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CRYSTALLINITY OF THE HOMOGENIZED ENERGY DENSITY OF

PERIODIC LATTICE SYSTEMS

ANTONIN CHAMBOLLE AND LEONARD KREUTZ

Abstract. We study the homogenized energy densities of periodic ferromagnetic Ising sys-

tems. We prove that, for finite range interactions, the homogenized energy density, identifying
the effective limit, is crystalline, i.e. its Wulff crystal is a polytope, for which we can (expo-

nentially) bound the number of vertices. This is achieved by deriving a dual representation of

the energy density through a finite cell formula. This formula also allows easy numerical com-
putations: we show a few experiments where we compute periodic patterns which minimize

the anisotropy of the surface tension.

1. Introduction

The study of discrete interfacial energies has attracted widespread attention in the mathemat-
ical community over last decades, with applications in various contexts such as computer vision
[7], crystallization problems [8], fracture mechanics [6, 18, 33], or statistical physics [38, 39].
To give examples, in computer vision the understanding of these energies allows to investigate
functional correctness of segmentation algorithms [22]. Whereas for crystallization problems
it gives fluctuation estimates on the macroscopic shape of the crystal cluster of ground state
configurations [27, 31, 32, 37].

In this work, we consider energies defined on discrete periodic sets L ⊂ Rd and corresponding
Ising systems. We refer to [1, 12, 20, 21, 29, 34, 35, 36] for an abundant literature on the
derivation of continuum limits of such systems and their effective behavior. More precisely, we
consider L satisfying the following two conditions (see Figure 1)

(i) (Discreteness) There exists c > 0 such that dist(x,L \ {x}) ≥ c for all x ∈ L;
(ii) (Periodicity) There exists T ∈ N such that for all z ∈ Zd, it holds that L+ Tz = L;

To each function u : L → {0, 1} and each A ⊂ Rd we associate an energy

E(u,A) =
∑

i∈L∩A

∑
j∈L

ci,j(u(i)− u(j))+ , (1)

where (z)+ denotes the positive part of z ∈ R, ci,j : L × L → [0,+∞) are T -periodic, that is
ci+Tz,j+Tz = ci,j for all i, j ∈ L and z ∈ Zd and satisfy the following decay assumption

(iii) (Decay of interactions) For all i ∈ L there holds∑
j∈L

ci,j |i− j| < +∞ .
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Figure 1. An example of the set L

Assuming conditions (i)-(iii) (and some additional coercivity assumption) ensures that the as-
ymptotic behavior of (1) is well described (in a variational sense) by a continuum perimeter
energy. More precisely, let us introduce a scaling parameter ε > 0. We consider the scaled
energies

Eε(u) =
∑
i,j∈εL

εd−1cεi,j(u(i)− u(j))+ ,

where cεi,j = ci/ε,j/ε and u : εL → {0, 1}. By identifying u with its piecewise constant interpo-
lation taking the value u(i) on the Voronoi cell centered at i ∈ εL we may regard the energies
as defined on L1

loc(Rd, {0, 1}). Integral representation results [2, 3, 17] then guarantee that the
energies Eε Γ-converge (see [11, 28] for an introduction to that subject) with respect to the
L1

loc(Rd)-topology to a continuum energy of the form

E0(u) =

∫
∂∗{u=1}

ϕ(νu(x)) dHd−1 u ∈ BVloc(Rd; {0, 1}) .

Here, BVloc(Rd; {0, 1}) denotes the space of functions with (locally) bounded variation and
values in {0, 1}, ∂∗{u = 1} denotes the reduced boundary of the level set {u = 1}, νu(x) its
measure theoretic normal at the point x ∈ ∂∗{u = 1}, and Hd−1 denotes the (d−1)-dimensional
Hausdorff measure, see [4] for the precise definitions of these notions. The energy density
ϕ : Rd → [0,+∞) can be recovered via the asymptotic cell formula

ϕ(ν) := lim
δ→0

lim
S→+∞

1

Sd−1
inf
{
E(u,QνS) : u : L → {0, 1}, u(i) = uν(i) on L \Qν(1−δ)S

}
, (2)

where

uν(x) =

{
1 〈x, ν〉 ≥ 0 ,

0 〈x, ν〉 < 0 .

Here, QνS is a cube with side-length S orientation in direction ν ∈ Sd−1. In the case L = Z2,
ci,j = 1 if |i− j| = 1 and ci,j = 0 otherwise, we have that ϕ(ν) = 2‖ν‖1, see Figure 2.

The goal of this article is to investigate the energy density ϕ. In particular we show, that for
finite interaction range ci,j , that is there exists R > 0 such that ci,j = 0 if |i− j| > R, then ϕ is
crystalline. This means that the solution to

min

{∫
∂∗A

ϕ(νA(x)) dHd−1 : |A| = 1

}
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Figure 2. The energy density in the case of nearest neighbor interactions on Z2

is a convex polyhedron [30]. The finite range of interaction is crucial. Indeed, example 2.8 shows
that for infinite range interactions this is in general not true. In [15, 16] it is shown that, as the
periodicity T of the interactions tends to +∞, it is possible to approximate any norm as surface
energy density satisfying suitable growth conditions. We refer to [2] for a random setting where
it is shown that an isotropic energy density (and thus non-crystalline) can be obtained in the
limit.

The proof of the crystallinity in the case of finite range interactions relies on the following
alternative representation result of the density, proven in Proposition 2.6. Namely, we prove
that

ϕ(ν) =
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 is T -periodic} . (3)

This representation formula is reminiscent of the representation formula of the energy density
of integral functionals obtained via homogenization of T -periodic integral functionals in W 1,p

[14]. To motivate this, consider the positively 1-homogeneous extensions of Eε defined by

Fε(u) =
∑
i,j∈εL

εd−1cεi,j(u(i)− u(j))+ ,

for u : εL → R. The Γ-limit F0 of the above sequence is clearly positively 1-homogeneous and
convex as the sequence of functionals satisfies these properties. Thus, F0 admits an integral
representation of the form

F0(u) =

∫
f0(∇u) dx+

∫
f0

(
dDsu

d|Dsu|

)
d|Dsu| ,

where f0 : Rd → Rd is convex and positively 1-homogeneous, see [13]. (We like to stress however,
that this integral representation for the spin energies considered above is not proven in the
literature) Here, the important point is that the density of the singular part and the density of
absolutely continuous parts agree. In the continuous setting, in [23, 26] it has been shown that
for continuous and convex densities, that satisfy a coarea formula, the Γ-convergence of sets of
finite perimeter or in the space of BV -functions is equivalent. Thus also in their setting, the
densities agree. The density of the absolutely continuous part can be calculated via (3). This
property eventually allows us to express ϕ via (3) since the density of the absolutely continuous
part can be calculated via (3) and the density of the singular part agrees with the energy density
in (2), see Proposition 2.6. Using convex duality (see [40]) and using (3) we show in Theorem
2.7 that ϕ is crystalline, and estimate an upper bound on the number of extreme points of the
corresponding Wulff shape. We would like to stress that (3) is not only a useful tool in our proof
but it can be used also for computational purposes as it is a finite and not an asymptotic cell
formula.
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The paper is organized as follows. In Section 2 we describe the mathematical setting and
state the main theorems of our paper. In Section 3 we prove Proposition 2.6, the alternate
representation formula for ϕ. In Section 4 we show that, in the case of finite range interactions,
the density ϕ is always crystalline. We present some numerical simulations of our findings in
the last chapter.

2. Setting of the problem and statement of the main result

2.1. Notation. We denote by B(Rd) the collection of all Borel-Sets in Rd. For every A ⊂ Rd
we denote by |A| its d-dimensional Lebesgue measure. Given r > 0, we denote by (A)r := {x ∈
Rd : dist(x,A) < r} the r-neighbourhood of A. Given τ ∈ Rd, we set A+ τ := {x+ τ : x ∈ A}.
The set Sd−1 := {ν ∈ Rd : |ν| = 1} is the set of all d-dimensional unit vectors. For v, w ∈ Rd we
denote by 〈v, w〉 their scalar product. We denote by {e1, . . . , ed} ⊂ Rd the standard orthonormal
basis of Rd. Given C ⊂ Rd convex, we denote by extreme(C) its extreme points. Given ρ > 0, we
denote by Qρ := [−ρ/2, ρ/2)d the half open cube centred in 0 with side-length ρ. For ν ∈ Sd−1,
we set Qνρ := RνQρ, where Rν is a rotation such that Rνed = ν. Furthermore, given x ∈ Rd we

set Qνρ(x) := x+Qνρ (resp. Qρ(x) = x+Qρ). Given x ∈ Rd and r > 0 we denote by Br(x) the

open ball with radius r > 0 and center x. We denote by ωd the volume of the unit ball in Rd.
Given ν ∈ Sd−1 we define

uν(x) :=

{
1 if 〈ν, x〉 ≥ 0 ,

0 otherwise.
(4)

For z ∈ R we denote by (z)+ := max{z, 0} the positive part of z.

2.2. Discrete energies and homogenized surface energy density. In this paragraph we
define the discrete energies we want to consider and the main object of homogenized surface
energy density.

Let L ⊂ Rd satisfy the following two conditions:

(S1) (Discreteness) There exists c > 0 such that for all x ∈ L there holds

dist(x,L \ {x}) ≥ c .

(S2) (Periodicity) There exists T ∈ N such that for all z ∈ Zd there holds

L+ Tz = L .

Note that the two assumptions (S1) and (S2) include multi-lattices, such as the hexagonal
closed packing in three dimensions, and bravais lattices, such as Zd, or the face centred cubic
lattice in three dimensions.

We consider interaction coefficients ci,j : L×L → [0,+∞) and the corresponding (localized)
ferromagnetic spin energies of the form

E(u,A) :=
∑

i∈L∩A

∑
j∈L

ci,j(u(i)− u(j))+ , (5)

where u : L → R and A ∈ B(Rd). If A = Rd we omit the dependence on the set and write
E(u) := E(u,Rd). We want to remark that we are considering interactions on the directed
graph instead of the undirected graph.

We introduce the following three hypothesis on the interaction coefficients ci,j : L × L →
[0,+∞) hold true:
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(H1) (Periodicity) There holds

ci+Tz,j+Tz = ci,j

for all i, j ∈ L, z ∈ Zd.

(H2) (Decay of Interactions) For all i ∈ L there holds∑
j∈L

ci,j |i− j| < +∞ .

(H3) (Finite Range Interactions) There exists R > 1 such that

ci,j = 0

for all i, j ∈ L such that |i− j| ≥ R.

It is obvious, that hypothesis (H3) implies hypothesis (H2). Note that, if (H1) and (H2) are
satisfied then

max
i∈L

∑
j∈L

ci,j |i− j| = max
i∈L∩QT

∑
j∈L

ci,j |i− j| < +∞

and for all R > 0, there exists CR > 0 such that CR → 0 as R→ +∞ and

max
i∈L

∑
j∈L
|i−j|≥R

ci,j |i− j| ≤ CR .

Definition 2.1. Let ci,j satisfy (H1) and (H2). We then define the homogenized surface energy
density ϕ : Rd → [0,+∞) as the convex positively homogeneous function of degree one such
that for all ν ∈ Sd−1 we have

ϕ(ν) := lim
δ→0

lim
S→+∞

1

Sd−1
inf
{
E(u,QνS) : u : L → {0, 1}, u(i) = uν(i) on L \Qν(1−δ)S

}
(6)

with uν defined in (4).

Remark 2.2. The definition above can be interpreted as a passage from discrete to continuum
description as follows. Given ε > 0, we consider the scaled energies

Eε(u) :=
∑
i∈L

∑
j∈L

εd−1ci,j(u(εi)− u(εj))+ ,

where u : εL → {0, 1}. Upon identifying u with its piecewise-constant interpolation, we can
regard these energies to be defined on L1

loc(Rd). We know that their Γ-limit is infinite outside
the space BVloc(Rd), where it has the form

E0(u) :=

∫
∂∗{u=1}

ϕ(ν) dHd−1

with ϕ given by (6).1 Here, ∂∗{u = 1} denotes the reduced boundary of the set {u = 1} and
Hd−1 denotes the (d− 1)-dimensional Hausdorff measure in Rd (cf. [4], Chapters 2.8 and 3.5).

Remark 2.3. Testing with uν in (6), using (S1) and (H2), it is easy to see that ϕ(ν) ≤ C for all
ν ∈ Sd−1. Therefore, due to the convexity and the fact that it is a positively one homogeneous
function of degree one, ϕ is continuous.

1Actually, the integral representation for the Γ-limit has only been shown for undirected graphs. However, a
slight modification of the proof shows that it is still true for directed graphs.
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2.3. Statement of the main result. In this section we state the main result.

Definition 2.4. Given ϕ : Rd → [0,+∞) convex, positively homogeneous of degree one, we
define the Wulff set of ϕ by

Wϕ := {ζ ∈ Rd : 〈ζ, ν〉 ≤ ϕ(ν) for all ν ∈ Sd−1} .
We say that ϕ is crystalline, if Wϕ is a polytope.

Remark 2.5. From the definition of the Wulff set, it is clear that

ϕ(ν) = sup
ζ∈Wϕ

〈ν, ζ〉 .

Furthermore, one can check, that if ϕ is crystalline, then the set {ϕ ≤ 1} is a polytope.

The next proposition shows that with our proof, we obtain a finite cell formula in order
to calculate ϕ instead of the asymptotic one, given in (6). We think that this result in itself
is interesting, since it allows for calculations on finite size systems in order to compute ϕ for
general Ising-systems. This result is in spirit very close to [9, 13], where convex and positively
1-homogenous continuum energies are considered. In this case, the surface energy density and
the energy with respect to the absolutely continuous part coincide.

Proposition 2.6. Let ci,j : L×L → [0,+∞) be interaction coefficients such that (H1) and (H2)
hold true. Then

ϕ(ν) =
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 is T -periodic} . (7)

Theorem 2.7. Let ci,j : L × L → [0,+∞) be interaction coefficients such that (H1) and (H3)
hold true. Then, the homogenized surface energy density ϕ is crystalline. Denote by

N := #{(i, j) ∈ L ∩QT × L : ci,j 6= 0} .
Then,

#extreme(Wϕ) ≤ 2N .

The next example shows that without assumption (H2) Theorem 2.7 fails to hold true.

Example 2.8. To construct the example we first observe that if f : Rd → [0,+∞) is crystalline,
then D2f is a Radon-measure with support contained in finitely many hyper-planes. To see this,
note that if f : Rd → [0,+∞) is crystalline, then there exist {ξk}Nk=1 ⊂ Rd such that

f(ν) = max
1≤k≤N

〈ξk, ν〉 .

Here, we assume that {ξk}Nk=1 is chosen minimal, i.e. ξk 6= λξj for some λ > 0 and for some
j 6= k. This assumption ensures that all the vectors ξk play an active role in the definition of f .
Now, Df ∈ BVloc(Rd;Rd) is given by

Df(ν) =

N∑
k=1

χVk(ν)ξk , where Vk =
{
ν ∈ Rd : f(ν) = 〈ξk, ν〉

}
.

Then

D2f(ν) =
∑

1≤k<j≤N

(ξk − ξj)⊗ νkjHd−1b∂Vk∩∂Vj ,

where ∂Vk ∩ ∂Vj =
{
ν ∈ Rd : f(ν) = 〈ξk, ν〉 = 〈ξj , ν〉

}
. and νkj ∈ Sd−1 denotes the normal

pointing towards the set Vk.
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Let now L = Zd and ci,j = cj−i = ci−j (in the following denoted by {cξ}ξ∈Zd) be such that

cξ > 0 for all ξ ∈ Zd and ∑
ξ∈Zd

cξ|ξ| < +∞ .

It is then obvious that ci,j is 1-periodic, (H1) and (H2) hold true, but (H3) is violated. Therefore,
due to Proposition 2.6, we have

ϕ(ν) =
∑
ξ∈Zd

cξ|〈ξ, ν〉| .

This is true, since the only admissible functions in the minimum problem given by Proposition
2.6 are uν(i) = 〈ν, i〉+ c for some c ∈ R. We claim that

Dϕ(ν) =
∑
ξ∈Zd

sign(〈ξ, ν〉) cξ ξ ,

where sign: R→ R is defined by

sign(t) =

{
1 t ≥ 0;

−1 t < 0.

Therefore

D2ϕ = 2
∑
ξ∈Zd

cξξ ⊗
ξ

|ξ|
Hd−1b{ν : 〈ξ,ν〉=0} . (8)

This can be seen by approximation. Consider ϕR : Rd → R defined by

ϕR(ν) =
∑
ξ∈Zd
|ξ|≤R

cξ|〈ξ, ν〉| , DϕR(ν) =
∑
ξ∈Zd
|ξ|≤R

sign(〈ξ, ν〉) cξ ξ ,

Then

D2ϕR = 2
∑
ξ∈Zd
|ξ|≤R

cξξ ⊗
ξ

|ξ|
Hd−1b{ν : 〈ξ,ν〉=0} .

Now

|D2ϕR|(Br) ≤ Crd−1
∑
ξ∈Zd

cξ|ξ| ,

so the total variation of D2ϕR is (locally) uniformly bounded with limiting measure D2ϕ and
DϕR → Dϕ in L1

loc(Rd;Rd), actually weakly in BV . Hence, (8) is shown. Now, since cξ > 0
for all ξ ∈ Zd it is obvious that D2ϕ is not supported on finitely many hyper-planes. Thus ϕ
cannot be crystalline.

Note that ϕ is differentiable in totally irrational directions.2 A similar property is known to
hold, in the continuous setting [5, 24], for homgenized surface tensions. We can state a result
showing that this is still the case in the discrete setting, under assumptions (H1) and (H2).

Proposition 2.9. Under the assumptions of Proposition 2.6, ϕ is differentiable in any totally
irrational direction.

2p is totally irrational if there is no q ∈ Zd \ {0} such that 〈q, p〉 = 0.
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It is expected that it should be, “in general”, not differentiable in the other directions, at least
whenever the minimizers u in (7) are constant on an infinite set, however the proofs in [5, 24]
rely on ellipticity properties of the problem and are less easy to transfer to the discrete case.
The proof of Proposition 2.9, which mimicks the proof in [24], is postponed to Section 5, and
relies on the dual representation (100) introduced later on.

3. Proof of Proposition 2.6

This section is devoted to the proof of Proposition 2.6. We assume throughout this section
that assumptions (S1), (S2) and (H1), (H2) are satisfied. The proof consists in showing that ϕ
can be characterized by several (equivalent) cell-formulas and therefore passing from (6) to (7).

First, we will state and prove some elementary properties of E that will be used throughout
this section.

Lemma 3.1. Let A ∈ B(Rd).

(i) Let |A| > 1 and ν ∈ Rd. Then

E(〈ν, ·〉, A) ≤ C|ν||(A)c| .
(ii) Let u : L → R. For all t ∈ R, λ > 0 there holds

E(λu+ t, A) = λE(u,A)

and u 7→ E(u,A) is convex. In particular,

E(u+ v,A) ≤ E(u,A) + E(v,A)

for all u, v : L → R.
(iii) Let u : L → R and B ∈ B(Rd) be such that A ⊂ B. Then

E(u,A) ≤ E(u,B) .

(iv) Let u : L → R and B ∈ B(Rd) be such that A ∩B = ∅ . Then

E(u,A ∪B) = E(u,A) + E(u,B) .

(v) There holds

#{i ∈ L ∩A} ≤ 1

cdωd
|(A)c| ,

where c is given by (S1).
(vi) Let u : L → R. Then, the function τ 7→ E(u(· − τ), A+ τ) is T -periodic.

Proof. We start by proving (ii)-(iv) in Step 1, then (v) and (vi) in Step 2 and Step 3 respectively,
and finally (i) in Step 4.

Step 1.(Proof of (ii) - (iv)) All the three statements are a direct consequence of (5) and the
fact that ci,j ≥ 0.

Step 2. (Proof of (v)) Note that ⋃
i∈L∩A

Bc(i) ⊂ (A)c

and therefore, due to (S1),

cdωd#{i ∈ L ∩A} =

∣∣∣∣∣ ⋃
i∈L∩A

Bc(i)

∣∣∣∣∣ ≤ |(A)c| .



CRYSTALLINITY OF THE HOMOGENIZED ENERGY DENSITY 9

This is the claim.

Step 3.(Proof of (vi)) Let u : L → R and z ∈ Zd. Then, using (H1) and (S1),

E(u(· − Tz), A+ Tz) =
∑

i∈L∩(A+Tz)

∑
j∈L

ci,j(u(i− Tz)− u(j − Tz))+

=
∑

i∈L∩A

∑
j∈(L+Tz)

ci+Tz,j+Tz(u(i)− u(j))+

=
∑

i∈L∩A

∑
j∈L

ci,j(u(i)− u(j))+ = E(u,A) .

Step 4.(Proof of (i)) Let S > 1 and ν ∈ Rd, then, due to (v), the fact that S > 1, (S1),
(S2),(H1), and (H2), we have

E(〈ν, ·〉, A) =
∑

i∈L∩A

∑
j∈L

ci,j |〈ν, i− j〉| ≤ |ν|#{i ∈ L ∩A}max
i∈L

∑
j∈L

ci,j |i− j| ≤ C|ν||(A)c| .

�

Lemma 3.2. Let S > 0 and ν ∈ Sn−1. Then

inf
{
E(u,QνS) : u : L → R, u(i) = uν(i) on L \Qν(1−δ)S

}
= inf

{
E(u,QνS) : u : L → {0, 1}, u(i) = uν(i) on L \Qν(1−δ)S

}
.

Proof. We divide the proof into two steps. We first show that the left hand side is smaller or
equal than the right hand side and then we show the right hand side is smaller or equal than
the left hand side.

Step 1. (Proof of ’≤’) This inequality is clear, since the infimum on the left hand side is
taken over a larger class of functions.

Step 2. (Proof of ’≥’) Let us take u : L → R such that u = uν on Rd \Qν(1−δ)S . It suffices

to construct u0 : L → {0, 1} such that u0 = uν on Rd \Qν(1−δ)S and

E(u0, Q
ν
S) ≤ E(u,QνS) . (9)

We prove this inequality by induction on N = #codomain(u). If N = 2, then we must have
codomain(u) = {0, 1} and there is nothing to prove. Suppose that #codomain(u) = N +1, with
N ≥ 2. Since

E((u ∧ 1) ∨ 0, QνS) ≤ E(u,QνS) ,

we can suppose that codomain(u) ⊂ [0, 1] We can write codomain(u) = {ak : k = 0, . . . , N}
with 0 = a0 < a1 < . . . , aN = 1. Let

u =

N∑
k=1

akχEk , with

N⋃
k=0

Ek = Rd ,

{x : 〈ν, x〉 ≥ 0} \ Qν(1−δ)S ⊂ EN , and {x : 〈ν, x〉 < 0} \ Qν(1−δ)S ⊂ E0 so that u(i) = uν(i) on

L \Qν(1−δ)S . We define

u′ =

N∑
k=2

akχEk , and u′′ =

N∑
k=2

akχEk + a2χE1
. (10)
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Note that both u′(i) = u′′(i) = uν(i) on L \Qν(1−δ)S . Furthermore, we have that

E(u′, QνT ) = E(u,QνT ) + a1

 N∑
k=2

∑
i∈L∩Ek

∑
j∈L∩E1

ci,j −
∑

i∈L∩E0

∑
j∈L∩E1

ci,j


and

E(u′′, QνT ) = E(u,QνT ) + (a1 − a2)

 N∑
k=2

∑
i∈L∩Ek

∑
j∈L∩E1

ci,j −
∑

i∈L∩E0

∑
j∈L∩E1

ci,j

 .

Hence, either E(u′, QνS) ≤ E(u,QνS) or E(u′′, QνS) ≤ E(u,QνS). Since, by (10), u′, u′′ : L →
#codomain(u) \ {a1} inequality (9) is true by induction. This concludes the proof. �

Let φ : Rd → [0,+∞] be defined by

φ(ν) = lim
δ→0

lim
S→+∞

1

Sd
inf
{
E(u,QS) : u : L → R, u(i) = 〈ν, i〉 on L \Q(1−δ)S

}
. (11)

φper : Rd → [0,+∞] is defined by

φper(ν) = lim
k→+∞

1

(kT )d
inf {E(u,QkT ) : u : L → R, u(·)− 〈ν, ·〉 is (kT )-periodic} . (12)

The following lemma uses a standard cutoff-argument. However, due to the infinite range of
interactions, the finite scale arguments need to be adapted.

Lemma 3.3. Let ν ∈ Rd. Then

φper(ν) = φ(ν) .

Proof. In order to prove the Lemma, we show first φper(ν) ≤ φ(ν) and then the reverse inequality.
In order to do so, we modify competitors of the respective cell formulas in order to obtain a
competitor for the other formula.

Due to the one homogeneity of both functions, we may assume that ν ∈ Sd−1.

Step 1.(Proof of ’≤’) Since, in the definition of φper(ν), (resp. φ(ν)), the limit exists3 we can
assume without loss of generality that S = kT for some k ∈ N with k large. Let δ > 0 and let
uδk : L → R be such that uδk(i) = 〈ν, i〉 on L \Q(1−δ)kT and

E(uδk, QkT ) = inf
{
E(u,QkT ) : u : L → R, u(i) = 〈ν, i〉 on L \Q(1−δ)kT

}
. (13)

We assume that

||uδk||L∞(Q(1+δ)kT ) ≤ 2kT . (14)

If that were not true we perform the following construction with ũδk(i) = (uδk(i)∨(−2kT ))∧(2kT ).
Note that still ũδk(i) = 〈ν, i〉 on Q(1+δ)kT for δ small enough. We define vδk : L → R by setting

vδk(i0 + kTz) = uδk(i0) + 〈ν, kTz〉 if i0 ∈ QkT , z ∈ Zd . (15)

We claim that

|vδk(i)− vδk(j)| ≤ CkT + |i− j| . (16)

3The existence of the limit of φper is a direct consequence of Lemma 3.4 whereas for φ it follows by classical

subadditivity arguments.
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To see this note for i = i0 + Tkz, j = j0 + Tkz′, i0, j0 ∈ QkT , z, z′ ∈ Zd, due to (15) and (14),
we have

|vδk(i)− vδk(j)| = |uδk(i0)− uδk(j0) + 〈ν, kT (z − z′)〉| ≤ |uδk(i0)|+ |uδk(j0)|+ |kT (z − z′)|
≤ CkT + |i− j|+ |i0|+ |j0| ≤ CkT + |i− j| .

Clearly, vδk(·)− 〈ν, ·〉 is (kT )-periodic. Let us check that

vδk(i) = vδk(i) for i ∈ Q(1+δ)kT . (17)

This holds true for i ∈ QkT . It remains to be checked for i ∈ Q(1+δ)kT \ QkT . Let i ∈
Q(1+δ)kT \ QkT , i.e. i = kTz + i0, where i0 ∈ QkT and ||z||∞ = 1. Let n ∈ {1, . . . , d} be such
that |in| = ||i||∞. Furthermore, let us assume for now that in ≥ 0 and therefore, zn = 1. Since
i ∈ Q(1+δ)Tk we have in < (1 + δ)Tk/2. Hence

(i0)n = in − kTzn < (1 + δ)Tk/2− kT = (−1 + δ)Tk/2 .

Hence i0 ∈ L\Q(1−δ)kT (The case that in < 0 is done analogously - note that QkT is defined as
the half-open cube centred in 0. Hence, we need to make this distinction.). Therefore, by (15)
and the definition of uδk in L \Q(1−δ)kT ,

vδk(i) = vδk(i0 + kTz) = vδk(i0) + 〈ν, kTz〉 = uδk(i0) + 〈ν, kTz〉 = 〈ν, i0〉+ 〈ν, kTz〉 = uδk(i) .

Hence, (17) holds true. Additionally,

inf {E(u,QkT ) : u : L → R, u(·)− 〈ν, ·〉 is (kT )-periodic} ≤ E(vδk, QkT ) . (18)

We are finished with Step 1 if we prove

E(vδk, QkT ) ≤ E(uδk, QkT ) +
Ck
δ

(kT )d , (19)

where Ck → 0 as k → +∞. In fact, using (13), (18), (19), dividing by (kT )d, and letting
k → +∞, we obtain the claim. Let us prove (19). We have, using (17),

E(vδk, QkT ) =
∑

i∈L∩QkT

∑
j∈L

ci,j(v
δ
k(i)− vδk(j))+

=
∑

i∈L∩QkT

∑
j∈L∩Q(1+δ)kT

ci,j(v
δ
k(i)− vδk(j))+ +

∑
i∈L∩QkT

∑
j∈L\Q(1+δ)kT

ci,j(v
δ
k(i)− vδk(j))+

≤ E(uδk, QkT ) +
∑

i∈L∩QkT

∑
j∈L

|i−j|≥δkT/2

ci,j |vδk(i)− vδk(j)| .

Hence, in order to show (19), it remains to prove

∑
i∈QkT

∑
j∈L

|i−j|≥δkT/2

ci,j |vδk(i)− vδk(j)| ≤ Ck
δ

(kT )d . (20)
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Using (16), (H2), and Lemma 3.1(v), we have∑
i∈L∩QkT

∑
j∈L

|i−j|≥δkT/2

ci,j |vδk(i)− vδk(j)| ≤
∑

i∈L∩QkT

∑
j∈L

|i−j|≥δkT/2

ci,j(CkT + |i− j|)

≤
(
C

δ
+ 1

) ∑
i∈L∩QkT

∑
j∈L

|i−j|≥δkT/2

ci,j |i− j|

≤ C

δ
# (L ∩QkT ) max

i∈L

∑
j∈L

|i−j|≥δkT/2

ci,j |i− j| ≤
Ck
δ

(kT )d ,

where Ck → 0 as k → +∞. This yields (20) and therefore the claim of Step 1.

Step 2.(Proof of ’≥’) Let uk : L → R be such that uk(·)− 〈ν, ·〉 is (kT )-periodic and

E(uk, QkT ) = inf {E(u,QkT ) : u : L → R, u(·)− 〈ν, ·〉 is (kT )-periodic}

Fix S ∈ N such that S = mkT >> kT for some m ∈ N,m >> 1. Since uk(·) − 〈ν, ·〉 is
(kT )-periodic, we have

E(uk, QkT (x0)) = E(uk, QkT ) for all x0 ∈ kTZd

and therefore

E(uk, QS) =
Sd

(kT )d
E(uk, QkT ) . (21)

There exists a constant Ck > 0 (we omit the dependence on T ) such that, due to the fact that
uk(·)− 〈ν, ·〉 is (kT )-periodic, there holds

max
i∈L
|uk(i)− 〈ν, i〉| = max

i∈L∩QkT
|uk(i)− 〈ν, i〉| ≤ Ck . (22)

Let ϕS ∈ C∞c (Rd) be a cut-off function such that

ϕS(x) = 1 for x ∈ Q(1−3δ)S , ϕS(x) = 0 for x ∈ Rd \Q(1−2δ)S , and ||∇ϕS ||∞ ≤ C−1
k .

Define uS : L → R by

uS(i) = ϕS(i)uk(i) + (1− ϕS(i))〈ν, i〉 .

Then, uS(i) = 〈ν, i〉 for i ∈ L \Q(1−δ)S and therefore

inf
{
E(u,QS) : u : L → R, u(i) = 〈ν, i〉 on L \Q(1−δ)S

}
≤ E(uS , QS) . (23)

For all i, j ∈ L there holds

uS(i)− uS(j) = ϕS(i) (uk(i)− uk(j)) + (1− ϕS(i))〈ν, i− j〉+ (ϕS(i)− ϕS(j))(uk(i)− 〈ν, i〉) ,

which, together with (22), implies for all i, j ∈ L

(uS(i)− uS(j))+ ≤ (uk(i)− uk(j))+ + |i− j|+ C−1
k |uk(i)− 〈ν, i〉||i− j|

≤ (uk(i)− uk(j))+ + C|i− j| .
(24)

and

(uS(i)− uS(j))+ = (uk(i)− uk(j))+ for all i, j ∈ Q(1−3δ)S . (25)
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Using (21), (24), and (25), we obtain

E(uS , QS) ≤
∑

i∈L∩QS

∑
j∈L

ci,j(uk(i)− uk(j))+ + C
∑

i∈L∩Q(1−6δ)S

∑
j∈L\Q(1−3δ)S

ci,j |i− j|

+ C
∑

i∈L∩QS\Q(1−6δ)S

∑
j∈L

ci,j |i− j|

=
Sd

(kT )d
E(uk, QkT ) + C

∑
i∈L∩Q(1−6δ)S

∑
j∈L\Q(1−3δ)S

ci,j |i− j|

+ C
∑

i∈L∩QS\Q(1−6δ)S

∑
j∈L

ci,j |i− j| .

(26)

We show that ∑
i∈L∩Q(1−6δ)S

∑
j∈L\Q(1−3δ)S

ci,j |i− j| ≤ CSSd , (27)

where CS → 0 as S → +∞. Furthermore, we show that∑
i∈L∩QS\Q(1−6δ)S

∑
j∈L

ci,j |i− j| ≤ CδSd . (28)

Note that from (27) and (28) we obtain the claim of Step 2 by using (23), (26), dividing by Sd,
letting first S → +∞, then k → +∞ and lastly δ → 0.

We first prove (27). Note that, for S big enough, due to (H2) and Lemma 3.1(v), we have∑
i∈L∩Q(1−6δ)S

∑
j∈L\Q(1−3δ)S

ci,j |i− j| ≤
∑

i∈L∩Q(1−6δ)S

∑
j∈L

|i−j|≥δS

ci,j |i− j|

≤ #(L ∩QS) max
i∈L

∑
j∈L

|i−j|≥δS

ci,j |i− j|

≤ CSSd ,

where CS → 0 as S → +∞. Next, we show (28). Using (H2), and Lemma 3.1(v), we obtain∑
i∈L∩QS\Q(1−6δ)S

∑
j∈L

ci,j |i− j| ≤
∑

i∈L∩QS\Q(1−6δ)S

∑
j∈L

ci,j |i− j|

≤ #(L ∩QS \Q(1−6δ)S) max
i∈L

∑
j∈L

ci,j |i− j|

≤ CδSd .

This is (28) and hence the claim of Step 2. �

The next Lemma shows that, using periodic boundary conditions, one can reduce from an
asymptotic cell formula to a finite cell formula.

Lemma 3.4. Let ν ∈ S1. For all k ∈ N there holds
1

(kT )d
inf {E(u,QkT ) : u : L → R, u(·)− 〈ν, ·〉 is (kT )-periodic}

=
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 is T -periodic} .

(29)
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In particular

φper(ν) =
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 is T -periodic} . (30)

Proof. We split the proof into two steps by first observing the (obvious) inequality that the
right hand side in (29) is less than or equal to the left hand side. Then, we prove the converse
inequality by using a superposition argument.

Step 1.(Proof of ’≤’) Let u : L → R be such that u(·)− 〈ν, ·〉 is T -periodic and

E(u,QT ) = inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 is T -periodic} . (31)

Then, since u(·) − 〈ν, ·〉 is T -periodic, we have E(u,QT (z)) = E(u,QT ) for all z ∈ Zd. For
m ∈ {0, . . . , k − 1}d set

zkm = T

(
m− k − 1

2
~1

)
,

where ~1n = 1 for all n = 1, . . . , d. It is easy to check that QT (zkm) ⊂ QkT for all m ∈
{0, . . . , k − 1}d. Hence, using (31), we obtain

E(u,QkT ) ≤
∑

m∈{0,...,k−1}d
E(u,QT (zkm)) = kdE(u,QT )

= inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 is T -periodic} .

Noting that u(·)− 〈ν, ·〉 is (kT )-periodic we obtain the desired inequality.

Step 2.(Proof of ’≥’) Let uk : L → R be such that u(·) − 〈ν, ·〉 is (kT )-periodic. Define
uT : L → R by

uT (i) =
1

kd

∑
z∈{0,...,k−1}d

uk(i+ Tz) .

Let us first check that uT (·)− 〈ν, ·〉 is T -periodic. By definition, for n ∈ {1, . . . , d} there holds

uT (i+ Ten)− ν(i+ Ten) =
1

kd

∑
z∈{0,...,k−1}d

uk(i+ Tz + Ten)− 〈ν, i+ Ten〉

We now split the sum to obtain

uT (i+ Ten)− ν(i+ Ten)

=
1

kd

∑
z′∈{0,...,k−1}d
zn∈{0,...,k−2}

uk(i+ Tz + Ten) +
1

kd

∑
z′∈{0,...,k−1}d

zn=k−1

(uk(i+ Tz + Ten)− k〈ν, Ten〉)− 〈ν, i〉 .

(32)

For the first term in the sum, shifting the indices, we obtain

1

kd

∑
z′∈{0,...,k−1}d
zn∈{0,...,k−2}

uk(i+ Tz + Ten) =
1

kd

∑
z′∈{0,...,k−1}d
zn∈{1,...,k−1}

uk(i+ Tz) . (33)
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For the second term in the sum, we obtain, due to the fact that u(·)− 〈ν, ·〉 is (kT )-periodic,

1

kd

∑
z′∈{0,...,k−1}d

zn=k−1

(uk(i+ Tz + Ten)− k〈ν, Ten〉)

=
1

kd

∑
z′∈{0,...,k−1}d

zn=k−1

(uk(i+ T (z′, 0) + kTen)− 〈ν, i+ T (z′, 0) + kTen〉+ 〈ν, i+ T (z′, 0)〉)

=
1

kd

∑
z′∈{0,...,k−1}d

zn=k−1

uk(i+ T (z′, 0)) =
1

kd

∑
z′∈{0,...,k−1}d

zn=0

uk(i+ Tz) .

Using this together with (32) and (33), we get

uT (i+ Ten)− ν(i+ Ten) =
1

kd

∑
z′∈{0,...,k−1}d
zn∈{1,...,k−1}

uk(i+ Tz) +
1

kd

∑
z′∈{0,...,k−1}d

zn=0

uk(i+ Tz)− 〈ν, i〉

=
1

kd

∑
z′∈{0,...,k−1}d

uk(i+ Tz)− 〈ν, i〉 = uT (i)− 〈ν, i〉 .

This shows that in fact uT (·)− 〈ν, ·〉 is T -periodic. Hence

inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 is T -periodic} ≤ E(uT , QT ) (34)

Now, using the convexity of E (cf. Lemma 3.1(ii)) , we obtain

E(uT , QT ) ≤ 1

kd

∑
z∈{0,...,k−1}d

E(uk(·+ Tz), QT ) =
1

kd
E(uk, QkT ) .

Note that uk : L → R is such that uk(·) − 〈ν, ·〉 is (kT )-periodic and arbitrary. This together
with (34) yields the claim. Equation (30) follows from Step 1, Step 2, and the definition of φper,
see (12). �

Let ψ : Rd → [0,+∞] be defined as the positively homogeneous function of degree one that
for ν ∈ Sd−1 is defined by

ψ(ν) = lim
δ→0

lim
S→+∞

1

Sd
inf
{
E(u,QνS) : u : L → R, u(i) = 〈ν, i〉 on L \Qν(1−δ)S

}
. (35)

Lemma 3.5. ψ : Rd → [0,+∞] satisfies the following properties:

(i) There exists C > 0 such that ψ(ν) ≤ C|ν| for all ν ∈ Rd ,
(ii) ψ is a continuous function.

Proof. We divide the proof into two steps. We first prove (i) and then (ii). Throughout the
proofs let 1� S.

Step 1.(Proof of (i)) Let ν ∈ Sd−1 it suffices to prove

ψ(ν) ≤ C .
The general case then follows by one-homogeneity. In order to prove (i) we insert u(i) = 〈ν, i〉
for all i ∈ L as a competitor in the cell formula. Using Lemma 3.1(i), we then have

E(u,QνS) = E(〈ν, ·〉, QνS) ≤ C|ν||(QS)c| ≤ CSd .

Dividing by Sd and letting S → +∞ yields the claim.
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Step 2.(Proof of (ii)) Due to the one-homogeneity, it suffices to consider the case where
ν1, ν2 ∈ Sd−1. Let η > 0 and ν1, ν2 ∈ Sd−1 be such that |ν1 − ν2| ≤ η. Our goal is to prove that
there exists C > 0 independent of ν1 and ν2 such that

|ψ(ν1)− ψ(ν2)| ≤ Cη . (36)

We only prove

ψ(ν1)− ψ(ν2) ≤ Cη , (37)

since then (36) follows by exchanging ν1 and ν2 in (37). To this end let δ > 0 small enough,
S > 0 big enough, u1 : L → R be such that u1(i) = 〈ν1, i〉 on L \Qν(1−δ)S and

1

Sd
E(u1, Q

ν1
S ) ≤ ψ(ν1) + η . (38)

We assume that

||u1||L∞(Q
ν1
S ) ≤ S . (39)

If this were not the case, we consider

ũ1(i) =

{
(u1(i) ∧ S) ∨ (−S) i ∈ Qν12S ,

u1(i) otherwise.

Note that for i, j ∈ Qν12S , due to truncation, (ũ1(i) − ũ1(j))+ ≤ (u1(i) − u1(j))+, whereas in
general there holds |ũ1(i)− ũ1(j)| ≤ CS + |i− j|. From this, using Lemma 3.1(v) and (H2), we
deduce

E(ũ1, Q
ν1
S ) =

∑
i∈L∩Qν1S

∑
j∈L∩Qν12S

ci,j(ũ1(i)− ũ1(j))+ +
∑

i∈L∩Qν1S

∑
j∈L\Qν12S

ci,j(ũ1(i)− ũ1(j))+

≤
∑

i∈L∩Qν1S

∑
j∈L∩Qν12S

ci,j(u1(i)− u1(j))+ + C
∑

i∈L∩Qν1S

∑
j∈L

|i−j|≥S/2

ci,j |i− j|

≤ E(u1, Q
ν1
S ) + C#(L ∩Qν1S ) max

i∈L

∑
j∈L

|i−j|≥S/2

ci,j |i− j| ≤ E(u1, Q
ν1
S ) + CSS

d ,

where CS → 0 as S →∞. In particular CS ≤ η for S big enough. Hence, we can assume (39).

There exists C > 0 such that for S̃ = (1 +Cη)S there holds Qν2
(1−δ)S̃ ⊃ Q

ν1
(1+δ)S . We now define

u2 : L → R by

u2(i) = 〈ν2 − ν1, i〉+ u1(i) . (40)

First, note that u2(i) = 〈ν2, i〉 for all i ∈ L \Qν2
(1−δ)S̃ and therefore

inf
{
E(u,Qν2

S̃
) : u : L → R, u(i) = 〈ν2, i〉 on L \Qν2

(1−δ)S̃

}
≤ E(u2, Q

ν2
S̃

) . (41)

We claim that

E(u2, Q
ν2
S̃

) ≤ E(u1Q
ν1
S ) +

CS
δ
Sd + CηSd + CδSd , (42)

where CS → 0 as S → +∞. We postpone the proof of (42) and show first how it implies (37).

Dividing (42) by S̃d, letting S̃ (therefore also S) tend to +∞, δ → 0, and using (41) as well as
(38), we get

ψ(ν2) ≤ ψ(ν1) + Cη ≤ ψ(ν1) + Cη .
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This is (37). We now prove (42). Due to Lemma 3.1(ii), there holds

E(u2, Q
ν2
S̃

) ≤ E(u1, Q
ν2
S̃

) + E(〈ν2 − ν1, ·〉, Qν1S̃ ) . (43)

Now, due to Lemma 3.1(i) and the fact that S̃ ≤ 2S, there holds

E(〈ν2 − ν1, ·〉, Qν1S̃ ) ≤ C|ν2 − ν1|Sd ≤ CηSd . (44)

Next, we prove

E(u1, Q
ν2
S̃

) ≤ E(u1, Q
ν1
S ) + CδSd +

CS
δ
Sd , (45)

where CS → 0 as S → +∞. We use Lemma 3.1(iv), to obtain

E(u1, Q
ν2
S̃

) = E(u1, Q
ν1
S ) + E(u1, Q

ν2
S̃
\Qν1S ) .

In order to prove (45) it suffices to prove

E(u1, Q
ν2
S̃
\Qν1S ) ≤ CηSd +

CS
δ
Sd . (46)

To see this we write

E(u1, Q
ν2
S̃
\Qν1S ) =

∑
i∈L∩Qν2

S̃
\Qν1S

∑
j∈L∩Qν1

(1−δ)S

ci,j(u1(i)− u1(j))+

+
∑

i∈L∩Qν2
S̃
\Qν1S

∑
j∈L\Qν1

(1−δ)S

ci,j(u1(i)− u1(j))+ .
(47)

To estimate the first term, note that due to (39), we have |u1(i) − u1(j)| ≤ CS + |i − j|, and
therefore, up to changing C, using (H2), and Lemma 3.1(iv), we get∑
i∈L∩Qν2

S̃
\Qν1S

∑
j∈L∩Qν1

(1−δ)S

ci,j(u1(i)− u1(j))+ ≤ C

δ

∑
i∈L∩Qν2

S̃
\Qν1S

∑
j∈L

|i−j|≥δS/2

ci,j |i− j| (48)

≤ C

δ
#(L ∩Qν2

S̃2
) max
i∈L

∑
j∈L

|i−j|≥δS/2

ci,j |i− j| ≤
CS
δ
Sd .

To estimate the first term, we use the fact that u1(i) = 〈ν1, i〉 on L \Qν1(1−δ)S , and Lemma 3.1

(i), to obtain∑
i∈L∩Qν2

S̃
\Qν1S

∑
j∈L\Qν1

(1−δ)S

ci,j(u1(i)− u1(j))+ ≤ E(〈ν1, ·〉, Qν2S̃ \Q
ν1
S ) ≤ C|ν1||(Qν2S̃ \Q

ν1
S )c| ≤ CηSd .

This together with (47) and (48) implies (46) which in turn, together with (43) and (44) implies
(42) and therefore the conclusion of Step 2. �

Lemma 3.6. φ : Rd → [0,+∞] satisfies the following properties:

(i) There exists C > 0 such that φ(ν) ≤ C|ν| for all ν ∈ Rd ,
(ii) φ is a positively homogeneous function of degree one,

(iii) φ is a continuous function.

Proof. We divide the proof into two steps. We first prove (i) and then (ii). Throughout the
proofs let 1� S.
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Step 1.(Proof of (i) and (ii)) In order to prove (i) we insert u(i) = 〈ν, i〉 for all i ∈ L as a
competitor in the cell formula. Using Lemma 3.1(i), we then have

E(u,QνS) = E(〈ν, ·〉, QνS) ≤ C|ν||(QS)c| ≤ CSd .

Dividing by Sd and letting S → +∞ yields the claim. (ii) follows by using Lemma (3.1)(ii) to
obtain E(λu,QS) = λE(u,QS) for all λ > 0 and by noting that, given ν ∈ Rd, if u : L → R
satisfies u(i) = 〈ν, i〉 on L\Q(1−δ)S , then λu(i) = 〈λν, i〉 on L\Q(1−δ)S . Employing this in (11)
it is easy to see that φ is pos. one homogeneous function.

Step 2.(Proof of (iii)) In order to prove (ii), let ν1, ν2 ∈ Rd. We prove that

|φ(ν1)− φ(ν2)| ≤ C|ν1 − ν2| . (49)

Here, we only prove

φ(ν2)− φ(ν1) ≤ C|ν1 − ν2| , (50)

since then (49) follows by exchanging ν1 and ν2. To this end let u : L → R be such that
u1(i) = 〈ν1, i〉 on L\Q(1−δ)S . We then define u2 : L → R by u2(i) = u1(i)+ 〈ν2−ν1, i〉. Clearly,

inf
{
E(u,QS) : u : L → R, u(i) = 〈ν, i〉 on L \Q(1−δ)S

}
≤ E(u2, QS) . (51)

Now, due to Lemma 3.1(i) and (ii),

E(u2, QS) = E(u1 + 〈ν2 − ν1, ·〉, QS) ≤ E(u1, QS) + E(〈ν2 − ν1, ·〉, QS)

≤ E(u1, QS) + C|ν1 − ν2||(QS)c| ≤ E(u1, QS) + C|ν1 − ν2|Sd .

Using (51), noting that u1 is arbitrary, dividing by Sd, letting first S tend to +∞, and then
δ → 0, we obtain (50). �

The next Lemma shows that the asymptotic cell-formula describing the surface energy density
is equal to the asymptotic cell-formula with affine boundary conditions.

Lemma 3.7. Let ν ∈ Rd. Then

ψ(ν) = ϕ(ν) .

Proof. Due the fact that both ψ and φ are positively homogeneous functions of degree one, it
suffices to consider the case where ν ∈ Sd−1. Furthermore, since both functions are continuous,
see Lemma 3.5(ii) and Remark 2.3, it suffices to prove the claim for ν ∈ Sd−1 ∩ Qd. For each
such vector we can find ν1, . . . , νd−1 ∈ Sd−1 ∩ Qd such that the set {ν1, . . . , νd−1, ν} forms an
orthonormal basis of Rd. Then, there exists λ ∈ N such that

λνn = zn for some zn ∈ Zd for all n ∈ {1, . . . , d} . (52)

Step 1.(Proof of ’≤’) Let {ν1, . . . , νd−1, νd = ν} ⊂ Sd−1 ∩ Qd be an orthonormal basis as
previously described and let 1 � S1 � S2. We assume that S1 = λT , where λ satisfies (52)
and T is given by (H1). Note that if λ satisfies (52), also kλ satisfies (52) and therefore we
can find a sequence Sk = kλT such that Sk → +∞ of the desired form. The existence of the
limit in definition (6) of ϕ permits us to assume that S is of the specific form. Let δ > 0 and
u1 : L → {0, 1} be such that u1(i) = uν(i) on L \Qν(1−δ)S1

and

E(u1, Q
ν
S1

) = inf
{
E(u,QνS1

) : u : L → {0, 1}, u(i) = uν(i) on L \Qν(1−δ)S1

}
. (53)
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Due to the assumption on S1 and Lemma 3.1(vi), we have

E(u1(· − z), QνS1
(z)) = E(u1, Q

ν
S1

) for all z = λT

d∑
n=1

knνn, k ∈ L . (54)

Set (omitting the dependence on S1 and S2)

Z =

{
z = S1

d∑
n=1

knνn : k ∈ L, QνS1
(z) ⊂ QνS2−2R

}
.

We define u2 : L → R by

u2(i) =

{
S1

(
u1(i− z)− 1

2

)
+ 〈ν, z〉 if z ∈ Z, i ∈ QνS1

(z) ,

〈ν, i〉 otherwise.

By the definition of u2, it is clear that

inf
{
E(u,QνS2

) : u : L → R, u(i) = 〈ν, i〉 on L \Qν(1−δ)S2

}
≤ E(u2, Q

ν
S2

) . (55)

It remains to show that

E(u2, Q
ν
S2

) ≤ Sd2
Sd−1

1

E(u1, Q
ν
S1

) + CSd−1
2 S2

1 +
Sd2
δ
CS1

. (56)

In fact, once we have shown (56), Step 1 follows from (55) and (53) by dividing with Sd2 and
letting first tend S2 to +∞, then letting S1 tend to +∞, and lastly δ → 0. We are left to prove
(56). In order to prove it we use Lemma 3.1(iv) to obtain

E(u2, Q
ν
S2

) = E(u2, Q
ν
S2−2S1

) + E(u2, Q
ν
S2
\QνS2−2S1

) (57)

and we estimate the two terms on the right hand side separately. We claim that

E(u2, Q
ν
S2−2S1

) ≤ Sd2
Sd−1

1

E(u1, Q
ν
S1

) +
Sd2
δ
CS1 . (58)

Indeed, if i ∈ QνS2−2S1
, then there exists z = S1

∑d
n=1 knνn ∈ Z such that

u2(i) = S1

(
u1(i− z)− 1

2

)
+ 〈ν, z〉 for all i ∈ Qν(1+δ)S1

(z) . (59)

Due to (40), this is clearly true for i ∈ QνS1
(z), while for i ∈ Qν(1+δ)S1

(z) \ QνS1
(z) we have

i ∈ QνS1
(z′) \Qν(1−δ)S1

(z′), for some z′ = S1

∑d
n=1 k

′
nνn with ||k − k′||∞ = 1. Then, due to the

boundary conditions of u1, we have

u2(i) = S1

(
u1(i− z′)− 1

2

)
+ 〈ν, z′〉 = S1

(
uν(i− z′)− 1

2

)
+ 〈ν, z〉+ 〈ν, z′ − z〉

= S1

(
uν(i− z)− 1

2

)
+ 〈ν, z〉 = S1

(
u1(i− z)− 1

2

)
+ 〈ν, z〉 .

Here, the third equality follows, from the fact that ||k − k′||∞ = 1 and therefore 〈ν, z′ − z〉 ∈
{−S1, 0, S1}. To obtain the previous equality, we distinguish the following two cases:

〈ν, z′ − z〉 = ±S1 =⇒ uν(i− z′)− uν(i− z) = ∓1 and 〈ν, z′ − z〉 = 0 =⇒ uν(i− z′) = uν(i− z) .
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Now (59) together with (54) implies for z ∈ Z

E(u2, Q
ν
S1

(z)) =
∑

i∈L∩QνS1 (z)

∑
j∈L∩Qν

(1+δ)S1
(z)

ci,j(u2(i)− u2(j))+

+
∑

i∈L∩QνS1 (z)

∑
j∈L\Qν

(1+δ)S1
(z)

ci,j(u2(i)− u2(j))+ (60)

≤ E(u1, Q
ν
S1

(z)) +
∑

i∈L∩QνS1 (z)

∑
j∈L\Qν

(1+δ)S1
(z)

ci,j |u2(i)− u2(j)|

= S1E(u1, Q
ν
S1

) +
∑

i∈L∩QνS1 (z)

∑
j∈L\Qν

(1+δ)S1
(z)

ci,j |u2(i)− u2(j)| .

We estimate the second term on the right hand side of (60) to obtain (58). In fact, here we
claim that

|u2(i)− u2(j)| ≤ C

δ
|i− j| for all i ∈ QνS1

(z), j ∈ L \Qν(1+δ)S1
(z) (61)

for some C > 0 independent of S1, S2 and δ. If this is true, then we get∑
i∈QνS1 (z)

∑
j∈L\Qν

(1+δ)S1
(z)

ci,j |u2(i)− u2(j)| ≤ C

δ

∑
i∈L∩QνS1 (z)

∑
j∈L

|i−j|≥δS1/2

ci,j |i− j|

≤ #(L ∩QνS1
(z)) max

i∈L

∑
j∈L

|i−j|≥δS1/2

ci,j |i− j| ≤
CS1

δ
Sd1 .

Hence, noting that for z, z′ ∈ Z such that z 6= z′, we have QνS1
(z)∩QνS1

(z′) = ∅ and therefore

#Z ≤ Sd2/Sd1 , we get

E(u2, Q
ν
S2−2S1

) ≤
∑
z∈Z

QνS1
(z)⊂QνS2−2S1

E(u2, Q
ν
S1

(S)) ≤ #Z(S1E(u1, Q
ν
S1

) +
CS1

δ
Sd1 )

≤ Sd2
Sd−1

1

E(u1, Q
ν
S1

) +
CS1

δ
Sd2 .

This is (58). It remains to prove (61). Note for i ∈ QνS1
(z), j ∈ L\Qν(1+δ)S1

we have |i−j| ≥ δS1/2

as already used above. We claim that

|u2(i)− u2(j)| ≤ C(S1 + |i− j|) (62)

and therefore (61) holds true. Let us prove (62). There are three cases to consider:

(a) i = i0 + z, j = j0 + z′ i0 ∈ QνS1
(z), j0 ∈ QνS1

(z′), z, z′ ∈ Z,
(b) i = i0 + z, i0 ∈ QνS1

(z), z ∈ Z j0 /∈ QνS1
(z′) for any z′ ∈ Z,

(c) i /∈ QνS1
(z) for any z ∈ Z and j /∈ QνS1

(z′) for any z′ ∈ Z.

Case (a): Note that in the case where i = i0 + z, j = j0 + z′ for some i0, j0 ∈ QνS1
and for

some z, z′ ∈ Z, we have

|u2(i)− u2(j)| ≤ |〈ν, z − z′〉|+ CS1 ≤ |〈ν, z + i0 − z′ − j0〉|+ |i0 − j0|+ CS1 ≤ |i− j|+ CS1

and therefore (62) holds true.
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Case (b): Note that in the case where i = i0 + z, i0 ∈ Qν , z ∈ Z and j /∈ QνS1
(z) for any

z ∈ Z, we have

|u2(i)− u2(j)| ≤ CS1 + |〈ν, z − j〉| ≤ CS1 + |〈ν, i− j〉|+ |i0| ≤ CS1 + |i− j| .

Also here (62) holds true.

Case (c): In this case u2(i) = 〈ν, i〉 and u2(j) = 〈ν, j〉 and therefore (62) holds true.

Next, we prove

E(u2, Q
ν
S2
\QνS2−2S1

) ≤ CSd−1
2 S2

1 . (63)

Now, using (62), (H2), and Lemma 3.1(v), we get

E(u2, Q
ν
S2
\QνS2−2S1

) ≤
∑

i∈L∩QνS2\Q
ν
S2−2S1

∑
j∈L

ci,j |u2(i)− u2(j)|

≤ CS1#
(
L ∩QνS2

\QνS2−2S1

)1 + max
i∈L

∑
j∈L

ci,j |i− j|

 ≤ CSd−1
2 S2

1 .

This yields (63). Now (57), (58), and (63) give (56) and therefore the conclusion of Step 1.

Step 2.(Proof of ’≥’) Here, we proceed in two sub-steps. First we extend a competitor for
ψ (for fixed S1) periodically and then we perform a cut-off construction. Let {ν1, . . . , νd−1, ν}
be an orthonormal basis as described at the beginning of the proof and let 1� S1 � S2. As in
Step 1, we assume that S1 = λT , where λ satisfies (52) and T is given by (H1). Furthermore,
we assume that S2 = kS1 for some k ∈ N. Let δ > 0 and u1 : L → R be such that u1(i) = 〈ν, i〉
on L \Q(1−δ)S1

and

E(u1, Q
ν
S1

) = inf
{
E(u,QνS1

) : u : L → R, u(i) = 〈ν, i〉 on L \Qν(1−δ)S1

}
(64)

Due to the assumptions on S1 and Lemma 3.1(vi), we have

E(u1(· − z), QνS1
(z)) = E(u1, Q

ν
S1

) for all z = λT

d∑
n=1

knνn, k ∈ L . (65)

Set as in Step 1 (omitting the dependence on S1)

Z ′ =

{
z = S1

d−1∑
n=1

knνn : k ∈ Zd−1

}
.

Step 2.1.(Periodic extension) We assume that

||u1||L∞(QνS1
) ≤ S1/2 , (66)

since otherwise we consider û1(i) = (u1(i) ∧ (S1/2)) ∨ (−S1/2). Let ũ1 : L → R be defined by

ũ1(i) =

{
S−1

1 u1(i− z) + 1
2 i ∈ QνS1

(z), z ∈ Z ′ ,
uν(i) otherwise.

Note that, due to (66), we have

||ũ1||L∞(QνS2
) ≤ 1 . (67)
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We prove that

E(ũ1, Q
ν
S2

) ≤ Sd−1
2

Sd1
E(u1, Q

ν
S1

) +
CS1

δ
Sd−1

2 + CδSd−1
2 (68)

for some CS1
→ 0 as S1 → +∞. In order to see this, first observe that for all z ∈ Z ′ there holds

|ũ1(i)− ũ1(j)| ≤ S−1
1 |u1(i− z)− u1(j − z)| for all i, j ∈ Qν(1+δ)S1

(z) . (69)

Clearly this holds true if i, j ∈ QνS1
(z). On the other hand, if i ∈ Qν(1+δ)S1

(z) ∩ QνS1
(z′), then

i− z′ ∈ L \Qν(1−δ)S1
. We therefore have u1(i− z) = 〈ν, i− z〉 = 〈ν, i〉 and with that

ũ1(i) = S−1
1 u1(i− z′) +

1

2
= S−1

1 〈ν, i〉+
1

2
= S−1

1 u1(i− z) +
1

2
.

Hence, it also holds true for i, j ∈ (Qν(1+δ)S1
(z) ∩QνS1

(z′)) ∪QνS1
(z). If i ∈ Qν(1+δ)S(z) \QνS(z′)

for all z′ ∈ Z ′. On the other hand if i /∈ QνS1
(z′) for all z′ ∈ Z ′ it suffices to note that

uν(i) = S−1
1 (u1(i) ∧ (S1/2)) ∨ (−S1/2). Hence, also in this case (69) holds true. We first show

E(ũ1, Q
ν
S1

(z)) ≤ S−1
1 E(u1, Q

ν
S1

) +
CS1

δ
Sd−1

2

for some CS1
→ 0 as S1 → +∞. Due to (65), (69), and Lemma 3.1(v) we have

E(ũ1, Q
ν
S1

(z)) =
∑

i∈L∩QνS1 (z)

∑
j∈L

ci,j(ũ1(i)− ũ1(j))+ ≤ S−1
1

∑
i∈L∩QνS1 (z)

∑
j∈L∩Qν

(1+δ)S1

ci,j(u1(i)− u1(j))+

+
∑

i∈L∩QνS1 (z)

∑
j∈L

|i−j|≥δS1/2

ci,j |u1(i)− u1(j)|

≤ S−1
1 E(u1(· − z), QνS1

(z)) +
C

δS1
#(L ∩QνS1

(z)) max
i∈L

∑
j∈L

|i−j|≥δS1/2

ci,j |i− j|

≤ S−1
1 E(u1, Q

ν
S1

) +
CS1

δ
Sd−1

1

for some CS1 → 0 as S1 → +∞. Now note that #Z ′ ≤ Sd−1
2 /Sd−1

1 and therefore, due to Lemma
3.1(iv) there holds

E(ũ1,
⋃
z∈Z′

QνS1
(z)) ≤ Sd−1

2

Sd1
E(ũ1, Q

ν
S1

) +
CS1

δ
Sd−1

2 (70)

for some CS1
→ 0 as S1 → +∞. Next, we show

E(ũ1, Q
ν
S2
\
⋃
z∈Z′

QνS1
(z)) ≤ CδSd−1

2 +
CS1

δ
Sd−1

2 . (71)

To this end, we introduce

Hν
a,b = {x ∈ Rd : b ≤ 〈x, ν〉 < a} .

Note that, by Lemma 3.1(iv), there holds

E(ũ1, Q
ν
S2
\
⋃
z∈Z′

QνS1
(z)) = E(ũ1, H

ν
(1+δ)S1/2,S1/2

) + E(ũ1, H
ν
S2/2,(1+δ)S1/2

)

+ E(ũ1, H
ν
−S1/2,(1+δ)S1/2

) + E(ũ1, H
ν
−(1+δ)S1/2,−S2/2

) .

(72)
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We only estimate the first to terms of (72), the other two being analogous. We first show

E(ũ1, H
ν
(1+δ)S1/2,S1/2

) ≤ CδSd−1
2 +

CS1

δ
Sd−1

2 (73)

with CS1 → 0 as S1 → +∞. Now, due to (H2), (67), (69), and Lemma 3.1(v), there holds

E(ũ1, H
ν
(1+δ)S1/2,S1/2

) =
∑

i∈L∩Hν
(1+δ)S1/2,S1/2

∩QνS2

∑
j∈L∩Hν

(1+δ)S1/2,(1−δ)S1/2
∩Qν

(1+δ)S2

ci,j(ũ1(i)− ũ1(j))+

+
∑

i∈L∩Hν
(1+δ)S1/2,S1/2

∩QνS2

∑
j∈L\Hν

(1+δ)S1/2,(1−δ)S1/2
∩Qν

(1+δ)S2

ci,j(ũ1(i)− ũ1(j))+

≤ S−1
1 #(L ∩Hν

(1+δ)S1/2,S1/2
) max
i∈L

∑
j∈L

ci,j |i− j|

+
1

δS1
#(L ∩Hν

(1+δ)S1/2,S1/2
) max
i∈L

∑
j∈L

|i−j|≥δS1/2

ci,j |i− j|

≤ CδSd−1
2 +

CS1

δ
Sd−1

2 .

This is (73). We now show that the second term in (72) is estimated by

E(ũ1, H
ν
S2/2,(1+δ)S1/2

) ≤ CS1
Sd−1

2 (74)

where CS1
→ 0 as S1 → +∞. Note that ũ1(i) = uν(i) = 1 for all i ∈ L such that 〈ν, i〉 ≥ S1/2.

Therefore, due to (H1), Lemma 3.1(v), (67), for S1 big enough, there holds

E(ũ1, H
ν
S2/2,(1+δ)S1/2

) ≤ 2
∑

i∈Hν
S2/2,(1+δ)S1/2

∩QνS2

∑
j∈L∩{〈ν,i〉≤S1/2}

ci,j

≤ C max
i0,j0∈L∩QT

∑
z∈TZd∩Hν

S2,(1+2/3δ)S1/2
∩QνS2

∑
z′∈TZd

〈ν,z′〉≤(1+1/3δ)S1/2

ci0+z,j0+z′

≤ C max
i0,j0∈L∩QT

∑
ζ∈TZd
|ζ|≥1/6δS1

∑
z∈TZd∩Hν

S2,(1+2/3δ)S1/2
∩QνS2

〈ζ+z,ν〉≤(1+1/3δ)S1/2

ci0,j0+ζ

≤ C max
i0,j0∈L∩QT

∑
ζ∈TZd
|ζ|≥1/6δS1

ci0,j0+ζ |ζ|Sd−1
2

≤ C max
i∈L

∑
j∈L

|i−j|≥1/12δS1

ci,j |j − i|Sd−1
2 ≤ CS1

Sd−1
2 .

This is (74). Now (73), (74) imply (71). (71) together with (70) implies (68) and with that the
claim.

Step 2.2.(Cut-off construction) Let ϕ ∈ C∞c (Rd)

ϕ(x) = 1 on Qν(1−2δ)S2
, ϕ(x) = 0 on Rd \Qν(1−δ)S2

, and ||∇ϕ||∞ ≤ Cδ−1S−1
2 .

Let

u2(i) = ϕ(i)ũ1(i) + (1− ϕ(i))uν(i) .
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Clearly u2(i) = uν(i) for i ∈ L \Qν(1−δ)S2
and therefore, due to Lemma 3.2, there holds

inf{E(u,QνS2
) : u : L → {0, 1}, u(i) = uν(i) on L \Qν(1−δ)S2

} ≤ E(u2, Q
ν
S2

) . (75)

We prove that

E(u2, Q
ν
S2

) ≤ E(ũ1, Q
ν
S2

) + CδSd−1
2 +

CS2

δ
Sd−1

2 , (76)

where CS2 → 0 as S2 → +∞. Note that, using (64),(68), and (75), this concludes Step 2 by

dividing with Sd−1
2 letting first S2 → +∞, S1 → +∞, and then δ → 0. It remains to prove (76).

Clearly u2(i) = uν(i) on L \Qν(1−δ)S2
, and using (67), it is easy to see that

(u2(i)− u2(j))+ ≤ (ũ1(i)− ũ1(j))+ +
C

δS2
|i− j||ũ1(j)− uν(j)|+ |1− ϕ(i)||uν(i)− uν(j)| .

Therefore,

E(u2, Q
ν
S2

) ≤ E(ũ1, Q
ν
S2

) +
C

δS2

∑
i∈L∩QνS2

∑
j∈L

ci,j |i− j||ũ1(j)− uν(j)|

+
∑

i∈L∩QνS2\Q
ν
(1−2δ)S2

∑
j∈L

ci,j |uν(i)− uν(j)| .
(77)

We show that ∑
i∈L∩QνS2

∑
j∈L

ci,j |i− j||ũ1(j)− uν(j)| ≤ CS1

δ
Sd2 +

C

δ
S1S

d−1
2 . (78)

To see this, we split the sum in two terms by writing∑
i∈L∩QνS2

∑
j∈L

ci,j |i− j||ũ1(j)− uν(j)| ≤
∑

i∈L∩QνS2

∑
j∈L

|i−j|≤S1

ci,j |i− j||ũ1(j)− uν(j)|

+
∑

i∈L∩QνS2

∑
j∈L

|i−j|≥S1

ci,j |i− j||ũ1(j)− uν(j)| .

Now note that ũ1(j) 6= uν(j) only if j ∈ Hν
S1/2,−S1/2

therefore, using Lemma 3.1(v), (H2), and

(67), we can estimate∑
i∈L∩QνS2

∑
j∈L

|i−j|≤S1

ci,j |i− j||ũ1(j)− uν(j)| ≤ 2
∑

i∈L∩Hν
3S1/2,−3S1/2

∩QνS2

∑
j∈L

ci,j |i− j|

≤ 2#(L ∩Hν
3S1/2,−3S1/2

∩QνS2
) max
i∈L

∑
j∈L

ci,j |i− j| ≤ CS1S
d−1
2 .

On the other hand, using again Lemma 3.1(v), (H2), and (67), we obtain∑
i∈L∩QνS2

∑
j∈L

|i−j|≥S1

ci,j |i− j||ũ1(j)− uν(j)| ≤ 2#(L ∩QνS2
) max
i∈L

∑
j∈L

|i−j|≥S1

ci,j |i− j| ≤ CSd2CS1
.

The previous two inequalities yield (78). Lastly we show∑
i∈L∩QνS2\Q

ν
(1−2δ)S2

∑
j∈L

ci,j |uν(i)− uν(j)| ≤ CδSd−1
2 , . (79)
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Using (S1) and (H2), we have∑
i∈L∩QνS2\Q

ν
(1−2δ)S2

∑
j∈L

ci,j |uν(i)− uν(j)|

≤ C max
i0,j0∈L∩QT

∑
z∈TZd∩Qν

(1+δ)S2
\Qν

(1−3δ)

∑
z′∈TZd

ci0+z,j0+z′ |uν(i0 + z)− uν(j0 + z′)|

≤ C max
i0,j0∈L∩QT

∑
ζ∈TZd

∑
z∈TZd∩Qν

(1+δ)S2
\Qν

(1−3δ)

−|ζ|−
√
dT≤〈z,ν〉≤|ζ|+

√
dT

ci0,j0+ζ

≤ CδSd−1
2 max

i0,j0∈L∩QT

∑
ζ∈TZd

ci0,j0+ζ(|ζ|+
√
dT )

≤ CδSd−1
2 max

i∈L

∑
j∈L

ci,j(|i− j|+ 1) ≤ CδSd−1
2 .

This implies (79). Now (77)-(79) imply (76) and with that the conclusion of Step 2.2. �

In the next Lemma we show that, assuming affine boundary conditions, the calculation of
the asymptotic cell formula with respect to the coordinate cube and the calculation of the
asymptotic cell formula with respect to the rotated cube are equivalent.

Lemma 3.8. Let ν ∈ Rd. Then

ψ(ν) = φ(ν) .

Proof. Before we start the proof, we would like to point out that the various steps of the proof
are very similar to the steps of proof of Lemma 3.7. However, we decided to include them here
for completeness.

First, note that fact that both ψ and φ are positively homogeneous functions of degree one
(cf. (35) and Lemma 3.6(ii)) it suffices to consider the case where ν ∈ Sd−1. Thanks to Lemma
3.5(ii) and Lemma 3.6(iii) both functions are continuous. Thus it suffices to prove the claim for
ν ∈ Sd−1 ∩ Qd. For each such vector we can find {ν1, . . . , νd−1} ∈ Sd−1 ∩ Qd such that the set
{ν1, . . . , νd−1, νd = ν} forms an orthonormal basis of Rd. For such an orthonormal basis, it is
clear that there exists λ ∈ N such that

λνn = zn for some zn ∈ Zd for all n ∈ {1, . . . , d} . (80)

Step 1.(Proof of ’≥’) Let {ν1, . . . , νd−1, νd = ν} ⊂ Sd−1 ∩ Qd be the orthonormal basis
described previously and let 1� S1 � S2. We assume that S1 = λT , where λ satisfies (80) and
T is given by (H1). Let δ > 0 and u1 : L → R be such that u1(i) = 〈ν, i〉 on L \Qν(1−δ)S1

and

E(u1, Q
ν
S1

) = inf
{
E(u,QνS1

) : u : L → R, u(i) = 〈ν, i〉 on L \Qν(1−δ)S1

}
. (81)

Due to the assumption on S1 and Lemma 3.1(vi), we have that

E(u1(· − z), QνS1
(z)) = E(u1, Q

ν
S1

) for all z = S1

d∑
n=1

knνn, k ∈ L . (82)

We can assume that

||u1||L∞(QνS1
) ≤ S1 , (83)

since otherwise we consider û1(i) = (u1(i) ∧ S1) ∨ (−S1).
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We set

Z =

{
z = S1

d∑
n=1

knνn, k ∈ L, QνS1
(z) ⊂ Q(1−δ)S2

}
and we define u2 : L → R by

u2(i) =

{
u1(i− z) + 〈ν, z〉 if z ∈ Z, i ∈ QνS1

(z) ,

〈ν, i〉 otherwise.
(84)

By the definition of u2 it is clear that

inf
{
E(u,QS2

) : u : L → R, u(i) = 〈ν, i〉 on L \Q(1−δ)S2

}
≤ E(u2, QS2

) . (85)

We conclude the proof of Step 1 by showing that

E(u2, QS2) ≤ Sd2
Sd1
E(u1, Q

ν
S1

) +
CS1

δ
Sd2 + CSd−1

2 S2
1 , (86)

where CS1
→ 0 as S1 →∞. Once this is shown, Step 1 is proven. In fact, using it together with

(81) and (85) and dividing by Sd2 and letting first S2 tend to +∞, then letting S1 tend to +∞,
and finally letting δ → 0, we obtain the claim. We are left to prove (86). In order to do so, we
employ Lemma 3.1(iv) to obtain

E(u2, QS2) = E

(
u2,

⋃
z∈Z

QνS1
(z)

)
+ E

(
u2, QS2 \

⋃
z∈Z

QνS1
(z)

)
. (87)

We claim that

E

(
u2,

⋃
z∈Z

QνS1
(z)

)
≤ Sd2
Sd1
E(u1, Q

ν
S1

) +
CS1

δ
Sd2 . (88)

In order to see this, note that for all z ∈ Z, we have

u2(i) = u1(i− z) + 〈ν, z〉 for all i ∈ Qν(1+δ)S1
(z) . (89)

Consulting (84), this is clearly true for i ∈ QνS1
(z), while for i ∈ Qν(1+δ)S1

(z) \QνS1
(z) there are

two cases to check:

(a) i ∈ QνS1
(z′) for some z′ ∈ Z ,

(b) otherwise.

(a): If i ∈ QνS1
(z′), then i ∈ QνS1

(z′) \Qν(1−δ)S1
(z′) for some z′ ∈ Z. Then, due to the boundary

conditions of u1 we have

u2(i) = u1(i− z′) + 〈ν, z〉 = 〈ν, i− z′〉+ 〈ν, z′〉 = 〈ν, i〉 = 〈ν, i− z〉+ 〈ν, z〉 = u1(i− z) + 〈ν, z〉
and (89) follows.

(b): If i /∈ QνS1
(z′) for any z′ ∈ Z then

u2(i) = 〈ν, i〉 = 〈ν, i− z〉+ 〈ν, z〉 = u1(i− z) + 〈ν, z〉
and also here (89) follows. In order to proceed, note that

|u2(i)− u2(j)| ≤ C(S1 + |i− j|) . (90)

To see this, we need to distinguish between three cases:

(a) i ∈ QνS1
(z), j ∈ QνS1

(z′) for z, z′ ∈ Z,
(b) i ∈ QνS1

(z) for z ∈ Z,j /∈ QνS1
(z′) for any z′ ∈ Z,

(c) otherwise.
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Case (a): In order to see this, note that, we have |z− z′| = |z− i− z′+ j+ i− j| ≤ |i− j|−CS1.
Therefore, using (83), we have for i ∈ QνS1

(z), j ∈ QνS1
(z′)

|u2(i)− u2(j)| ≤ 2S1 + |z − z′| ≤ CS1 + |i− j| .

Case (b): Again, due to (83), we get

|u2(i)− u2(j)| = |u1(i− z) + 〈ν, z − j〉| ≤ S1 + |i− z|+ |j − i| ≤ CS1 + |i− j| .

Case (c): This case is trivially true, due to the definition of u2.

We are now in the position to prove (88). To this end, we prove

E(u2, Q
ν
S1

(z)) ≤ E(u1, Q
ν
S1

) +
CS1

δ
Sd1 , (91)

where CS1
→ 0 as S1 → +∞. Using this, Lemma 3.1(iv), and noting that for z, z′ ∈ Z such

that z 6= z′ we have QνS1
(z) ∩QνS1

(z′) = ∅ and therefore #Z ≤ Sd2/Sd1 , we get

E

(
u2,

⋃
z∈Z

QνS1
(z)

)
=
∑
z∈Z

E
(
u2, Q

ν
S1

(z)
)
≤ #Z

(
E(u1, Q

ν
S1

) +
CS1

δ
Sd1

)
≤ Sd2
Sd1
E(u1, Q

ν
S1

) +
CS1

δ
Sd2 .

This is (88). Now, let us prove (91). Using (89) and (82), we have

E
(
u2, Q

ν
S1

(z)
)

=
∑

i∈L∩QνS1 (z)

∑
j∈L∩Qν

(1+δ)S1

ci,j(u2(i)− u2(j))+ +
∑

i∈L∩QνS1 (z)

∑
j∈L\Qν

(1+δ)S1

ci,j(u2(i)− u2(j))+

≤ E(u1, Q
ν
S1

) +
∑

i∈L∩QνS1 (z)

∑
j∈L\Qν

(1+δ)S1

ci,j |u2(i)− u2(j)| . (92)

Now, we are in a position to estimate the second term on the right hand side of (92). Due to
(90) and (H2), we have∑
i∈L∩QνS1 (z)

∑
j∈L\Qν

(1+δ)S1

ci,j |u2(i)− u2(j)| ≤ C
∑

i∈L∩QνS1 (z)

∑
j∈L

|i−j|≥δS1/2

ci,j(S1 + |i− j|)

≤ C
(

1 +
1

δ

)
#(L ∩QνS1

(z)) max
i∈L

∑
j∈L

|i−j|≥δS1/2

ci,j |i− j|

≤ CS1

δ
Sd1 .

This together with (92) implies (91).

Next, we prove

E

(
u2, QS2 \

⋃
z∈Z

QνS1
(z)

)
≤ CSd−1

2 S2
1 . (93)

To see this, we use (90), to obtain

E

(
u2, QS2

\
⋃
z∈Z

QνS1
(z)

)
≤

∑
i∈L∩QS2\

⋃
z∈Z Q

ν
S1

(z)

∑
j∈L

ci,j |u2(i)− u2(j)|

≤ CS1#

(
L ∩QS2

\
⋃
z∈Z

QνS1
(z)

)
max
i∈L

∑
j∈L

ci,j(|i− j|+ 1) ≤ CSd−1
2 S2

1 .
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This is (93). Now (87),(88), and (93) imply (86).

Step 2.(Proof of ’≤’) Let 1 � S1 � S2. We assume that S1 = λT for some λ ∈ N and T
given by (H1). Let δ > 0 and u1 : L → R be such that u1(i) = 〈ν, i〉 on L \Q(1−δ)S1

and

E(u1, QS1
) = inf

{
E(u,QS1

) : u : L → R, u(i) = 〈ν, i〉 on L \Q(1−δ)S1

}
. (94)

We set

Z ′ = {z = S1k : k ∈ Zd, QS1
(z) ⊂ Qν(1−δ)S2

}
and we define u2 : L → R by

u2(i) =

{
u1(i− z) + 〈ν, z〉 if z ∈ Z ′, i ∈ QS1

(z) ,

〈ν, i〉 otherwise.

It is clear that

inf
{
E(u,QνS2

) : u : L → R, u(i) = 〈ν, i〉 on L \Qν(1−δ)S2

}
≤ E(u2, Q

ν
S2

) . (95)

Similar to proving (86) in Step 1, one can show that

E(u2, Q
ν
S2

) ≤ Sd2
Sd1
E(u1, QS1

) + CSd−1
2 S2

1 +
CS1

δ
Sd2 .

Using (94) and (95), this implies the conclusion of Step 2. This can be seen by dividing by Sd2
and letting first S2 tend to +∞, then S1 to +∞, and lastly δ → 0. �

Proof of Proposition 2.6. Our goal is to prove

ϕ(ν) =
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 is T -periodic} (96)

for all ν ∈ Rd. Due to Lemma 3.8, Lemma 3.7, and Lemma 3.3, we have

ϕ(ν) = ψ(ν) = φ(ν) = φper(ν) . (97)

Additionally, Lemma 3.4 ensures that

φper(ν) =
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 is T -periodic} .

This shows (96) and concludes the proof. �

4. Crystallinity of the homogenized surface energy density

This section is devoted to the proof of Theorem 2.7. We assume throughout this section that
assumptions (S1), (S2) and (H1), (H3) are satisfied.

We define the set of edges E by

E = {(i, j) ∈ (L ∩QT )× L : ci,j 6= 0} and N = #E . (98)

Proof of Theorem 2.7. We divide the proof into three steps. First, we derive a dual representa-
tion of ϕ. Then, using this representation, we show that ϕ is crystalline.

Step 1.(Dual representation) We define

C =
{

(αi,j)i,j : 0 ≤ αi,j ≤ ci,j , αi+Tz,j+Tz = αi,j for all z ∈ L,∑
j∈L

(αj,i − αi,j) = 0 for all i ∈ QT ∩ L
}
.

(99)
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Our goal is to prove

ϕ(ν) =
1

T d
sup

(αi,j)i,j∈C

〈
ν,

∑
i∈L∩QT

∑
j∈L

αi,j(i− j)

〉
. (100)

Let ν ∈ Rd. Due to Proposition, 2.6 there holds

ϕ(ν) = φper(ν) =
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 is T -periodic}

=
1

T d
inf {E(u+ 〈ν, ·〉, QT ) : u : L → R, u(·) is T -periodic} .

It therefore suffices to prove that the function

φper(ν) =
1

T d
inf {E(u+ 〈ν, ·〉, QT ) : u : L → R, u(·) is T -periodic}

is crystalline. Note that, we can write

φper(ν) =
1

T d
inf

u : L→R
u(·)T -per

sup
0≤αi,j≤ci,j

αi+Tz,j+Tz=αi,j

∑
i∈L∩QT

∑
j∈L

αi,j(u(i)− u(j) + 〈ν, i− j〉) . (101)

Given 0 ≤ αi,j ≤ ci,j such that αi+Tz,j+Tz = αi,j for all z ∈ Zd, and u : L → R T -periodic, we
have∑

i∈L∩QT

∑
j∈L

αi,j(u(i)− u(j)) =
∑

i∈L∩QT

∑
j∈L

αi,ju(i)−
∑

i∈L∩QT

∑
j∈L

αi,ju(j)

=
∑

i∈L∩QT

∑
j∈L

αi,ju(i)−
∑

j∈L∩QT

∑
z∈Zd

∑
i∈L∩QT

αi,j+Tzu(j + Tz)

=
∑

i∈L∩QT

∑
j∈L

αi,ju(i)−
∑

j∈L∩QT

∑
z∈Zd

∑
i∈L∩QT

αi−Tz,ju(j)

=
∑

i∈L∩QT

∑
j∈L

αi,ju(i)−
∑

j∈L∩QT

∑
i∈L

αi,ju(j)

=
∑

i∈L∩QT

∑
j∈L

(αi,j − αj,i)u(i) .

Note that, since in all steps the sum over i and, due to to (H3), the sum over j runs over a finite
index set, the order of summation can be changed without changing the value of the various
sums. This implies that, given 0 ≤ αi,j ≤ ci,j such that αi+Tz,j+Tz = αi,j for all z ∈ L, we have

inf
u : L→R
u(·)T -per

∑
i∈L∩QT

∑
j∈L

αij(u(i)− u(j)) =

0 if
∑
j∈L

(αi,j − αj,i) = 0 for all i ∈ QT ∩ L ,

−∞ otherwise.

(102)

Hence, using (97), (99), (101), and (102), we obtain (100).

Step 2.(Crystallinity) By Remark 2.5, we have

ϕ(ν) =
1

T d
sup
ζ∈Wϕ

〈ν, ζ〉 .
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So that, by (100)

Wϕ =

 ∑
i∈L∩QT

∑
j∈L

αi,j(i− j) : (αi,j)i,j ∈ C

 ,

with C given in (99). Recall N and E defined in (98). Define L : RN → Rd by

L (αi,j)(i,j)∈E =
∑

(i,j)∈E

αi,j(i− j) . (103)

We then find

Wϕ = L
(

[0, ci,j ]
N ∩ V

)
, (104)

where V ⊂ RN is a linear subspace of co-dimension T d − 1 given by

V =

αi,j ∈ RN :
∑
j∈L

(αi,j − αj,i) = 0 for all i ∈ QT ∩ L

 . (105)

Hence, due to (104), Wϕ is the image of the linear map L, given in (103), of a N -dimensional
cube [0, ci,ξ]

N intersected with the linear subspace V , given in (105). The intersection of a cube
with a linear subspace is a polytope, and thus also its image through a linear map. This proves
that ϕ is crystalline.

Step 3.(Estimate on the number of vertices) Our goal is to prove that

#extreme(Wϕ) ≤ 2N , (106)

where we recall N defined in (98). Let us note that, due to the Krein-Milman Theorem (cf. [19],
Theorem 1.13) and (104), it is easy to see that there holds

#extreme(Wϕ) = #extreme
(
L
(

[0, ci,j ]
N ∩ V

))
≤ #extreme

(
[0, ci,j ]

N ∩ V
)
.

In order to show (106), it remains to show

#extreme
(

[0, ci,j ]
N ∩ V

)
≤ 2N . (107)

In order to obtain this estimate we construct a (non necessarily orthogonal) projection P : RN →
RN such that

P ([0, ci,j ]
N ) = [0, ci,j ]

N ∩ V . (108)

By the Krein-Milman Theorem, it then follows that

#extreme
(

[0, ci,j ]
N ∩ V

)
= #extreme(P ([0, ci,j ]

N )) ≤ #extreme([0, ci,j ]
N ) = 2N .

In order to construct P denote by k = dim(V ) and let {v1, . . . , vk} be a basis of V . Add vectors
{ei1 , . . . , eiN−k} from the standard orthonormal basis of RN in order to form a basis of RN . For
every x ∈ Rn we can write

x = xv + xc with xv =

k∑
j=1

λjvj and xc =

N−k∑
j=1

µjeij ,

where λk, µk ∈ RN for all j ∈ {1, . . . , k} and j ∈ {1, . . . , N − k} respectively. We define
P : RN → RN by

Px = xv .
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It is easy to see that (108) holds true. In fact on the one hand, we have P ([0, ci,j ]
N ) ⊇

P ([0, ci,j ]
N ∩ V ) = [0, ci,j ]

N ∩ V . On the other hand given x ∈ [0, ci,j ]
N , we have

x =

N∑
j=1

σjej =

k∑
j=1

λvj +

N−k∑
j=1

µjeij = xv + xc .

Now, it is easy to see that µj = σij and therefore

xv =

k∑
j=1

λvj =

N∑
j=1

j /∈{ij :j∈{1,...,N−k}

σjej .

This implies that xv ∈ [0, ci,j ]
N and clearly xv ∈ V . This shows that P ([0, ci,j ]

N ) ⊆ [0, ci,j ]
N ∩V

and therefore (107). This concludes Step 3. �

5. Differentiability of the effective surface tension

In this Section, we prove Proposition 2.9 which states that ϕ is differentiable in totally
irrational directions. It is a corollary of the two lemmas which we state and prove below.

Lemma 5.1. Let ν ∈ S1, let u be a minimizer in (7) and assume that for any s ∈ R, the set
{u = s} is finite. Then ϕ is differentiable in ν.

Proof. The expression (100) shows that ϕ is a convex, one-homogeneous function with subgra-
dient at ν given by

∂ϕ(ν) =

 1

T d

∑
i∈L∩QT

∑
j∈L

αi,j(i− j) : α = (αi,j)i,j ∈ C maximizer in (100)


It is differentiable at ν if and only if the above set has exactly one element.

Let α, α′ ∈ C be two maximizers in (100). Classical optimality conditions guarantee that for
any i, j, if u(i) 6= u(j), then:

αi,j = α′i,j =

{
ci,j if u(i)− u(j) > 0

0 if u(i)− u(j) < 0.
(109)

Let us denote by p, p′ ∈ ∂ϕ the subgradients given by the dual variables, respectively, α and α′,
we claim that p = p′. One has:

p− p′ =
1

T d

∑
i∈L∩QT

∑
j:u(j)=u(i)

(αi,j − α′i,j)(i− j). (110)

Let s ∈ R, i0 ∈ L ∩ QT with u(i0) = s and such that the finite set Js := {j : u(j) = s} has
more than one element. For any i, j, let βi,j := αi,j − α′i,j . Then∑

i∈Js

∑
j∈Js

βi,j(i− j) =
∑
z∈Zd

∑
i∈Js∩(Tz+QT )

∑
j∈Js

βi,j(i− j)

=
∑
z∈Zd

∑
i∈(Js−Tz)∩QT

∑
j∈Js−Tz

βi,j(i− j)
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where for the last line we have substituted (i, j) with (i − Tz, j − Tz) and used that β is QT -
periodic. In addition, we have that u(i) = u(j) if and only if u(i− Tz) = u(j − Tz) so that this
can be rewritten: ∑

i∈Js

∑
j∈Js

βi,j(i− j) =
∑
z∈Zd

∑
i∈(Js−Tz)∩QT

∑
j:u(j)=u(i)

βi,j(i− j)

By assumption, the sets (Js − Tz) ∩QT , z ∈ Zd are all disjoint. Otherwise, there would be i, z
with s = u(i − Tz) = u(i) + T 〈ν, z〉 = s, yielding in particular that 〈ν, z〉 = 0, and one would
deduce that i − kTz ∈ Js for all k ∈ Z, a contradiction since we assumed Js was finite. As a
consequence, showing that (110) vanishes is equivalent to showing that∑

i∈Js

∑
j∈Js

βi,j(i− j) = 0 (111)

for any s ∈ R (such that Js is not empty and contains more than one point). Obviously, the
expression in (111) is also ∑

i∈Js

∑
j∈Js

(βi,j − βj,i)i

Thanks to the definition (99) of C, one has for any i that
∑
j βi,j − βj,i = 0, so that:∑

i∈Js

∑
j∈Js

(βi,j − βj,i)i =
∑
i∈Js

∑
j 6∈Js

(βj,i − βi,j)i = 0

thanks to (109). Hence, (111) holds and we deduce p = p′, which shows the lemma. �

Lemma 5.2. Let ν ∈ S1 be totally irrational and let u be a minimizer in (7). Then for any
s ∈ R, the set {u = s} is finite.

Proof. Recalling the notation in the previous proof, let s ∈ R and consider the set Js := {u = s}.
For z ∈ Z, let Jzs = Js ∩ (QT + Tz) − Tz ⊂ QT . For i ∈ Jzs , u(i) = s + T 〈z, ν〉. Since ν is

totally irrational, we deduce that Jzs ∩ Jz
′

s = ∅ for any z 6= z′, showing that all sets Jzs but a
finite number must be empty. Hence Js is finite. �

6. Numerical illustration

6.1. A simplified framework. In this section, we address, as an illustrative experiment, the
following issue. We consider a basic 2D cartesian graph {(i, j) : 0 ≤ i ≤M − 1, 0 ≤ j ≤ N − 1},
representing for instance the pixels of an image, and we want to approximate on this discrete
grid the two-dimensional total variation

∫
Ω
|Du|, u ∈ BV (Ω). Here it is assumed that Ω ⊂ R2

is a rectangle and that {0, . . . ,M − 1}× {0, . . . , N − 1} is a discretization of Ω at a length scale
∼ 1/N ∼ 1/M .

There are of course many ways to do this, but we propose here to consider a family of discrete
“graph” total variations, defined for a (ui,j)i,j ∈ RM×N by:

J(u) =
∑
i,j

c+
i+ 1

2 ,j
(ui+1,j − ui,j)+ + c−

i+ 1
2 ,j

(ui,j − ui+1,j)
+

+ c+
i,j+ 1

2

(ui,j+1 − ui,j)+ + c−
i,j+ 1

2

(ui,j − ui,j+1)+

(112)

and which involves only nearest-neighbour interactions in horizontal and vertical directions.
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We assume in addition that the weight c± are T -periodic for some T ∈ N, T > 0, that is,
C±a+kT,b+lT = c±a,b for any (k, l) ∈ Z2, (a, b) = (i + 1

2 , j) or (i, j + 1
2 ), as long as the points fall

inside the grid.

For T = 1, c±a,b ≡ 1, it is standard that (112) approximates, in the continuum limit, the

anisotropic total variation
∫

Ω
|∂1u| + |∂2u|, which, if used for instance as a regularizer for im-

age denoising or reconstruction, may produce undesired artefacts (although hardly visible on
standard applications, see Figure 8).

A standard way to mitigate this issue (besides, of course, resorting to numerical analysis
based on finite differences or elements in order to define more refined discretizations), is to add
to (112) diagonal interactions, with appropriate weights, in order to improve the isotropy of the
limit (see for instance [10]), with the drawback of complexifying the graph and the optimization.
We show here that a similar effect can be attained by homogenization. To illustrate this, let us
first consider the simplest situation, for T = 2.

α β

T = 2

Figure 3. The alternating 2-periodic coefficients yielding the smallest anisotropy

In that case, one can explicitly build coefficients c±a,b, taking two values α, β (see Figure 3),
which will yield the homogenized surface tension

ϕ(ν) = (
√

2− 1)

(
|ν1|+ |ν2|+

|ν1 + ν2|√
2

+
|ν1 − ν2|√

2

)
(113)

whose 1-level set (or Frank diagram) is shown in Figure 4. Observe that this is the same

ν1

ν2

−1 1

−1

1

Figure 4. The Frank diagram {ν : ϕ(ν) ≤ 1} given by (113)
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anisotropy which would be obtained by using constant coefficients and adding interactions along
the edges ((i, j), (i+ 1, j + 1)) and ((i, j), (i+ 1, j − 1)).

In order to obtain (113), one needs to tune α, β so that a vertical edge and a diagonal edge,

in the most favorable position, have the same length (with a
√

2 factor for the diagonal, whose

intersection with the periodicity cell is of course longer). This is ensured if α+β = 4α/
√

2, that

is, β = (2
√

2− 1)α. We find that choosing{
α = 1

4
√

2
≈ 0.1768

β = (2
√

2− 1)α ≈ 0.3232
(114)

yields (113), as an effective homogenized anisotropy.

For larger periodicity cells, it seems difficult to do a similar analysis, first of all, because one
should not expect the optimal minimizers, in most directions (if not all), to be given by straight
lines, but rather by periodic perturbations of straigth lines. We propose an optimization process
in order to compute the optimal weights c±a,b.

6.2. The optimization method. The effective surface tension is obtained by solving the cell
problem:

φ(ν) = min
u

{ ∑
(i,j)∈Y

c+
i+ 1

2 ,j
(ui+1,j − ui,j)+ + c−

i+ 1
2 ,j

(ui,j − ui+1,j)
+

+ c+
i,j+ 1

2

(ui,j+1 − ui,j)+ + c−
i,j+ 1

2

(ui,j − ui,j+1)+ :

ui,j − ν ·
(
i
j

)
Y -periodic

} (115)

where Y = Z2 ∩ ([0, T ) × [0, T )) is the periodicity cell. This is easily solved, for instance by a
saddle-point algorithm [25] which aims at finding a solution to:

φ(ν) = min
vY -periodic

max
0≤w±• ≤1

∑
(i,j)∈Y

(w+
i+ 1

2 ,j
c+
i+ 1

2 ,j
− w−

i+ 1
2 ,j
c−
i+ 1

2 ,j
)(vi+1,j − vi,j + ν1)

+ (w−
i,j+ 1

2

c−
i,j+ 1

2

− w+
i,j+ 1

2

c+
i,j+ 1

2

)(vi,j+1 − vi,j + ν2),

where we have replaced the variable u with the periodic vector vi,j = ui,j − ν · (i, j)T . For
technical reasons, we need to “regularize” slightly this problem in order to make it differentiable
with respect to the coefficients c = (c±• ). This is done by introducing ε > 0 a (very) small
parameter and adding to the previous objective the penalization

−ε
2

∑
(i,j)∈Y

(w+
i+ 1

2 ,j
)2 + (w−

i+ 1
2 ,j

)2 + (w−
i,j+ 1

2

)2 + (w+
i,j+ 1

2

)2 +
ε

2

∑
(i,j)∈Y

v2
i,j

which makes the problem strongly convex/concave and the solutions w, v unique. We call
φε(ν)[c] the corresponding value. The advantage of this regularization is that one can easily
show that c 7→ φε(ν)[c] is locally C1,1, with a gradient given by:

lim
t→0

φε(ν)[c + td]− φε(ν)[c]

t
=

∑
(i,j)∈Y

(w+
i+ 1

2 ,j
d+
i+ 1

2 ,j
− w−

i+ 1
2 ,j
d−
i+ 1

2 ,j
)(vi+1,j − vi,j + ν1)

+ (w−
i,j+ 1

2

d−
i,j+ 1

2

− w+
i,j+ 1

2

d+
i,j+ 1

2

)(vi,j+1 − vi,j + ν2)

where (w, v) solves the saddle-point problem which defines φε(ν)[c].



CRYSTALLINITY OF THE HOMOGENIZED ENERGY DENSITY 35

Then, to find coefficients which ensure that φ is as “isotropic” as possible, one fixes a finite
set of directions (ν1, . . . , νk) (typically, (cos(2`π/k), sin(2`π/k)) for ` = 1, . . . , k), and use a first
order gradient descent algorithm to optimize:

L(c) =

k∑
`=1

(φε(ν`)[c]− 1)
2

The problem is easily solved for Y = {0, 1} × {0, 1}, k = 8 and (ν`)
8
`=1 given as above. For

larger periodicity cells and more directions, it easily gets trapped in local minima and we use a
random initialization in order to be able to find satisfactory solutions. We then test the result
by computing the un-regularized surface tension φ with the resulting coefficients c. We show
some results in the next section. Of course, taking a large value of ε will make the problem
easier to solve, but the learned coefficients will not allow to reconstruct a satisfactory surface
tension: we need to choose ε small, an order of magnitude below the error which we expect on
the anisotropy of φ.

6.3. Numerical results. We show the outcome of the optimization, in the periodicity cell
Y = {0, . . . T − 1} × {0, . . . , T − 1} for T = 2, 4, 6, 8. We plot first the set {ϕ ≤ 1} or Frank
diagram for the effective surface tensions. Figure 5 shows the diagram obtained, for T = 2, 4, 8.

Figure 5. Frank diagrams of the effective anisotropies for T = 2, 4, 8.

For T = 2, the optimization yields the same anisotropy as our theoretical proposition (compare
with Fig. 4). However, except when initialized with the values in (114), the algorithm usually
outputs different values with the same effective anisotropy, see Fig. 6 (the values in (114) are in
some sense better, as for instance a vertical edge will always have the same effective energy with
these values, while with the comptuted values displayed in Fig. 6, it will need to pass through
the edges in the second column of the cell in order to get the minimal energy).

For T = 4, one sees that the behaviour is almost isotropic, while for T = 8, the relative
error with the perfect unit disk is about 1%. We illustrate this on an “inpainting” example,
which consists in finding the minimal line in a given direction. We consider as an example
the direction (cos 3π/8, sin 3π/8), which is irrational, so that there cannot be a fully periodic
solution. The figure 7 displays several minimal half-planes in this orientation. Observe that for
this orientation, the results for T = 4 or 6 look nicer than the result obtained for T = 8.

We also show a denoising example based on the “ROF” method (which consists simply in
minimizing the total variation (defined by the surface tension ϕ) of an image with a quadratic
penalization of the distance to a noisy data, in order to produce a denoised version, see [41])
with the anisotropic tension ϕ(ν) = |ν1| + |ν2| (“T = 1”) and the optimized homogenized
surface tension for T = 4. The original image is degraded with a Gaussian noise with 10%
standard deviation (with respect to the range of the values). Here, the difference between the
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Figure 6. An example of optimized 2-periodic coefficients yielding the same
anisotropy as the choice (114)

Figure 7. A minimal half-plane in the orientation (cos 3π/8, sin 3π/8). Top
left, boundary datum, the region where the perimeter is minimized is in gray.
Top, middle: ϕ(ν) = |ν1| + |ν2|. Top, right: optimal effective ϕ for T = 2.
Bottom: for T = 4, 6, 8.

two regularizers is hardly perceptible (since the data term strongly influences the position of the
discontinuities), yet a close-up (bottom row) allows to see a slight difference, for instance on the
cheek where the T = 1 anisotropy produces block structures.
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Figure 8. “ROF” denoising example. Left: noisty image. Middle, denoised
with ϕ(ν) = |ν1|+ |ν2|. Right: with the effective tension computed for T = 4.
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