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Purpose: Texture analysis is an emerging tool in the field of medical imaging analysis. However, many issues 
have been raised in terms of its use in assessing patient images and it is crucial to harmo- nize and standardize this 
new imaging measurement tool. This study was designed to evaluate the reliability of texture indices of CT 
images on a phantom including a reproducibility study, to assess the discriminatory capacity of indices 
potentially relevant in CT medical images and to determine their redundancy. 
Methods: For the reproducibility and discriminatory analysis, eight identical CT acquisitions were performed on 
a phantom including one homogeneous insert and two close heterogeneous inserts. Texture indices were 
selected for their high reproducibility and capability of discriminating different textures. For the redundancy 
analysis, 39 acquisitions of the same phantom were performed using varying acquisition parameters and a 
correlation matrix was used to explore the 2 9 2 relationships. LIFEx software was used to explore 34 different 
parameters including first order and texture indices. Results: Only eight indices of 34 exhibited high 
reproducibility and discriminated textures from each other. Skewness and kurtosis from histogram were 
independent from the six other indices but were intercorrelated, the other six indices correlated in diverse 
degrees (entropy, dissimilarity, and contrast of the co-occurrence matrix, contrast of the Neighborhood Gray 



 

Level difference matrix, SZE, ZLNU of the Gray-Level Size Zone Matrix). 
Conclusions: Care should be taken when using texture analysis as a tool to characterize CT images because 
changes in quantitation may be primarily due to internal variability rather than from real phy- sio-pathological 
effects. Some textural indices appear to be sufficiently reliable and capable to dis- criminate close textures on 
CT images. © 2018 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12809] 
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1. INTRODUCTION 
 
Texture is defined as the quantitation of the spatial distribution of repeating patterns. It is used to translate the 
homogeneous or nonhomogenous appearance of the surface of an object on an image. It is also defined as a 
two-dimensional phenomenon: the first dimension is a description of the basic 
elements, or the “primitive” (the pattern), from which the texture is formed; the second dimension relates to the 
description of the spatial organization of these primitives.1 Radiomics is a relatively new discipline for the 
clinical 
integration of the quantitative features of digital medical images as determined through mathematical analysis. 
One potential quantitative image feature of clinical significance is tumor tissue heterogeneity. Many studies have 
already explored the contribution of texture analysis in the field of oncology, addressing a range of topics 
(diagnosis, prognosis, correlation with histological or biological characteristics of the tumors) with wide-ranging 
results.2,3 The main difficulty associated with this area is that there are currently as many ways of calculating 
texture indices as there are research groups focusing on texture analysis. 
Several issues have already been raised: the definition of texture algorithms, which texture indices are relevant 
in medical images and the lack of reproducibility of texture calculations4–7 It is crucial to the success of this 
method- ology to harmonize the procedures and textural features and to identify any inadequate parameters 
which could jeopardize the chances of obtaining useful results in clinical practice. 
Our study is a first step toward the standardization of this new imaging measurement tool. It was designed to 
evaluate the reliability of texture indices of CT images on a phantom including a reproducibility study, to assess 
the discriminatory capacity of indices potentially relevant in CT medical images, and to determine their 
redundancy. 
 
2. MATERIALS AND METHODS 

2.A. Phantom 

We built a phantom based on the commercially available CIRS® Electron Density Phantom Model 062M (Norfolk, 
VA, USA) which allows adequate maneuverability and the option of filling 17 holes with commercial 
homogeneous plugs as well as with “home-made” inserts. 
The cylindrical phantom dimensions are 180 mm in diameter and 50 mm in thickness. Plug dimension is 30 mm 
in diameter and 50 mm in thickness. A homogenous plug with the same density as that of muscle (physical 
density of 1.06 g/cc) was used (named C1). In order to mimic human tissue, we designed two additional 
heterogeneous mixtures based on Ecoflex® (BASF, Ludwigshafen, Germany) which is a stable polymer, composed 
of two pure carbon fragments in different proportions randomly arranged in an agarose support (named C2 and 
C3), these two inserts have the advantage of having a similar range of physical density and histograms as those 
found in human soft tissue, such as tumoral lung tis- sues. Figure 1 shows the inserts and the corresponding image 
of a CT acquisition slice. 
 
2.B. Reproducibility study 

Eight identical CT acquisitions were made with a Discovery CT750 HD with 64 multidetector arrays (GE 
Healthcare, Milwaukee, WI, USA) using parameters routinely used for standard thoracic CT acquisition in patients 
treated in our center: voltage 120 kVp; x-ray tube current 150 mAs; 1.25 mm slice thickness; 1.375 pitch; 
rotation time 0.6 s, field of view 360 mm; reconstruction algorithm ASIR 0%; standard filter. Images were 
acquired sequentially and the phantom setup was not altered. 
 
2.C. Correlation of the texture index 

For assessment of redundant indices, we performed 39 supplementary CT acquisitions on the same phantom 
and the same CT device, which differed for the acquisition parameters [voltage, intensity, slice thickness, pitch, 
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rota- tion time, field of view, reconstruction algorithm, and fil- ter (Table I)]. 
 
2.D. Texture analysis 

Index extraction was performed with LIFEx (Local Image Features Extraction) open access software 
(http://www.lifex soft.org; Orsay, France)8 which calculates the minimum and maximum density values, as well 
as the mean and standard deviation of the gray values of the region of interest (ROI). From these primary 
calculations, the software accesses histogram values (skewness, kurtosis, entropyH, energyH), the co-occurrence 
matrix values (homogeneity, energy, contrast, correlation, entropy, dissimilarity), the Gray-Level Run Length 
Matrix GLRLM (SRE/LRE, LGRE/HGRE, SRLGE/ SRHGE, LRLGE/LRHGE, GLNU/RLNU, RP), the Neigh- 
borhood Gray-Level difference matrix NGLDM (coarseness, busyness, contrast), and the Gray-Level Size Zone 
Matrix GLSZM (SZE/LZE, LGZE/HGZE, SZLGE/SZHGE, LZLGE/LZHGE, GLNUz/ZLNU, ZP). 
The description of texture indices is provided in Data S1. An additional absolute discretization pixel intensity in 
Hounsfield units (HU) was applied to promote differentiation of intensities before texture index extraction.9 We 
chose 200 gray values, by steps of 10 HU, between the extreme values of 1000 and +1000 HU. Two-dimensional 
circular ROI were drawn on each of the three inserts. The size of these ROI was identical for each insert (458 
mm², 758 pixels) (Fig. 2). 
 
2.E. Statistical analyses 

The eight CT acquisitions resulted in eight tables of 34 texture indices from the three ROI. The reproducibility of 
the texture analysis was estimated from the coefficient of variation (CV). CVs were calculated for each texture 
index according to the following formula: 

 

 

where r is the standard deviation and l the mean value of the data sample. 
 

 

FIG. 1. C2 and C3 inserts compacted into two syringes adapted to precisely fill the holes of the CIRS® 062M 
phantom. Resulting histogram of the three ROI. [Color figure can be viewed at wileyonlinelibrary.com] 
 



 

 

Variation in CV relating to imaging biomarkers is not standard,10 in this study, a CV < 20% was considered 
acceptable. 
Dot plots were performed to show the dispersion of values of the different indices among C1, C2, and C3. A 
nonparametric Mann–Whitney test was used to exclude the indices which could not differentiate C1 from C2/C3, 
and C2 from C3. Indices that would be unable to distinguish a homogeneous area from a heterogeneous area 
were considered to be 
of no interest in the assessment of tumoral heterogeneity, as were indices that would not be able to distinguish 
two “visible to the naked eye” heterogeneous areas. 
A Pearson correlation between the texture indices was 
assessed to evaluate their redundancy on the 39 different CT acquisitions. A correlation matrix was used to 
explore the 2 9 2 relationships between the retained parameters. Principal component analysis was used to 
represent the different retained 
indices and their pattern of correlation on a simple graph. Prin cipal component analysis is a multivariate technique 
that analyzes a data table in which observations are described by several intercorrelated quantitative dependent 
variables. Its goal is to extract the important information from the table, to represent it as a set of new orthogonal 
variables called principal components, and to display the pattern of similarity of the observations and of the 
variables as points in maps.11 

 
3. RESULTS 

The characteristics of intensities (in HU) obtained within each ROI (C1, C2, and C3) are reported in Table II. As 
expected, the homogeneous ROI C1 exhibits a very narrow distribution spectrum of the intensity values of the 
pixels. The maximal variability was observed on intensities for the minValues at 16% and decreased to 4% for 
maxValues and meanValues. 
Heterogeneous ROIs C2 and C3 exhibited a close histogram distribution of intensity values of pixels, with a range 
close to those of human tissues. Mean values of C2 and C3 were close (<6%) despite differences in the minimal 
and standard pixel values. The maximal variabilities were also observed for the minValues at 19% and were less 
than 1% for the other values. The fluctuation of the mean value of C1 is larger than in C2 and C3, this may be 
explained by the fact that the stochastic noise effect may be more marked in a homogeneous area than in 
heterogeneous areas. 
The CVs of texture indices for the three ROI pooled from the eight identical CT acquisitions are shown in Table III. 
Values obtained from the homogeneous insert C1 were more variable than the C2 and C3 inserts, with CVs ranging 
from 1% to 26%. Of note, the high variations of skewness and busyness in CV values could be explained by the 
variations around 0 of the mean l values of these indices. In the case of busyness, the strong variability implied a 
lack of reliability. The maximum variations observed for C2 and C3 were between 0% and 18%. 
Figures 3, 4, and 5 were built to assess which indices per- mitted discrimination of each insert. The three indices 
deter- mined as unable to discriminate C1 from C2 and C3 were busyness, GLNU from the Gray-Level Size Zone 
Matrix GLSZM (Fig. 3), and SZLGE. The following parameters were identified as unable to discriminate C2 from 
C3: entropy and energy derived from histogram; homogeneity, energy, and correlation (Fig. 4) from the co-
occurrence matrix; SRE, LRE, LGRE, HGRE, SRLGE, SRHGE, LRLGE, LRHGE, RLNU, RP from the Gray-Level Run 
Length Matrix; and SZE, LZE, LGZE, HGZE, SZHGE, LZLGE, LZHGE, GLNU, ZP from the Gray-Level Size Zone Matrix. 
From the repeatability study, eight indices were selected because they allow the discrimination of the three 
textures between them. These indices are skewness (Fig. 5), kurtosis derived from histogram, contrast, and 
entropy from the co- occurrence matrix, dissimilarity and contrast from the Neighborhood Gray-Level difference 
matrix, SZE and ZLNU from the Gray-Level Size Zone Matrix. 
All eight indices were associated with highly significant P-values (<0.0002; Mann–Whitney test) when comparing 
C1 to C2, C2 to C3, and C1 to C3, as there was no overlap between the distributions for any of the eight 
parameters. 
 
 



 

 

TABLE I. Design of the 40 different CT acquisitions performed for the redundancy analysis. The first CT 
acquisition corresponds to the acquisition repeated eight times for the reproducibility analysis. 
 

 

Acquisition kVp mAs Slice thickness (mm) Pitch Rotation time (s) DFOV (mm) ASIR (%) Filter 

Base 120 150 1.25 1.375 0.6 360 0 Standard 
2 80 150 1.25 1.375 0.6 360 0 Standard 
3 100 150 1.25 1.375 0.6 360 0 Standard 
4 140 150 1.25 1.375 0.6 360 0 Standard 
5 120 100 1.25 1.375 0.6 360 0 Standard 
6 120 200 1.25 1.375 0.6 360 0 Standard 
7 120 250 1.25 1.375 0.6 360 0 Standard 
8 120 300 1.25 1.375 0.6 360 0 Standard 
9 120 350 1.25 1.375 0.6 360 0 Standard 
10 120 400 1.25 1.375 0.6 360 0 Standard 
11 120 500 1.25 1.375 0.6 360 0 Standard 
12 120 150 0.625 1.375 0.6 360 0 Standard 
13 120 150 2.5 1.375 0.6 360 0 Standard 
14 120 150 3.75 1.375 0.6 360 0 Standard 
15 120 150 5 1.375 0.6 360 0 Standard 
16 120 150 1.25 0.516 0.6 360 0 Standard 
17 120 150 1.25 0.984 0.6 360 0 Standard 
18 120 150 1.25 1.375 0.4 360 0 Standard 
19 120 150 1.25 1.375 0.5 360 0 Standard 
20 120 150 1.25 1.375 0.7 360 0 Standard 
21 120 150 1.25 1.375 0.8 360 0 Standard 
22 120 150 1.25 1.375 0.9 360 0 Standard 
23 120 150 1.25 1.375 1 360 0 Standard 
24 120 150 1.25 1.375 0.6 160 0 Standard 
25 120 150 1.25 1.375 0.6 260 0 Standard 
26 120 150 1.25 1.375 0.6 460 0 Standard 
27 120 150 1.25 1.375 0.6 360 50 Standard 
28 120 150 1.25 1.375 0.6 360 10 Standard 
29 120 150 1.25 1.375 0.6 360 20 Standard 
30 120 150 1.25 1.375 0.6 360 30 Standard 
31 120 150 1.25 1.375 0.6 360 40 Standard 
32 120 150 1.25 1.375 0.6 360 60 Standard 
33 120 150 1.25 1.375 0.6 360 70 Standard 
34 120 150 1.25 1.375 0.6 360 80 Standard 
35 120 150 1.25 1.375 0.6 360 90 Standard 
36 120 150 1.25 1.375 0.6 360 100 Standard 
37 120 150 1.25 1.375 0.6 360 0 Soft 
38 120 150 1.25 1.375 0.6 360 0 Detail 
39 120 150 1.25 1.375 0.6 360 0 Bone 
40 120 150 1.25 1.375 0.6 360 0 Lung 



 

 

 
 

 

FIG. 2. Designed phantom with different inserts and resulting CT image of one slice of the phantom: 2D identical 
regions of interest were drawn on each of the three inserts: C1 for the homogeneous insert (upper right), C2 for the 
insert made of Ecoflex® + carbon1 (central circle), and C3 for the insert made of Ecoflex® + carbon2 (above C2).  

 
 
TABLE II. Descriptive values of each ROI in Hounsfield units for the eight identical CT acquisitions (1 to 8). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

maxValue 265.0 265.0 271.0 258.0 265.0 266.0 264.0 267.0 

stdValue 65.5 64.6 66.8 66.4 63.9 65.7 66.1 66.1 

meanValue 156.2 157.7 156.5 156.5 157.5 155.6 156.8 156.4 
 
 
Finally, redundant indices were identified with a 2 x 2 correlation matrix (See Table S1 in Data S1) and a principal 
component analysis derived from the 39 supplementary acquisitions described in Table II. Based on the analysis 
of the 2 x 2 correlation matrix, skewness and kurtosis were independent of the six other indices but were 
intercorrelated for C2 and C3, and not for C1. The other six indices correlated with various degrees: four indices 
(contrast of the co- occurrence matrix, contrast of the Neighborhood Gray-Level difference matrix, entropy, and 
dissimilarity — were all associated with correlation coefficients >0.8, even for C1. 
SZE was highly correlated with these four indices for C2 and C3, but to a lesser extent for C1. ZLNU was highly 
correlated with the five other indices for C1, but to a lesser extent for C2 and C3. 
Principal component analyses performed separately for each phantom pattern (C1, C2, C3) confirmed the 2 x 2 
correlation analyses (fig. S1a–c: plots of the 1st and 2nd princi pal components, see Data S1). The patterns of the 

 CT acquisition  

 1 2 3 4 5 6 7 8 

Name of ROI: C1         
minValue 25.0 21.0 20.0 14.0 23.0 22.0 20.0 24.0 
maxValue 58.0 63.0 60.0 62.0 58.0 58.0 56.0 60.0 
stdValue 6.0 6.3 6.2 6.3 6.4 5.9 5.7 5.9 
meanValue 41.5 42.5 38.8 38.8 41.4 39.8 38.4 41.5 

Name of ROI: C2         

minValue 
maxValue 
stdValue 

—39.0 
267.0 

41.9 

—32.0 
278.0 
43.0 

—52.0 
272.0 
42.9 

—52.0 
267.0 
42.8 

—57.0 
267.0 
42.6 

—45.0 
268.0 

42.5 

—52.0 
265.0 

42.3 

—62.0 
273.0 
43.2 

meanValue 166.2 164.9 167.1 167.0 165.6 165.9 166.4 165.0 
Name of ROI: C3         

minValue —238.0 —237.0 —247.0 —238.0 —218.0 —246.0 —244.0 —246.0 

 



 

 

three graphs were very similar. Six indices (dissimilarity, contrast, contrast.1, entropy, ZLNU, and SZE) contribute 
almost equally (around 15%) to the first principal component. A “size effect” was observed, that is, highly 
positively correlated variables are on the same side of the axis, with these six indices on the right side of the first 
axis. The second principal factor is determined by skewness and kurtosis whose cumulative contribution to the 
second axis is above 85% for C1, C2 and C3. The figures show the percentage of variance due to each component 
and the contribution of each index. 
 
DISCUSSION 
The use of texture analyses in medical imaging is an attractive option, potentially allowing the development 
of a novel form of disease “biomarkers”. Several teams worldwide have developed software for texture analysis 
and have published in vivo data in widely varying fields, supporting the potential for major advances in our 
understanding of diseases.12 
It is currently very difficult to draw a coherent position or recommendations from this abundant literature 
especially in order to select the proper texture indices that could be relevant in clinical practice.2In particular, 
the reproducibility of the calculation of textural features is currently a subject of debate. Our study indicates that 
many textural indices show a lack of reproducibility, even under the same experimental conditions. We can 
hypothesize that the variations we observed are due to the complexity of helical CT principles which involve 
detector properties, filtered back projection algorithm, and intrinsic noise. We also observed higher fluctuations 
within the homogenous area C1 than within C2 and C3. This could be explained by the use of an absolute 
discretization pixel intensity by steps of 10 HU in our experimental conditions which would have a greater 
influence on the smaller range of values of C1 (around 40 HU) compared to C2 and C3 (both around 300 HU). 
 
 



 

 

TABLE III. Coefficient of variation (CV) of the values of each index calcu- lated from the eight identical CT 
acquisitions for C1, C2, and C3 areas. 
 

 
LIFEx CV CV CV 
 

 
Name of ROI C1 C2 C3 
minValue 15.05 —18.65 —3.72 
meanValue 3.60 0.47 0.40 
stdValue 3.49 0.90 1.38 
maxValue 3.66 1.51 1.27 
SkewnessH —375.13 —4.44 —1.80 
KurtosisH 5.11 3.37 2.28 
EntropyH 1.00 0.54 0.27 
EnergyH 3.17 3.20 1.45 
Homogeneity 1.12 0.88 0.80 
Energy 9.63 4.02 2.43 
Contrast (co-occurrence) 6.14 2.49 3.00 
Correlation 8.50 0.80 0.38 
Entropy 3.50 0.35 0.34 
Dissimilarity 3.92 0.84 1.30 
SRE 1.85 0.42 0.44 
LRE 10.70 2.29 2.25 
LGRE 0.30 0.17 0.18 
HGRE 0.30 0.17 0.14 
SRLGE 2.01 0.38 0.41 
SRHGE 1.73 0.54 0.54 
LRLGE 10.82 2.33 2.19 
LRHGE 10.58 2.25 2.30 
GLNU 2.34 1.22 2.48 
RLNU 4.23 1.59 1.54 
RP 2.53 0.67 0.59 
Coarseness 4.46 2.21 1.43 
Contrast (NGLDM) 26.22 3.98 5.99 
Busyness —744.65 —4039.39 —202.31 
SZE 8.37 1.68 1.28 
LZE 12.21 11.87 17.87 
LGZE 0.22 0.28 0.31 
HGZE 0.22 0.27 0.25 
SZLGE 8.29 1.50 1.35 
SZHGE 8.46 1.91 1.44 
LZLGE 12.19 11.77 17.51 
LZHGE 12.24 11.94 18.14 



 

 

GLNUz 11.10 3.73 2.65 
ZLNU 14.30 5.08 3.59 
ZP 6.72 2.56 1.41 
 

 
 
 
 
 
 

 
FIG. 3. Dot plot of the close distribution of values of the calculation of GLNU index from the Gray-Level Size 
Zone Matrix GLSZM of C1, C2, and C3. 
 

 
 
FIG. 4. Dot plot of the close distribution of values of the calculation of the correlation index between C2 and C3. 
 

 

FIG. 5. Dot plot of the difference of the distribution of values of the calculation of skewness between the three 
ROI. 



 

 

To our knowledge, this is the first study exploring the reproducibility of textural indices from CT images acquired 
eight times on a single device and a dedicated phantom. Some authors have already worried about this subject 
in vivo but the analysis of the literature is rendered difficult because the softwares and mathematical definition 
of each textural index used for textural indices often differ to some extent as no consensus currently exists.12,13 
Fave et al.14 studied the reproducibility of test–retest cone beam CT images of 10 patients explored with 68 
textural features (histogram, co-occurrence matrix, run length matrix, NGLDM) computed with Ibex software. 
They excluded 23 features because they were not reproducible on the test-retest images; unfortunately, with the 
exception of skewness derived from a histogram and contrast derived from the co-occurrence matrix, it is very 
difficult to compare their data with our study as we did not extract identical indices. 
Hunter et al.5 studied the reproducibility of test–retest of unenhanced CT images of 56 patients with lung tumors 
using three different devices (15, 16, and 25 patients for each device) explored with 328 textural features calculated 
by Ibex software (including histogram, co-occurrence matrix and gray-level run length matrix). They found a high 
concordance correlation coefficient (>0.90) between the two acquisitions for 61.0%–94.5% of the features, and 
a high concordance correlation coefficient for 138 image features when interpolating the reproducible features 
of each device. Of them, they found 23 non redundant features, including kurtosis, skewness derived from the 
histogram, and entropy derived from the co-occurrence matrix according to our results. Balagurunathan et al.15 
studied the reproducibility of 219 3D textural indices derived from test–retest unenhanced CT scans of 32 
patients with lung tumors and confirmed the robustness of contrast derived from the co-occurrence matrix. 
Moreover, this is the first study to assess the usefulness of indices for characterizing CT medical images on a 
dedicated phantom. Our study shows that some textural indices are unable to discriminate homogeneous from 
heterogeneous fea tures, likely rendering these indices unfeasible for use in clin ical evaluation. Taking into 
account that our experimental conditions did not evaluate the influence of the size of the ROI, some indices are 
unable to discriminate two heterogeneous ROIs. 
Our study has a number of limitations. We studied the indices extracted from the histogram and four matrices 
(co- occurrence, Gray-Level Run Length Matrix, Neighborhood Gray-Level difference matrix and Gray-Level Size 
Zone Matrix) from a single software (LIFEx), which is not as exhaustive as some published research,4,14,15 however, 
our findings are in agreement with data published by other groups in terms of the fact that only a few textural 
indices are likely to be sufficiently robust to be handled in clinical practice. In addition, we did not evaluate the 
influence of the size of the ROI. In the study of Fave et al.14 the authors excluded the following features: energy of 
the histogram, correlation of the co-occurrence matrix, LRHGE, SRLGE of the RLM matrix, busyness and contrast 
of the NGLDM matrix because their values were found to be volume dependent. 
We did not evaluate the influence of 3D vs 2D evaluation, but 2D images are more robust to variability than 3D 
images in patient studies.16 In clinical routine and especially in oncology, tumor images are often ill-defined and 
subject to approximation in their segmentation, hence tumor segmenta tion is an important step to address 
before analysis of textural features is possible. Finally, we chose a discretization of 200 gray levels, following 
results from other groups with LIFEx software in PET-CT imaging.9,17 
In conclusion, our preliminary study highlighted a need for close attention when using texture analysis as a tool 
to characterize CT images because changes in quantitation may be due to internal variability rather than due to 
actual physio- pathological effects. Some textural indices appear to be broadly influenced by noise, whereas 8 of 
34 indices such as skewness, kurtosis derived from histogram, contrast, and entropy from the co-occurrence matrix, 
dissimilarity and contrast from the Neighborhood Gray-Level difference matrix NGLDM, and SZE and ZLNU from 
the Gray-Level Size Zone Matrix GLSZM appear to be sufficiently reliable and capable of discriminating close 
textures on CT images. Further research should be carried out to confirm and extend these results. 
 
a)Author to whom correspondence should be addressed. Electronic mail: caroline.caramella@gustaverousy.fr 
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