmission delay of V2V links. Each V2V link acted as an agent collec-
tively interacted with the environment so as to find the optimal cellular/D2D
transmission mode and transmit power level.

4.1.2. Collision management

In [67], Choe et al. proposed a self-adaptive MAC layer algorithm em-
ploying DQN with a novel contention information-based state representa-
tion to improve the performance of the V2V safety packet broadcast for
infrastructure-less congested VANET. They evaluated the algorithm with
two criterions: Packet Delivery Ratio (PDR) and end-to-end delay. They
proposed a fully informative state representation with the contention infor-
mation. Table 5 shows the proposed state representation. During Control
CHannel Interval (CCHI), vehicles broadcast safety packets appending their
node ID, selected Contention Window (CW), and the corresponding suc-
cess rate calculated by broadcast results of the selected CW. According to
this, vehicles establish the contention information-based state. The action

Vehicle ID Current CW Frequency Success Rate

Itself 15 5 0.32

2 255 10 0.73

17 31 3 0.6

51 15 17 0.37

Table 5: The proposed state representation [67].

24



definition consists of three components: Keep (K), Increase (I), and De-
crease (D), In addition, they presented the transition rule of CW following
two different spaces: discrete and continuous changes as illustrated in Fig-
ure 11. The authors utilized a binary reward function: vehicles will receive

I I I I I I
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D D D D D D

K K K K K K K
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K K K
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Figure 11: (a) Discrete CW space. (b) Continuous CW space [67].

the positive reward 1 or the negative reward –1 from successful and failed
broadcast, respectively. They evaluated by simulations considering various
levels of traffic congestion. From simulation results, it is confirmed that
there is a clear trade-off between PDR and latency. Although the degra-
dation, the proposed algorithm satisfies the latency requirement of VANET
safety applications when the number of vehicles is lower than 125. However,
the performance of the end-to-end delay degrades in the highest congestion
level. Thus, it is required to study an adaptive MAC algorithm that can
further improve PDR and latency performance for severe traffic congestion
conditions.

There have been other works proposed based on RL as a V2V commu-
nications solution in congested infrastructure-less VANETs [68, 69, 70, 71].
A Q-Learning-based MAC algorithm is proposed that defines each vehicle
as a single agent and improves the performance of data transmission, but it
only considers V2V unicast case [68]. In order to enhance the V2V broad-
cast performance, a Q-Learning-based MAC protocol is proposed, and the
authors demonstrate the performance improvement of V2V broadcasts from
various experiments [69, 70]. However, [68, 70] use only the original Expo-
nential Increase Exponential Decrease (EIED) [72] to deal with the channel
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efficiency problem. In [71], Q-Learning is used to control the contention win-
dow through a hybrid back-off that combines EIED and Linear Increase Lin-
ear Decrease (LILD [73]) back-off as vehicles in the network become agents.
However, comparing to [67], these works assume single-channel operation
of the control channel and did not consider the multi-channel operation of
DSRC standard.

4.1.3. Joint user association and beamforming

In [74], the RL approach is used to develop the user association algo-
rithm for load balancing in heterogeneous vehicular networks. Considering
data flow (generated from vehicular networks) characteristics of the spatial-
temporal dimension, a two-step association algorithm is proposed. The ini-
tial association decision is based on a one-step RL approach. Subsequently,
the BS uses historical association patterns to make association decisions, as
illustrated in Figure 12. In addition, the BS, as a learning agent, keeps ac-
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Reinforcement
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Reinforcement

Learning
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Figure 12: The architecture of proposed approach in [74].

cumulating feedback information and updates the association results in an
adaptive manner. By communicating periodically with other BSs, each BS
can maintain a Signal to Interference plus Noise Ratio (SINR) matrix and
an association matrix as a state space. Action is defined as the BS trying to
create associations with certain vehicles. The reward is defined as a recip-
rocal of the difference in the average service rate for all users. While each
BS runs the proposed algorithm in a distributed manner, it is shown in the
long run that both the real-time feedback and the regular traffic association
patterns help the algorithm to manage network changes.

Rather than allowing only one vehicle to be served from only one Access
Point (AP), the authors of [75] proposed the concept of virtual cell forma-
tion so that a user could be served from multiple APs simultaneously. A
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single-agent Q-Learning algorithm was then developed to optimize the ef-
ficiency of joint user associations and power allocations in a highly mobile
vehicular network. The RL agent needs to take two action sets: vehicle-AP
associations and beamforming weights. The same authors considered en-
ergy consumption issues in vehicular edge networks in [76]. They expressed
a joint virtual cell formation and power allocation problem for highly mobile
Vehicle Users (VUs) in a sophisticated Software-Defined (SD) environment.
They used a model-free Distributed MARL (D-MARL) solution that can
effectively formulate the virtual cell and slice the resources.

In [77], the authors proposed a Deep Deterministic Policy Gradient
(DDPG) based beam tracking approach which extracts information and
hence achieves the URLLC requirements in typical V2X networks. It is
shown that conventional EKF and PF-based [78] approaches performance
in non-stationary channels are not satisfactory in terms of average packet
latency due to overhead channel training and transmission failures, while a
DRL-based approach can reduce the delay to about 6ms.

In [79], a vertical hand-off strategy has been devised using a fuzzy Q-
Learning approach for heterogeneous vehicular networks consisting of a cel-
lular network with global coverage complemented by V2I. Four input pa-
rameters are sent to the RSU side: the received signal strength value, the
vehicle speed, the data quantity, and the number of users associated with
the targeted network. The RSU then considers the information supplied as
well as the traffic load, i.e. the number of users associated with the target
network, and makes hand-off decisions using the fuzzy Q-Learning method.

4.2. Computing and caching

Mobile Edge Computing (MEC) dramatically increases energy efficiency
and QoS for applications that require intensive computations and low la-
tency by deploying both computing resources and caching capabilities near
to end-users. With limited computation, memory and power supplies, net-
work operators in vehicular networks, such as vehicles, become the bottle-
neck to support advanced applications. To address such a challenge, net-
work entities can offload the computational tasks to nearby MEC servers,
integrated with the BSs, and even neighboring vehicles. As a result, data
and computation offloading can potentially reduce the processing delay, save
the battery energy, and even enhance security for computation-intensive ve-
hicular applications. In-network caching, as one of the main features of
information-centric networking, will effectively eliminate duplicated content
transmissions. Studies on wireless caching have shown that caching contents
in wireless devices can greatly reduce access delays, energy consumption, and
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overall traffic. In this subsection, we review the modeling and optimization
of computation and data offloading, and caching policies in vehicular net-
works by leveraging the RL/DRL framework.

4.2.1. Computation and data offloading

By applying a DQL approach, [80] proposed optimal target MEC server
determination and transmission mode selection schemes, which maximize
the utilities of the offloading system under given delay constraints in a
heterogeneous vehicular network. They focused on reliable offloading in
presence of task transmission failure, and propose an adaptive redundant
offloading algorithm to ensure offloading reliability while improving system
utility.

In [81], the authors constructed an offloading framework for 5G-enabled
vehicular networks, by jointly utilizing licensed cellular spectrum and un-
licensed channels in order to minimize the offloading cost of vehicles while
satisfying the latency constraint. The formulated problem is divided into two
subproblems: the Vehicle-to-RSU (V2R) scheduling and the V2I allocation.
For the first subproblem, they proposed a two-sided matching algorithm to
schedule the unlicensed spectrum. For the second one, different from tradi-
tional centralized DRL where the macrocell or the MEC server is selected
as the agent to make offloading decisions, they developed a distributed DRL
method by considering multiple agents (i.e. V2I users) to schedule cellular
channels. They simplify the system states to realize distributed traffic of-
floading, which can greatly decrease the communication overhead between
vehicles and the macrocell. A DDQN is proposed to mitigate this problem.

Although DQN solved the high-dimensional action output of Q-Learning
through a Deep Neural Network (DNN), the action spaces of DQN as well
as DDQN, Dueling DQN are still discrete. However, for many problems,
e.g. control tasks, the action space is continuous. If the action space is
discretized to replace the continuous space, the dimension of the action is
too high, which will lead to the curse of dimensionality. Therefore DDPG,
which is a DRL method that relies on the actor-critic architecture was used
in [82]. The authors have designed a task computation offloading model in a
heterogeneous vehicular network taking into account the arrival of stochastic
tasks, time-varying channel state, and the bandwidth allocation to achieve
a trade-off between energy consumption cost while avoiding the curse of
dimensionality induced by large action space.

Researchers in [83] proposed two typical multi-dimensional resource man-
agement frameworks with placing the MEC server at a Macro-cell BS (MBS)
and an Edge Node (EN), respectively (Figure 13), to maximize the number
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of offloaded tasks that meet QoS criteria by using a limited amount of avail-
able spectrum, computing, and storage resources A DDPG-based algorithm

AP AP

MeNB

AP AP

MeNB

MEC
Server

AP AP

MeNB
MEC
Server

(b) For the EN-mounted MEC server(a) For the MeNB-mounted MEC server

Figure 13: Dynamic spectrum management frameworks in [83].

is proposed to solve the problems. The complexity of the transformed RL
problems increases with the sizes of environment state and action, a hier-
archical DDPG (HDDPG)-based algorithm is developed by combining the
DDPG and the hierarchical learning architecture. Each vehicle periodically
sends the driving state information and task information to the MEC server.
By collecting such information, the agent (i.e. MEC server) can obtain the
environment state. The action space includes the spectrum slicing ratio,
spectrum allocation fraction, computing resource allocation fraction, and
storing resource allocation fraction.

A knowledge-driven service offloading decision framework for moving
vehicles is realized in [84] using the Asynchronous Advantage Actor-Critic
(A3C) algorithm. The state-space includes the task profile, the current state
of the offloading destination nodes (the edge computing nodes and vehicular
nodes), and the moving speed of the vehicle. The action space denoting that
the task will be executed locally on the vehicle or offloaded to the accessible
edge computing nodes. The reward for each decision slot is determined by
task execution delay.

Collaborative computing was discussed in [85] where the authors also
adopt DDPG to find the optimal offloading strategy and MEC server assign-
ment in order to provide low-latency and reliable computing services. In-
stead of optimizing the computation delay for individual VUs, they adopted
the optimal location-aware computing strategy to reduce the decision space
and make the problem tractable. Each vehicle and RSU can only communi-
cate with at most two RSUs with the highest Signal to Noise Ratio (SNR)
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subject. Moreover, each receiver RSU has three options for forwarding the
computing data to a deliver RSU: the receiver RSU processes everything
or forwards a part of computing data to one of the two connected RSUs.
The previous work has been extended in [86] where researchers added an
algorithm to obtain the corresponding Task Partition and Scheduling Policy
(TPSA) according to the server selection results calculated by the DDPG
algorithm.

In [87], the authors developed an intent-based traffic control system for
5G-envisioned IoV networks, which can dynamically orchestrate edge com-
puting and content caching to improve the profits of Mobile Network Oper-
ator(MNO). They used a DDPG based model to optimize task assignment
and resource allocation in a continuous space-based.

4.2.2. Caching

The authors of [88] proposed a cooperative edge caching system to jointly
optimize the placement and delivery of content in the vehicular edge com-
puting and networks, using flexible trilateral cooperations between a macro-
cellular station, RSUs, and vehicles. They modeled the joint optimization
problem with a double time-scale MDP, based on the fact that the content
timeline changes less frequently compared to vehicle mobility and network
states during the content delivery process. At the beginning of the large
time-scale, the content placement/updating decision can be made based on
the popularity of the content, vehicle driving routes, and resource availabil-
ity. On the small time-scale, the joint vehicle scheduling and bandwidth al-
location scheme is designed to minimize the content access cost while satisfy-
ing the content delivery latency constraint. In order to solve the Long-Term
Mixed-Integer Linear Programming (LT-MILP) problem, a nature-inspired
method based on the DDPG framework has been proposed to obtain a sub-
optimal solution with a low computation complexity. As compared with the
non-cooperative and random edge caching schemes, the proposed coopera-
tive caching system can reduce the system cost and content delivery while
enhancing the content hit ratio.

In [89], researchers proposed secure and intelligent content caching for
vehicles by integrating DRL and authorized blockchain in vehicular edge
computing networks. They first proposed a distributed and secure con-
tent caching framework with a blockchain, in which vehicles perform con-
tent caching and BSs maintain an authorized blockchain to ensure content
caching. Next, they exploited the advanced DRL approach to design a new
DRL-inspired content caching scheme by taking vehicular mobility into ac-
count. Finally, they proposed a new block verifier selection method to enable

30



a fast and efficient blockchain consensus mechanism.
In [90], the authors investigated the edge caching strategy taking into

account content delivery and cache replacement by leveraging distributed
MARL. They first presented a hierarchical edge caching architecture for
IoVs, where cooperative caching between multi-RSUs and MBSs is used to
reduce content delivery costs and traffic load in the system. In addition,
they formulated the corresponding optimization problem to minimize the
long-term overhead of content delivery, and they extended the MDP to the
multi-agent system case.

The authors in [91] formulated the resource allocation problem as a joint
optimization of caching, networking, and computing, e.g. compressing and
encoding operations of the video contents. The system states include the
channel state information from each BS, the computational capability, and
the cache size of each MEC/content server. The network operator feeds the
FNN based DQN with the system state and gets the optimal policy that
determines the resource allocation for each vehicle. These same authors
improved Q-Learning in [92] by using CNNs in DQN to exploit spatial cor-
relations in learning. This enables the extraction of high-level features from
raw input data. They have also introduced a dueling DQN in [93] to improve
the stability and performance of the ordinary DQN method. Dueling DQN
is designed to avoid overestimation of Q-value in ordinary DQN. This will
make the training process faster and more reliable. Dueling DQN is also
integrated into the design with the intuition that it is not always necessary
to estimate the reward by taking some action. The state-action Q-value
is decomposed into a value function that represents the reward in the cur-
rent state and the advantage function that measures the relative importance
of a given action compared to other actions. Simulation results show that
the proposed dueling DQN scheme outperforms the existing static scheme
in terms of total utility. The previously mentioned DQL framework for
VANETs, e.g. [91, 93], has also been extended to smart city applications
in [94], which involve dynamic orchestration of networking, caching, and
computation to meet different service requirements.

A multi-time scale DQN framework is proposed in [95] to minimize the
system cost by the joint design of communication, caching, and computing in
VANET while taking into account the huge action space and high complexity
with the vehicle’s mobility and service delay deadline Simulation results
show that the proposed framework can reduce the cost up to 30% compared
with the random resource allocation scheme.
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4.3. Energy

Management applications also need to consider energy-efficient manage-
ment of resources. Because some RSUs in vehicular networks are powered
by a battery, the RL/DRL can be used to extend the battery life. Moreover,
taking into account the limited energy of vehicles, the energy management
of hybrid electric vehicles is an important issue that involves a trade-off
between gasoline and electricity. DQN has been used in vehicular energy
management for both electric and hybrid vehicles. In this subsection, we
look at how RL/DRL is used in vehicular networks to:

• optimize RSU’s battery usage while scheduling uplink and downlink
messages. We also present some pioneering works [96, 97] which only
considered scheduling without optimizing RSU power consumption.

• optimize the energy consumption of vehicles.

4.3.1. Roadside units scheduling

In [96], Zhou et al. proposed a RL-based resources allocation algorithm
to adaptively change Time Division Duplex (TDD) configuration [98] for one
channel in order to satisfy the high traffic demand in 5G vehicular networks
with limited resources. TDD can change the Uplink (UL) and Downlink
(DL) ratio in the same frequency band. They implemented a Q-Learning
algorithm where the agent and environment are BS and vehicular network re-
spectively. It means that BS can choose UL/DL ratio considering predicted
future network situation. The authors defined the state as the percentage
of UL/DL data rate and channel capacity. The action of the agent is the
UL/DL ratio in each interval. It is selected from set W , which contains
patterns of TDD configuration [99]. The reward is set to make the percent-
age of UL/DL data rate and channel capacity close to 100%. On the one
hand, if the percentage is much lower than 100% then it means that there
is tremendous waste in channel capacity and the TDD configuration needs
to be updated. On the other hand, if it is much higher than 100% then
it stands for high packet loss rate. The conducted simulation results show
that the proposal outperforms the conventional TDD method in through-
put and packet loss rate. A Conventional RL Q-Learning algorithm is used
since the state and action spaces are small. However, in 5G Heterogeneous
Networks (HetNet), conventional RL hardly handles the complex environ-
ment of high mobility and heterogeneous structure of these networks. For
that, the same authors proposed a novel DRL-based intelligent TDD config-
uration algorithm in [100] to adaptively change TDD UL/DL ratio for 5G
HetNet.
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In [101], the authors presented a DRL model, namely DQN which learns
an energy-efficient scheduling strategy from high-dimensional inputs corre-
sponding to the characteristics and requirements of vehicles residing within
an RSU communication range. On the one hand, VANET communications
provide services related to protection. On the other hand, mobile users can
access a variety of non-secure Internet services through V2I communica-
tions. As a result, a multi-objective RSU scheduling issue arises, with the
goal of meeting the diverse QoS requirements of various non-safety appli-
cations while maintaining a secure driving environment in such a way that
efficiently utilizes available energy and extends the lifespan of the underlying
vehicular network. The authors implemented a DQL algorithm where the
agent and environment are BS and vehicular network respectively. The con-
sidered network environment is illustrated in Figure 14. The agent’s input
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Figure 14: Energy-limited VANET [101].

from the environment (state space) is made up of: the time elapsed since
the last RSU battery recharge, the remaining power in the RSU’s battery,
the number of vehicles residing within the communication range of point G,
the remaining discrete sojourn times of each vehicle, the remaining request
sizes for each vehicle, the waiting times of the safety messages in the ve-
hicles’ buffers, the separation distances between G and each of the inrange
vehicles. The RSU either chooses to receive a safety message, whose exis-
tence has been announced, or to transmit data to a vehicle. Whenever the
RSU chooses to transmit data to a particular vehicle, the reward received is
the number of transmitted bits. In this case, the cost paid is composed of
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two components: (i) the power consumed by the RSU to serve the vehicle,
and (ii) the waiting time of a safety message whenever it exists. When the
RSU chooses to listen to an announced safety message, the induced cost
pertains to the amount of power required for the RSU to receive the safety
message’s data. Furthermore, whenever a vehicle departs from the RSU’s
coverage range with an incomplete download request, the agent is penalized
by a value corresponding to the remaining number of bits that need to be
downloaded in order to fulfill that vehicle’s request.

The same authors extended this work in [102] in the context of IoV
to multiple RSUs. They presented a DRL model that learns an energy-
efficient and QoS-oriented scheduling policy, which dictates the operation of
multiple energy-limited RSUs. A central ITS agent governs the operation
of multiple connected RSUs deployed on a long road segment as illustrated
in Figure 15. The state space is defined as a set of states of each RSU,
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Figure 15: Energy-limited multi-RSU vehicular network [101].

and the state of each RSU is defined as in [101]. The central ITS agent
defines for each RSU whether the latter will receive a security message or
transmit packets to a vehicle. The immediate cost (negative reward) is the
sum of the RSU rewards presented in [101]. The proposed DQN algorithm
outperformed several existing scheduling benchmarks in terms of completed
request percentage (average improvement between 10.9% and 21.2%), mean
request delay (average improvement between 10.2% and 21.1%) and total
network lifetime (improvement between 13% and 71%) under variable ve-
hicular densities and vehicle request sizes.

The same authors have developed in [97] an MDP framework with dis-
cretized states in order to establish an optimal RSU scheduling policy whose
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objective was to satisfy the maximum number of vehicle downloads requests.
Therein, MDP resolution was achieved using RL techniques. However, Q-
Learning with discrete states and actions has poor scalability. In [101], the
state space is continuous. Therefore, conventional RL techniques are no
longer feasible in this case.

4.3.2. Vehicle

Hybrid Electric Vehicles (HEVs) have been on the market in recent years
to help with electricity shortages and global warming. To minimize en-
ergy consumption and pollution, they use both Internal Combustion Engines
(ICEs) and Electric Motors (EMs) for propulsion. Qi et al. implemented
a DQL based Plug-in Hybrid Electric Vehicles (P-HEV) Energy Manage-
ment System (EMS) to autonomously learn the optimal fuel use from its
own historical driving record in [103] . Power demand at wheel and the
battery pack’s state of charge are selected to form a two-dimensional state
space. The action is to select Internal Combustion Engine (ICE) power
level. The reciprocal of the resultant ICE energy consumption at each time
step is defined as the immediate reward. However, according to [104], there
are several problems in this study. The learning process is still offline. As
a result, this method can be used in buses with only fixed route. The rela-
tionship between fuel economy and engine power is complex and the paper
lacks the ability to justify this phenomenon. In [104], researchers developed
a DRL-based control framework and an online learning architecture for an
EMS for HEV, which is adapted to different driving conditions. There are
many other works for energy management in HEV. A detailed survey on the
application of RL in HEV is presented in [105].

A parametric study of several key factors during the development of RL-
based EMS for HEV/P-HEV is presented in [106] including (1) state types
and number of states, (2) states and action discretization, (3) exploration
and exploitation, and (4) learning experience selection. The main results
show that selecting learning experiences can effectively minimize vehicle fuel
consumption. The analysis of states and action discretization reveals that
as action discretization increases, vehicle fuel consumption decreases while
rising state discretization decreases fuel consumption. Furthermore, the
growing number of states improves fuel economy. However, DDPG was used
in [107] for HEV energy control which does not necessitate the discretization
of both state and action variables.

Hybrid Electric Tracked Vehicles (HETV) were discussed in [108, 109]
where a DRL algorithm was used in [108] to derive energy management
strategy, and an online RL algorithm based on Q-Learning was used in
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[109].
There have been some works for Extended-Range Electric Vehicle (EREV).

The authors in [110] have proposed an RL method and a rule-based strat-
egy is used to improve the fuel economy of an in-use EREV used in a last-
mile package delivery application. The authors used a double Q-Learning
with experience replay. To remove the process of action space discretiza-
tion, the same authors presented in [111] an AC-based RL framework that
can dynamically update the RB vehicle parameter during a trip with un-
certain remaining distance, velocity trajectory, and energy intensity. The
RL framework uses real-time information collected from the vehicle and a
learned strategy from historical data.

Summary

This section reviews resource management techniques based on RL/DRL
in vehicular networks. We have presented these works by considering each
resource category: networking, computing and caching, energy. The re-
viewed approaches are summarized with references in the Table 6. In the
next section, we will review research works that applied RL/DRL techniques
to vehicular infrastructure management.

5. Vehicular infrastructure management

Infrastructure is the key vector of interaction between applications and
the vehicular environment among the various components of the vehicular
networks. As a result, the objectives of vehicular applications are achieved
through vehicular infrastructure management, which is mainly categorized
in (i) traffic management and (ii) vehicle management.

5.1. Traffic management

The inefficient Traffic Light Control (TLC) causes numerous problems,
including long delays of travelers, massive energy consumption, and deterio-
rating air quality. It can also lead to vehicular accidents in some situations.
Conventional TLC either deploys fixed programs without consideration for
real-time traffic or considers traffic only to a minimal extent. Fortunately,
RL/DRL technique is a promising method for monitoring and processing
the real-time road condition. Also, traffic congestion has become a common
transportation problem on freeways around the world in recent decades.
Congestion usually begins at the bottleneck of the road and extends up-
stream and downstream. As a result, Variable Speed Limit (VSL) control
systems are being studied extensively as solutions for improving safety and
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Resource Issues References Role

Networking Dynamic spectrum ac-
cess

[56, 57, 58, 59,
60]

Channel assignment and power allo-
cation for V2V links

[61, 62] Channel assignment and power al-
location for V2V links taking into
account vehicle mobility

[63, 64, 65, 66] Transmission mode selection, chan-
nel assignment and power allocation
for V2V links

Collision management [68, 69, 70] Contention Window control, EIED,
single-channel operation

[71] Contention window control, LIED
and EIED, single-channel operation

[67] Contention window control, LIED
and EIED, multi-channel operation

Joint user association
and beamforming

[74] User association for load balancing
with one access point

[75, 76] User association for load balancing
with multiple access points

[77] Beam tracking

[79] Hand-off management

Computing
and caching

Computation and data
offloading

[81, 82, 83, 84,
87]

Find the optimal offloading strategy

[80, 85, 86] Find the optimal offloading strategy
and MEC server assignment

Caching [88, 89, 90] Optimize content caching

[91, 92, 93, 94,
95]

Optimize caching, networking, and
computing

Energy Roadside units schedul-
ing

[96, 100] Adaptively change Time Division
Duplex (TDD) configuration

[100, 102, 97,
101]

Learns the optimal energy-efficient
scheduling strategy

Vehicle [103, 104, 106,
107]

Learn the optimal energy manage-
ment strategy in HEVs

[105] A detailed survey on the application
of RL in HEV

[108, 109] Learn the optimal energy manage-
ment strategy in HETV

[110, 111] Learn the optimal energy manage-
ment strategy in EREV

Table 6: Researches on RL/DRL-based resource management for vehicular networks.

throughput on urban freeways. In this subsection, we review some works
that use RL/DRL for TLC and VSL control.
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5.1.1. Traffic light control

Liang et al. have proposed in [112] a DRL model to solve the TLC
problem for one intersection in vehicular networks. The states are two-
dimension values that provide details about the vehicles’ location and speed
information. The actions defined by how to update the duration of every
phase in the next cycle and the rewards are the cumulative waiting time
difference between two cycles. To handle the complex traffic scenario in
this problem, they proposed a double dueling deep Q-network (3DQN) with
prioritized experience replay. The model can reduce the average waiting
timing by over 20% from the start of the training.

In [113], the authors explored the capability of DRL for handling TLC
systems using partial vehicle detection, see Figure 16. The designed DRL-
based algorithm specifically DQL performs well under low penetration ratio
and detection rates. The state contains the following information: detected

Detected vehicle

Undetected vehicle

Figure 16: Illustration of partially detected ITS [113].

car count, distance to the nearest detected car, current phase time, amber
phase, current time, and current phase. The action of the agent is either to
keep the current traffic light phase or to switch to the next traffic light phase.
The reward is the average traffic delay of commuters in the network. The
results of this study show that RL is a promising new approach to optimiz-
ing traffic control problems under partial detection scenarios, such as traffic
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control systems using DSRC technology. However, since multiple intersec-
tions can have an effect on each other in the real world, just considering one
intersection is insufficient.

Complementary to the aforementioned study [113] where TLC with vary-
ing portions of V2I enabled vehicles ranging from 0 to 100% at a single in-
tersection, the authors of [114] examined the performance impact of traffic
state information collected via V2I communication for road networks con-
sisting of multiple intersections considering the extreme cases of 0% of V2I
enabled vehicles in [113] (equivalent to their agnostic agent) and 100% of
V2I enabled vehicles in [113] (equivalent to their holistic agent). The study’s
key contribution is a detailed comparison of a representative state-of-the-art
agnostic DRL agent that is unaware of the current traffic state versus a rep-
resentative state-of-the-art holistic DRL agent that is aware of the current
traffic state. States representation is shown in Table 7. The action of both
agents is to decide the phase to show, and the display duration. They also
compared a reward function that considers only the average vehicle velocity
with a composite reward function that takes into account a weighted com-
bination of the average vehicle velocity, vehicle flow rate, CO2 emissions,
and driver stress level. They found that the holistic system substantially

Feature Agnostic Agent Holistic Agent

Current phase of all traffic lights (phase ID & period ID) 4 4

Time passed since the last change 4 4

Traces of all phases 4 4

Positions of vehicles closest to an intersection 4

Velocities of vehicles closest to an intersection 4

Number of vehicles on each lane 4

Average velocity of vehicles on each lane 4

Table 7: State spaces of agnostic and holistic agents [114].

increases average vehicle velocities and flow rates while reducing CO2 emis-
sions, average wait and trip times, as well as a driver stress metric.

MARL has been utilized in [115] where researchers have proposed a
Multi-Agent Recurrent DDPG algorithm to reduce traffic congestion at mul-
tiple intersections taking into consideration pedestrian and bus, which make
the whole system more humanized. They utilized various road informa-
tion to change the phase of multiple traffic lights in real-time. The traffic
light controller at each intersection is not isolated, and it can observe the
global state during the training process. Each traffic light controller can
estimate the traffic light control policies of other intersections when making
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decisions. Scalability analysis shows that this method is more suitable for
medium-scale traffic networks.

Other recent studies have also used MARL for TLC [116, 117, 118, 119].
General related computational frameworks for RL control applications have
been explored for multi-objective decision modeling in [120] and for a hybrid
fuzzy and RL control in [121].

5.1.2. Variable speed limit control

Researchers in [122] proposed a single QL algorithm for VSL control
system. To alleviate traffic congestion, The QL agent should keep the bot-
tleneck density below its critical value. The state-space includes the density
at the immediate downstream of the merge area, the density at the upstream
mainline section, and the density on the ramp. The action is to set the speed
limit. The reward is the system travel time where the aim of the agent is to
minimize this reward. The results demonstrated that the QL approach out-
performs feedback control methods, both in stabilized and fluctuant demand
scenarios.

In [123], Wang et al. proposed a distributed QL algorithm to tackle the
cooperative control problem in continuous traffic state space. The agents
work cooperatively using the proposed distributed RL approach to maxi-
mize the freeway traffic mobility and safety benefits. A per-lane VSL con-
trol based on Lagrangian control using DRL is proposed in [124]. Since
the traffic flow used in the research includes Autonomous Vehicles (AVs),
the VSL controller can directly change the speed of AVs within a partic-
ular traffic lane and thus monitor remaining traffic flow rather than using
traditional Vehicle Management Systems (VMSs). In [125] a MARL frame-
work for solving the bottleneck congestion is proposed, using both VSL and
Ramp Metering (RM) simultaneously. The proposed MARL outperforms
base cases (independent and feedback-based VSL and RM) with respect to
measured network TTS.

Researchers in [126] proposed a method for establishing MARL-based
VSL using the W-Learning algorithm (WL-VSL), in which two agents mon-
itor two segments leading up to the congested area. Each agent’s reward
role is determined by the agent’s local output as well as the downstream
bottleneck. WL-VSL is evaluated in a microscopic simulation in two traffic
scenarios with dynamic and static traffic demand. They demonstrated that
WL-VSL outperforms base cases (no control, single agent, and two indepen-
dent agents) with the improvement of traffic parameters up to 18%. The
same authors presented a comprehensive survey on the state-of-the-art of
RL-VSL in [127].
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5.2. Vehicle management

The management of vehicles is one of the most critical tasks for vehicular
networks, especially for autonomous driving. It consists of two primary com-
ponents: motion control, such as steering angle and vehicle speed control,
and vehicle path/trajectory planning. The scenario of vehicle management
includes diverse types of events like parking, lane changing, merging, pla-
tooning, and so on.

Our goal is to focus this survey mainly on the application of RL and
DRL techniques for vehicular telecommunications. For motion planning and
control in autonomous vehicle networks, There is a lot of works that apply
RL and DRL in this research area, and they are reviewed in the following
surveys [128, 129, 130].

Summary

This section reviews infrastructure management techniques based on
RL/DRL in vehicular networks. We categorized these works into two cat-
egories: traffic management and vehicle management. The reviewed ap-
proaches are summarized with references in the Table 8. In the next sec-
tion, we will outline some open issues and future trends that are likely to
contribute to the continuous shaping of future 6G vehicular networks.

Resource Issue References Role

Traffic man-
agement

Traffic light control [112, 118, 121] Solve the TLC problem for one in-
tersection using full vehicle detec-
tion

[113] Solve the TLC problem for one in-
tersection using partial vehicle de-
tection

[114, 115, 116,
117, 119]

Solve the TLC problem for multiple
intersection

Variable speed limit
control

[122, 123, 124,
125, 126]

Set the speed limit to keep the
bottleneck density below its critical
value

[127] A comprehensive survey on the
state-of-the-art of RL-VSL

Vehicle man-
agement

Motion control and tra-
jectory planning

[128, 129, 130] Surveys for vehicle management us-
ing RL/DRL

Table 8: Researches on RL/DRL-based infrastructure management for vehicular networks.

6. Challenges, open issues and future trends towards 6G

Different approaches reviewed in this survey evidently show that RL
and DRL can effectively address various emerging issues for resource and
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infrastructure management. There are existing challenges, open issues, and
future trends which are discussed as follows.

6.1. Challenges

The complex and dynamic challenges of V2X paradigm have been ad-
dressed using different techniques of RL and DRL. In addition, the compu-
tation resources, storage resources, and the advancements in RL and DRL
algorithms have established a firm path of RL based research for V2X en-
abled by the 5G paradigm. Yet, there are issues that require attention in
this context. Some of the important challenges are presented below:

• Training and Performance Evaluation of DRL Framework. The ma-
jority of previous research works relies on simulated data, which raises
doubts about the DRL framework’s applicability in real-world systems.
A specific stochastic model is frequently used to generate the simulated
data set, which is a simplification of the real system and may overlook
hidden patterns. As a result, a more efficient method for generating
simulation data is necessary to ensure that the DRL framework’s train-
ing and performance evaluation are more compatible with real-world
systems [9].

• Complexity of calculation and synchronization. The complexity of the
signal timing design, which grows exponentially with the number of
traffic flow state/control actions, is one of the primary challenges that
RL is confronting for traffic signal timing management. The prac-
tical implementation of RL-based congestion control approaches in
VANETs necessitates the use of RSUs with GPUs. For ML algo-
rithms, these RSUs would have to do more complex computations and
operations. For RL-driven V2X applications, the deployment of Edge
computing facilities is also required [131].

• Multi-Agent RL/DRL in Dynamic HetNets. Vehicular networks con-
sist of hierarchically nested IoT devices/networks with fast changing
service requirements and networking conditions. RL/DRL agents for
individual entities must be light-weight and adaptable to changing
network conditions in this situation. This implies a a reduction in the
state and action spaces in learning, which however may compromise
the performance of the convergent policy. Multiple agent interactions
further complicate the network environment by causing a significant
increase in the state space, which slows down the learning algorithms
[9].
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• Fairness vs optimization in TLC. The decision of the agent’s fairness
policy is a major issue in the realm of RL. A fair TLC system, for ex-
ample, would ensure that all vehicles are given the same priority while
crossing the intersection. However, this fairness will cause a conflict
with the optimization of specific traffic metrics. These optimization
metrics could be the minimum delay or maximum throughput. A fu-
ture challenge will be to achieve a balance between fairness and opti-
mization, which can be accomplished by using the appropriate reward
function and other AI techniques [131].

6.2. Open issues and future trends

The RL/DRL framework has an effect on a wide variety of vehicular ap-
plications. However, we believe that existing studies do not capture the full
potential of RL/DRL driven vehicular networks due to both the limitations
of existing RL/DRL approaches and the changing needs of vehicular net-
works. Next, we discuss some open issues and future trends of 6G vehicular
networks that deserve further investigation.

6.2.1. Autonomous and semi-autonomous vehicles

Autonomous and semi-autonomous driving demands unprecedented lev-
els of reliability and low latency. However, the 5G at its current development
state cannot meet these requirements [132]. Thus, we need 6G wireless net-
works to pave the way for connected vehicles through advances in hardware,
software, and the new connectivity solutions [30].

Autonomous Vehicles (AVs) are continually being developed and are the
focus of many research projects. The objective is to prevent accidents caused
by human driving errors and to carry out emissions reduction [133]. RL and
DRL have been recently used to learn a policy of the different tasks of au-
tonomous driving involving lane keeping, lane change, ramp merging, over-
taking, motion planning, intersections [129]. For lane keeping, the authors
in [134] proposed a DRL system for discrete actions (DQN) and continu-
ous actions (Deep Deterministic Actor Critic (DDAC)) to follow the lane
and maximize average velocity. For lane change, authors in [135] used Q-
Learning that make vehicles learn to perform no operation, lane change to
left/right, accelerate/decelerate. For ramp merging, researchers in [136] ap-
plied DQL to find an optimal driving policy by maximizing the long-term
reward in an interactive environment. For overtaking, Ngai et al. in [137]
proposed multi-goal RL policy that is learnt by Q-Learning to determine in-
dividual action decisions based on whether the other vehicle interacts with
the agent for that particular goals. For motion planning, [138] proposed
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an improved algorithm using DQNs over image-based input obstacle map.
Authors in [139] used DQN to negotiate intersections. The development of
MARL approaches for the autonomous driving problem is also an important
future challenge that has not received a lot of attention to date. It could
be very beneficial in high-level decision-making and coordination between
autonomous vehicles. There have been some prior works that used MARL
for AVs [140, 141, 142].

The motion planning and control aspects for autonomous driving are
rather disconnected from the telecom part. However, it is well known that
joint optimization problems arise in telecommunications and control of au-
tonomous vehicles as explained in [143]. In this case, RL/DRL should be
able to simultaneously deal with both problems, for example, if autonomous
vehicles are poorly piloted and moving too far from each other then radio
links between them can be lost. We believe that this is an intriguing path
for future research.

Although research is towards fully autonomous vehicles, semi-autonomous
mode (or tele-operated driving) is desired when autonomous mode fails or
a complicated scenario requires human intervention. It can aid as a mea-
sure for a smooth transition from non-autonomous to autonomous driving
by offering a fallback in certain situations [144]. Tele-operated driving al-
lows cars to be controlled remotely providing direct steering, acceleration
and braking commands to the vehicle. It will require ultra-low latency that
communicates signals and instructions between the driver and the vehicle,
especially in the face of danger where an immediate response is needed. A
high level of security, privacy, and network integrity is also desired [132].
RL and DRL are poorly used in the context of semi-autonomous driving in
vehicular networks to allocate resources for this type of application to meet
the requirement of latency and reliability. This is an interesting direction
for future studies in the 6G context.

6.2.2. Brain-vehicle interfacing

In a Brain-Controlled Vehicle (BCV), the vehicle is controlled by the hu-
man mind rather than any physical contact between the human and the vehi-
cle through the use of a brain-computer interface (BCI), which can translate
brain activity signals into motion commands. For people with disabilities,
BCVs hold great promise for increased independence and improved quality
of life by offering an alternative interface by which they can control vehicles
[145]. Current wireless connectivity and computing systems are incapable
of realizing BCV because services involving brain-machine communications
would necessitate ultra-high reliability, ultra-low latency, ultra-high data
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rate communication, and ultra-high-speed computation. However, 6G-V2X
must be capable of understanding and adapting human driver behavior [14].

There are some successful works that demonstrated the feasibility of
BCV [146, 147]. However, the currently developed BCV is not a scalable
solution since it would necessitate a wireless connection to facilitate brain-
machine interactions with high coverage, availability, speed, and low latency
to provide end-users with reliability and protection. In order to meet these
requirements, RL and DRL frameworks could be used to allocate resources
for these applications in future studies. Also, researchers did not pay much
attention to using AI in the context of BCV, for example, [148] focused on
processing of the signals received from the Electroencephalography (EEG)
headset into directions (move forward, backward, left, right, or stop) using
ANN. In addition, most of the existing works on BCV have been verified
through simulation only. Thus, extensive real-world experiments are re-
quired to demonstrate the effectiveness of BCVs [14].

6.2.3. Green vehicular networks

6G vehicular networks will be using emerging technology such as edge
and artificial intelligence in its network nodes that require high energy [10],
and they will have ultra-high throughput, ultra-wide bandwidth, and ultra-
large-scale ubiquitous wireless nodes, which will pose a huge challenge to
energy consumption [149]. These networks may face stringent requirements
to achieve green vehicular communications which enable energy conserva-
tion, decreased emissions, and lower environmental pollution [150]. This
research area is still in its infancy.

Dense Heterogeneous Vehicular Networks (HetVNets) are recognized as
a core technology for green vehicular networks. Higher transmission rates
and lower power consumption are seen as the key concerns to achieve green
communications in vehicular networks. It is therefore necessary to upgrade
the current communication mode to enrich the user experience and to reduce
energy consumption associated with base station access. There exist some
works that apply RL/DRL in this context [102, 101] but it is still insufficient.

Also, the Green Vehicle Routing Problem (GVRP) has emerged as a key
agenda item in green logistics, attracting scientific interest from researchers.
Referencing to [151], most of the current GVRP research focuses on statically
determined systems. Therefore, future research can target GVRP under a
dynamic environment to make the research more convincing. For new energy
vehicles, the construction of charging stations is a prerequisite for solving
GVRP. Therefore, future studies can consider combining the vehicle routing
problem of new energy vehicles with the location of charging stations.
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6.2.4. Integrating unmanned aerial and surface vehicles

6G should be a ubiquitous and integrated network with broader and
deeper coverage that can serve in various environments such as airspace,
land, and sea, realizing a global ubiquitous mobile broadband communica-
tion system [152], as shown in Figure 17.

Indoor Traffic
light
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communication

Satellite
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Figure 17: 6G with global and deeper coverage [152].

Unmanned Aerial Vehicles (UAVs) are aircraft that do not have a human
pilot aboard. Recently, the enthusiasm for utilizing UAVs in a proliferation
of fields has exploded, thanks to advanced technologies and their reduced
cost [11]. For instance, Amazon and DHL are trying to use UAVs to deliver
commodities to customers over the air. There are various other roles that a
UAV can play, e.g. aerial traffic signals or aerial cameras. Unmanned Sur-
face Vehicles (USVs) are boats that work without a crew on the water’s sur-
face [153]. Recently, USVs have attracted extensive research attention, due
to their advantages in many applications, such as environmental monitor-
ing, resource exploration, enhancing the efficiency and safety of water-borne
transportation, and many more [154].

UAVs’ high mobility leverages the importance of prediction tasks, which
are useful in path planning and collision avoidance, for instance, [155, 156]
highlighted the use of RL/DRL in collision avoidance, whereas [157, 158]
studied path planning. Also, path planning and collision avoidance are fun-
damental aspects of USV guidance and navigation systems, for instance,
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[159, 160] used DRL techniques for path planning whereas [161, 162] used
DRL for USV collision avoidance. In addition, UAVs’ high mobility will also
increase the necessity of an ultra-reliable and low-latency network, lever-
aging the importance of management applications for traffic control and
resource sharing in such networks [163, 164].

To conclude, UAVs and USVs are likely to feature the 6G vehicular net-
works. However, UAVs and USVs will be deployed in the air and the water
respectively, in environments with different obstacles, mobility, and infras-
tructure from the usual road transportation. Therefore, they will require
further attention to their deployment.

6.2.5. Security enhancement with blockchain

Vehicles authentication and privacy protection in 6G networks have se-
riously restricted the development of IoV, especially when being dependent
on a centralized trusted authority to distribute identity information [165].
This problem can be solved with blockchain due to its many potential uses
in IoV when including the distributed ledger to secure the network and
enable autonomous communications [166], radio access network decentral-
ization [167] and mobile service authorization [168]. The integration of both
AI and blockchain is highly trending because it provides security, intelligent
architecture, and flexible resource sharing [169] for IoV as well as Industrial
IoT networks [170]. In fact, the integration of DRL, as well as permissioned
blockchain, enabled the ability to cash a huge amount of data and multime-
dia content in proximity to vehicles. On one hand, vehicles perform content
caching whereas base stations maintain the permissioned blockchain. Then,
the DRL-based approach is exploited to design an optimal content caching
scheme that takes into account the mobility parameter in the IoV network
[89]. DRL also optimized the performance of blockchain-enabled IoV in
terms of maximizing transactional throughput while guaranteeing security
and complete decentralization of the underlying blockchain system [171].

Various research works also tried to tackle security challenges using appli-
cations based on blockchain technology [172]. However, many security and
privacy issues still need to be addressed to improve vehicle authentication,
privacy, and trust management in IoV networks. This can be achieved using
a decentralized authentication scheme based on consortium blockchain [173]
with multiple trusted authorities instead of using traditional client-server
strategies for key sharing and certifications storage. The challenge here re-
mains in achieving complete synchronization between multiple control units
on the road while protecting the privacy of the vehicles using pseudo-random
IDs. This security architecture provides additional advantages in terms of
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reducing communication overhead and speedily updating the status of re-
vocated vehicles in the shared blockchain ledger [174]. Moreover, various
blockchain-assisted architectures were proposed to integrate and adapt the
blockchain to IoV applications on edge computing [175], cloud computing
[176] or software-defined VANETs [177] where controllers play the role of
blockchain miners. However, reaching a consensus between controllers in
such a use case is not straightforward and depends on various parameters
such as the number of consensus nodes, the computational capability of the
blockchain, and the trust features of vehicles and blockchain nodes [178].
In this context, the latter is provided with blockchain by enabling the abil-
ity for vehicles to validate the received messages from neighboring vehicles
[179]. However, this solution is not sufficiently efficient in large-scale IoV
networks, specially that 6G networks are expected to support a massive
number of applications with various QoS requirements. Therefore, driven by
the heterogeneous applications and the massive demands of hyper-connected
vehicles, it is clear that more efforts should be placed to propose a combi-
nation of IoV-specific consensus and DRL-based optimizations for realistic
IoV application scenarios.

7. Conclusion

This paper has presented a comprehensive survey of the applications
of reinforcement learning and deep reinforcement learning to vehicular net-
works. First, we have presented an overview of vehicular networks. Then we
have introduced reinforcement learning, deep learning, and deep reinforce-
ment learning. Afterward, we have provided detailed reviews of reinforce-
ment learning and especially deep reinforcement learning to solve different
issues in vehicular networks. We have categorized these schemes into two
categories, i.e. vehicular resource management and vehicular infrastructure
management with an emphasis on vehicular telecommunications issues. Fi-
nally, we have outlined some open issues and future trends that are likely
to contribute to the continuous shaping of future 6G vehicular networks.
We expect this survey to provide a rapid and comprehensive understanding
of the current state-of-the-art in vehicular network communications involv-
ing deep reinforcement learning techniques while attracting and motivating
more researchers into this interesting research area.
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ing approach for the patrolling problem of water resources through
autonomous surface vehicles: The Ypacarai lake case, IEEE Access 8
(2020) 204076–204093.

[160] S. Y. Luis, D. G. Reina, S. L. T. Maŕın, A multiagent deep rein-
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