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Abstract—Tree-based search algorithms applied to combina-
torial optimization problems are highly irregular and time-
consuming when it comes to solving big instances. Due to their
parallel nature, algorithms of this class have been revisited for
different architectures over the years, and these parallelization
efforts have always been guided by the performance objective
setting aside productivity. However, dealing with scalability
implicitly induces the heterogeneity issue, which means that
different programming models/languages, runtimes and libraries
need to be employed together for efficiently exploiting all levels
of parallelism of large-scale systems. As a consequence, efforts
towards productivity are crucial for harnessing the future gen-
eration of supercomputers. In this document, we present our
efforts towards productivity-aware ultra-scale tree search using
the Chapel language. Four topics are covered in this document:
the design and implementation of tree-search using Chapel,
improving intra-node efficiency, the use of GPUs and future
perspectives.

Index Terms—Branch-and-bound, Backtracking, PGAS,
Chapel

I. INTRODUCTION

Combinatorial optimization problems (COPs) are present
in different areas of knowledge, such as operations re-
search, bioinformatics, artificial intelligence, and machine
learning [1]. Algorithms for solving COPs can be divided
into exact (complete) or approximate methods [2]. The exact
ones guarantee to return a proven optimal solution for any
instance of the problem in a finite amount of time. Among
the complete algorithms, the tree-based enumerative strategies,
such as backtracking and branch-and-bound (B&B), are the
most widely used methods for solving instances of COPs to
optimality.

As the decision version of COPs is usually NP-Complete,
the size of problems that can be solved to optimality is limited,
even if large-scale distributed computing is employed [3], [4].
It is expected that the use of exascale computers will result in
a significant decrease in the execution time required to solve
COP instances to optimality. However, dealing with scalability
implicitly induces the heterogeneity issue [5], which means
that different programming models/languages, runtimes and
libraries need to be employed together for efficiently exploiting
all levels of parallelism of the system [6]. As a consequence,
efforts towards productivity are crucial for harnessing the
future generation of supercomputers [7], [8].

The study of a feasible high-productivity language for the
design and implementation of tree-based search led us to the
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Fig. 1. Visual representation of a tree-based search algorithm (Own repre-
sentation based on [3]).

Chapel parallel programming language [9]. In the context of
this work, Chapel stands out as it is a compiled language that
allows us to hand-optimize the data structures for performance
and also provides high-level features for dealing with the
irregularity of the solution space, such as distributed iterators.
In this work, we deal with the challenge of redesigning a
tree-based search from a performance-oriented perspective to
a productivity-aware one by finding a trade-off between both
approaches.

In what follows, we present our efforts towards productivity-
aware ultra-scale tree search using the Chapel language. Four
topics are covered in this talk proposal: the design and imple-
mentation of tree-search algorithms using Chapel, improving
intra-node efficiency, the use of GPUs and future perspectives.

II. BACKGROUND

A. Tree-based Search Algorithms

Tree search algorithms are strategies that implicitly enu-
merate a solution space, dynamically building a tree [10].
Algorithms that belong to this class start with an initial (root)
node, which represents the initial state of the problem to
be solved. Nodes are branched during the search process,
generating children nodes (subproblems) more constrained
than their parent node. The generated nodes are evaluated, and
then, the valid and feasible ones are stored in a pool-like data
structure called Active Set. The search generates and evaluates
nodes until the data structure is empty or another termination
criterion is satisfied.

During the search, if an undesirable state is reached, the
algorithm discards this node and then chooses an unexplored
(frontier) node in the active set. This action prunes some
regions of the solution space, preventing the algorithm from
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Fig. 2. Schematic representation of an initial search on locale 0 - task 0 that
generates the pool P for a problem size N = 4 and cutoff = 3. The figure
depicts the branch that has the element 1 of the permutation as the root and
generated 4 valid and feasible incomplete solutions at depth cutoff = 3.

unnecessary computations. However, the pruning of subprob-
lems makes the shape of the tree irregular, which might result
in severe load imbalance when parallel computing is used. In
this sense, load balancing schemes are crucial for achieving
parallel efficiency in tree-based search algorithms.

III. A PRODUCTIVITY-AWARE DISTRIBUTED TREE-BASED
SEARCH

In this section, we present a productivity-aware distributed
tree-search algorithm for solving permutation combinatorial
problems. All parallel/distributed tree-search algorithms pre-
sented in this talk proposal follow the master-worker scheme
described as follows.

The Master Locale and the Initial Search: The algorithm
starts with task 0 running on locale 0. As one can see in
Algorithm 1, task 0 initially receives the size N of the
problem, the first cutoff depth, and the second one (lines
1−3). As illustrated in Figure 2, the initial pool of nodes P is
generated though a partial search (line 6), called initial search.
This work focuses on permutation combinatorial problems, for
which an N -sized permutation represents a valid and complete
solution. Therefore, task 0 implicitly enumerates all feasible
and valid incomplete solutions containing cutoff elements of
the permutation, keeping them into the pool P . Lines 7 to 9
are responsible for defining the distributed pool of nodes Pd.

Algorithm 1: The Master-worker scheme.
1 N ← get problem( )
2 cutoff ← get cutoff depth( )
3 second cutoff ← get scnd cutoff depth( )

4 P ← {} Node
5 metrics ← (0, 0)
6 metrics + = initial search(N, cutoff, P )

7 Size ← {0..(|P | − 1)} // Domain
8 D ← Size mapped onto locales to a standard distribution
9 Pd ← [D] : Node

10 Pd = P // Using implicit bulk-transfer

11 forall node in Pd following a distributed iterator with(+ reduce
metrics) do

12 metrics + = Search(N,node, cutoff,
13 second cutoff)
14 end
15 present results(metrics)
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Fig. 3. Speedup achieved by the Chapel-base implementation compared to
its MPI-C counterpart on 2 (25 cores) to 32 computer nodes (324 cores)
compared to the execution on one computer node. Results are shown for all
distributed iterators. The N-Queens sizes range from 15 to 19. Values are
given in percent of the linear speedup.

The parallel search takes place in line 11, adding parallelism
by using the forall statement along with distributed iterators
(DistributedIters), which are responsible for the as-
signment of nodes in Pd to locales in a master-worker manner
(distributed load balancing). There is no need for programming
a termination criterion or a reduction of the search metrics. The
search finishes when the distributed active set Pd is empty, and
metrics are reduced by using the reduction intents provided
by Chapel (+ reduce). Finally, both intra- and inter-locale
levels of parallelism are exploited by using the distributed
iterators.

Implementation: We conceived two backtracking algorithms
for enumerating all complete and feasible solutions of the
N-Queens: a single-locale and a distributed one. It is worth
mentioning that we use the N-Queens problem as a proof-of-
concept that motivates further improvements in solving related
combinatorial optimization problems. Refer to [11], [12] for
more about both implementations.

Evaluation: The experimental results show that Chapel is
a suitable language for the design and implementation of
parallel and distributed tree search algorithms. The single-
threaded search in Chapel is on average only 7% slower than
its counterpart written in C. Whereas programming a serial and
multicore tree search in Chapel is equivalent to C-OpenMP
in terms of performance and SLOC, its productivity-aware
features for distributed programming stand out.

Thanks to Chapel’s global view of the control flow and
data structures, the main difference between the multi- and
single-locale versions lies mainly in the use of the PGAS
data structures and distributed iterators for load balancing.
There is no need for explicitly dealing with communication,
metrics reduction, distributed load balancing and intra-locale
parallelism. As a consequence, the multi-locale version is only
8 lines longer than its single-locale counterpart, which results
in a code 33% bigger. In contrast, it is required to add 24 lines
to the backtracking written in C-OpenMP to use MPI, which
almost doubles the program size. Despite the high level of its
features, the distributed tree search in Chapel is on average
16% slower and reaches up to 80% of the efficiency of its
C-MPI+OpenMP counterpart.
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Fig. 4. Execution times of the Chapel-based B&B compared to a MPI-based
state-of-the-art implementation (MPI-PBB) [13] solving flow-shop scheduling
instances (ta21-ta30) [14] to optimality. Results are shown for 1 computer
node (32 cores) to 32 computer nodes (1024 cores).

IV. IMPROVING INTRA-LOCALE EFFICIENCY

In this section, we detail the extension of the distributed
backtracking into a branch-and-bound (B&B) search for solv-
ing permutation combinatorial optimization problems. This
way, we added to the backtracking bounding operations for
subproblem evaluation and also means to keep the coherency
of the best solution found so far.

In Algorithm 1, a task receives a chunk of subproblems
from the master, and then the search implicitly enumerates
the feasible region rooted by a given subproblem from depth
cutoff until the depth N . However, solving instances of
combinatorial optimization problems to optimality is much
more challenging, as the loads produced are much more
irregular than the ones produced by the N-Queens. The number
of feasible and valid incomplete solutions at depth cutoff
might be insufficient to efficiently use all CPU cores of several
locales at once. To cope with this situation, we cannot rely only
on the distributed iterator for exploiting intra-node parallelism.

For each subproblem in a chunk, the worker task exe-
cutes once more the partial search described in Algorithm 1
for generating a task-local pool (Pl). This search is per-
formed from depth cutoff until second cutoff , also storing
into Pl all feasible and valid incomplete solutions found
at second cutoff . Next, an intra-locale iterator is used to
manage the pool. Then the metrics are reduced and returned
to the master locale. Refer to [15] for more details about this
B&B algorithm.

Evaluation: We compare the improved implementation to a
master-worker state-of-the-art MPI-C++ B&B [13] in terms of
parallel performance and efficiency. The benchmark instances
used in our experiments are the flow-shop scheduling problem
(FSP) instances defined by Taillard [14] where M = N = 20.

As one can see in Figure 4, Chapel-BB is faster or at least
equivalent to MPI-PBB on 32 locales (1024 cores) for the
three biggest instances (ta23, ta24 and ta28). In turn, as the
number of computer nodes increases, load balancing becomes
crucial, and Chapel’s distributed iterators cannot deliver to
the 4 smallest instances (ta22, ta27, ta29 and ta30) regular
loads among locales, resulting in poor parallel performance
and scalability (Figure 5).
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Fig. 5. Speedup achieved by Chapel-BB and MPI-PBB on 2 (64 cores) to
32 computer nodes (1024 cores) compared to the execution on one locale.
Values are given in percent of the linear speedup (Lin− 100%).

According to the productivity-oriented results (see [15] for
more details), the overall software cost of MPI-PBB in terms
of SLOC is 5.6× higher than the one of Chapel-BB. The most
expensive parts of the MPI-PBB code are the load balancing
and termination criteria, which are 35× and 18× more costly
than the Chapel-BB ones, respectively. It is important to point
out that this programming effort== pays off, as the state-of-
the-art load balancing mechanism of MPI-PBB provides 90%
of the linear speedups for the majority of the instances.

V. USING MULTIPLE GPUS

In combinatorial optimization, the use of GPUs became
crucial because it enables solving to the optimality instances
having prohibitive execution times on CPUs [13]. Also in
the context of large-scale distributed computing, the use of
accelerators such as GPUs and FPGAs plays a special role, as
the energy-efficiency of such devices helps to break the power
barrier towards exascale [16].

Although Chapel is a parallel programming language, it
does not support the use of GPUs. The GPUIterator
module [17] fills this gap, as it allows GPUs and concur-
rent CPU/GPU execution in Chapel. However, its lack of
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Fig. 6. The locale 0 (master) is responsible for generating the distributed
pool Pd and controlling the search. Each worker locale receives nodes from
the master and generates a local pool (Pl) that is partitioned into γ subsets. L
locales are launched on L− 1 computer nodes (Own representation adapted
from [3]).
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Fig. 7. Speedup achieved by (a) ChplGPU and (b) GPUIterator implementations compared to the optimized CUDA-C baseline executed on one computer
node (two GPUs). Results are shown for 1 computer node (2 GPUs) to 12 computer nodes (24 GPUs). In the graph, the keys present the number of computer
nodes followed by the number of GPUs in parenthesis – e.g., 12(24) means that the results are shown for 12 computer nodes and a total of 24 GPUs.

distributed load balancing makes it unfeasible for this work.
To cope with this challenge, we adapted the procedure for
exploiting intra-node parallelism, introduced in the previous
section, for taking advantage of GPUs through the Chapel C-
interoperability layer.

As in the B&B algorithm detailed in the last section, the
second partial search also generates a task-local pool Pl for
each subproblem in the chunk. Then, the |Pl| nodes are divided
among the γ GPUs of the system. Next, for each GPU, a CPU
task is created for managing data and launching the kernel. All
GPU-related code is accessed through the C-interoperability
layer. One can see in Figure 6 an overview of the distributed
GPU-based master-worker search. For more details concerning
the GPU-based algorithm see [18].

Implementation: We conceived three backtracking algo-
rithms for enumerating all complete and feasible solutions
of the N-Queens: a CUDA-C baseline, a GPU-based version
of the search introduced in the last section (ChplGPU) and
a distributed version of the CUDA-C application using the
GPUIterator module for distributed execution. As for the
implementation detailed in Section III, the N-Queens is used as
a proof-of-concept aiming at further improvements in solving
related combinatorial optimization problems. Refer to [19] for
more details about the implementations.

Evaluation: Figure 7 shows the strong scaling of both
ChplGPU and the GPUIterator-based implementations. Due to
its static load distribution scheme, the GPUIterator-based
implementation reaches around 80% of the linear speedup
only when 4 GPUs (2 computer nodes) are used (refer to
Figure 7b). In the scope of this work, the higher programming
effort of combining two levels of partial searches with the
distributed iterators pays off, as ChplGPU achieves parallel
efficiency up to 2× higher and it is up to 1.77× faster than
its GPUIterator-based counterpart for N ≥ 19.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

The most difficult challenge of revisiting a tree-based search
algorithm from a performance-oriented approach to a produc-
tivity one is achieving a trade-off between both approaches.

In this talk, we show that such a trade-off is possible by using
Chapel’s features for distributed programming. As Chapel
is a compiled language, it is possible to hand-optimize for
performance the data structures used in the enumeration
process. Moreover, the distributed iterators are a key feature
for achieving high productivity in the context of this project,
preventing us from implementing the master-worker model for
load balancing and metrics reduction.

Concerning the use of accelerators, it is important to men-
tion that some of the challenges concerning employing GPUs
for irregular tree search remain when using Chapel. On the one
hand, we can exploit high-level features provided by Chapel
for several aspects of the search, such as work distribution and
termination criteria. On the other hand, mixing programming
models also brings GPU-related challenges along with it. For
instance, it is required to tune the chunk size of the distributed
iterator taking into account that a subproblem yielded by the
iterator must provide load enough for multiple GPUs.

Despite the obtained promising results, there are challenges
not yet addressed in the context of productivity-awareness. The
most important are: 1) improving scalability 2) the heterogene-
ity issue and 3) fault tolerance.

1) Scalability: we show that the OpenMP-like work distri-
bution provided by Chapel is not effective in the most
challenging scenarios. In this case, the objective is to
improve Chapel’s iterators by including locality-aware
work-stealing mechanisms for load balancing taking into
account both intra- and inter-node levels of parallelism.

2) Heterogeneity: a challenge that remains open concern-
ing heterogeneity is how to harness all CPUs and GPUs
of the system, but also keeping productivity. Thus,
we plan to incorporate work-stealing features into the
GPUIterator module.

3) Fault tolerance: in exact optimization, the execution
time of an algorithm cannot be accurately predicted.
Thus, it is necessary to provide means for the program
to recover from a previous execution state after a failure.
Initially, the fault tolerance aspects of the algorithms are
going to be focused on checkpointing.
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