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Coercivity for travelling waves in the Gross-Pitaevskii equation in R?
for small speed

David Chiron and Eliot Pacherie
Université Cote d’Azur, CNRS, LJAD, France

Abstract

In a previous paper, we constructed a smooth branch of travelling waves for the 2 dimensional Gross-Pitaevskii
equation. Here, we continue the study of this branch. We show some coercivity results, and we deduce from
them the kernel of the linearized operator, a spectral stability result, as well as a uniqueness result in the energy
space. In particular, our result proves the non degeneracy of these travelling waves, which is a key step in the
classification of these waves and for the construction of multi-travelling waves.

MSC classification (2010): 35C07, 35Q55, 35A02, 35B35
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1 Introduction and statement of the results
We consider the Gross-Pitaevskii equation
0= (GP)(u) := i0u + Au — (Ju[* — u

in dimension 2 for u : Ry x R2 — ©. The Gross-Pitaevskii equation is a physical model for Bose-Einstein condensate
[8], [17], and is associated with the Ginzburg-Landau energy

1 1
B(v) = 5/32 Vol + i/]Rz(l— o[22,

The condition at infinity for (GP) will be
ul =1 as |z| = +oo.

The equation (GP) has some well known stationary solutions of infinite energy called vortices, which are solutions
of (GP) of degrees n € Z* (see [2]):
Vn(l‘) = pn(r)einG’
where z = re'?, solving
AV, — (Va2 =1V, =0
{ |Vl = Las|z| — oo.

Amongst other properties, V; and V_; have exactly one zero (p,(r) = 0 only if » = 0), and we call it the center of
the vortex. Since the equation is invariant by translation, we can define a vortex by its degree and its center (the
only point where its value is zero).

We are interested here in travelling wave solutions of (GP):

u(t, z) = v(xy, x2 + ct),



where x = (21, 22) and ¢ > 0 is the speed of the travelling wave, which moves along the direction —e3. The equation
on v is then
0= (TW.)(v) := —icOp,v — Av — (1 — |v|*)v.

In this paper, we use all along the following notations. We denote, for functions f,g € L2 _(R? C) such that
Re(fg) € L' (R?, C), the quantity

{(f:9)= | Re(f9),
R?

even if f,g ¢ L*(R?,C). We also use the notation B(x,r) to define the closed ball in R? of center x € R? and
radius 7 > 0 for the Euclidean norm. We define between two vectors X = (X1, Xs) € R%Y = (Y1,Ys) € C? the
complex quantity

X.Y := X1Y1 + X2Y2

Finally, we use the notation o%_,,(1) to describe a quantity that goes to 0 when ¢ — 0 for a fixed value of v.

1.1 Branch of travelling waves at small speed

In the previous paper [4], we constructed solutions of (TW,) for small values of ¢ as a perturbation of two well-
separated vortices (the distance between their centers is large when ¢ is small). We have shown the following
result.

Theorem 1.1 ([4], Theorem 1.1) There exists co > 0 a small constant such that for any 0 < ¢ < ¢, there exists
a solution of (TW,) of the form
Qc = Vi(. — deef)Voi (. +deef) + T,

1+0c~>0(1)

where d. = -

infinity.
Furthermore, for all +00 > p > 2, there exists co(p) > 0 such that if ¢ < co(p), for the norm

is a continuous function of c¢. This solution has finite energy (E(Q.) < +00) and Q. — 1 at

[”llp = hllLer2) + (VR[] Lo-1(m2)
of the space X, := {f € LP(R?),Vf € LP~1(R?)}, one has
[ITellp = 0c—0(1).

In addition,
c—Q.—1¢ Cl(]ov CO(p)[vXp)ﬂ

with the estimate

0cQe + (HOC;O(U) Ba(Vi(. — del)Voi (. + deq))jaa.

| =)
=0c—0| 5 |-
p c

The main idea of the proof of Theorem 1.1 is to use perturbative methods around a quasi-solution Vj(. —
de—1>)V_1(. + de_f), get I'. by a fixed point theorem and the value of d. by the cancellation of a Lagrange multiplier.
With an implicit function theorem, we can show that this construction gives us a C! branch with respect to the
speed c. In [4], we showed additional and more precise estimates on Q. and 9.Q. in some weighted L norms that
will be useful in the proof of the next results (they will be recalled later on). Still in [4], we wrote the perturbation
I'c 4, to make the dependence on c and d, clearer, but it is no longer needed here, and we will only write I'..

With this solution @., we can construct travelling waves of any small speed, i.e. solutions of
(TWz)(v) := ie.Vv — Av — (1 — [v|*)v
for any &€ R? of small modulus. For &= |¢le’(%s=7/2) € R?, |¢] < co, we have that

Qz = Q|7 0 R_o, (1.1)



is a solution of (TWgz), with R, being the rotation of angle a and Qg defined in Theorem 1.1. Furthermore,
the equation is invariant by translation and by changing the phase. Thus, we have a family of solutions of (GP)
depending on five real parameters, ¢ € R?, |¢] < cg, X € R? and v € R:

Qe(. — X — t&)e™.

We remark that, for a vortex of degree £1, the family of solutions has three parameters (the two translations and
the phase): Vii(. — X)e® is solution of (GP) for X € R?,~v € R. In particular, between a travelling wave and the
two vortices that compose it, we lose a parameter (since the phase is global). This is one of the difficulties that will
appear when we study the stability of this branch.

First, we give additional results on this branch of travelling waves: we will study the position of its zeros, its
energy and momentum, as well as some particular values appearing in the linearization. The (additive) linearized
operator around @, is

Lo, () == —Ap — icdp, 0 — (1 = |Qc]?) ¢ + 2Re(Qep) Qe

We want to define and use four particular directions for the linearized operator around ., which are

8(111 QC) awz QC7

related to the translations (i.e. related to the parameter X € R? in the family of travelling waves), and

acha 8cL Qm

related to the variation of speed (i.e. related to the parameter ¢ € IR?), if we change respectively its modulus or its
direction. The functions 0., Q, 0z, Q. and 0.Q. are defined in Theorem 1.1, and we will show that

acJ-Qc(x) = aa(Qc o Rfoz)|a:O = —I'L.VQC(J}),

with 21 = (—z2,71) (see Lemma 2.7). We infer the following properties.

Proposition 1.2 There exists ¢o > 0 such that, for 0 < ¢ < co, the momentum P(Q.) = (P1(Q.), P2(Q.)) of Q.
from Theorem 1.1, defined by

PUQ) = 50000, @e, Qe — 1),

PQ(QC) = %@awchv Qe — 1>7

verifies ¢ — ﬁ(QC) € C1(]0, o[, R?),
Pi(Qc) = 0:P1(Qe) =

0
Py(Q) = 2T 0eoll)

c

and
-2+ 0(:—)0(1>
—_—

acPQ (Qc) =

Furthermore, the energy satisfies ¢ — E(Q.) € C*(]0,¢o[, R), and

C

E(Q:) = (2m + 0c50(1)) In (1) .

c
Additionally, Re(Lg, (A)A) € LY (R, R) for A € {94,Qc, 02,Qc, 0cQe, 0.1 Q. }, and
<LQC (8$1Q0)>6w1Qc> = <LQU(8x2Qc),aw2Qc> =0,

-2+ Ocﬁo(l)
2 b

<LQC (aCQC)vach> = 8CP2(QC) = ;
(LQ.(0c+Qc), 01 Qc) = cPa(Qc) = 27 + 0c—0(1)



and
=27 + 0c—0(1)

c

aCE(QC) = CacPQ(Qc) =
Finally, the function Q. has exactly two zeros. Their positions are :i:cie?, with

|dc - J(‘| = 0c—>0(1)7
where d. is defined in Theorem 1.1.

The momentum has a generalized definition for finite energy functions (see [16] in 3d and [3]). For travelling
waves going to 1 at infinity, it is equal to the quantity defined in Proposition 1.2. The proof of Proposition 1.2 is
done in section 2.

The equality (Lg, (0.Qc), 0cQc) = 0.P2(Q.) is a general property for Hamiltonian system, see [12]. The equality
0.E(Q.) = cd:.P2(Q.) has been conjectured and formally shown in [14], provided we have a smooth branch ¢ — Q.,
which is precisely shown in Theorem 1.1. We remark that the energy F(Q.) is of same order as the energy of
the travelling waves constructed in [1], which also exhibit two vortices at distance of order % We believe that
both construction give the same branch, and that this branch minimises globally the energy at fixed momentum.
However, we were not able to show even a local minimisation result of the energy for Q. defined in Theorem 1.1.

In the limit ¢ — 0, the four directions (0., Qc, Oz, Qe, 20.Q., 0,1 Q.) are going to zeros of the quadratic form
(while being of size of order one), and we see here the splitting for small values of ¢. In particular, two directions
give zero (0., Q. and 9,,Q.), one becomes positive (0,1 Q.) and one negative (9.Q.).

1.2 Coercivity results

One of the main ideas is to reduce the problem of the coercivity of a travelling wave to the coercivity of vortices. We
will first state such a result for vortices (Proposition 1.3) before the results on the travelling waves (see in particular
Theorem 1.5).

1.2.1 Coercivity in the case of one vortex

A coercivity result for one vortex of degree +1 is already known, see [5], and in particular equation (2.42) there.
We consider both vortices of degrees +1 and —1 here at the same time, since V; = V_;. Here, we present a slight
variation of the results in [5] that will be useful for the coercivity of the travelling waves. We recall from [5] the
quadratic form around Vi:

Bu(e) = [ V6l = (1= Aol + 2%V,

for functions in the energy space

Hy, = {4,0 S 1711()(:(13,2,(]3)7 ”SOH%IW = /IR2 |vg0‘2 + (1 _ |‘/1|2)|<p|2 +m82(71<p) < +Oo} .

As the family of vortices has three parameters, we expect a coercivity result under three orthogonality conditions.
The three associated directions are 9, V1, 0, V1 (for the translations) and ¢V (for the phase).

Proposition 1.3 There exist K > 0, R > 5, such that, if the following three orthogonality conditions are satisfied
for ¢ = Vi € CZ(R?*\{0},C),

/ Re(Dy, VIV = / Re(0, ViV = / Im(e) =0,
B(O,R) B(O,R) B(O,R)\B(O,R/2)
then,

2
Bvi(p) 2 K (/ |V¢\2+|<pl2+/ IVw|2V1|2+me2(¢)|v14+W|>_
B(0,10) R2\B(0,5)

72 n?(r)



The same result holds if we replace Vi by V_;. We remark that the coercivity norm is not |||z, , but is weaker
(the decay in position is stronger), and this is due to the fact that iV; ¢ Hy,. That is why this result is stated for
compactly supported function. The fact that the support of ¢ avoids 0 is technical at this point.

Proposition 1.3 is shown in subsection 4.2. The proofs there are mostly slight variations or improvements of
proofs given in [5].

1.2.2 Coercivity and kernel in the energy space

The main part of this section consists of coercivity results for the family of travelling waves constructed in Theorem
1.1. We will show it on @, defined in Theorem 1.1, and with (1.1), it extends to all speed values ¢ of small norm.
We recall the linearized operator around Q.:

Lo.(¢) = =Ap —icdz, 0 — (1 = |Qc|*)p + 2Re(Qe) Q..

The natural associated energy space is
HQc = {Lp € Hlloc(lRQ)v HLPHHQC < +OO} )

where
lolrg, = [ V6l + 1= Qe + R @2,

First, there are difficulties in the definition of the quadratic form for ¢ € Hg,, because of the transport term. A
natural definition for the associated quadratic form for ¢ € Hg, could be

IVl = (1= 1QuP)el? + 206 @e) = Felicd o), (12)

unfortunately the last term is not well defined for ¢ € Hg_, because we lack a control on Im(Q.¢) in L?*(R?) in
|| e, > see [16]. We can resolve this issue by decomposing this term and doing an integration by parts, but the
proof of the integration by parts cannot be done if we only suppose ¢ € Hg, (see section 3 for more details). We
therefore define the quadratic form with the integration by parts already done. Take a smooth cutoff function n
such that n(z) = 0 on B(£d.e1,1), n(z) = 1 on R?\B(+d.ei,2), where +d.e{ are the zeros of Q.. We define, for

QO:QC'I;[}GHQU
Bol) = [ IV6l = (1= QP el + 26 Q)
J— J— ; ) J— , 0O 2
[ = melivnes) —c [ ams(io,. Q001
2 [ aReIm0u,0)IQ + e [ Orndtenamil Qo
+ c/m R Impd, (|Q?). (1.3)

See subsection 3.3 for the details of the computation. For functions ¢ € H'(IR?) for instance, both quadratic forms
(1.2) and (1.3) are well defined and are equal (see Lemma 5.7). We will show that Bg, is well defined for ¢ € Hg,
(see Lemma 3.3), and that for A € {93, Qc, 02,Qc, 0:Q¢, 0.2 Q. }, B, (A) = (Lg, (A), A).

From Proposition 1.2, we know that Q. has only two zeros. We will write the quadratic form Bg_ around the
zeros of Q. (for a function ¢ = Q¢ € Hg,) as the quadratic form for one vortex (computed in Proposition 1.3),
up to some small error. As we want to avoid to add an orthogonality on the phase, we change the coercivity norm
to a weaker semi-norm, that avoids iQ)., the direction connected to the shift of phase.

We will therefore infer a coercivity result under four orthogonality conditions near the zeros of Q. (two for each
zero). Then, we shall show that far from the zeros of @, the coercivity holds, without any additional orthogonality
conditions.



Proposition 1.4 There exists co, R > 0 such that, for 0 < ¢ < co, if one defines Vi1 to be the vortices centered
around +d,e] (d. is defined in Proposition 1.2), there exist K > 0 such that for o = Q. € Hg,_, 0 < ¢ < ¢, if the
four orthogonality conditions

/B o CAAE /B . (0. ViVi0) =0,

/ Re(Dy, V1 V_11)) :/ Re(0y, Vo1 Vo11h) = 0
B(—d.&i,R) B(—d.ei,R)
are satisfied, then, for

Il = [ IVOPIQcl + ReIQUL,

the following coercivity result holds:
Bq. () = K|ll2-

We will check that ||¢|c is well defined for ¢ € Hg, (see section 3). Proposition 1.4 is proven in subsection 4.4.

We point out that ¢ = Qcth — [|¢llc is not a norm but a seminorm since [p. [VY[?|Qc|* + Re?(¥)|Q.|* = 0
implies only that ¢ = AiQ). for some A € R, and iQ. is the direction connected to the shift of phase. Remark also
that in this proposition, ¢ = Q.1 but the orthogonality conditions are on Vi1. This is a consequence of Proposition
1.3 and the fact that the coercivity is shown with a seminorm.

Now, we want to change the orthogonality conditions in Proposition 1.4 to quantities linked to the parameters
¢ and X of the travelling waves, that is 0y, Qc, 02, Q¢, 0cQ. and 0.1 Q.. We can show that for ¢ = Q¢ € Hg,, for

instance
/ Re (aml Vlﬁw)
B(d.e1,R)

but such an estimate might not hold for fe fB(d & R)UB(—d.e1,R) Oz, QcQ Y (because of the lack of control on Jm(v))

< Kllelle,

in L?(IR?) in the coercivity norm ||.|¢). It is therefore difficult to have a local orthogonality condition directly on
0z, Q. for instance. R
To solve this issue, we shall use the harmonic decomposition around +d,ei. For the constructed travelling wave
Q., two distances play a particular role, they are d. (defined in Theorem 1.1) and d. (defined in Proposition 1.2
and is connected to the position of the zeros of @Q.). In particular, we define the following polar coordinates for
r € R%: ‘
re .=z € R?,
ro1etfE =g — (j:dc)e_l> € R?,
fileiéﬂ =T — (j:c’i;)e_f e R2.
We will also use 7 := min(ry,r_1) and # := min(r7,7_1). For a function ¢ such that Q.¢ € HL (R?) and j € Z,
we define its j—harmonic around +d ey by the radial function around +d.e1:
1 27

PIE () = o0 P(Frre®)em 051 dh .
0

Summing over the Fourier modes leads to
Y(@) = 39 et
JEZ
and we define, to simplify the notations later on, the function ¥#°, by
V7)== p(x) — ()
in the right half-plane, and
V7(@) = () — (7o)

in the left half-plane. This notation will only be used far from the line {z; = 0}. We now state the main coercivity
result.



Theorem 1.5 There exist ¢y, K, 5y > 0 such that, for R > 0 defined in Proposition 1.4, for any 0 < 5 < Sy,
there exists co(B), K(B8) > 0 such that, for ¢ < co(B), if ¢ = Qcp € Hg, satisfies the following three orthogonality

conditions:
e f L 0,QQuR = [ 0,007 =0
B(d.el,R)UB(—d.e{,R) B(d.&t,R)UB(—d.1,R)
and
e / 0:Q.Qu0 = 0,
B(deel,R)UB(—d.el,R)
then,
Bo.(¢) = K(B)* |03,
with

el = [ | IV0PIQul + Rl

If o = Q. also satisfies the fourth orthogonality condition (with 0 < ¢ < ¢p)

me/ 801— QCW = 0,
B(d.el,R)UB(—d.e},R)
then

Bq.(¢) = Kllo||3-

Theorem 1.5 shows that under four orthogonality conditions, we have a coercivity result in a weaker norm ||| c,
instead of |.||r,  with a constant independent of ¢, and with only three orthogonality conditions, we have the
coercivity but the constant is a Ocﬁ " 0(c®T8). This is because, of the four particular directions of the linearized
operator, Oy, Qc, 02,Q. are in its kernel, 0,0). is a small negative direction, and 0,1 Q). is a small positive direction
(see Proposition 1.2). About the orthogonality conditions, we remark that, for ¢ = Q.9 € Hg,,

e f 0,007
B(d.et,R)UB(—d.e1,R)

is close to

9%e/\ 811QCQCw
B(d.et,R)UB(—d.e7,R)
(we have Re [ = gy O QcQcT = 0c0(1)||¢|lm, for instance), but the first quantity can be controlled by

ll¢llc, and the second can not be.
Theorem 1.5 is a consequence of Proposition 1.4, and is shown in section 5. From this result, we can also deduce
the kernel of the linearized operator in Hg,.

Corollary 1.6 There exists cy > 0 such that, for 0 < c < cg, Q. defined in Theorem 1.1, for ¢ € Hq_, the following
properties are equivalent:

i. Lg.(p) =0 in H-Y(R?), that is, Vo* € H'(R?),

- Re(Vep.VoF) — (1 = |Qcf*)Re(90%) + 2Re(Qep)Re(Qey”) — Re(icds, ™) = 0.

1. TS SpanIR(aw] ch 81‘2 QC)

This corollary is proven in subsection 5.5. This nondegeneracy result is, to our knowledge, the first one on
this type of model. It is a building block in the analysis of the dynamical stability of the travelling wave and the
construction of multi-travelling wave. Here, the travelling wave is not radial, nor has a simple profile, which means
that we can not use classical technics for radial ground states for instance (see [19]).



1.2.3 Spectral stability in H'(RR?)

In this subsection, we give some result on the spectrum of Lq, : H*(R?) — L*(IR?). In particular, we are interested
in negative eigenvalues of the linearized operator. We can show that H!'(R?) C Hg, and prove the following
corollary of Theorem 1.5.

Corollary 1.7 There exists co > 0 such that, for 0 < ¢ < co, Q. defined in Theorem 1.1, if ¢ € H*(R?) satisfies

(,102,Qc) = 0,

then
Bq.(¢) =2 0.

We can show that Lg_(9.Q.) = i0,,Q. € L*(R?), and thus ¢id,,Q. € L'(R?) for ¢ € H'(R?). This result
shows that we expect only one negative direction for the linearized operator, and it should also hold in Hg,_ . For
¢ € H'(IR?), we have that Bg, () is equal to the expression (1.2).

Now, we define & to be the collection of subspaces S C H'(IR?) such that Bg_(p) < 0 for all ¢ # 0,9 € S, and

we define
n~(Lg,) == max{dim S, S € &}.

Proposition 1.8 There exists cg > 0 such that, for 0 < ¢ < cg, for Q. defined in Theorem 1.1,
n- (LQC) =1.
Furthermore, Lg, : H*(R?) — L*(IR?) has exactly one negative eigenvalue with eigenvector in L*(IR?).

With this result, Theorem 1.1 and Proposition 1.2, we have met all the conditions to show the spectral stability
of the travelling wave:

Theorem 1.9 (Theorem 11.8 (i) of [15]) For 0 < c¢; < cg and ¢ +— U, a C* branch of solutions of (TW.)(U,) =
0 on ]e1, ea] with finite energy, for c. €]ey, cal, under the following conditions:

i. for all ¢ €ley, o, Re(Up — 1) € HY(R?), Im(VU,) € L*(R?), |Uc| — 1 at infinity and |U.||cr(r2) < +00

i. n~ (Ly, ) <1
113. 3CP2(UC)|CZC* <0,
then U, is spectrally stable. That is, it is not an exponentially unstable solution of the linearized equation in
H'(R?,0).
Corollary 1.10 There exists cg > 0 such that, for any 0 < ¢ < c¢g, the function Q. defined in Theorem 1.1 is
spectrally stable in the sense of Theorem 1.9.

The notion of spectral stability of [15] is the following: for any ug € H'(IR?, C), the solution to the problem

{ i0u = Lo, (u)
u(t =0) = wug

</R |VU|2(t)dx> VI

when ¢ — oo. The result of [15] is a little stronger: the norm that does not grow exponentially in time is better
than the one on H!(IR?, C), but weaker than the one on H!(IR?,C), and is not explicit.

satisfies that, for all A > 0,



1.3 Generalisation to a larger energy space and use of the phase

There are two main difficulties with the phase. The first one, as previously stated, is that we lose a parameter when
passing from two vortices to a travelling wave. The second one is that for the direction linked to the phase shift,
namely i¢Q., we have iQ. ¢ Hg, (and even for one vortex, iV; & Hy, ). This will be an obstacle when we modulate
on the phase for the local uniqueness result. Therefore, we define here a space larger than Hg, .

1.3.1 Definition and properties of the space Hg‘cp

We define the space H,", the expanded energy space, by

H? 1= {p € HL(R2), llpllmyr < +00},
with the norm, for ¢ = Q¢ € 1oc(1R2)

¥

2 2 2 2
O3 ex0 1= || . + V| + Re + =
|| ”HQc || ||H1({'r<10}) /{’F}{i} | wl (1/1) 721 2(7:)

where 7 = min(77,7_1), the minimum of the distance to the zeros of Q.. It is easy to check that there exists K > 0
independent of ¢ such that, for ¢ = Q.9 € Hgip,

1 2 2 2 |1/’|2
. < X
K|\‘P||Hl({5<r<10}) /{5<F<10} IV[" + Re”(v) + 72 In(7)2 S K ||80||H1({5<7~<10})

We will show that Hg, C Hgip and iQ. € Hy", whereas iQ. ¢ Hg,. This space will appear in the proof of the
local uniqueness (Theorem 1.14 below). The main difficulty is that Bg. () is not well defined for ¢ € Hy" because
for instance of the term (1 — |Q.|?)|p|? integrated at infinity. If we write the linearized operator multiplicatively,

for ¢ = Q.1 (U-Sing (TWC)(QC) = 0)7

VQ.

QuLly (1) = Lo, (¢) = Q. ( ey = D= 22T 2e( )IQc2>,

then there will be no problem at infinity for ¢ € H g‘p for the associated quadratic form (in ), but there are instead
some integrability issues near the zeros of Q.. We take as before a smooth cutoff function 7 such that n(z) =0 on
B(+d,e1,1), n(z) = 1 on R?\B(+d.e{,2), where +d.e] are the zeros of Q.. The natural linear operator for which
we want to consider the quadratic form is then

LGP (p) = (1= n)Lq. () + 1Qe L, (¥),

and we therefore define, for ¢ = Q¢ € Hg‘cp,
BEP(p) = /R2(1 —n)(IVe[* = Re(icde, pp) — (1 = |Qc*)|pl* + 2%¢* (Qep))
_ /R Vn(Re(VQQ0) U] — 2Im(VQQ0)Re(1)Im (1))
+ /]R B Re()Im() Q|
T /R (I VOPIQ.? + 2R3 (6)[Qul*)

[ Im(TQQL)IN(TIR() + 26|Qc I,y )Re(). (14)

This quantity is independent of the choice of 7.

We will show that B, " () is well defined for ¢ € H" and that, if ¢ € Hg, C Hy, ", then Bg‘p( ) = Bo, (¢).
Writing the quadratic form Bo? is a way to enlarge the space of possible perturbations to add in particular the
remaining zero of the linearized operator. We infer the following result.



Proposition 1.11 There exist ¢y, K, R, fo > 0 such that, for any 0 < 8 < By, there exists co(B), K(8) > 0 such
that, for 0 < c < co(B), if o = Qe € Hy, " satisfies the following three orthogonality conditions:

0.,Q.Qu7 = e |

B(d.et,R)UB(—d.e1,R

9{6/ a:chch#O =0
B(d.et,R)UB(—d.e1,R) )

and
e / 0.Q.QcV = 0,
B(d.el,R)UB(—d.e1,R)
then,
BgP(9) = K(B)c*Pllo,
with

el = [ I90RIQul + Rl

If o = Q. also satisfies the fourth orthogonality condition (with 0 < ¢ < ¢p)

SRe\/ 8&- Qchdﬁéo = 07
B(d.e1,R)UB(—d.e1,R)
then

BoP(e) = K|lellz.

Furthermore, for ¢ € Hgip, the following properties are equivalent:

i. Lg,(p) =0 in H Y(R?), that is, Vo* € H'(R?),

Bgde%V55—CL%QA%mdwaﬂ+2%d@3ﬂ%d@@f)—%dw@wm?)=0

1. @ € SpanR(iQm axl Qm azzQC)

Proposition 1.11 is proven in subsection 6.1. The additional direction in the kernel comes from the invariance of
phase (Lg,(iQ.) = 0). The main difficulties, compared to Theorem 1.5, is to show that the considered quantities
are well defined with only ¢ € H, g‘cp, and that we can conclude by density in this bigger space.

1.3.2 Coercivity results with an orthogonality on the phase

The main problem with adding a local orthogonality condition on Q). is to choose where to put it. Indeed, we
want this condition near both zeros of @, or else the coercivity constant will depend on the distance between the
vortices, which itself depends on c.

The first option is to let the coercivity constant depend on c. In that case, we can also remove the orthogonality
condition on J.1Q., the small positive direction. We infer the following result.

Proposition 1.12 There exist universal constants Ki,cqg > 0 such that, with R > 0 defined in Proposition 1.4,
for 0 < ¢ < cg, for the function Q. defined in Theorem 1.1, there exists Ko(c) > 0 depending on ¢ such that, if
p=Q € Hg(cp satisfies the following four orthogonality conditions:

O, Q0P = Re / 92, Q.00 = 0,

i)%e/
B(d.ei,R)UB(—d.e},R) B(d.ei,R)UB(—d.e1,R)

0.Q: QW70 = i)‘{e/ 1) =0,

9%/
B(d.et,R)UB(—d.&1,R) B(0,R)

then
Krllollee > BEP(0) > Ko@) ol

10



Here, the orthogonality condition on Q. is around 0, between the two vortices, but it can be chosen near one
of the vortices for instance, and the result still holds.

The second possibility is to work with symmetric perturbations, since the orthogonality condition can then be
at both the zeros of .. We then study the space

Hgip)s = {SD € HZQXLP>V"L‘ = (xlwrQ) S R27Q0($17.’II2) = Qp(_$17$2)}.

We show that, under three orthogonality conditions, the quadratic form is equivalent to the norm on H, Y.

c

Theorem 1.13 There exist R, K,co > 0 such that, for 0 < ¢ < ¢, Q. defined in Theorem 1.1, if a function
¢ € Hy™® satisfies the three orthogonality conditions:

9:Qup = Re / D2s Qe = 0,

9%/
B(dcet,R)UB(—d.&1,R) B(dcel,R)UB(—d.e1,R)

Re / 1Qcp =0,
B(d.el,R)UB(~d.e1,R)
then 1
2 € 2
?H(’DHHZXCD > BQ’?’(@) > K||‘P||Hg‘cp~

We remark that here, the orthogonality condition to 0., @, and 0.1 Q. are freely given by the symmetry. We
also do not need to remove the 0-harmonic near the zeros of Q..

If we remove the symmetry, and if we add the two orthogonality conditions related to 0., Q. and 0.1 Q., it is
not clear that we can get a similar result (with a coercivity constant independent of ¢). The main difficulty would
be coming from the phase, because we would have one orthogonality condition on it, but we would like two, one on
each vortices.

exp

Propositions 1.12 and Theorem 1.13 hold if we replace B, by Bq. for ¢ = Q. € Hg, with the symmetry,
but the coercivity norm will still be ||.|| HE®-

1.4 Local uniqueness result

With Propositions 1.11 and 1.12, we can modulate on the five parameters (¢, X, ) of the travelling wave, and these
coercivity results will be enough to show the following theorem.

Theorem 1.14 There exist constants K, cg, g, o > 0 such that, for 0 < ¢ < ¢y, Q. defined in Theorem 1.1, there
exists R. > 0 depending on ¢ such that, for any X\ > R., if a function Z € C?*(R?,C) satisfies, for some small
constant (¢, \) > 0, depending on ¢ and \,

- (TW,)(Z2) =0

— E(Z) < +0

— 1Z = Qcller®2\B(0o.A) < to
— 12 = Qellagr < (e, A),

then, there exists X € R? such that | X| < K||Z — QcHHS‘}’7 and

Z = Qc( _X)

The conditions F(Z) < +oo and ||Z — Qc”Hg‘? < (e, A) imply that the travelling wave Z — 1 at infinity, and

therefore Z = Q. with v € R,~ # 0 is excluded. The fact that e(c,\) depends on ¢ comes in part from the
constant of coercivity in Proposition 1.12, which depends itself on ¢. The condition that ||Z — Q.| lc1(r2\B(0,1)) < o
outside of B(0, A\) is mainly technical. We believe that this condition is automatically satisfied with the other ones
(with A depending only on ¢), but we were not able to show it.

11



To the best of our knowledge, this is the first result of local uniqueness for travelling waves in (GP). It does not
suppose any symmetries on Z, and therefore shows that we can not bifurcate from this branch, even to nonsymmetric
travelling waves.

We believe that, at least in the symmetric case, Theorem 1.14 should hold for |Z — Q.|| HEP < ewithe >0

independent of ¢ and A\. We also remark that the condition || Z — Qc”Hg‘?’ < (e, A) is weaker than ||Z — Qcllm,, <
(e, M), and thus we can state a result in Hg, .

1.5 Plan of the proofs

Section 2 is devoted to the proof of Proposition 1.2. We start by giving some estimates on the branch of travelling
waves in subsection 2.1, we then show the equivalents when ¢ — 0 for the energy and momentum, as well as the
relations between them and some specific values of the quadratic form in subsection 2.2. Finally, in subsection 2.3,
we study the travelling wave near its zeros.

In section 3, we infer some properties of the space Hg, . First, we explain why we can not have a coercivity
result in the energy norm in subsection 3.1, and we show the well posedness of several quantities in subsections 3.2
and 3.3. A density argument is given in subsection 3.4, that will be needed for the proof of Proposition 1.4.

Section 4 is devoted to the proofs of Propositions 1.3 and 1.4. We start by writing the quadratic form for test
functions in a particular form (subsection 4.1), and we then show Proposition 1.3 and 1.4 respectively in subsections
4.2 and 4.4. To show Proposition 1.4, we use Proposition 1.3 and the fact that we know well the travelling wave
near its zeros from subsection 2.3.

The next part, section 5, is devoted to the proof of Theorem 1.5 and its corollaries. We show the coercivity
under four orthogonality conditions by showing that we can modify the initial function by a small amount to have
the four orthogonality conditions of Proposition 1.4, and that the error commited is small in the coercivity norm.
We then focus on the corollaries of Theorem 1.5 in subsection 5.5. We show there composition of the kernel of L¢,
(Corollary 1.6), and the results in H*(IR?): Corollary 1.7, Proposition 1.8 and Corollary 1.10.

The penultimate section (6) is devoted to the proofs of Propositions 1.11, 1.12 and Theorem 1.13. In subsection
6.1, we study the space H p, in particular we give a density argument, that allows us to finish the proof of
Proposition 1.11. Then, in subsectlon 6.2, we compute how the additional orthogonality condition improves the
coercivity norm, both in the symmetric and non symmetric case, and we can then show Proposition 1.12 and
Theorem 1.13.

Section 7 is devoted to the proof of Theorem 1.14. We use here classical methods for the proof of local uniqueness,
by modulating on the five parameters of the family, and using a coercivity result. One of the main point is to write
the problem additively near the zeros of Q. and multiplicatively far from them. The reason for that is that we do
not know the link between the speed and the position of the zeros of a travelling wave in general, and we therefore
cannot write a perturbation multiplicatively in the whole space. Because of that, we require here an orthogonality
on the phase, and we cannot avoid it, as we did for instance the proof of Proposition 1.4 by choosing correctly the
position of the vortices.

We will use many cutoffs in the proofs. As a rule of thumb, a function written as 7, x or x will be smooth and
have value 1 at infinity and 0 in some compact domain. The function 7 itself is reserved for Bg, and Bg(cp (see
equations (1.3) and (1.4)).

Acknowledgments . The authors would like to thank Pierre Raphaél for helpful discussions. E.P. is supported
by the ERC-2014-CoG 646650 SingWave.

2 Properties of the branch of travelling waves

This section is devoted to the proof of Proposition 1.2. In subsection 2.1, we recall some estimates on Q. defined
in Theorem 1.1 from previous works ([2], [4], [9] and [13]). In subsection 2.2, we compute some equalities and
equivalents when ¢ — 0 on the energy, momentum and the four particular directions (0., Qc, Oz, Qc, 0.Q. and
0,1 Q). Finally, the properties of the zeros of @, are studied in subsection 2.3.
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2.1 Decay estimates

2.1.1 Estimates on vortices

We recall that vortices are stationary solutions of (GP) of degrees n € Z* (see [2]):
V(@) = pa(r)e™,

where z = re'? | solving

AV, — (Va2 =1V, =0
[V | = las|z| — .

We regroup here estimates on quantities involving vortices. We start with estimates on V.

Lemma 2.1 ([2] and [13]) A wortex centered around 0, Vi(x) = p1(r)e’, verifies V1(0) = 0, and there exist
constants K,k > 0 such that

Vr > 0,0 < p1(r) < 1,p1(r) ~ps0 &7, p1(T) ~rs0 K

1
) > 0 4(7) = O (5 ) )] 4167/ < K

1 1
1- |V1(33)| = ﬁ +O0r 500 (r3> )

K K
V| < —, |V < ——
VAl T VMl s e

and
1

. T 1
Vila) = V() 5 + O (T:,,) ,
where 2t = (—x9,21), v = re'® € R2. Furthermore, similar properties hold for V_, since
V_oi(x) = Vi(a).
We also define, as in [4],
and

04V (.) := 0a(Vi(. — del)V_1 (. + de1))ja=a, -

We will also estimate
07V == 05(Vi(. — de)) V1 (. + de) ja=d. -

The function V(z) = Vi(x — dce_1>)V,1(x + dce_f) is close to Vi (z — dce_f) in B(dce_f, Qdiﬂ), since, from Lemma 2.1

and [2], we have, uniformly in B(d.e7, Qdi/z),

Voi(-+deef) = 1+ O s0(c'?) (2.1)

and
0c—o(c'/?)

VV_i(. +d.e])| < —
IVV_1(. +dcef)| A+7)

(2.2)

We recall that B(dce_f, 2d3§/2) is near the vortex of degree +1 of ). and that 7 = min(ry,7_1), with r4; = |x:|:dce_1>\.
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2.1.2 Estimates on Q. from [4]
We recall, for the function Q. defined in Theorem 1.1, that

V(z1,22) € R?, Qc(z1,22) = Qc(w1, —72) = Qo(—21,T2). (2.3)

In particular, 0.Q. enjoys the same symmetries, since (2.3) holds for any ¢ > 0 small enough. We recall that
Q. € C*(IR?,C) by standard elliptic regularity arguments.
Finally, we recall some estimates on Q. and its derivatives, coming from Lemma 3.8 of [4]. We denote
min(ry,7_1), the minimum of the distances to d.€; and —d.€7, and we recall that V(z) = V3 (x—dce_f)V,l(x—&—dce
We write Q. =V +T.or Q. = (1 —n)VU,.+nVe¥ where I'. = (1 —n)V¥,.+nV(e¥s — 1) (see equation (3.4)
of [4]). There exists K > 0 and, for any 0 < o < 1, there exists K (o) > 0 such that

’i” =
ef).

K(o)ct—2
el < ———, 4
| C‘ (1 +7’)‘7 (2 )
K(o)ct=°

Lol < s 2.

vr < e (25)
K(o

_ < -V .

|1 |QCH ~ (1_|_T~)1+a-7 (2 6)
K(o)ct=2
PR v [Pl S 2.7
Q.- v < HO (2.7
K(o)ct=@
2 2| < 2.
— K(o)

< —F— .
|me(vQCQC)| =~ (1 + 7;)2+0-7 (2 9)
Im(VQ.Q.)| < K (2.10)

cYe)l X 1+,F, .

and for 0 < o < ¢’ < 1, there exists K(c,0’) > 0 such that
K n,.1—o’

D2Im(,)| + [VRe(T,)]| + [V2Re(w,)| < 277V (2.11)

(1+7)2te

From Lemmas 2.1, with Theorem 1.1, we deduce in particular that for ¢ small enough, there exist universal constants
K1, K5 > 0 such that on ]RQ\B(:tdce_f, 1) we have

K1 <|Q¢| < Ka. (2.12)
To these estimates, we add two additional lemmas. We write

[Dlloa. = [V¥llerrasy + ||7:1+Um~e1(¢)“L°°({F>2}) + |27V Re(Y) || oo (1732}
+  177Im(Y) || oo (frz2y) + 1P TIVIM(D) || Loo (72}

where 7 = min(ry,7_1), with
ri1 = |z F deedl, (2.13)

and with d. defined in Theorem 1.1. The first lemma is about Q. and the second one about 0.Q..

Lemma 2.2 For any 0 < o < 1, there exist co(0), K(o) > 0 such that, for 0 < ¢ < ¢o(o) and Q. defined in
Theorem 1.1, if

then

r'.
HvamgK“w”'
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Proof This estimate is a consequence of
L= (1—n)V¥.+nV(e —1)

and equation (3.10) of [4]. O

Lemma 2.3 (Lemma 4.6 of [4]) There exists 1 > By > 0 such that, for all 0 < 0 < By < ¢’ < 1,There exists
co(o,0') > 0 such that for any 0 < ¢ < co(0,0"), Q. defined in Theorem 1.1, ¢ — Q. is a C* function from

10, co(a, ") to CH(R?,©), and
0.0’ cl—o"
; = 0.0 02 :

‘ 2:Qc (1 + oiﬁé(cl“’/)> 04Visa,

1% c? Vv
These results are technical, but quite precise. They give both a decay in position and the size in ¢ of the

error term. The statement of Lemma 4.6 of [4] has 0.—,0(1) and 0.0 (?12) instead of respectively ocﬁo(cl_”/) and

’

0c—0 (Clc;;), but its proof gives this better estimate (given that o’ is close enough to 1). We recall that OZﬁé(l) is

a quantity going to 0 when ¢ — 0 at fixed o,0’. We recall that 0.VQ. = VO.Q.. We conclude this subsection with
a link between the ||.||; norms and .||z, . We recall

Ielio, = [ 190R +11= QR l? + e (@)

Lemma 2.4 There exists a universal constant K > 0 (independent of ¢) such that, for Q. defined in Theorem 1.1,

h
Ihlne, < % |5

3/4,d,

The value o = 3/4 is arbitrary here, this estimate holds for o €]3,1].

Proof We compute, using Lemma 2.1, that

2
/ IVh|* < K Hh +/ \Y (hv>
R?2 14 3/4,d. {F=1} 4

From Lemma 2.1 and the definition of ||.||3/4,4,, we check that

[, 7 ()
{7>1} 4

Indeed, we have the estimate

2
h|?
|v‘f|2 ‘ |

2
h

<K | = .
HV V2

7(v)

2
+2 /
3/4,d. {F>1}

2 2

|h[? h
+ |VV|2W <K

2
1 h
/ Arrpe SK H
3/a.d, J{rz1y (LHT) Vils/a,d,

1 1
— L2 — < K.
/{F}l} (1 + 7:)3+1/2 /{r>1} (1 + 7“)3+1/2

Furthermore, from equation (2.6) with o = 1/2, we have the estimate

2

h 1 hlI?
1-— 2 h2§K — / — < K||=
- Hv o T Hv

3/4,d.

Finally, we compute

h 2

(Q.h) < K ||—
Rz%e(czh) v

+ / Re?(Q.h),
{F>1}

3/4,d.
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and
— —h h — h —
/ Re?(Q.h) = / Re? (VQC> < 2/ Re? () Re?(VQ.) + Im? () ImA(VQ.).
(721} {721} 4 {721 4 4
With the definition of ||.||3/4,4,, Lemmas 2.1 and 2.2, we check that

h 2

h — h
Re? () Re2(VQ.) < K Re? () <K H
/{le} 4 Voo {721} 4 |4

From Lemma 2.2 with o = 1/2, we check that, since Jm?(VQ,) = Im?*(VV +T.) = Jm?(VIL,.), we have

h

< K| =
I

2 1
3/4.de /{7=>1} (1+7)3+1/2 S

3/4,d.

2 2

h — h 1 h
Jm? ()3m2 VaQ. <KH / ~gKH
/{@1} 4 Ve Vilajaa, Jisry (1+7)24172 Vills/aa,
Combining, these estimates, we end the proof of this lemma. O

2.1.3 Faraway estimates on Q.

Since E(Q.) < +oo thanks to Theorem 1.1, from Theorem 7 of [9], we have the following result.

Theorem 2.5 ([9], Theorem 7) There exists a constant C(c) > 0 (depending on c) such that, for Q. defined in
Theorem 1.1,

2 C(c)
|]‘7|QC‘ |< (1+T>2’

C(c)

‘1 7QC| g 1+’l"’
C(c)

Ve < s
and o)
c

IVIQc|| < A+

Furthermore, such estimates hold for any travelling wave with finite energy (but then the constant C(c) also depends
on the travelling wave, and not only on its speed).

This result is crucial to show that some terms are well defined, since it gives better decay estimates in position
than the estimates in subsection 2.1.2 (but with no smallness in ¢). Remark that 1—|Q.|? is not necessarily positive.
In fact it is not at infinity (see [10]). In particular, the estimate

C(c)
1472

|1 - |Qc‘2‘ =
does not hold because of the possibility of |Q.| = 1. This happens, but only for few directions and it can be catched
up. We show the following sufficient result, which is needed to show that some quantities we will use are well
defined. Furthermore, in these estimates, the constant depends on ¢, and thus can not be used in error estimates

(since the smallness of the errors there will depend on c).

Lemma 2.6 There exists co > 0 such that, for 0 < ¢ < ¢, there exists C(c) > 0 such that for ¢ € Hg, and the
function Q. defined in Theorem 1.1,

ﬂ 2 _ 2 2
Lt < 0@ ([ ek <1017

See Appendix A.1 for the proof of this result.
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2.2 Construction and properties of the four particular directions
2.2.1 Definitions

The four directions we want to study here are 0., Qc, 0:,Q@., 0.Q. and 0.1 Q.. The first two are derivatives of Q.
with respect to the position, the third one is the derivative of (). with respect of the speed, and we have its first
order term in Theorem 1.1. The fourth direction is defined in Lemma 2.7 below. The directions 0, Q. and 0., Q.
correspond to the translations of the travelling wave, 0.Q. and 0,. Q. to changes respectively in the modulus and
direction of its speed. These directions will also appear in the orthogonality conditions for some of the coercivity
results.

Lemma 2.7 Take ¢ € R? such that |c| < co for co defined in Theorem 1.1. Define a such that &€ = |¢|Ra(—€2),
where Ry : R? — R? is the rotation of angle 6. Then, Qz := Qz © R—o solves

(TWz)(v) =ié.Vv — Av — (1 — |[v[)v =0
|v| = las|z| = +oo,

where Q7 is the solution of (TWg) in Theorem 1.1. In particular, Qz is a C' function of a and

0aQz(x) = —R_a(xL).VQ‘g‘ (R_u(2)).
Furthermore, at a = 0, the quantity
acL Qc = (8(1Q€>|(1:0

satisfies

0,1 Qe(z) = —2t.VQ.(z),
is in C*°(R2%, C) and
LQc(aCL QC) = 77:68.’1)1 QC'

Proof Since the Laplacian operator is invariant by rotation, it is easy to check that Qg o R_, solves (TWz)(Q| 0
R_,) = 0. The function § — Ry is C*, hence (o, z) — Qz(z) is a C* function, and we compute

(aaQé‘xx) = aa(Qm © R—a)('x) = aa(R—u(x))vQW](R—u(x))

We remark that

where 2+ = (—z5,21), hence

9aQz(x) = —R_o(27).VQ 7 (R_a(x)).

In particular, for a = 0,

aan(x)\a:() = —.’EL.VQC(J?).

We recall that @z solves
i€VQz — AQz — (1~ |Qa*)Qz =0,

and when we differentiate this equation with respect to a (with |¢] = ¢), we have
713(,5‘(VQ5> + LQa(aan) =0.
At a =0, Qz = Qc, 0,6 = —ce1 and 05Qza—0 = 9,1 Q., therefore

LQc (864 Qc) = —ic@zl QC.
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2.2.2 Estimates on the four directions

We shall now show that the functions 0, Q., 0z, @c, 0.Q. and J,..Q. are in the energy space and we will also
compute their values through the linearized operator around @, namely

L. (¢) = —Ap —icOz, o — (1 — |Qcl*) + 2Re(Qcp) Qe-

Lemma 2.8 There exists cg > 0 such that, for 0 < c < cg, Q. defined in Theorem 1.1, we have

a:lec, azQQca acha acLQc € HQC’

and

LQC (am QC) - LQc(angc) =0,
LQc (ach) = 10,,Qc,
LQu(acJ- QC) = _icam Q..

We could check that we also have 9, Q, 9:,Q. € H'(IR?) (see [10]), but we expect that 0.Q., .1 Q. & L*(IR?).
For 0,1 Q., this can be shown with Lemma 2.7 and [10].

Proof We have defined
lolfio, = [ 190R +11= Qe el? + e @ep).

For any of the four functions, since they are in C*°(IR2, C), the only possible problem for the integrability is at
infinity.

Step 1. We have 0,,Qc, 0,,Qc € Hg, .

From Lemma 2.1 and equation (2.11) (for 1 > ¢’ > o = 3/4), we have

K(e,0")
12 12 < — .
/]R2 V0, Qcl” + /]RZ VO Qcl” < /]R2 (L+7)7/2 =

From Theorem 2.5, we have

1- 02vc2 invcg/
|- pIves +ne@ve) < [ 559
hence 0,,Q., 02,Qc € Hg,.

Step 2. We have 0.Q. € Hg, .

From Lemmas 2.3 and 2.4, we have that for ¢ > 0 small enough

0cQc +

1+ 07 ,4(c?
#advld:dc € Hg,,

therefore we just have to check that 0qV|4—q, € Hg,, which is a direct consequence of Lemma 2.6 of [4].

Step 3. We have 0..Q. € Hg,.
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From Lemma 2.7, we have 0,1 Q. = —2-.VQ.. With Theorem 2.5, Lemma 2.1 and equation (2.11), we check

that
/ V0, Qul? + (1~ 1Qef?) |00z Quf? < +o0.
RZ

Now, from Lemma 2.1 and equation (2.6) (with o = 1/2), we have

R2 9%2(@8@- QC) S K ]Rz(l * rg)mQQ(VQc@) S K(C) /]R2 (1 jT)B

thus 0,. Q. € Hg,.

< +00,

Step 4. Computation of the linearized operator on 0y, Qc, Oz, Qcs 0cQe, Ot Q.

For the values in the linearized operator, since

=0z, Qc — AQ — (1 — |QC|2)QC = (TW)(Qc) =0,
by differentiating it with respect to z; and zs, we have
Lq. (02,Qc) = Lq. (02,Qc) = 0.
By differentiating it with respect to ¢, we have (we recall that 9.Q. € C*(IR?,T))

_iaﬂszC + LQc (ach) =0.

Finally, the quantity Lg, (0.1 @Q.) is given by Lemma 2.7.

O

The next two lemmas are additional estimates on the four directions that will be useful later on. They estimate

in particular the dependence on ¢ of ||.||¢c on these four directions.

Lemma 2.9 There exists K > 0 a universal constant, independent of ¢, such that, for Q. defined in Theorem 1.1,

02, Qclle + (102, Qelle + HCQacQCHC < K.

Furthermore, for any 1 > 3 >0,
0.+ Qelle = o o(c™).

Proof We have defined, for ¢ = Q. € Hg,,
el = [ | IV0RIQul + Rl
We recall that, since ¢ = Q. 1,

[ V0PI = [ 190 = VQuwPIQE < K [ | IV6RIQu + [V Qullel

Step 1. We have ||0,, Qclle + |02, Qcllc < K.

From Lemmas 2.1 and 2.2 and equations (2.9) to (2.11), we have that, for 7 = min(ry,7_1),

K
(1+7)

K
(1+7)2

IVQe| < and  |[V2Q.| <

Therefore,

V02 Q0PI + V(0,0 PIQc < K,
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and we also have

/ VOPIVO.P < K
IR2

thus, with equation (2.14),

aarch ? 4 ‘ (6332@0) ? 4
/sz<QC>QC|+/sz 2 I <
By equation (2.9) (for o = 1/4), we have
VQ. 4 1
Jome () o < [ mevad <k [ g < 8

We conclude that ||05, Qcllc + |02, Qcllec < K
Step 2. We have [|c?0.Q.|lc < K

From Lemma 2.3, we have, writing ¢?0.Qc = (1 4 0c0(1))8aVja=a, + h, that ||%H = 0c—0(1). In particular

if we show that [|0qVjg=a, llc < K and [|h]¢c < K, then [|c?0.Qcllc < K. From Lemma 2.6 of [4], we check directly
that

/ VOaVid=a.|” + |(dd;;/|2 + RE(VOaVia-a,) < K.

In particular, with (2.14), it implies that

9aVig—a \ |?
()<

e

OaVig—aq. _
/ Re? (d C'; dg) Q.l* < K / Re?(VOaVigea,) + [V — Qel*|0aViaea, I < K
R2 c R2

with the same arguments and equation (2.7). Similarly,
OaVid—d, |

/sz Q.

therefore [|04Vjg=a.llc < K. We now have to estimate [|h[|c. The computations are similar, since we check easily
that

and we estimate

Q<2 [ V0ot I + IV QeOViama [ < K
R

[ Qi < H

3/4,d,

and
2

2(0uh) <K | RE(Vh) + [V - QP2 < K Hh
R2 R2 V

3/4,d.

Step 3. We have [[cd,. Q.|lc = o, (c7P).

By definition, ¢9,.Q, = —cz~.VQ.(z), and we check by triangular inequality that c|lz*| < K (1 + 7) since
7 =min(|z — d.e1], |z + d.et|) and ed, — 1. Therefore,

[veasqop <e [ v+ [ <c|xL|>2|v2@c|2<K(1+ / |V2Qc|2<1+f>2).
R?2 R?2 R?2 R2
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We have |[V2Q.| < [V2V| + [V?T.|, and with equation (2.11), we check that [, |V?T.[*(1 4+ 7)? < K. With
computations similar to the ones of Lemmas 2.3 of [4] and 2.1, we can show that

_ K
c(1+7)3’

V2V < and |V?V| <

K
(1+47)2
therefore, for any 1 > 8 > 0,

K P

2
<7
VIS e

and thus, by (2.14),

Ll (%))

Furthermore, by equations (2.9) (for o = 1/2) and (2.12), we have

/szﬁez(cx VQ.(x )chl4 K/ *(VQ.Q0) < /ﬁg}(

We conclude that [|cd,. Q.llc = 0, (c7#). O

I* < K/ IVeer Qel*|Qel? + [VQe* 0o Qe < K(B)e™?P.
R?2

2.2.3 Link with the energy and momentum and computations of equivalents

In this subsection, we compute the value of the four previous particular direction 0., Q¢, Oz, Qc, 0:Qc, 0,1 Q. on the
quadratic form. In particular, we shall show that one of them is negative.

Lemma 2.10 There exists co > 0 such that for 0 < ¢ < co, and for Q. defined in Theorem 1.1, for A €
{02, Qey 02, Qe 0cQey 00 Qc}, Re(Lg, (A)A) € LY (R?) and

<LQC (8001 Qc)7azl QC> = <LQC (azch)>ax2Qc> =0,

(Lq.(0:Q0), 0.Qc) = —27T+C—w

<LQc (8CLQC)760LQC> =27 + OC_>0(1).

Proof For A € {0;,Qc,02,Qc, 0:Qc, Dt Q. }, we recall from Lemma 2.8 that A € Hgy,. To show that Re(Lg, (A)A) €
L'(R?), we need to show that

)

—NRe(AAA) — Re(icdy, AA) — (1 —|Q.H)|A]? + 2Re*(Q.A) € L*(R?).
For that, we check that, for some o > 1/2,

1L+ )7 Al oo 2y + [[(1+7) 7V A| + [Re(A)]) || o (m2)
+ A+ )7 Im(AA)] Lo m2) + [[(1+7) TR (AA) || oo (m2)
< oo (2.15)

For 0;, Q. and 0,,Q., this follows from Theorem 2.5, and, since Lq, (0z, ,Qc) = 0, from

A0r,,Qc) = —icd7,,, ,Qc — (1 = [Qcl*) 0, , Qe + 2Re(Qc0s, ,Qe) Qe

which allows to estimate A(9;, ,Q.) with Theorem 2.5, Lemma 2.1 and equation (2.11) for any o > 1/2.
Now, for 0.Q., the estimates not on its Laplacian are a consequence of Lemma 2.3, Theorem 2.5 and Lemma
2.6 of [4]. Then, from Lemma 2.8, we have L, (0:Q¢) = i05,Q., thus

A(ach) = _iazch - ica@gach - (]- - |Qc‘2)8ch + 2m6(@86QC)QC'

21



By Theorem 2.5 and Lemma 2.3, we have, for any o > 1/2,

K(c,o0)

(1= Qc?):Qe| + [293¢(Qe0:Q) Q.| < (B

K(c,o0)
< —_
|8.ch| + |61280Q0| X (1 + 7“)1+U
and K(c,0)
C, O
< 777
|Re(De, Qe)| + |Re(0s,0:Q.)| < (42t

which is enough to show the estimates for 0.Q)..
Finally, from Lemma 2.7 we recall that

01 Qe = 7IJ—'VQC('I)
and
LQC(aCL QC) = —icaxl Qc.

Similarly, the estimates not on its Laplacian follow from Theorem 2.5, Lemmas 2.1 and 2.2 and equation (2.11).
We also have

A(aci Qc) = icaml Qc - icaz2aci Qc - (]— - |Qc|2)aci Qc + 29%(@3& Qc)ch

and with the same previous estimates, we conclude that 0.1 Q. satisfies the required estimates. With the definition
|-l g, » we check that the last two terms are in L'(R?), and for the first two, the integrands are in L'(RR?,R) by
estimates in subsections 2.1.1 and (2.15).

Step 1. We have (Lg, (02, Q¢), 02, Qc) = (Lo, (02,Q¢), 02,Qc) = 0.
From Lemma 2.8, we have Lo, (05, Qc) = Lg,(0x,Q.) = 0, hence

<LQC (8$1Q0)>6w1Qc> = <LQU(8a:2Qc),aw2Qc> =0.

Step 2. We have (Lo, (9:Qc), 0.Qc) = —2+5=00),

C

From Lemma 2.8, we have

LQC (60Q(') = 16'3:2 Qc,

therefore
<LQC (60Qc)7ach> = <i8$2Qc,ach>- (2.16)
From Lemma 2.3, we can write 0.Q. = — (14-02730(10 0aV)g=q. + h with ||%Had = 0c_s0 (C%) . Similarly, from

Lemma 2.2, we write Q. =V + ', with f

T.
1%

0. = 0c—0(1), and we compute

<LQc (60Q0>7 80Q0> = <Zazz Va - (HOCCQ_)O(D> ad‘/d_dc> + <Zaacz Va h>

+ <¢amrc7 - (HOC;O(”) adv|d_dn> + (105,00, h). (2.17)

By symmetry in z; of V, we compute
(102, V,0aVia=q,) = —2(i02,V1V_1, 02, V1V_1) + 2(i0,V1V_1, 05, V_1V1).
In equation (2.25) of [4], we computed

<i8m2V1V,1,8x1 V1V,1> = -7+ Ocﬁo(l).
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Furthermore,

(100, ViV 1,05, V_1V1)| =

/ Re (z‘@wzlelﬁml V_1V_1)
R2

<

’ %e(@m Vlvl)i?m (Bml V,1V,1) + / Jm(c’?zg V1v1)m2 (811V,1V,1) .
R2 R?
From Lemma 2.1, we have the estimates
- K - K
< — < —
[Re(Dz, Vo1V_1)] < TETnE and  |Re (9,,V1V1)] < AFr)
as well as K
\jm(am V,1Vf1)| < 1 and |3m (8x1 V1V1)| <

+7r_, Sl
d,

We deduce, in the right half-plane, where r_; > that [Jm(VV_1V_1)| = 0.0(1) and thus

1
< 0e0(1 / = 0.0(1).
—>0( ) (2130} (1+T1)3 —>0( )

and ﬁ = 0.0(1), therefore

/ E)‘{e(awzvlvl)ijm (8$1V_1V_1)
{z1>0}

K

In the left half-plane, we have ﬁ <15
1 —1

1
< 0e0(1 / — = 0.0(1).
—>0( ) (2:1<0) (1+’)",1)3 —>0( )

/ %e(@wzvlvl)ijm (8$1V_1V_1>
{z1<0}

We therefore have

9‘{2(8,;2 Vlvl)ﬁm (CrulV,lV,l) = Ocﬁo(l),

’ R?2
and by similar estimates,

‘/ TJm(@TQVlvl)ERe ((9»51 V_1V_1) = Oc_>0(1).
R2

We can thus conclude that (i0,,V1V_1,0,,V_1V1) = 0c—0(1). Therefore,

L+ 00() |, Cor /1
(Ft) v —awviaa) = 5 +o ()
Now, we estimate
(102, V. 1) = ’ %e(i@xQVh)‘
RZ
< 0eso(1) + / Re(i0,, Vh)
{F>1}
. _(h\
< Oc—>0(1)+/ Re 18m2vv<>
{F>1} \%

because ||k = 0c—0(1) and |d,, V| is bounded near d, by a universal constant. Furthermore,

/ Re iﬁmZVV(h> / Re (9, VV)Im <h>
{721} |4 {721} 4

From Lemmas 2.1 and 2.3 (taking o = 1/2), we have

< +

/ Re(Do, VT )Im <h>
{71} 14

h
<K| o
v

1 1
1/2,d. /{%21} (1 + 7;)3+1/2 — 00 <02>
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and

_ h h 1
Im(0,VV)Re | = || < K || e - |
/{@1} m( 2 ) 4 (V) HV o, / 1+r (1 1 #\2+1/2 = O0c—0 (62)
therefore
|{(i02, V, h)| = 0c—0 < ) . (2.19)
Now, by Lemmas 2.1 and 2.2 (taking o = 1/2), we have
1+ 06*)0(1) . FC 1 = 1
(C2 ‘<Zam21—‘c, 8d‘/‘d:dc>| < 072 V 1/2 . - W = O¢c—0 072 . (220)
Finally, by Lemmas 2.2 and 2.3, we check easily that
I, h 1 1
[(i104,0c, Y| < K H / — = 0.0 <> . (2.21)
2 3/4.d, % L j2.d, JR2 (1 + T)2+1/4 — 2
Combining (2.18) to (2.21) in (2.17), we conclude that
—27 + Ocﬁo(l)

<LQC (ach)vach> = o2

Step 3. We have <LQC(30L QC), 8CL Qc> =2r 4+ OC_>0(1).

From Lemma 2.8, we have Lg_ (9,1 Q.) = —icO;, Q. and from Lemma 2.7, we have 9.. Q. = —2+.VQ,. There-
fore,

(Lo (061 Qc), 001 Qe) = (i0y, Qe, .V Q,).
We have
<i611 Qc, =120, Qv> = - %e(i‘r2|aﬂ?1 Qc‘z) =0,
R2

hence
<LQL(aCJ'Q ) Q > = c<iaw1QC7x18z2Qc>- (222)
From Lemma 2.2, we write Q. =V +1T'.

< K(0)c!=° for any 0 < o < 1, and we compute

(102, Qc, 102, Qc) = (104, V, 102, V) + (104, V, 2102, L'c) 4 (105, e, £102, V') + (102, L'c, 210, T ¢).
We write z1 = d. + y1, therefore
(105, V, 2100, V) = d (104, V, 05, V) + (004, V, 4105, V).
We have

<7;(911V, 8302 V> = (z@xl ViVv_q, (912 1% V,1> + <7;8IIV,1V1, 8302 V,1V1>
+ <Zam1 Vlv—la amg V—1V1> + <Za:cl V_1V1, 812vlv—1>7

and, from the previous step and by symmetry, we have
(102, VIV_1, 02, VIV 1) = (105, V_1 V1,02, Vo V1) = T + 0c0(1)

and
‘<Zamlvvlv 178932‘/ 1‘/1>‘ + |<28931V 1V178CL“2V1 >| - 05%0(1)

thus
(104, V, 00, V) = 270 4 0c—0(1).

24



With Vi; centered around :I:dce—f, we write V = V1 V_; and we compute

(10, V,910.,V) = /mﬁ(iylazlvlamvﬂvfle+iy15xlv—15x2V71\V1|2)
RQ

n /me(iylazlvlvlv,laxzv,l+z’ylamlv,1v,lvlamvl).
IRQ

By decomposition in polar coordinates, with the notation of (2.13) and Lemma 2.1, we compute

—+o00 2
/ Re (iy18Z1V18x2V1|V_1|2) Z/ / |V_1|2p1(7”1)p/1(7“1)COS(91)7‘1dT1d91.
R2 0 0

By integration in polar coordinates, we check that

“+o00 27
/ / p1(r1)p(r1) cos(61)ridridf; = 0,
0 0

hence
/ Re (iy16w1V16x2V1|V_1|2):/ (1= |V [*)Re (iy104, V102, V1) -
R?2 R?2

In particular, since, from Lemma 2.1, we have

K

(1 - |V—1|2) g m

and

K
/
g 77
|p1(7‘1)| (1 7‘1)3

we can deduce that
[ e (10, VB TV-AR) = 0cmol)
R

and, similarly,
/ Re (iy1811V_18m2V_1\V1|2) = OC_>0(1).
R?2

Therefore, we conclude that

2m + 0c—>0(1)
70 .

(10, V, 2105, V) = (27 + 0c0(1))d, =
Now, we want to show that
¢

1
{00, V. 2103, T} + (100, Ter 21003V + (10, Tor 210537 | = 0050 ( ) ,

which is enough to end the proof of this step.
By triangular inequality, we have |z1| < M, and with Lemmas 2.1 and 2.2 (for ¢ = 1/2), we estimate

|<i8x1 v, xlamzr<2>| =

/ 21 Re(Ds, VT )Im (amzrcv)‘ + ' / 21 0m(0,, V)9 (amzrcv)‘
R?2 R?2

5/ (L+7) cl/? +(1+f)>< cl/?

e Une 0572 Ui T (xn “TxrpP

(&)
= Oc—=0| — |-
C

Similarly, we check with the same computations that |[(i0,,T¢, 2102,V )| = 0c—0 (%)

N
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Finally, using Lemma 2.2 (for 0 = 1/4), we estimate

(10, De, 2105, Tc)| < K32 (|21]| oo (grcny) + K

0y, Te 0,1
Re | iz ———2—|.
/{@1} ( VoV )‘

amlrc ~ 8I2FC
(%) om (572))
~ 69:1Fc 8{E2FC
Jm(v,)m( V)

B/2
<K 775 = 9c—o0(1),
{7>1} |x1\(1 +7)3+1/2 oeo(l)

We have ||z1]| e ((7<1}) < &. Moreover, we infer

0z, I'c 0z, T
%e Z.fl:' 1+ C YT2 C>
/{f>1} ( Y 14

Jn
{F>1}
v [

{F=1}

b

and, with Lemma 2.2 (for o = 1/4), we have

Op, ' Oy, T
e (i T
/{@1} ( VoV

< K by triangular inequality. We conclude that

since |2l
(1+7)

<Z-811Fc, x18$2F0> = 00%0(1)7
which, together with the previous estimates, shows that

(L. (0,1Qc), 0,1 Qc) = 2T + 0c—0(1).

These quantities are connected to the energy and momentum. This is shown in the next lemma.

Lemma 2.11 There exists ¢y > 0 such that for 0 < ¢ < ¢g, Q. defined in Theorem 1.1, we have

Pl (Qc) = 6CP1(QC) = Oa

PoQ0) = LB, (0, Q) = T 0o
and
0.P5(Q0) = Bo, (0,00 = —t oemoll)
Furthermore,
9. E(Qc) = c0:P2(Qc),
and

B(Qo) = (2r +0c()n (1),

c

Proof We have 1
Pl(Qc) = §<iax1Qca Qc - 1>7

by the symmetries (2.3), 0., Q. is odd in z1 and Q. — 1 is even. Therefore,

P1(Qc) = 0:P1(Qc) = 0.

We have )
PQ(QC) = §<7;8x2QCa QC - 1>7

and from Lemma 2.10 and (2.22), we have

2m + 0ca0(1) = BQ(: (aci Qc) = C<iax1 Qca xla$2 Qc>
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By integration by parts (which can be done thanks to Theorem 2.5, Lemma 2.1 and equation (2.11)), we compute

<i8£1Q07‘r18;C2QC> = _<i(Qc - 1)78x2Qc> - <7I(Qc - 1)71'183:1352Qc>7

and
(1(Qc = 1), 0100,2,Qc) = = (100, Qe, 100, Q) = (02, Qe 2100, Qe

Therefore,

L 1 27 + 0cs0(1

Pa(Qc) = 5(@8301@6,331@2@0) = EBQ° (0.1Q.) = %()
We have Py(Q.) = 3 [r2 Re(i02,Qc(Qc — 1)), and we check that, with Lemmas 2.2 and 2.3 that
10000, Qe(@e — 1| + 100, Qe0.00] < —
cYI2 c C ) cYc C \(1+f)5/27

and is therefore dominated by an integrable function independent of ¢ €]y, co[ given that ¢1,co > 0 are small
enough. We deduce that ¢ — P»(Q.) € C1(]0, co[,R) for some small ¢q > 0 and that, by integration by parts,

260P2(Qc) = <7;81‘28(3Q03 Qc - 1> + <ia:62ch 8CQC> = 2<iaac2Q07 ach>v

and, from Lemma 2.10 and equation (2.16), we have

—2m + Ocﬁo(l)
2 b)

<Zax2 Q¢27 8CQC> = BQC (ach) =

c

therefore
—2T + OC_>0(1)
—_—

8(:P2 (Qc) =

c

We recall that 1

1
E(Q.) = f/ IVQ.* + f/ (1 1Qc*)*.
2 R2 4 R2
We check, with Lemmas 2.2, 2.3 that

K

Sl 2 2
0:V Qe VQe| + [0:(1Qc|”) (1 = [Qc[7)| < A+

and is therefore dominated by an integrable function independent of ¢ €]ecy, e[ given that ¢1,¢a > 0 are small
enough. We deduce that ¢ — E(Q.) € C1(]0,co[,R) for some small ¢y > 0 and that,

1

. . _
2. (2 /R IVQCIQ) T2 /R Re(VQ:VIQ.) + Re(VI.QVQe).

We check, with Theorem 2.5 and (TW,.)(Q.) = 0, that we can do the integration by parts, which yields

1 2\ _
ac <2 /]RQ |vQc| > _< Achach>‘

We check similarly that

o (5 [ a-tep?) = [ - lepmo.e)

o (1 [ 0= 1QPP) = (-0~ 100000

2

hence

Now, since —icdz, Qe — AQ. — (1 — |Q.|*)Q. = 0, we have

acE<Qc) = <_AQC - (1 - |Qc|2)chach> = C<_7;aw2Qca ach>~
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Now, since P>(Q.) = 1(i0,,Qc, Q. — 1), we have

aCPQ(QC) = %(@azzacha Qc - ]-> + <iax2Qca ach>)

By integrations by parts, we compute

acP2(Qc) = <_i8$2QC7 ach>-
We deduce that 9. E(Q.) = c0.P>(Q.), and in particular, we deduce that

27 + 00s0(1
0. B(Q.) = %—W()_
By integration (from some fixed ¢y > ¢ > 0), we check that E(Q.) = (27 + 0c—0(1)) In (2). a

We conclude this subsection with an estimate on @. connected to the energy that will be useful later on.

Lemma 2.12 There exists K > 0, a universal constant independent of ¢, such that, if ¢ is small enough, for Q.
defined in Theorem 1.1,
Im(VQ.Q.)|? 1
/ M < Kln (> )
R?2 |Qcl ¢

Proof We recall that ry1 = |z F dce—1>|. Since V@Q. is bounded near the zeros of Q. (by Lemmas 2.1 and 2.2), and
|Q.| > K on R2\B(+d.eq,1) by (2.12), we have

Pm(VQ-Qo)l* P
/Rz Qr  <F <1+ /{% Im(VQQ.)| )

Now, by (2.12), Lemma 2.11 and the definition of the energy,

. 1
/ Im(VQ.0) < / VQLIQ.2 < K / VQ.? < KE(Q.) < Kl () .
{7F>1} {F>1} R2 ¢

We could check that this estimate is optimal with respect to its growth in ¢ when ¢ — 0.

2.3 Zeros of Q.

In this subsection, we show that Q). has only two zeros and we compute estimates on ). around them. In a bounded
domain, a general result about the zeros of solutions to the Ginzburg-Landau problem is already known, see [18].

Lemma 2.13 For ¢ > 0 small enough, the function Q. defined in Theorem 1.1 has exactly two zeros. Their
positions are :l:dce_f, and, for any 0 < o < 1,

e — de| = 07_o(c ™),

where d. is defined in Theorem 1.1.

(o

The notation 07_,,(1) denotes a quantity going to 0 when ¢ — 0 at fixed . Combining Lemmas 2.10, 2.11 and
2.13, we end the proof of Proposition 1.2.

Proof From (2.3), we know that Q. enjoys the symmetry Q.(r1,72) = Q.(—x1,12) for (z1,22) € R?, hence we
look at zeros only in the right half-plane. From Theorem 1.1, we have Q. = Vi(. — dce_f)V_l(. + dce_1>) + I'. with
IT¢|| oo (m2) + | VTe|| Lo (R2) = 0c—0(1). In the right half-plane and outside of B(d.e1,A) for any A > 0, by Lemma
2.1, we estimate

Qc| = [Vi(. — deel)Vor (. + deel)| — 0cs0(1) = K(A) >0
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if ¢ is small enough (depending on A). Now, we consider the smooth function F : R x R? — C defined by
F(u,2) i= (Vi(. —dee)Voi (. +deet) + ple(.)) (2 + doéy).

We have F(0,0) = V1(0)V_1(2dcei) = 0 by Lemma 2.1 and F(1,2) = Qc(z + d.€,). For || < 1 and |z| < 1, since
VT oo (m2) = 07_,0(c'~7) by equation (2.5), with Lemma 2.1 and equation (2.1), we check that

|d-Fu,2) (&) — VVi(2).£] = 0cm0(1) €] (2.23)

uniformly in p € [0,1].
Now, from Lemma 2.1, we estimate (for z = re? # 0 € R?)

0p Vi(z) = <COS(9)p/(r)isjn(9)p(r)) Ji0

= r(cos(h) —isin(f))e? + o, _0(1)
= K+ o0r-0(1),

and thus, by continuity, 9., V1(0) = k > 0. Similarly, we check that 9,,V1(0) = —ik, and therefore,

1
VVi(z) =k ( i ) + 02=0(1).
Identifying C with R? canonically, we deduce that the Jacobian determinant of F' in z, J(F), satisfies

J(F)(p, 2) = J(V1)(2) + 0c0(1) = =7 + 0c0(1) + 02 -0(1) # 0,

given that ¢ and |z| are small enough. By the implicit function theorem, there exists pg > 0 such that, for |u| < po,
there exists a unique value z(p) in a vicinity of 0 such that F(u,z(pn)) = 0, and since 9, F(u, z) = Ic(dc€1 + 2) =
07_,o(c!=7) uniformly in z (by (2.4)), it satisfies additionally z(u) = 0Z_,,(c!=9).

Now, let us show that we can take o = 1. Indeed, if we define pg = sup{r > 0, u — 2(u) € C1([0,v],R?)} > 0
and we have po < 1, since p — z(u) € C([0, o), R?) with |d,2|(p) = 0_,o(c*~7) uniformly in [0, uo], it can be
continuously extended to o with F (1o, 2(10)) = 0 and 2(p0) = 0Z_,5(c* ). Then, by the implicit function theorem
at (1o, z(po)) (since pg < 1 with equation (2.23)), it can be extended above 1o, which is in contradiction with the
definition of p.

Since F(1,.) = Q.(. + d.€1), we have shown that there exists z € R? with |z| = 07_,,(c!77) such that Q.(z +

c—0
d.€1) = 0. Now, for ¢ small enough and |{| < 1, we have

1

V(Qc(f +z+ dcgl)) = VVl(Z) + 064)0(1) + O|§|H0(1) =K ( i ) + Ocﬁo(l) + O|§|~>O(1)~
We deduce, with Q.(C + 2+ d.&1) = [ vQ, (5% fo+ dca) S de, that

QC(C+z+dC€1)—C.( ! )K

= O|<|*>0(|CD + Oc~>0<1)‘<|

Therefore, Q. has no other zeros in B(z + d.€1,A) for some A > 0 independent of ¢. Therefore, since for ¢ small
enough, |Q.] > K(A) > 0 outside of B(z + d.€1,A) in the right half-plane, Q. has only one zero in the right
half-plane. ~

By the symmetry Q.(x1,z2) = Q.(z1, —x2) (see (2.3)), z must be colinear to €7, therefore we define d, € R by
170')

deet := z + d.é1, and we conclude that, since |z| = 07_,4(c ,

e — de| = 07_p(c' 7).

We define the vortices around the zeros of Q. by

Vir (z) := Vir (& F deed),
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and we will use the already defined polar coordinates around +d.ej of z € R?, namely
Fer = o F deell, 0o = arg(e F deet).

One of the idea of the proof is to understand how @, is close, multiplicatively, to vortices V.1 centered at its zeros,
since by construction it is close to a vortex centered around +d, e, which is itself close to +d.ej. In particular,

Lemma 2.15 below will show that the ratio ‘% is bounded and close to 1 near (Le_1>
1

In Lemma 2.14 to follow, we compute the additive perturbation between derivatives of (). and a vortex Vit
entered around one of its zeros. In Lemma 2.15, we compute the multiplicative perturbation. All along, we work

in B(d €1, J1/2) the size of the ball d&/> being arbitrary (any quantity that both goes to infinity when ¢ — 0 and
is a ocﬁo(d ) should work). We recall that 741 = |z F d, €1|

Lemma 2.14 Uniformly in B(c’lvce_f,cﬁ/g), for Q. defined in Theorem 1.1, one has

Qe — Vi| = 0cs0(1),

Oc—)O(l)
1+7

IVQ. — VVi| <

and
00—)0(1)
147

IV2Q. — V*Vi| <
See Appendix A.2 for the proof of this result.
Lemma 2.15 In B(d ei,d 1/2) for Q. defined in Theorem 1.1, we have

Qe _ 1‘ eso(c!/10).
Vi

In particular,

‘% =1+ 0c_yo(cH/10).

The power 1/10 is arbitrary, but enough here for the upcoming estimations.

Proof We recall that both @. and Vi are C™ since they are solutions of elliptic equations. We have that
Qc(dce_f) =0 by Lemma 2.13, thus, for € R?, by Taylor expansion, for |z| < 1,

Qc(r + deef) = 2.VQc(deet) + Oju—o(|z]?).

From Theorem 1.1, we have Q. = Vi (. — dce_f)V,l(. + dce_f) + I, therefore, with V4.1 being centered around +d.ef
for the rest of the proof,

VQ.(d.e1) = VVi(d.el)V_i(d.el) + Vi(deer)VV_i(d.er) + VTo(d.e1).

We have V;(dee])VV_1(d.e1) + VIe(dee7) = 0c0(c'/2) by Theorem 1.1, Lemma 2.1 and (2.2). Furthermore, by
(2.1), Lemmas 2.1 and 2.13,

VVi(d.el)Voi(deel) = VVi(deer) + ocosolc!/?)
We deduce that
Qc(x + deel) = 2.(VVi(dee) + 0cmso(c?)) + Opso(|2]?). (2.24)

We also have /‘}I(x +d.el) = 2.VVi(doel) + O.—0(]z]?) (since Vl(d e1) = 0) and VV;i(d.e7) = V/Vvl(dNCe_f), hence

Qelz + deel) = Vi(z + doe]) + 2.0050(c ) + OpSo(|2]?).
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Now, by Lemma 2.1, there exists K > 0 such that, in B(d.eq,c'/*) for ¢ small enough, |/Vvl(x +de1)| = Klz|. We
deduce that

% B 1’ o |ﬂ0c—>0(~01/4) n 91|~>0(A|EE|2)
Vi Vi(z +deed)]  [Vi(e+deel)|
< Oc—>0(01/4) + Ojg)—o(]2])
< 0eso(c?).
1/2

Outside of B(d.et,c'/4) and in B(d.ei,d. ), we have |/Vvl| > K¢'/* by Lemma 2.1, and
Qc = Vl + 06%0(01/2)

by Theorem 1.1, equations (2.7) and (2.1). We deduce

Q[
" 1"”) ’

VYI + Oc~>0 (01/2)
Vi

Furthermore, by Lemma 2.13 (for 0 = 1/2), we have

Vi(x) Vi(z) + 04 _q,-0(lde — de|) 0,4, —d.1»o(lde — de|) 1/10
— —1| = — -1 = i = 0c—o(c /7).
Vi(z) Vi(z) ¢
We conclude that ‘%1‘ — 1‘ = 0c—0(c/10) in B(d~ce_1>,d~cl/2). O

By the symmetries of Q. (see (2.3)), the result of Lemma 2.15 holds if we change e by —¢i and Vi by V_1.

We conclude this section with the proof that in B(+d.ej, cﬁm), we have, for ¢ € C°(R2\{+d.e1}, ),
2m 5 2 5
[ Wi < [ 9o, (2.25)
0 0

We recall that the function ¢#° is defined by
V70 (x) = (@) — ()

in the right half-plane, and
P70 (x) = () — ")

in the left half-plane.
To show (2.25), it is enough to show that, for ¢ € C>*(R?\{0}, C), we have, with z = re®¢,

/0% w—/:ﬂwdv

This is a Poincaré inequality. By decomposition in harmonics and Parseval’s equality, we have

/027r g = /027r Z U (1)e™?

nez*

27
= [ X watnpas

neZ*

2

27
do < r2/ |V|2d6.
0

27 2 2

Y — Y(v)dy

0

do
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and

2 27 1
[ wera > [ Sowa
0 o T
27 2
> / anz/}n(r) 6in9 do
0 T
nez*
1 27 ) )
> 2 Znhﬂn(?”)‘ do
0 nez*
1 27 9
> S [ et Pae.
0 neEZ*

This concludes the proof of (2.25). With |Q.(x £ Jce_1>)| = O, —0(7+1) and (2.25), we have, for 711 < R,

2 2T
/ QP7Pdl, < K / 72 [P dday
0 0
27 5
< K/ P VY2 df+y
0
27
< K@) [ 10uTuidd, (2.26)
0

This result will be usefull to estimate the quantities in the orthogonality conditions.

3 Estimations in Hg,

We give several estimates for functions in Hg_ . They will in particular allow us to use a density argument to show
Proposition 1.4 once it is shown for test function in section 4. We will also explain why a coercivity result with the
energy norm ||.| g, is impossible with any number of local orthogonality conditions, and show that the quadratic
form and the coercivity norm are well defined for functions in Hg, .

3.1 Comparaison of the energy and coercivity norms

In the introduction, we have defined the quadratic form by
Boe) = [ IV6P=(1-1QPef + 2 @)

o[ G- mReitne) o [ a0, Q0 0P
R2 R2

+ 2 / nReyIMI,, »|Qc|* + ¢ / Dy R IMY| Q|
R2 R2

e[ umeamva., Q)
IRQ

see (1.3)). We will show in Lemma 3.3 below that this quantity is well defined for ¢ € Hp .. As we have seen, the
(see ( q y ¢ € Hg, ;
natural energy space Hq, is given by the norm

oW, = [ 190 +11= 1QuPlel? + Re? (@)

We could expect to replace Theorem 1.5 by a result of the form: up to some local orthogonality conditions, for
¢ € Hg, we have

Bq.(¢) = K(c)llel,,
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However such a result can not hold. This is because of a formal zero of Lg, which is not in the space Hg,: iQ.
(which comes from the phase invariance of the equation). We have Lg_(iQ.) = 0 and iQ). € Hg, because

(1 - |Q(’|2)‘ZQ0|2

is not integrable at infinity (see [10], where it is shown that this quantity decays like 1/r?). We can then create
functions in Hg, getting close to iQ., for instance

fR = nRiQCa

where np is a C* real function with value 1 if Ry < |z| < R and value 0 if |z] < Ry — lor|z| > 2R. In that
case, when R — 400, ||frllz, — 400 and Bq (fr) — C a constant independent of R, making the inequality
Bo,(¢p) 2 K ||<p||%{QF impossible (and the local orthogonality conditions are verified for R large enough since fr =0
on B(0, Ry — 1)). That is why we get the result in a weaker norm in Proposition 1.12: we will only get for ¢ € Hg_,
up to some local orthogonality conditions,

Bao.(¢) = K(@)llellzse,

where H.||Hepr is defined in subsection 1.3.1. In particular, ||.||H8<p is not equivalent to |||z, -
c c g

3.2 The coercivity norm and other quantities are well defined in H,

We have defined the energy space Hg,_ by the norm

Iolio, = [ 190R +11= Qe l? + Re(@ep).

By Lemma 2.6, we have that, for p € Hg_,

o] 2
< . .

The goal of this subsection is to show that for ¢ € Hg,, ||¢|lc and Bg,(¢), as well as the quantities in the
orthogonality conditions of Proposition 1.4 and Theorem 1.5, are well defined. This is done in Lemmas 3.1 to 3.3.

Lemma 3.1 There exists co > 0 such that for 0 < ¢ < cg, there exists C(c) > 0 such that, for Q. defined in
Theorem 1.1 and for any ¢ = Q.Y € Hg_,

lelle = /}Rz VP 1Qe|* + 9e*()|Qcl* < C(o) Il -

Proof We estimate for ¢ = Q.9 € Hg,_, using equations (2.12), (3.1) and |VQ,| < % from Theorem 2.5, that

/|V¢|2\Qc|4 _ / Ve — VQuI2IQu 2
R? R2
< K/ Vol QP + [VQ.21Qu?
R?
2 |50‘2
< K(c)/]Rz Vol + o
< K©lel, -

Similarly, for ¢ = Q. 1,
| mewlad = [ 2@ < el
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We conclude that
VPR + B @)1l < COll, - (32)
O
We conclude this subsection with the proof that the quantities in the orthogonality conditions are well defined

for p € Hg,.

Lemma 3.2 There exists K > 0 and, for ¢ small enough, there exists K(c) > 0 such that, for Q. defined in
Theorem 1.1 and ¢ = Q. € Hg,, 0 < R < dE/Q, we have

/ e, Vit Vi) + / C Re(0n Vi V0| < KOl
B(+d.ef,R) B(+d.ei,R)

/ ; L [Re(82,,QeQe )| < K ()l g,
B(d.et,R)UB(—d.&l,R)

/ ~  Re(0.Q.0079)] < K (Ol gl e,
B(deef,R)UB(—d.el,R)
and

/ ] C Re(—2hVQQNP)| < K(0)l|oll g, -
B(d.et,R)UB(—d.ei,R)

We recall that ¢7(z) = ¢(z) — ¢*!(71) in the right half-plane and ¢7(z) = ¢(z) — ¢ ~!(F_1) in the left
half-plane, with 741 = |2 F dce_1>| and ¢%*!(74;) the 0-harmonic of ¢ around +d.e7.

Proof From Lemma 2.15, we have, for ¢ = Q.9 € Hg_,

Vird| = o] x

given that ¢ is small enough. We deduce by Cauchy-Schwarz, Lemmas 2.1 and 2.6 that
/ i |Re(Dy, Vir Vi) < 2/ N |02, Vier | X || < K)ol g (pad.z,ry)
B(+d.&1,R) B(+d.&1,R) ’
< K(9)ellng,

and similarly fB(iJC? R) |9§e(8m2f/i1 Vil’l/J” < K(o)|l¢llu,, -

1,

By Cauchy-Schwarz, equation (3.2) and Theorem 1.1 (for p = +00), we conclude that

/| QA < K@), [ VR
B(dcel,R)UB(~d.ef ,R) B(dcel,R)UB(~d.ef ,R)
< KOl

We can estimate the other terms similarly. |
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3.3 On the definition of By,
We start by explaining how to get Bg,(¢) from the “natural” quadratic form

[ V6P = (1= QP lol? + 2906 @i) — Rslicdrop).

For the first three terms of this quantity, it is obvious that they are well defined for ¢ € Hg,, but the term
—Re(icOy,pP) is not clearly integrable.

Take a smooth cutoff function 7 such that n(z) = 0 on B(+d.e1,1), n(z) = 1 on R?\ B(+d,e7,2). Then, taking
for now p = Q.1 € C=(R?),

Re(i0z, 0p) = NRe(i02,09) + (1 — n)Re(i0,,0P),

and writing ¢ = Q. Y,

NRe (102, QeQe)[Y|* + 1Re(i02,9) Qe[
779%(23:82 QC@”QZ}F - UmwfjmaxszcF
nNRed,, YImY|Q. |2

nRe(i0.,pP)

_|_

Furthermore,

R0z, YIMY[Qc* = Oy (NRepTI|Q[?)
— Oy nRePIMY|Q.|? — nRepIMI,, Y| Qc|?
- nme¢jmwamz(‘Qc|2)v

thus we can write

Re(idy,07) = / O (R T Q)
R2 R?2
+ / (1 — 1) Re(i0ry 05) + / PR (102, Qe Q) [
R?2 R?2
_ ~ 2 2
2 /R iRerImd,, vIQ.) /R O PReyImi| Q.
- /R zni)‘iewjmz/zau(@c\z).

The only difficulty here is that the first integral is not well defined for ¢ € Hq_, but it is the integral of a derivative.
Therefore, this is why we defined instead the quadratic form

Boe) = [ IVeP=(1-1QP)ef + 2 @)
_ _ . A . o 2
o[ = Relidnp) —c [ aetio.. Q.01
+ 2 / nRepIMO, Y| Qc|* + ¢ / Oy ReYIMY| Q|
R? R?

o[ mmemi,, Q)
It is easy to check that this quantity is independent of the choice of 1. We will show in Lemma 3.3 that this

quantity is well defined for ¢ € Hg, . By adding some conditions on ¢, for instance if ¢ € H'(IR?), we can show
that [5, Oz, (nReypTmip|Q|?) is well defined and is 0. In these cases, we therefore have

Bo.() = [ 196 = (1= QP + 296 @u) — Relicdro).

This is a classical situation for Schrédinger equations with nonzero limit at infinity (see [3] or [16]): the quadratic
form is defined up to a term which is a derivative of some function in some LP space.
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Lemma 3.3 There exists cg > 0 such that, for 0 < ¢ < ¢o, Q. defined in Theorem 1.1, there exists a constant
C(c) > 0 such that, for ¢ = Qutp € Hg, and 1 a smooth cutoff function such that n(z) = 0 on B(+d.ei,1), n(z) =1
on R2\B(+d.e7,2), we have
[ 0= meonep)l+ [ e(i0,. Q0w
b e Im @ 0IQu + [ o neuamilQ.
R R

o [ Ieramion, Q)
< COllel,, -
Proof Since |1 —|Q.|?| = K > 0 on B(+d.e1,2) for ¢ small enough by Lemma 2.1 and Theorem 1.1, we estimate
Lo mndengai<ce [ Pl < OO lel
Furthermore, by (2.12) and Lemma 2.6,

/ InRe(icdn, Q00| < C(e) / nVQulll? < C(e) / IV Qo < COlel,,
R2 R?2 R?2

since |VQ.| < 1+( jz from Theorem 2.5. By Cauchy-Schwarz, equations (2.12) and Lemma 3.1,

[ mevam,uQuF| < \/ | mew) [ avee < el (33
Now, still by equations (2.12) and Lemma 3.1, since 8,,7 is supported in B(+d,e7,2)\B(+d.e1,1),

/ O nRGTMB|Qu2| < K2, -

Finally, since |VQ.| < (10 -iE:;2 by Theorem 2.5, by Cauchy-Schwarz and Lemma 2.6,

Jm2e)
/IRIU%eWm@b@m(IQC < \// nRe? (Y RQn( )t S <C)elF,, -

3.4 Density of test functions in Hg,

We shall prove the coercivity with test functions, that are 0 in a vicinity of the zeros of (.. This will allow us to
divide by Q. in several computations. We give here a density result to show that it is not a problem to remove a
vicinity of the zeros of Q. for test functions.

Lemma 3.4 C2(R?\{d.e1,—d.ei},C) is dense in Hq, for the norm ||.||m,. -

This result uses similar arguments as [5] for the density in Hy,. See Appendix B.1 for a proof of it.

4 Coercivity results in Hg,
This section is devoted to the proofs of Propositions 1.3 and 1.4. Here, we will do most of the computations with

test functions, that is functions in C2° (Rz\{cicé'l, fcicé'l}, C). This will allow to do many computations, including
dividing by Q. in some quantities.

36



4.1 Expression of the quadratic forms

We recall that 7 if a smooth cutoff function such that n(z) = 0 on B(+d.e1,1), n(z) = 1 on R2\(B(dee1,2) U

B(—d,e1,2)), where +d e are the zeros of Q.. Furthermore, from [5], we recall the quadratic form around a vortex
V1:

Bu() = [ |Vl = (1= [VP)gP + 20%6% (Vi)

We want to write the quadratic form around V; and Q. in a special form. For the one around Q., it will be of the
form B, defined in (1.4).

Lemma 4.1 For p = Q.0 € C=(R2\{d.e1,—d.e1},T), we have
(Lq.(#), ) = BoY (9),

where B () is defined in (1.4). Furthermore, for ¢ = Viyh € C(R*\{0}, C), where Vi is centered at 0, and 7]
a smooth radial cutoff function with value 0 in B(0,1), and value 1 outside of B(0,2),

BV1 (SD)

=0V = (= Pl + 29 ()

— [ VROV — 2m(VViVE)Re()Im ()
RQ

b [ AT + REDAL + (VT I Re().
R2

See Appendix B.2 for the proof of this result.

4.2 A coercivity result for the quadratic form around one vortex

This subsection is devoted to the proof of Proposition 1.3, and a localized version of it (see Lemma 4.2).

4.2.1 Coercivity for test functions

Proof [of Proposition 1.3] We recall the result from [5], see Lemma 3.1 and equation (2.42) there. If ¢ = Vj¢ €
C°(R*\{0}, C) with the two orthogonality conditions

/ %e(@le@) = / %e(@xl Vl@) = 0,
B(0,R) B(0,R)

then, writing °(z) = 5= fo% Y(|z| cos(0), |z| sin(6))dh, the O-harmonic around 0 of ¥, and 70 = 1) — ¢°, then

27
BV1 K/ Vﬂ/ﬁéo |2—|-|V1/10|2‘V|2 |(11:/}_ )| _‘_me ( )|V1|4
We recall from Lemma 2.1 that there exists K; > 0 such that, for all » > 0, K; < T‘ < %1, and that |V;| is a

radial function around 0. Therefore, by Hardy inequality in dimension 4,

/ W«c(/ |vw0|2\v1|2+/ )
B(0,1) B(0,2) B(0,2)\B(0,1)

By Poincaré inéquality, using fB(o R\B(O,R/2) Jm(y)) = 0 and |V1|? > K outside of B(0,1), we have

/ WP < K /
B(0,10)\B(0,1) B(0,R

)

(VO vl +9‘i62(w0)|V14> :
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Here, the constant K > 0 depends on R > 0, but we consider R as a universal constant. We deduce that

/ o < / Viol?
B(0,10) B(0,10)
< K / |v1w0|2+/ Vi 2
B(0,10) B(0,10)
#0
< K(/ VR £ v+ WP gy >v1|4).
R2 (147r)2
Similarly,
/ Vol < / IV (Vi + 7)) 2
B(0,10) B(0,10)
< K(/ |V<v1w0>|2+/ |V(v1z/ﬂé0)|2>
B(0,10) B(0,10)
< K(/ |w0|2\v1|2+|¢0|2\vw2+/ |V(v1w¢°)|2>
B(0,10) B(0,10)

V370
(1+7)?

< & ([ wmwror s wepmp L e mee).

Finally, outside of B(0,5), we have, by Lemma 2.1, that

Lo e[ vepwP,
R2\B(0,5) R2\B(0,5)

w 2
/ L VP2 + 2.
R2\B(0,5) r*In"(r) R2\B(0,5) B(0,10)\B(0,5)

This is a Hardy type inequality, and it would conclude the proof of this proposition. Remark that for the harmonics
other than zeros, this is a direct consequence of

702 2
R2\B(0,5) T R2\B(0,5)

We therefore suppose that ¢ is a radial compactly supported function. We define x a smooth radial cutoff function
with x(r) =0if r <4 and x(r) =1 if r > 5. Then, by Cauchy-Schwarz,

Let us show that

+o0
— |[ et
- </B<0>10>\B<o 5) v /5+°° IO 1nd(7;)>
2
- </B(O LB, 5> \//R?\B(o 5) 7"2|11ﬁ|( ) /Rz\mo 5) |vw|2> '
The proof is complete. _
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4.2.2 Localisation of the coercivity for one vortex

Now, we want to localize the coercivity result. We define, for D > 10, ¢ = V19 € Hy;,,

BEP(9) = Jpom)( = D(IVel® = (1= [ViP)lef? + 29%e*(Vip))
S0,y Vi-(Re(VVIV) |02 — 23m(VVA VD) Re(w)Im(4))
Lo MIVEPIE + 2062 @) Vil + 43m(VViV)Im(Ve)Re(v),

where 7 is a smooth radial cutoff function such that 7j(z) = 0 on B(0,1), 7j(z) = 1 on R*\B(0,2).

Lemma 4.2 There exist K, R, Dy > 0 with Dy > R, such that, for D > Dy and ¢ = Vi¢p € C(R?*\{0}, C), if the
following three orthogonality conditions

/ Re(D, V1) = / Re(Do, V10) = / Im(e) = 0
B(O,R) B(O,R) B(O,R)\B(O,R/2)

are satisfied, then

r2In? (r)

Proof We decompose ¢ in harmonics j € N,l € {1,2}, with the same decomposition as (2.5) of [5]. This
decomposition is adapted to the quadratic form B%ZCD, see equation (2.4) of [5], that also holds if the integral is
only on B(0, D).

For j = 0, the proof is identical. For j > 2,1 € {1,2} from equation (2.38) of [5] (that holds on B(0, D) as the
inequality is pointwise), the proof holds if it does for j =1, 1 € {1,2}.

We therefore focus on the case j =1 = 1. We write ¢ = 11 (r) cos(6) + itho(r) sin(6), with 11, 1e € CX(RT*, R).
The other possibility (I = 2) is ¢ = 11 (r)icos(f) + 2(r)sin(f), which is done similarly. We will show a more
general result, that is, for any ¢ = Vi € C°(R?\{0}, C) satisfying the orthogonality conditions,

ocC 7¢2
B 2k ([ wel el | VORI + R+ ).
B(0,10) B(0,D)\B(0,5)

BpeP (Viy™)
2
> K(/ VRGP + VPP + [ VYRV 2 + e v ¢+ [ ')
(0,10) B(0,D)\B(0,5)

With the previous remark, it is enough to conlcude the proof of this lemma. In the rest of the proof, to simplify
the notation, we write 1 instead of 1¥#°, but it still has no 0-harmonic.
We remark that, for D > Ry > 2,

/ V2V + 2Re2 () [Va[* + 49m(VVATR). Tm(Ve))Re (1)
B(0,D)\B(0,Ry)
K|V,

> [ VO + 2w )l - 1' I (V) SRe(w)|

B(O,D)\B(O,Ro)

1

5/ [VUPIVAP + 298 () Vi (1)

(0,D)\B(0,Ro)

if Ry is large enough. We therefore take Ry > R large enough such that (4.1) holds. For % > A\ > Ry, we define x»
a smooth cutoff function such that y(r) = 1if r < A, xa = 0if r > 2, and |x}| < £. In particular, since Ry > 2,
we have Supp(x}) C Supp(7) and Supp(l —7) C Supp(x,\). This implies that

/ (1= (VP — (1~ [Vi[2) P + 20%62(Vip))
B(0,D)

= [ =DV - (- P ok + 296 (Tg)
B(0,D)
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and

/ Vii.(Re(VViTD)[]? — 23m(VVi T7)Re () Tm (1)
B(0,D)

- /B( N V. (Re(VVAVL) [xath |2 — 20m(V Vi V) Re(xat0) Tm(xat)).
0,

Now, we decompose

o) (VY2 VA? 4 2Re* ()| Vi [* + 49m(V VA V1) Im(V)Re (1))
0,D

( )(1 =XV VA + 298¢ () Vi |* + 4Tm(V Vi V1) Im(Ve) Re (1))
0,D

+

Il
[ e

N XAV VA + 2Re (0)|[Va]* + 43m(V VA VL) Im (V) Re(v)),
0,

and by equation (4.1),

Furthermore,

and thus

o —

( )(1 =XV VI + 29 ()i [* + 43m(VVi V1) I (V) Re(1)))
B(0,D

/ (1= 3) [V Vaf? + 296 () VA .
B(0,D)

\
=

o) XAV VAP 4 2Re* ()| Vi [* + 43m(V VA V1) Im(Vep)Re(1)))
0,D

. (Vo) PIVil? + 2Re® () [Va|* + 43m(V VA V) Tm(V (xa1))Re(xa0))

(V) = Vxarl? = [V(xaw)P) Vil — 43m(VVi VL) .VxaIm(v)Re(xav)),

—

(0,D)

ByeP (Vi)

B (Vixaw) + K /B o (DTN £ e
0,

/B(o o) A((IVO) — Vo — Vo) ?)Vil? — 43m(VVT7). Vo Jm(y)Re(xav)).

Since Vixayp € C(B(0, D)), we have B{ZCD (Vixaw) = By, (Vixaw), and since xx = 1 in B(0, R) and V¢ satisfied
the orthogonality conditions, so does Vix ¥. By Proposition 1.3, we deduce that

By (Vixah)
> K IV(Vixaw)* + [Vixay|?
B(0,10)
2 2 2 4 |X/\¢‘2
+ K IVOR)IPIAl® + Re” o) i + -5
B(0,D)\B(0,5) 721n”(r)

Now, remarking that

Vo) PIVAl? = K1 VY3 IVal? — Ko VxaP [y Vil
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and since xx = 1 in B(0, 10), we deduce that
By ? (Viy)

>z K (/ IVel? + |of? +/ [V ? |V f? +9%2(¢)|V1I4>
B(0,10) B(0,D)\B(0,5)

- K/ 0.D) (IIV0aw) = Vaaw? = Vo) )IVAI? + [3m(VVA V1) VxaIm(v) Re(xav)])

Y VPRIV (42)
0,D)\B(0,5)
Since Vi, is supported in B(0,2A)\B(0, A) with Vx| < £, we have
/ VPRIV < K o (4.3
B(0,D)\B(0,5) BO,2)\BO,\ (1+7)

and by Cauchy-Schwarz, we have that

N 2
| ilam(TT).Vdm(w)teton)]| < Ky . e (1)
B(0,D) B0,2\B0,7n) (1 +7)2 JB50,0)\B(0,5)

and

/ (V) = Vxaw? = [VOaw) P)IVl?)
B(0,D)

2 2
K / K _ / IV |2[Va |2 + / [¥] 5 |- (4.4)
BO.2\B0,)) (1 +7)% J50,0)\B(0,5) BO.22)\BO,N (1+7)

Since 9 has no 0 harmonics, we have that

2
/ er VUV,
B(O,D)\B(0,5) (1+7) B(0,D)\B(0,5)

We infer that there exists Dy > Ry a large constant such that, for D > Dy, for all ¢ = Viyp € C°(R?\{0},C),
there exists \ € [RO, %] such that

|| / 2i17 12
<e (V[ VA (4.5)
/]3(0,2)\)\B(0,)\) (1+7)2 B(0,D)\ B(0,5) '

for some small fixed constant € > 0. Indeed, if this does not hold, then fB(O DI\B(0,5) |V|?|Vi|? # 0 and

/ 9]

B(0,D)\B(0,5) (1 +7)?
Do 2

> / [l rdr

Ry (147)?

D
oz (2#5) |2 s,

> Z / |¢|2 rdr
n=0 2™ Ro (1 + T)Q
[oss (B8:)] -2
> z—:/ VP vil?
z; B(0,D)\ B(0,5) Malld
D,
> e Qlogg (O)J - 1) / vermr
2R, B(0,D)\B(0,5)

1
> VPRIV
B(0,D)\B(0,5)
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for Dy large enough. Taking € > 0 small enough, with equation (4.2) to (4.5), we conclude the proof of this lemma.
O

A consequence of Lemma 4.2 is that, for a function p = Vi1 € C°(IR?\{0}, C) satisfying the three orthogonality
conditions in Lemma 4.2 and D > Dy, then

B () = K(D)|lel3 (50.0y)- (4.6)

4.3 Coercivity for a travelling wave near its zeros

We recall from Lemma 4.1 that, for ¢ € CSO(RQ\{CZcél, —dcgl}, C), we have
(Lo.()9) = /}R (1= )1Vl — RelicDe, @) — (1~ QP +29%6%(@c)
- [ VaOUTQ I ~ 20m(VQ.Q)Re()Im()
[ D) Im) Q.
+ [ aIVeRIQE + 2wl
[ I (TG IV Re(w) + 2elQuIm(Dr, ) Re()
For D > Dy (Dg > 0 being defined in Lemma 4.2), we define, with ¢ = Q.1),
B () = / IV~ Relicdr,p0) — (1 |QePlel + 2R6%(@0))
B(+d.ei,D)
- / U (ORe(VQQ) b — 20m(VQ.Qe)Re(1)Tm(4))
B(+d.&{,D)
4 / O nPRe()In(D)| Q)
B(+d.ef,D)
+ / C (VEPIQR + 2R ()]QuY)
B(%d.e1,D)

b IR IN(T)R() + 2eQuIm(Dr, )R ().
B(+d.&],D)

We infer that this quantity is close enough to Bi;):f () for the coercivity to hold, with V.1 being centered at :I:(fce—f,
the zero of Q. in the right half plane.

Lemma 4.3 There exist R, Dy > 0 with Dy > R, such that, for D > Dy, 0 < ¢ < co(D) and ¢ = Qe €
C(R2\{d.e1},T), if the following three orthogonality conditions

/ (0 Th) = /  Re(0.,Vip) = / - C am@) =0
B(d.e1,R) B(d.e1,R) B(deel,R)\B(d.e{,R/2)

are satisfied, then

loc
BQCLD (QD) = K(D)H@Hi[l(B(Jce_f,D))

Proof First, remark that we write ¢ = Q.¢ and not ¢ = Vi1, as we did in the proof of Proposition 1.3. Hence,
to apply Lemma 4.2, the third orthogonality condition becomes

/ Jm (wcg> =0.
B(d.et,R)\B(d.ei,R/2) Wi
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With Lemma 2.15, we check that

I
B(d.el,R)\B(d.e1,R/2) Vi

< ()] + 000 W10 i 2t rpd e
/B(Jce_},R)\B(cica,R/m - L2(B(dcei,R)\B(dcei,R/2))
< / 3 ()| + 020Dl i szt oy

B(d.1 R\ B(d.21R/2) —0 H'(B(dcei,D))

therefore, by standard coercivity argument, we can change this orthogonality condition, given that c is small enough
(depending on D). With equation (4.6), it is therefore enough to show that

1 lo
|B(§:D (90) - B(/lCD (90)| < 05)—’0(1)||S0||?11(B(JC51>,D))

to complete the proof of this lemma. Thus, for ¢ = Q¢ € CSO(RQ\{JCe_f}, C), writing ¢ =V} (%w) in BE’CD (),

1
we have

loc oc
B (p) = BE™ ()

= [ Oslicdnep) + Q- [P + 2 (%@ - 36 (Vi) )
B(d.e1,D)
- / V. (Re(VQ.Q)|0 I — 23m(VQ.Qr)Re(v)Im (1))
B(d.&1,D)
Q Qe N\ (Q
+ /B(dce—{,D) Vn. (%e(VVlVl) V11/J 23m(VV1V1)iRe<V1 1/1) Jm(vl 1/1))
b [ ) Im)Q.
B(d.ei,D)
+ / O p(VYRIQ? + 2R ()[Q[Y
B(d.e1,D
(@) e () )
B(d.e1,D) %1
+ / C p(Im(VQ.G0) I(V)Re(t) + 2¢|Qu*Tm(Dr, ) Re (1)
B(d.e1,D)

B . Q. Qe
g (17m7 @20 (9 () ) e () )

With Theorem 1.1 (for p = +00) and Cauchy-Schwarz, we check easily that

[ et + 110 - P lloP + 2|3 @ap) - e (V)|
B(d.e1,D)

< 0,1 )||<P||H1(B(cice_{,D))'
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Since V1 is supported in B(d.e1,2)\B(d.e7,1), still with Theorem 1.1 (for p = 400), we check that

/B(cice‘{,m

< K

Qe
Vw

1

Vi 0Re(VQQo)|¢[* — ViRe(VV1 )

2
Vi Re(VQu Qo) ol — ViRe(VViT) %

B(d.e1,D)

Q[ ol
] Plla(B(d.e,D))

< HW.%(VQCQ) VnRe(VVAT:)
L= ((d.&,D))

< oWl sed.zon

We check similarly that the same estimate hold for all the remaining error terms, using the fact that n is supported
in R?\B(d.e1,1). m

Remark that, by density argument (see the proof of Lemma 3.4), Lemma 4.3 holds for any ¢ € H'(B(0, D)).
Now, we want to remove the orthogonality condition on the phase. For that, we have to change the coercivity norm

Lemma 4.4 There exist R,Dy > 0 with Dy > R, such that, for D > Dy, 0 < ¢ < co(D) and ¢ = Q. €
C>®(R2\{d.e1},C), if the following two orthogonality conditions

[ )= [ @) =0
B(d.e1,R) B(dei,R)

are satisfied, then

c

Blo‘”D(wDK(D)/ L VUPIQ® + 9 (1)]Qe |
B(d.ei,D)

Proof Take a function ¢ € H!'(B(0, D)) that satisfies the orthogonality conditions

/ i %e(@zlf/lfflw)z/ i 9‘{6(312‘71‘711#)2/ . : Jm(y) =0,
B(d.e1,R) B(d.e1,R) B(d.e1,R)\B(d.&{,R/2)

and let us show that Blocl P(p) = Klpl? Take €1,2,e3 € R and we define

HY(B(d.&t,D))’
(127 =@ - 516:131 Qc - EQBJUQQC - ESch-

We have, for ¢ = Q. ¢, by Theorem 1.1 (for p = +00) and Lemma 2.15,

/ L Re(0a,VAVAY) — / ) me(c‘ﬂwlczc@cw)‘
B(d.e1,R) B(d.e1,R)

-V
< / Re | 0p, Vi =@ — 00, Qup
B(d.},R) Q.
VA
< K amlma_alec ||90||H1(B(d~ce_1>,D))
¢ L (B(d.&,R))
< OcDeo(l)H‘PHHl(B(&Ce—{,D)y

Similar estimates hold for f B(d.E,R) %e(@mfflf/ﬂ/}). By the implicit function theorem, we check that there exists
£1,€2,€3 € R with [e1]+ea|+e3| < 0cs0 (D@l g1 (p(d,z7,py) Such that & satisfies the three orthogonality conditions
of Lemma 4.3. We deduce that, since (by Theorem 1.1 for p = 400)

||aac1QcHH1(B(JCe—{,D)) + Haszc”Hl(B(Jce—{,D)) + ||ch||H1(B(JCe—1>,D)) < K(D),
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B5IP(9) = B (@) — oo WIIel s et
> K(D )||<P||H1(B(d et.D) 001 )HwHHI(B(J D))
> KD)ellip pdz.py) — %02l 54200
> K(D)H‘P”Hl(B(d &t,D))’
given that ¢ is small enough (depending on D). For ¢ = Q.1, we infer that

/| gy | THPIQ £ REDIQ < KDl a1,y

Indeed, we have

2 4 < 2 < 2 :
/B(Jce_{,D) REWIQ < K B(de#f,D) R(0) < Kllell (p(a.zt,0:
and
[ weredt = [ Ve- QR
B(d.&1,D) B(d.&},D
< E([ o wePs [ vQul |ch2>
B(d.el,D B(d.et

VAN
=
N
—
IS
A
5 5
4
ASH
(V]
+
—
IS
ol
>}
5
(V]
~—

We deduce that, under the three orthogonality conditions, for ¢ = Q.,
[T = [ @R = [ am) =0,
B(d.el,R) B(d.el,R) B(d.et,R)\B(d.e{,R/2)

SO0 2 KD) [ [VUPIQ + R W)l

B(d.e1,D)

Now, let us show that for any A € R, ¢ € H'(B(d.ei, D)),

then

B (p — idQe) = Bg:® (¢):

For ¢ € C(R? C), we have Lo (¢ — iAQ.) = Lo, (p) € C’S"(IW,(D)7 thus (Lo, (p — iAQc), p — iAQ.) is well
defined, and

(Lg.(p —iAQe), ¢ —iAQc) = (Lq. (), ¢ —iAQe) = (¢, Lq. (¢ — iAQ.)) = (Lq.(¢), ¥)-

With computations similar to the one of the proof of Lemma 4.1 and by density, using V(¢ —i\) = Vi and
Re(1h — iX) = Re(1), we deduce that By " (¢ — iAQe) = By ” (¢).

Now, for A € R, ¢ = ¢ — iAQe, ¥ = ¥ — i\, ¢ = Q.¥, we have Bgfl‘D(go) = Bg:l’D(gZ),

[ et e ne@id = [ IR Q.
B(d.ei,D) B(d.ei,D)

and

/ SRe(Vf/lm) :/ i)%(Vf/lfizf)
B(d.,R) B(d.el,R)

For this last equality, it comes from the fact that [, (4.3 R) SRe(in/lf/il) = 0, since %e(inflf/T) has no zero harmonic
(see Lemma 2.1). We also check that

/ Jm(y) = Jm(y) + KA
B(d.et,R)\B(d.ef,R/2) B(d.et,R)\B(d.e{,R/2)
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for a universal constant K > 0. Therefore, choosing A € R such that [ B( Jm(y)) = 0, we have, for

deel,R)\B(de1 ,R/2)
a function ¢ = Q. that satisfies

/~ me(amf/lvﬂp):/  Re(0,ViThe) = 0,
B(d.el,R) B(d.&1,R)
that
locy loc ~
Bg, Pp) = BQCLD(SO)
> [ iR e
B(d.e{,D)
= [ vePlt - mEwQL
B(d.e{,D)
This concludes the proof of this lemma. O

4.4 Proof of Proposition 1.4
Proof [of Proposition 1.4] From Lemma 4.1, we have, for ¢ = Q.1 € C°(R?\{d.e{, —d.ei },C) that

Bo.l) = [ (1= m(Vel —Relicdrop) - (1= Qo + 206 Qo)
- [ VROR(VQU) I — 23V QG0 Re(1) (1)

. / Dy PR (1) I ()| Qo]
]RZ

_|_

[ (1901 + 26 )1@ul)
[ naIm(TQQ)IN(TRe() +261Q I (D) ().

We decompose the integral in three domains, B(+d,e1, D) (which yield Bg:il'D (¢)) and R\ (B(d.e, D)UB(—d.€1, D))
for some D > Dg > 0, where Dy is defined in Lemma 4.3.
Then, with the four orthogonality conditions and Lemma 4.3, we check that

locy

BSO(0) 2 KD) [ [TuPIQ R )il
B(d.#,D)

and, by symmetry of the problem around B(+d.ei, D), since Q. = —V_1(. + do€1) + 0. 0(1) in L=(B(—d.éei, D)),

and checking that multiplying the vortex by —1 does not change the result, that

B(_dcavD)

B (0) > K(D) [ VURIQ* + R WIQlI"

Furthermore, there exist K1, Ko > 0, universal constants, such that, outside of B((jce_f, Hu B(—c’l;e_f7 1) for ¢ small
enough, we have
K > Q.* > K>

by (2.12). We also have

Im(VQ.Q.)| < K <(1+1,:1) T +1f_1)>

by (2.10). With these estimates and by Cauchy-Schwarz, for D > Dy,

Lo L 20]QPIm(0,,0)Re(v)
R2\(B(dcei,D)UB(—d.et,D))

> Ko / ~ L VOPIQ e ()] Qel "
R2\(B(dcei,D)UB(—dcei,D))
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and

/ ) ) AIn(VQ.Qc) Im(Vi))Re (1))
R2\(B(d.e1,D)UB(—d.e1,D))
—K

VY [Qel* + Re? ()| Q|
(1+D) A%?\(B(JCH,D)UB(JCQ,D)) | |

Therefore, taking D > Dy large enough (independently of ¢ or ¢g, D > 10K + 1) and ¢ small enough (¢ < %), we

have

/ _ VPRI + 298¢ ()] Q.
R2\(B(d.&{,D)UB(~d.&},D))

. Im(VQQ) Im(V)Re() + 2]Q. I, )% (1)
R2\(B(d.e1,D)UB(—d.e1,D))

> K ] ) VY2 Qc|* + Re? (1) Qe
R2\(B(dcei,D)UB(—dcei,D))

We deduce that, for ¢ = Qutp € C°(R2\{d.e1, —d.e1}, C),
Bq.(¢) = Kl|¢l2

/B(JC(T) 0 Re (811‘7171#) = /B(JCE{,R) Re (amﬁﬂ) =0,

C1,

/ 9%2(83;1 ‘7_1‘7_11/)) = / 9{2(6x2‘7_1v_1w) =0.
B(—d.e1,R) B(—d.e1,R)

We argue by density to show this result in Hg,. From Lemma 3.1, we know that ||.||¢ is continuous with respect to
|-l g, - Furthermore, we recall from Lemma 3.2 that

L [P (2 FV) | < Kol

and similar estimates hold for

/B(d”ce‘f,R) e (%ﬁﬁ) ’/B(—dle—{,R) e (311‘771?711&)

and

/ ~ Re(Dy, V1 V_11)). (4.7)
(—dcel,R)

In particular, we check that these quantities are continuous for the norm |||z, , and that we can pass to the limit
by density in these quantities by Lemma 3.4.
We are left with the passage to the limit for the quadratic form. For ¢ € Hg,, we recall from (1.3) that

Boe) = [ IV6P = (- 1QPef + 2 @)

+oe / (1 = ) Re(i00,08) + ¢ / yRe(i0,,Q.00) |
RQ RQ

2¢ / nRepImd,, ¥|Qc|* — ¢ / Dy R IMY| Q.|
R2 R?

c / R INGD,, (|Qu?).
RQ
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Following the proof of Lemma 3.3, we check easily that, for 1 = Q91,92 = QY2 € Hg,, we have
[ 1Vl + 10~ [Qul)oral + [9e(Qion) e @)
[ 0 netion ) + [ alRe(i0,, 0000 v
[ e Im0,al|Q + [ 0o v QP

+ / D[Rt I, (1Q )]
IR2

K()lellmg, le2llmg,

N

and thus we can pass at the limit in Bg_ by Lemma 3.4. This concludes the proof of Proposition 1.4. O

5 Proof of Theorem 1.5 and its corollaries

5.1 Link between the sets of orthogonality conditions

The first goal of this subsection is to show that the four particular directions (9, Qe, 0z, Qc, ?0:Qe, cOpr Q) are
almost orthogonal between them near the zeros of )., and that they can replace the four orthogonality conditions
of Proposition 1.4. This is computed in the following lemma.

Lemma 5.1 For R > 0 given by Proposition 1.4, there exist K1, Ko > 0, two constants independent of ¢, such
that, for Q. defined in Theorem 1.1,

Kl < / _ ‘alec|2 +/ _ |6w2Qc|2 +/ N |C280Qc|2 +/ - ‘cacJ-QcP < K2~
B(+d.ei,R) B(+d.ei,R) B(+d.ef,R) B(+d.e{,R)

Furthermore, for A, B € {0,,Q¢, 02,Q¢, ?0.Q.,c0,.Q.}, A # B, we have that, for 1 > o > 0 a small constant,

/ Re(AB) = 0._0(c™).
B(d.et,R)UB(—d.&1,R)

Proof From Lemma 2.2, we have, in B(iczce_f, R), that (for 0<o=1— 0y < 1)
Qe(z) = Vi(z — de€?)V_1(z + deet) + 0cs0(c™)

and
VQ.(z) = V(Vi(z — deel)V_1(z + deel)) + 0c0(c™).

In this proof a 0._,0(c’°) may depend on R, but we consider R as a universal constant. From Lemmas 2.1 and 2.13
and equation (2.7), we show that, by the mean value theorem, in B(:I:dce_f, R),

Qe = ViV_i + 0c0(¢™) = Viy + 0050(c®) = Vg + 0050(c™) (5.1)
and, similarly, }
VQ. = VVii + 0c0(c™). (5.2)
Thus, in B(+d.e1, R), we have y
8951 Qc = aacl Vil + OC%O(CBO) (5.3)
and .
aa?ch = aitz Vi + 0c—>0(060)~ (5.4)

Furthermore, by Lemma 2.3, we have in particular that in B(icfce_f, R),

P0:Qc = (14 0c0(c™))0a(Vi(z — def)Voi(z + de—1>))|d=dc + 0c50(c™).
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Thus, in B(j:c’lvce—f7 R), with Lemmas 2.1 and 2.13, we estimate
CQach = :Faml V:i:l + Oc—>0(0ﬂ0)~ (55)

Finally, from Lemma 2.7, we have

€0.. Q. = —cat.VQ.
with 21 = (—z,2;). In B(j:dce_f, R), we have, since cd. = 1+ 0,_,0(c?) and Lemma 2.13,

cxt = FE + 0po(c).
Therefore, in B(+d.ei, R), we have 3
€0p1 Qe = £0,, Vi1 + 0cs0(c™). (5.6)
Now, from Lemma 2.1, we have
K< / _ |02, Vi |2 +/ _ |0, Vi |* < K (5.7)
B(+d.et,R) B(+d.et,R)

for universal constant Ky, Ky > 0 (depending only on R). By a change of variable, we have, writing Vi =
p(741)e?=1 (with the notations of Lemma 2.1),

: RUSEET
Oy, Vi1 = | cos(d — — —sin(6 V. 5.8
+1 ( (0x1) ) T (0x1) | Vi (5.8)
and . .
9y, Vir = (m(éﬂ)” (Fer) | i cos(éi1)> Vit (5.9)
p(T£1) T+1
Since

- E— ~ ~ / ”~ ~
Re (amlvﬂamvﬂ) — 9cos(@ar)sin(fer) L7 2,

Fe1p(Fen)
by integration in polar coordinates, we have

Re (0, Vi10,,Vir ) = 0. (5.10
/B&Jca,m ( ' ’ ) :

Combining (5.3) to (5.6) with (5.7) and (5.10), we can do every estimate stated in the lemma. a

With (5.3) to (5.6), we check that these four directions are close to the ones in the orthogonality conditions of
Proposition 1.4. This will appear in the proof of Lemma 5.5. Now, we give a way to develop the quadratic form
for some particular functions.

Lemma 5.2 For p € CSO(IRQ\{JCe_f, —Jce_f}, C) and A € Span{0;, Qc, 0z, Qc, 0cQc, 0.1 Q. }, we have
(Lo.(p+ A),p+ A) = (Lg.(9): p) + (2Lq.(A), ) + (Lq.(A), A).
Furthermore, (Lg,(¢+ A),¢ + A) = B, (¢ + A) and (Lg,(A),A) = Bg,(A).

Proof Since p € C®(R2\{d.ei,—d.e1},C), it is enough to check that Re(Lg,(A)A) € L*(R%R) for A €
Spa‘n{affl QC’ a.’L‘Q Q(17 ach, aci Q(;} to ShOW that

(Lo.(p+A), o+ A) = (Lq.(9)p) + (2Lq.(A), p) + (Lq.(A), A).
From Lemma 2.8, we have, for A = 10, Qc + 11202, Q¢ + 1130.Qc + (40,1 Q., that

LQC (A) = :u’3zait2 QC - M418I1 QC-
Now, with (2.15) (that holds also for A by linearity) and (2.9), (2.10), we check easily that Re(Lg.(A)A) €
L'(R%,R).
Now, from subsection 3.3, to show that for ® = Q.¥ € Hg, N C%(R?,C), we have (Lg,(®),®) = Bg, (®),
it is enough to show that [j, 8,,(nRe¥IMP|Q.|?) is well defined and is 0. For ® = A or ® = ¢ + A, this is a

consequence of (2.15), Lemma 2.15 and ¢ € C>°(R2\{d e, —d.e1}, C). O
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5.2 Some useful elliptic estimates

We want to improve slightly the coercivity norm near the zeros of @).. This is done in the following lemma. The
improvement is in the exponent of the weight in front of f2.

Lemma 5.3 There exists a universal constant K > 0 such that, for any D > 2, for V1 centered at 0 and any
function f € C(R*\{0},R), we have

/ FAVilda < K/ IVE2IVAI* + 2 Vi da.
B(0,D) B(0,D)
In particular, this implies that, for 1 € C2°(R?\{0}, C),
[ me@WiPdo <k [ VePl e
B(0,D) B(0,D)
This lemma, with Lemmas 2.15 and 3.4, implies that, for ¢ = Qv € Hg,,

| e < Kl (1)

Proof Since |V1| > K > 0 outside of B(0, 1), we take x a radial smooth non negative cutoff with value 0 in B(0,1)
and value 1 outside B(0,3/2). We have

[ooxpmiPar<k [ pmtie <k [ P
B(0,D) B(0,D) B(0,D)
In B(0,2), from Lemma 2.1, there exists K7, Ko > 0 such that K7 > ‘ il > > K>, and thus
2
/ (1= x)f*ViPde < K </ / (1- x(r))fz(x)r4dr) de.
B(0,D) 0 0
For g € C2°(R\{0},R), we have
2 _1 2
[ a-xongmrtar = 2 [aa- gt
0 0

= %2 o (1 —X(’I"))arg(r)g(ryﬁdr_;'_i/o X'(T)gz(r)r5dr,

and since x'(r) # 0 only for r € [1, 2], we have

/ X' ()|g? (r)rddr < K / yridr,
and, by Cauchy-Schwarz,

/02<1 —X()IOrg(r)g(lrdr < \//oz(arg)wr / g
[ a—xongrta < ([[@arras [ iwra),

and taking, for any 6 € [0,27], g(r) = f(rcos(8),rsin(d)), and since r < K|V;| in B(0,2) (by Lemma 2.1), by
integration with respect to 6, we conclude that

We deduce that

/ (1—x)f2|V1\3dx<K/ VIPIVI + £2 Vi de,
B(0,D) B(0,D)

which ends the proof of this lemma. O

We estimate here some quantities with the coercivity norm. These computations will be useful later on.
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Lemma 5.4 There exists K > 0, a universal constant independent of ¢, such that, if c is small enough, for Q.
defined in Theorem 1.1, for ¢ = Qutp € C°(R2\{d e, —d.e; },T), we have

K (1) e

< Kllglle-

Re(¥)IM(VQQ.)| <

R?2

and

Im(1)Re(VQQc)

R2

Proof By Cauchy-Schwarz, Lemmas 2.12 (with a slight modification near the zeros of Q. that does not change
the result) and 5.3,

2 3 _—
[ e Im(ve.Qn)| < \/ /R Re?(1)|Qe] /R Q.
1
< Kln| - Re? cf?
< () /R ()] Qo]
. mn( )@Ic

We now focus on the second estimate. We take x as smooth function with value 1 outside of {7 > 2} and 0 inside
{r < 1}, and that is radial around +d.ef in B(:td €i,2). We remark that

Re(VQZe) = 5V(Qul) = SYOQL 1)+ (1 = IQeP) + 39,

thus, by integration by parts, we have

[ om0 = ;5 [ @)V -1+ (1= 0lQ.P) / VIm(y
R?2 R2

2
_ 2_ _1 3 ~IQ.P
- 5[ amven(ar-n - /R  Im(VH) (- 0/Q:]
+ o [ Tam).

2 Jp2

and, since x is radial around +d.eq in B(:I:(ice_f, 2),

() Vy = / I )Wy
R2 B(d.e1,2)UB(—d.e1,2)

Since V is supported in (B(deei,2) U B(—d.e1,2))\(B(deei,1) U B(—d.et,1)), by equations (2.12), (2.25) and

Cauchy-Schwarz,
/ )TN < Ky [ IveRiQ
B(d.e1,2)UB(—d.21,2) R2
Now, by Cauchy-Schwarz, we check that
W VRl [ a-v2<Ky [ e
R

Furthermore, we check that (x being supported in {7 > 1})
[ v - ) \/ [ vere [ ek -2
< K[ wupiQ
R2
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Indeed, we have, from equation (2.6) (for o = 1/2), that

K
2
c _1< o 3
10 =11 < 7

which is enough to show that

/ (1Q. 12 < K.
RQ

Combining these estimates, we conclude the proof of
K\ [ 9010c1 < Kl

5.3 Coercivity result under four othogonality conditions

Im(P)Re(VQ:Qe)| <

’]R2

The next result is the first part of Theorem 1.5, the second part (for the coercivity under three orthogonalities) is
done in Lemma 5.6 below. We recall that, in B(:td e1, R), we have 970(z) = ¢(x) — O+ (7)) with O+ (7iq)
the O0-harmonic centered around +d.é{ of .

Lemma 5.5 There exist R, K, co > 0 such that, for 0 <c < co and ¢ = Q.Y € Hg,_, Q. defined in Theorem 1.1, if

Re / Do, QeQuth? = Re / 00, Qu 0070 = 0,
B(dei,R)UB(—d.et,R) B(d.ei,R)UB(—d.e},R)

Re / 0.Q. 0070 = e / 00 QuQuip® = 0,
B(d.e1,R)UB(—d.ei,R) B(d.e1,R)UB(—d.el,R)

Bq.(p) = Kllo||2.

Proof For p = Q. € CF (]Rz\{c’lvce_f7 —&;e_f}, C), we take 1,9, €3, &4 four real parameters and we define

82:1QC +e CQ@CQC +e a:cch Cacch
Q. Ta. fa. "ol

Since, by Lemma 2.8, 0, Q¢, 05,Qc, 0cQc, 0. Q. € Hg,, we deduce that Q.v* € Hg,_ . Furthermore, we have

/_ me(axj/?vjw*> — /~
B(d.e1,R) B(d.e1,R

Ne azj/}azlcgcﬁ
(d.e1,R) Qe

then

V=Yt e

e (0., 7i720)

=

6$1V1C 8 QCQ >

+ 53/ ~ Re <a angc )
B(d.E,R) Qe
~ Vi

<8,31V168€LQ0621> .

From (5.8), we compute




and in particular, it has no 0-harmonic (since |1A/I|2 is radial). Therefore,

/B@ce‘f,m e (011'171@) - /B(&ce—{,m e (311"71’1711/2#(0 -

/  Re(0,,QeQ0) + / . %Re (&Eﬁ/ﬁ/l—ach@) W“’)
B(d.e1,R) B(d.e1,R)

By Cauchy-Schwarz and equation (2.26),

/N

/| P <K [ L IQUVE < K. (.12
B(d.e1,R)UB(—d.el,R) B(d.e1,R)UB(—d.e1,R)

Here, K depends on R, but we consider R as a universal constant. We remark, by equations (5.3), (5.5) and (5.12)
that

1
79%/
2 B(d.e1,R)UB(—d.e1,R)

- / 5 %e(&IchchﬁéO) + Oc%O(CﬁO)K”@H%a
B(d.ei,R)

(8271 Qc — CQ@CQC)QCw;&O

where By > 0 is a small constant. We supposed that

D2, Qe QT 70 — Pe / 0.Q.Q.079 = 0,

9%/
B(d.e1,R)UB(—d.e1,R) B(d.et,R)UB(—d.e1,R)

therefore
/ C Re(00, Qe ™) = 000K 0] 2.
B(d.e1,R)

Furthermore, by equations (2.7), (2.26), (5.3), Lemma 2.15 and Cauchy-Schwarz,

/~ e ((0:,V1V1 - 0,,Q.0:) 7)) < oﬁo(c%)\//~ 2] Q|2
B(d.et,R) B(d.e1,R)

< 0es0(cP)K||glle

Now, from Lemma 2.15 and equation (5.3), we estimate

[ (oot )= [ P+,
B(d.e],R) Q. B(d.e1,R)

With (5.4), we check
= Vi
Re | 0y, V102,Qc— | = 0c—0(1).
/B(Jce‘{,R) ( LT Qc> —o(l)
Similarly, by (5.5) and Lemma 2.15, we have

[ weloavicoq) - | 192, a2 + 00s0(1)
B(d.e1,R) Qe B(d.e1,R)

and by (5.6), we have

— Vi
Re | 0, V1¢c0,LQc— | = 0c—0(1).
/B(d‘ce-{,R) < 11 Qc> ~o(l)

Thus, with (5.7) we deduce that, writing



since

we have

[ (o, mivier)
B(d.&i,R)
= (61— €2)K(R) + 0.,0(1)(e1 + €2 + €3 + €4) + 0crs0(c) K0

Similarly we can do the same computation for every orthogonalities, and we have the system

Jpd.am e (811?1?1/1*)

o 1 -1 0 O €1
s Re(0y, Vo1 V_19p* 1 1 0 0

Jo(-d.zt.m el V) ER) | o o 1 1 |*0eo) iz

Jpd.a.m e (8“‘/1@ 0 0 1 1 f—:z

fB(—JCe_{,R) %e(@xsz,lf/,lw*)
+ 0cs0(¢)Klp]lc.
Therefore, since the matrix is invertible and K(R) > 0, for ¢ small enough, we can find £1,¢9,€3,e4 € R such that
le1] + lea] + les] + lea] < ocso(¢™)Klelle (5.13)

and

/ o (2T = / o P (0TT) 0

/ - SRe(aiv1 ‘7—1‘7—1'(/)*) - / ~ fﬁe(@bv_lv_lzﬂ*) =0.
B(—d.e1,R) B(—d.e1,R)

Therefore, by Proposition 1.4, since Q.%* € Hg,_, we have
Bo.(Qet") > K| Q" |IZ.
From Lemma 2.9, we have,
102, Qclle + 192, Qelle + [1*0:Qclle + /2 [lcd.+ Qclle < K (Bo)
hence, since Q(V* — 1) = €105, Qc + £2620.Qc + €305, Q¢ + €4¢0,1 Qo

Qev||2
Q™ 12 + Qc(v — )|

<
< Qe 112 + K (Bo)(ler] + lea| + les] + 70 2|eq])?,

therefore, for ¢ small enough, by (5.13), we have

Q112 > KNI Qev |12

and

Bq Q™) = K[| Qev[I2
Finally, we compute, since Q.(1) — ¥*) = £10z, Qc + £2¢%0:.Qc + £304,Qc + £4¢0.1 Q., by Lemma 5.2, that

BQc ((P) = BQc (ch*) + BQc (Qc(w - W)) + 2<ch*ﬂ LQC(QC(w - 1/}*)»

Furthermore, we compute, still by Lemma 5.2,

Q)™ Lo (Qe(v = ¢7))) = =B (Qc(¥ — ¥7)) + (Qct), L. (Qe(¥ — ¥7))),
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therefore

Ba. () B (Qe¥") = B (Qe(v = ¥")) + 2(Qet), Lo (Qe(¥ — ¥7)))

K|Qevllz = Ba.(Qc(¥ = ¥%)) + 2(Qct), Lo, (Qe(v) — 97))).

WV

We have
Qc("/} - ¢*) = _(Elalec + EQCQach + 5361’2Qc + E4C@CL Qc)a

and from Lemma 2.8, we have

Lq, (Qe(¥p =) = 702522‘8:62Qc + C254i8m1 Q.

We compute

B (Qc(v —¢7))
- <*(51811 Qe + 820286QC + 538962 Qe+ 54cacL Qc)a 702527:812 Qe+ 0254i8r1 Qc>a

and with (2.3), we check that
Bq.(Qe(t — 7)) = €3¢ (L. (0:Qe), 0eQe) — €1 (Lo (9:+ Qc), Oer Qo).
With Lemma 2.10 and equation (5.13), we estimate
1B (Qc(¥ — ¢")| < Kc*(e3 + 1) < 0cmo(1)[|Qetbl2-

Finally, we have
<chv LQc (QC(w - ¢*))> = <ch7 —02627;8@2620 + 6254iazr1 QC>

We compute
HQuniVQ) = [ ImuR(VQQ) ¢ [ Re(v)Im(VQ.Q0).
and to finish the proof, we use
Qe ivQ0)] < Keta (1) [Quwle (5.14)
for a constant K > 0 independent of ¢ by Lemma 5.4, which is enough to show that

(Qet, Lo, (Qc(v — 9™)))]
< oeso()(le2| + [ea) 1Qc¥lle
< Oc%O(l)lch¢||g7

since cIn (1) = 0,-,0(1). We have shown that, for ¢ € C(R2\{d.ei,—d.e;},T)

Bo.(¢) > K|Qe|2 — Bo.(Qc(v —¥%) +2(Qc), Lo, (Qe(v — %))
> (K —o0cs0(1)[|Qev)12

K
> SlQul?

for ¢ small enough. Now, by Lemma 3.4, we conclude by density as in the proof of Proposition 1.4. O

5.4 Coercivity under three orthogonality conditions

Lemma 5.6 There exists R, K > 0 such that, for 0 < < Bo, Bo a small constant, there exists co(3), K(8) > 0
with, for 0 < ¢ < co(B), Q. defined in Theorem 1.1, p = Q. € Hg,, if

alechzb#O = me/ aszch'@[ﬁéO =0,

B(d.el,R)UB(—d.e},R)
f)%e/ achW =0,
B(d.e1,R)UB(—d.el,R)

Bq.(¢) = K(B)** ||z

i)%e/ ) }
B(d.e},R)UB(—d.e],R)

then
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Proof As for the proof of Lemma 5.5, we show the result for ¢ = Q. € C°(R>\{d.e1,—d.e1},T), and we
conclude by density for ¢ € Hg,.
For p = Q.0 € C (]R2\{dce_1>7 —dce_f}, C), we take e1,e9,€3,&4 four real parameters and we define

arl Qc Czach azz QC CacL Qc
+ +e€ +e .
Qe Q. TR Q.

With the same computation as in the proof of Lemma 5.5, we check that Q.¢* € Hg_, and using similarly the
estimates of Lemma 5.1, we can take £1,¢9,¢e3,£4 € R such that

€2

V=t e

le1] + [e2] + les] = ocmo(c™)l¢llc,

lea] < K||¢llc and such that ¢* satisfies the four orthogonality conditions of Lemma 5.5. The estimates on 4 is
with a constant independent of ¢ because cd.. Q. is of size independent of ¢ in B(dce_f, R) UB(—dCe_f7 R). Therefore,

Bq.(Qv*) = K[|Qcy* 2. (5.15)

We write
T = 51811 Qc + EQCzach + 53az2Qc7

and we develop, by Lemma 5.2,

Bq.(Qc)
= BQc (QC"/)*) + 025?LBQC (acL QC) + BQC (T)
— 2(Q.%, ceqaLgy, (0.1Q.)) — 2(Q.0%, L, (T)) + 2ceq <LQC (0..Q.),T).

Using Lemmas 2.8 and 2.10, we compute

1Bo.(T)| = [{Lq.(T),T)| = [{Lq.(26?0:Qc), £2¢*0: Q) |
= €§C4|<LQc(ach)a8ch>|

< Ke3e? = 0emo(cH2%) |2 (5.16)

Now, we compute, by Lemma 2.8, that
(Qev™, cealg, (0.1 Qc)) = £4c? Qe ,i0,, Q..

From Lemma 5.4, we have
‘C<ch*a Zaml Qc>| < 00 (cl_BO/Q) ||<)0* ||Ca

therefore
{Qet™, c4Lq, (0:2 Qe))| < 0cmso (/%) 0% el c- (5.17)

Similarly, we compute

(Qey”, Lq. (T)) = <ch*’€202LQc (0:Qc)) = 52‘32 (Qcp™,10:,Qc)-
Still from Lemma 5.4, we have

. 1 .
Q" 102,021 < et (1) e

therefore .
(Qet™, Lo (T))] < Kleale® In () 10 lle < 0eso( )1 I lc- (5.18)

Finally, we compute similarly that

clea(Lo,(0,.Q.), T)| = clealicds, Qc, T)| = €410z, Qe €262 0eQ + €302, Qc)]-
Using Lemma 5.4 for ¢ = c¢?0.Q. (with Lemma 3.4), we infer
(02, Qe C28¢QC>| < K||C286QC||C»
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and [|c?9.Q.|lc < K by Lemma 2.9. Furthermore, since Q.(—x1,z2) = Q.(1,72), we have

<Zax1 Qm awg Qc> =0.

We conclude that
lcea(Lq, (062 Qc), T)| < KcP[eal(Jea| + lea]) = 0cmo(®T77%) |02 (5.19)

Now, combining (5.15) to (5.19), and with Bg, (9.2 Q¢) = 27 + 0.—0(1) from Lemma 2.10, we have

Bo.(p) = K[|¢* |2 + Keic® — 0cso(PT7?)[10]I2 = 0cso (77 [@" el e lle-
Similarly as in the proof of Lemma 5.5, we have from Lemma 2.9 that, for any 57/2 > 8 > 0,

lellg < Klle™[Iz + K(B)ede™”,

hence
eic® = K(B)E P (llellz — lle*112),
therefore
Bo.(¢) = KiB) e 12+ Pllelg) — Ka(B)E Pt (|2 — ocso(®TP/?) |l
— oeso(c )@ lellelle
> K(B)cll¢
for ¢ small enough (depending on f). O

Lemmas 2.13, 5.5 and 5.6 together end the proof of Theorem 1.5. Remark that in both Lemmas 5.5 and 5.6, we
could replace the orthogonality condition Re fB(d,e—{ R)UB(—d.7,R) 0.Q.Q.70 = 0 by

me/ da(Vi(z — d&)Vor (z + dé1))ja=a, Qep?O (x)da = 0, (5.20)
B(d.&,R)UB(—d.e1,R)

since, by Theorem 1.1 (for p = +00),
HC28¢3QC — 8d(V1 ((E — de*l)Vfl(x -+ dél))|d=dc ”Cl(B(tice_f,R)UB(fdle_f,R)) = 0c~>0(1)>

and thus this replacement creates an error term that can be estimated as the other ones in the proof of Lemma 5.5.

5.5 Proof of the corollaries of Theorem 1.5
5.5.1 Proof of Corollary 1.6
Proof We start with the proof that (i) implies (ii). We start by showing that, for ¢y € C°(R?, C),

Bq. (¢ +¢o0) = Bq.(#0)-
We take ¢g = Q.10 € C2°(IR?,C) and, by integration by parts, from (i), we check that

(Lq.(#0), @) = 0.
Furthermore, we check (for ¢ € CSO(RQ\{CTCe_f,—CZCe_l)},@) and then by density for ¢ € Hg,) that for ¢y €
Ce(R?,C),
Ba. (¢ + ¢0) = Bo.(¢) + Ba.(po) + 2(¢; La.(#0)),

hence

Ba. (¢ +¢0) = Bo.(¢) + Bq.(#0)- (5.21)
Similarly as in the proof of Proposition 1.4, we argue by density that this result holds for ¢y € Hg,. Now, taking
w0 = —¢p, we infer from (5.21) that Bg,(¢) = 0, thus, for ¢ € Hg,,

Bq. (¢ + ¢0) = Bq.(¢o)- (5.22)
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Now, similarly as the proof of Lemma 5.5, we decompose ¢ = Q¢ € Hg, in

QO = SO* + 618$1 QC + EanQQc + 630280QC

with
lex| + [e2] + les] < Klolle,

such that ¢* verifies the three orthogonality conditions of Lemma 5.6 (all the functions of Q. considered in the

orthogonality conditions are of size independent of ¢ in B(d.ei, R) U B(—d.e7, R)). We write

A =610y, Qc +€20:,Qc + £3¢20,Q. € Hy,
by Lemma 2.8, and using (5.22), we have
Bq.(¢") = Bq.(¢ — A) = Bq.(A).
From Lemma 5.6, we have Bg, (¢*) = Kc?+t%/2||p*||2. Furthermore, from Lemmas 2.8 and 2.10,
Bq.(A) = €3¢ Bq,(0:Qc) = (=21 + 0c—50(1))e3 < 0.

We deduce that €3 = 0 and ||¢*||c = 0, hence ¢* = iuQ. for some p € R. Since ¢* = ¢ — R € Hg_, we deduce that

*

1 =0 (or else ”50*”%’@6 > [re % = +00). Therefore,

Y = Elaarl Qc + 6267;2620 S SpanIR(87;1 Qw 83:2Qc)~

Finally, the fact that (#¢) implies () is a consequence of Lemma 2.8. This concludes the proof of this lemma. O

5.5.2 Spectral stability

We have H'(R?) C Hg,, therefore Bg,(p) is well defined for ¢ € H*(R?). Furthermore, the fact that i0,,Q. €
L?(R?) is a consequence of Theorem 2.5, and in particular this justifies that (p,i0,,Q.) is well defined for ¢ €
H'(R?). For ¢ € H'(IR?), there is no issue in the definition of the quadratic form, as shown in the following lemma.

Lemma 5.7 There erists co > 0 such that, for 0 < ¢ < co, Q. defined in Theorem 1.1, if o € H*(IR?), then
Bo.(9) = [ | 1V6f = Relicdruiop) - (1= Q) ol + 200 Qo).
Proof We recall that H'(R?) C Hg, and, for ¢ = Q.¢ € H'(R?),
Bo) = [ 196l = (1= 1QPNe + 26 @)
o - nRenpp) - [ neio,, Q@0
R2 R2
+ 2 / nReyIm,, ¥|Q.|* + ¢ / Oz, nRepTmy| Q|
R?2 R2
+ c/ nRepImpd,, (|Q.|?).
]R2

Since ¢ € H'(IR?), the integral [}, Re(icd,,¢p) is well defined as the scalar product of two L?(IR?) functions. Now,
still because ¢ = Q.¢» € H'(IR?), we can integrate by parts, and we check that

/ PRI, Y Q= — / §Red,, b Im| Q.
R?2 R2

- / R o / R Imida, (|Q.f?).
IR2 RZ
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We conclude by expanding

/ Re(i0,,00) = / iRe(i0,, Q.00 + / 1R (10, 0)|Qu
R2 R2 R2

/ nRe(i0,, Q.00 + / nRe (D0 6)IB| Q. ?
R2 R2

+ / iRe(0) I, 0] Q.
RQ

The rest of this subsection is devoted to the proofs of Corollary 1.7, Proposition 1.8 and Corollary 1.10.
Proof [of Corollary 1.7] For ¢ € H'(IR?) such that (p,i0,,Q.) = 0, we decompose it in

Y= (p* + 6181-1@0 + 8261;2620 + 026380620.

Similarly as in the proof of Lemma 5.5, we can find €1,e2,e3 € R such that ¢* satisfies the three orthogonality
conditions of Lemma 5.6, and thus (since p € H*(R?) C Hg,, for B = By/2)

Bq.(¢*) = K207 2.
Now, we compute, by Lemma 5.2 and with a density argument, that
Bo.(¢) = Bo.(¢") + 2(¢", Lq, (610, Qc + £20:,Qc + ¢*€30.Q.)) + €3¢ Bo, (0:Qe)-
We have from Lemma 2.8 that Lg, (€10, Qc + €2045,Qc + ?e30.Q.) = c?e3i0,,Q., therefore
Bq.(p) = KTP20% |2 + 26%e3(¢" 10, Qe) + €3¢ Bo, (0:Qc).
Since (p,i02,Q.) = 0 and ¢ = p* + 104, Qc + €204, Q¢ + *£30.Q.., we have

<§0*7 iaﬂcz Qc> = *<5189c1 Qe+ 52612 Qc + 62838ch, iamz Qc>

Since 0;, Q. is odd in z; and i0,,Q. is even in x1, we have (£10,,Qe, 10,,Q.) = 0. Furthermore,

(6200, Qe 10, Q0) = &3 / Re(i]02, Q. [?) = 0,
R2

and, from Lemma 2.10, we have

. —27 + 0, 1
Bo.(9:Q0) = (9:Qe.i0,Qc) = 2t 2e=oll),
thus
(" L, (100, Qe + 200, Qe + *230.Qu)) = (27 + 0emso(1))3 B, (.0,
and

Bq.(p) = KP2|0" |2 — e3¢* Bq, (0:Qc) > Kc* /2|2 + 2meic? (1 + 0cs0(1)) 2 0

for ¢ small enough. This also shows that if ¢ € H'(R?), Bg_.(¢) = 0 and (¢, i0,,Q.) = 0, then ¢ € Spang {0, Qc, 02, Q. }-
O

We can now finish the proof of Proposition 1.8.

Proof [of Proposition 1.8] First, we have from Theorem 2.5 that i0,,Q. € L?(IR?). Now, with Corollary 1.7, it is
easy to check that n=(Lg,) < 1. Indeed, if it is false, we can find u,v € H'(IR?) such that for all A\, u € R with
(A, 1) # (0,0), Au~+ pv # 0 and Bg, (Au + pv) < 0. Then, we can take (A, i) # (0,0) such that

M+ p,10,,Qc) = 0,
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which implies Bg, (Au + pv) > 0 and therefore a contradiction.
Let us show that Lg,_ has at least one negative eigenvalue (with eigenvector in H'(IR?)), which implies that
n~(Lg,) =1 and that it is the only negative eigenvalue. We consider

Bq.(#).

Q1= inf
eEHY(R?),]l¢ll L2 (r2)=1

We recall, from Lemma 5.7, that (since ¢ € H'(R?))
Ba.(9) = [ |1V = eictrs9) = (1= Q) lol? + 2862,

and if p € H'(R?) with |¢||12(r2) = 1, we have, by Cauchy-Schwarz,

Ba.(9)> [ |1Vl = Kelorugllome) — K > —K()

In particular, this implies that a. # —oo.

Now, assume that there exists no p € C2°(IR?, C) such that Bg, (p) < 0. Then, for any p € C>(R?, C), we
have Bg, () > 0. Following the density argument at the end of the proof of Proposition 1.4, we have Bg,(¢) > 0
for all ¢ € Hg_, and in particular Bg_(9.Q.) = 0 (we recall that 9.Q. € Hg, but is not a priori in H'(R?)), which
is in contradiction with Lemma 2.10. Therefore, there exists ¢ € C°(R?, C) C H'(R?) such that B, (¢) < 0, and

=1, hence a,. < 0.
L2?2(R?)

Remark that we did not show that 9.Q. € L?(IR?), and we believe this to be false. This estimate on . is the
only time we need to work specifically with @), from Theorem 1.1. From now on, we can suppose that Q. is a
travelling wave with finite energy such that o, < 0.

To show that there exists at least one negative eigenvalue, it is enough to show that a. is achieved for a function
¢ € H'(R?). Let us take a minimizing sequence ¢, € H'(R?) such that ||¢n||r2m2) = 1 and B, (¢n) — ac. We
have

i i Y P
in particular Bg, (\|<F\|L2<]R2)) < 0 and H Tz e,

[ Vel = Ba.en) + [ Belicdruon) + (1= 1Pl ~ 203 @),
therefore, by Cauchy-Schwarz,
[ IVenl? < locl + Kel Dz + K.
We deduce that, for ¢ small enough,
IVenllZe @) — Kl Veonllrame) < K(o),

hence ||V,|2, (R2) 18 bounded uniformly in n given that ¢ < ¢o for some constant ¢y small enough. We deduce

that ¢,, is bounded in H'(IR?), therefore, up to a subsequence, @, — ¢ weakly in H'(IR?).
Now, we remark that for any ¢ € H'(IR?), by integration by parts (see Lemma 5.7),

_me(icaxfz (p@) = —¢ me(aﬂh @)jm(W) +c fﬁe(go)jm(ﬁm QD)
R2 R?2 R2

R2

For R > 0, since ¢,, — ¢ weakly in H!(IR?), this implies that ¢,, — ¢ strongly in L?(B(0, R)) by Rellich-Kondrakov
theorem. In particular, we have

/ Re(i2) I Dy — / Re(i2) IO o).
B(0,R) B(0,R)

since ¢, — ¢ strongly in L?(B(0,R)) and 0,,¢, — 0., weakly in L?(B(0,R)). We deduce that, up to a
subsequence,

/B o T+ 2RIM0) = (1= QU + 296 @)
0,

n—oo

< 1iminf/ Vonl® + 26Re(0n)ITM(0zy0n) — (1 = 1Qcl*)|nl? + 298¢* (Qcion) + 07, o (1).
B(0,R)
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Furthermore, we have, by weak convergence
el (g2) < hggiogf lonll 1 (r2) < K(c)

therefore, we estimate

/ IV|? + 2cRe(0)Tm(Da,0) — (1 — |Qcl?) |l + 20Re* (Qetp)
R2\B(0,R)

< KHS"H%{I(W\B(O,R)) = OR—o0(1).
We deduce that

Bq.(¢) < lirginf 0.R) ‘VSOHP + 2cRe(@n)IM(0ayon) — (1 — |QC‘2)|907L|2 + 29%2(@@”
n— JB(0,R

+ 0n (1) + 0Ro00(1)

Now, we have

lim inf |V<,0n|2 + 2c¢Re(pn)Im(Iryon) — (1 — |QC|2)|‘Pn|2 + 29%2(@9071)
n—oo [p,R)

= liminf By, (¢n),

— liminf |V90n|2 + 2c¢Re(pn)IM(0z,y 0n) — (1 — |QC|2)|§Dn|2 + 29%2(@9071)

n—=o0 JR2\B(0,R)
and Bg, (¢n) — ., therefore
Bqo.(p) < ac+ Ofaoo(l) + 0R00(1)

— liminf |V‘Pn|2 + 2c0Re(pn)IM(Dry o) — (1 — |Qc|2)|§0n‘2 + 29%2(@@71)'
n=o0 JR2\B(0,R)

From Theorem 2.5, we have (1 — [Qc[*)(z) — 0 when |z| — oo, therefore, since [¢n||z2r2) = 1, we have by
dominated convergence that

[ =il < onn 1)
R2\B(0,R)

Furthermore, we check easily that (since (A + B)? > 4% — B?)
— 1
[ @z [ me@oRe) - [ anQaam (o)
R2\B(0,R) R2\B(0,R) R2\B(0,R)

and from Theorem 2.5, Im(Q.)(x) — 0 and Re(Q.)(x) — 1 when |z| — oo, therefore, since |¢nl[z2(r2) = 1, by
dominated convergence,

/ 2936 (i) > / R (i00) — 0rsoo(1)-
R2\B(0,R) R2\B(0,R)

We deduce that, since ¢ < v/2,

Bqo.(p) < ac+ o, (1) + 0ros(1)

— liminf (/ |v§0n|2 + 2cme(¢n)jm(8m§0n) =+ mg(@n))
R2\B(0,R)

n— oo

< act 071“?%00(1) + 0rR500(1)

~ liminf / (Vnl + Re(on))? + (2 — 2)Re()
n—oo R2\B(0,R)

< et of oo (1) + 0rse0(1).
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Thus, by letting n — oo and then R — oo,
Bg.(¢) < ac.

In particular, this implies that ||¢||z2(r2) # 0, or else Bg, () = 0 < a. and we know that a. < 0. Furthermore, by
weak convergence, we have [[¢[|z2(r2) < 1, and if it is not 1, then, since a. <0,

Bq. < - > <o <a
lelliz@ey )~ lellieme)

which is in contradiction with the definition of a,.. Therefore ||| z2(r2) = 1 and Bq, (¢) = a.. This concludes the
proof of Proposition 1.8. O

Proof [of Corollary 1.10] The hypothesis to have the spectral stability from Theorem 11.8 of [15] are:

- The curve of travelling waves is C'* from ]0, ¢o[ to C1(IR?, C) with respect to the speed. This is a consequence
of Theorem 1.1. This is enough to legitimate the computations done in the proof of Theorem 11.8 of [15].

- Re(Q.) — 1 € HY(R?), VQ. € L*(R?), |Qc| — 1 at infinity and ||Qc[|c1(r2) < K. These are consequences of
Theorem 7 of [11].

-n~(Lg,) < 1. This is a consequence of Proposition 1.8.

- 0.P2(Q.) < 0. This is a consequence of Proposition 1.2. O

6 Coercivity results with an orthogonality on the phase

This section is devoted to the proofs of Propositions 1.11, 1.12 and Theorem 1.13.

6.1 Properties of the space H”

In this subsection, we look at the space Hy, . We recall the norm

2 _ 2 2 2 |’lp|2
lellzzee = el (grgiop + /{@5} IV[* + Re”(¥) + EINGER

The quadratic form we look at is

By (p)

[ 1196l = Relicdo2) - (1= Q) lol? + 29 (@es)

— | VROR(VQQOIUE ~ 23m(VQ.Q)NRe(h)Im(v)

+

/R Dl Qe PRe()Im (1)

+

[ 0= 0 (T0PIQ + 2w
[ 0= EIm(TQ)IN(THR() + 261 Im(0,,)Ke(w)

We will show in Lemma 6.1 that B (p) is well defined for ¢ € HgP. The main difference between Bg, and

BgP is the space on which they are defined. In particular, we can check easily for instance that, for ¢ € C°(R?)
i exp

with support far from the zeros of Q., we have B, (¢) = Bq.(¢), as the terms with the gradient of the cutoff are
exactly the ones coming from the integrations by parts. We start with a lemma about the space Hy,".

Lemma 6.1 The following properties of H¢, " hold:
foC C Hgip,

iQ. € HSP.
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Furthermore, there exists K(c) > 0 such that, for ¢ € H;",
lelle < Kllll e, (6.1)

lellage < K(O)llel ae, - (6.2)

and the integrands of BT (), defined in (1.4), are in LY(R?) for ¢ € HyP, and BGP does not depend on the
choice of n. Finally, zfgo € Ho, C H;”,

Bq.(¢) = By, (¢)-

See Appendix B.3 for the proof of this result.

Now, we state some lemmas that were shown previously in Hg_, that we have to extend to H > to replace some
arguments that were used in the proof of Proposition 1.4 for the proofs of Propositions 1.11, 1 12 and Theorem
1.13. We start with the density argument.

Lemma 6.2 C°(R2\{d.é,, —d.é,},T) is dense in HGP for ||.\|ngp.
Proof The proof is identical to the one of Lemma 3.4, as we check easily that, for A > 19 large enough,

2 )
ol crcron, + / VU2 + Re2(w) + 2 < K ol
H'({r<10}) (F>5}NB(O.N) 72 1n(r)2 H1(B(0,)))

and )
9]

Il greaon + | VO + 92 0) + S > Ka (el
H ({r<10}) (F>5}NB(O0.N) 72 In(7)2 H1(B(0,A))

We also want to decompose the quadratic form, but with a fifth possible direction: Q..
Lemma 6.3 For p € CSO(IRQ\{JCe_f, —Jce—f}, C) and A € Span{0;, Qc, 0y Qc, 0cQey 0.1 Qe iQ. }, we have

(Lo.(p+A), 0+ A4) = (Lo.(¢),¢) + (2Lq.(A),¢) + (Lq.(A), A).

Furthermore, (Lo, (¢ + A), ¢+ A) = BCQXCP(@ + A), Lo (iQ.) =0 and

102 Qelzzzs + 192 Qell iz + 120:Qell s + 2|0, Qellsso + 1iQell e < K (Bo).

Proof As for the proof of Lemma 5.2, we only have to show that Re(Lq, (A)A) € L' (IR?) to show the first equality.
By simple computation (or by invariance of the phase), we check that Lg, (i1Q.) = 0. Writing A = T + €i(),. for
e € R, T € Span{0,, Qc, 02, Qc, 0cQc, Vo1 Q. }, we compute from Lemma 2.8 that

LQC (A) = LQC(T) € Spanﬂ{(iam chiazch)a

thus
Re(Lg, (A)A) = Re(Lg (T)T +€iQ.) = Re(Lo, (T)T) + eRe(Lg, (T)iQ.).

From the proof of Lemma 5.2, we have Re(Lq, (T)T) € L'(R?), and since Lq_ (T) € Spang (i9s, Qc, 104, Q.), with
Theorem 2.5, we have
K(e)

(147)3 ©
Let us check that, for p € HO®, BoP (¢ +€iQ.) = B, (p) for € € R.

We check, from (1.4), that for ¢ € C° (]RQ\{d ef,— c?ce_f}, C), this equality holds by integration by parts and
because 9%(7,/1 +1) = Re(y), IM(V(Y + z)) = Jm(V1). We then argue by density, as in the proof of Proposition 1.4.

[Re(La.(T)iQe)| < L'(R?).
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We deduce, from Lemmas 2.8 and 5.2, that for ¢ € C°(R2\{d.e{, —d.e1}, T),

Bole+A) = Bol(e+T)=Bo.le+T)
= (Lo.(¢+T),p+T)=(Lo.(p+A),p+T)
= (Lo (p+ Ao+ A) —(Lq.(¢p+ A),ciQc),

and we check, with Lemma 2.8, that for some v € R? depending on A,
(Lo.(p+A),eiQc) = (Lq.(p),€iQc) + (Lq.(P), i)

= 5(90,LQC(ZQC)>+Ev./IR2 Re(VQ.Q.)
= 0.

From Lemma 2.9, we have,

102, Qclle + 102, Qellc + | 0:Qcllc + /2| c0.2 Qcllc < K (Bo),
and with Lemmas 2.1, 2.3 and equations (2.9), (2.10), (2.11), we check with the definition of ||.||H22xp and ||.||c¢ that,
fOI‘ A 6 {6581 QC7 8;82 Q07 C28€QC7 Cl+ﬁ0/2acj‘ QC}7
A0 < KA raroy, + IAIR < K(Bo)

Finally, we check that

| . | P
1iQelgr = 1@l qrrony + [ Vil + %) +

5 < K.
{7F>5} ’F2 111(7:)2

We can now end the proof of Proposition 1.11.

Proof [of Proposition 1.11] From Theorem 1.5, for ¢ € C2°(R?\{d.e;,—d.e}},T), under the four orthogonality
conditions of Proposition 1.11, we have, by lemma 6.1,

BGP(9) = Ba.(#) = (La.(9), %) = Klel.

We then conclude by density, as in the proof of Proposition 1.4, using Lemma 6.2. The proof for the density in Bg‘cp
is similar to the one for Bg_ in the proof of Proposition 1.4. The coercivity under three orthogonality conditions
can be shown similarly.

Then, for the computation of the kernel, the proof is identical to the one of Corollary 1.6. With Lemma 6.1,

exp

we check easily that we can do the same computation simply by replacing Bg, (¢) by Bg,! (¢). The only difference
is at the end, when we have ||¢*||c = 0, it implies that p* = XiQ. for some A € R, and we can not conclude that
A = 0, since we only have p* € Hg(cp instead of p* € Hg,. This implies that

@ € SpanR(afbl ch 81’2 QC7 ZQC)

Using Lemma 2.8 and 6.3, we check easily the implication from (i7) to (7). a

6.2 Change of the coercivity norm with an orthogonality on the phase

We now focus on the proofs of Proposition 1.12 and Theorem 1.13. In these results, we add an orthogonality
condition on the phase. We start with a lemma giving the coercivity result but with the original orthogonality
conditions on the vortices, adding the one on the phase.
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Lemma 6.4 For ¢ = Q. € Hy', if the following four orthogonality conditions are satisfied:

/B(dce_{’R) Re (311‘7171/1) = /B(Jce—{,R) Re (aﬂ[@) =0,

[ eV = [ (0w =0,
B(—d.e1,R) B(—d.e1,R)

then, if Re fB(QR) i) = 0, we have (with K(c) <1)
B (6) > KOl + Kol
or if Vz € R, p(x1,22) = ¢(—x1,22) and Re fB(dce_l’,R)uB(—dce_LR) iQ.p =0, then
BEP(p) > Kol
Proof Let us show these results for ¢ = Q. € C°(R2\{d.€}, —d,é1},T). We then conclude by density. We start

with the nonsymmetric case.

By Lemma 4.4, for p = Q. € C°(R?\{d.€|, —d.€}, C) such that

/B(d}e_{,R) Re (&Jﬁm) = /B(cice_{,R) Re (6@,{};@) =0,

we have

G0 2 KD) [ [TUPIQ + R W)

B(d.e3,D)

By Lemma 4.3, we infer, by a standard proof by contradiction (with the first two orthogonality conditions),

2
loc
B2 (0) = Ky (D)l olPrs s s o — Ko(D) / Im(y) |
Qe H!(B(d.#1,D)) B(d.el R)\B(d.e),R/2)

We deduce, with Lemma 4.3, that for any small € > 0

BY P (p) > K(D)(1-¢) / CTPIQ + R ()@

B(d.e1,D)

2
+ Kl(D)EH(p”?{l(B(Jrc—l),D)) - K?(D)E (/B((i o R)\B(ci - R/2) jm(¢)> .

By Poincaré inequality, if Re [ B(o.r) 1 =0, then

/| ) < K[ ~ VP2
B(dcet,R)\B(d.e1,R/2) R2\(B(d.&{,R/2)UB(—d.&1,R/2))

< KEyf [ veriad.

Therefore, for any small 1 > 0, taking € > 0 small enough (depending on ¢, D and p),

loc
BQCLD(SD)

WV

K(D)/B~ U [Qel* + Re2()] Qo

(deet,D)

2 2 4
+ Kl(DaCaﬂ)”‘lD”Hl(B((jCe—{’D)) _'u/IR2 ‘V’(ﬂ |Qc‘ .
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With similar arguments, we have a similar result for Bg:’l'D (¢). Now, as in the proof of Proposition 1.4, we have,

taking p > 0 small enough and D > 0 large enough,

loc loc_
Bo.(p) = By ""(e)+ By, "(p)

+ K (/ B } V¢|2|Qc|4+m62(r¢)|Qc|4>
R2\(B(d.&i,D)UB(—d.e1,D))

= K/R2 |Vw‘2|QC|4+£Re2(¢)|QC‘4+Kl(c,u)\|¢\\§[1(3(dﬂ’w))

SR
R2
2 K”SDH(% + K(C)H(p‘lill(B(dce_l),lO))'

Then, by the same Hardy type inequality as in the proof of Proposition 1.4, we show that

o] 2 / 2 4
<K = \Y c )
/]Rz (1—|—'F)2 1112(2—&-7:) HQPHHl(B(dCe_{,lO)) + ]R2| 1/)| |Q |

Bo.(¢) = Klell& + K (c)| el Zge-

In the symmetric case, the proof is identical, exept that, by symmetry,

i)‘ie/ 1Qcp =0,
B(d.e1,R)

and we check by Poincaré inequality that for a function ¢ satisfying this orthogonality condition, ¢ = Q.,

therefore

Jm(1))

< Kllollgy gz ry)»

/B(Jce_{,R)\B( i.e1,R/2)
for a universal constant K > 0. By a similar computation as previously, we conclude the proof of this lemma. O

We now have all the elements necessary to conclude the proof of Proposition 1.12.

Proof [of Proposition 1.12] This proof follows the proof of Lemma 5.5. For ¢ € C2°(R?\{d.é1, —d.& },C) and five
real-valued parameters ¢1,¢9,€3,€4, €5 we define p* = Q.Y* by

awl Qc C280Qc 61:2 Qc C@CL Qc
+e +e +e
Qe T Q 7T Q TN

From Lemma 6.3, we check that ¢* € Hg,”. Now, similarly as the proof of Lemma 5.5, we check that

+ e51.

Pr=v¢+e

Joaar.m e (c’%lﬁﬁw*) = Jpi.zm Re (81117;17@)
et Jpdzm e axlvlachc‘i)
+ 22 [paem e 3x1/Vv1028cQCC‘;’£>

+ &3 fB(JCe—{,R) Re amlvla%QCc‘g/lc)

+

+ &4 fB(fjca,R) Re 8$1/‘>ICGCL QCE)
+ &5 fB(gue—;,R) Re (aml'vvlﬂ“/;) .

Furthermore, with Lemma 2.1, we check that
/ Re (amvlz'f/{) —0,
B(d.et,R)
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and the other terms are estimated as in the proof of Lemma 5.5. Similarly,

/| o e (0:007) = /| e (01 = /| o e (o) <0

We also check that, from (2.9), (2.10), Lemmas 2.3 and 2.7 that

.8I1QC> (am2Qc)
R R
/B(O,R) ‘ (l Qe /B(O,R) “\ Qe ‘
. aCQC) < ~alec>
Re ( ic? R
./B(O,R) e(zc Qe ./B(O,R) “\“ Q. ’

= 00—)0(1)7

_|_

+

+

and
/ Re(i x i) = —TR* < 0.
B(0,R)

We deduce, as in the proof of Lemma 5.5, that

Is(a.z.m Re (axl 171‘711#*) ]
0
0

fB(dce_f,R) Re (3@/‘71/‘711/)*>
fB(—Jca,R) me(awﬂzlvﬂw*)

K(R) -K(R) 0 0 €1

K(R) K(R) 0 0 £

- 0 0 KR -K® 0 |+omo(D)|]| e
0 0 K(R) KR 0 €4

0 0 0 0  —nR? e

+ ocso(®)K |l
Therefore, we can find e1,e9,£3, €4, 65 € R such that
lex] + leal + lesl + leal + les| < ocmso(e™)llglle
and ™ satisfies the five orthogonality conditions of Lemma 6.4. Therefore,
BEP(0%) = K(o)l¢* 3o + K63

We continue as in the proof of Lemma 5.5, and with the same arguments, we have

BEP(9) > K(0)le* o + Kl
Now, by Lemma 6.3, we have

le*lase > Nl — lle10e Qe + c2¢?0eQe + €302, Qe + €4 Qe + 5l e

0’60/2)

> el — 0ol llc,

thus, since we can take K (c) < 1, we have

BoP (@) = K (c)llell g
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We conclude by density as in the proof of Proposition 1.4, thanks to Lemma 6.2. We are left with the proof of
BgP () < K||<p||§{gxcp. With regards to (1.4), the local terms can be estimated by K||g0||%,1({7;<10}) < K||g0||ilgccp and

the terms at infinity, by Cauchy Schwarz, can be estimated by K f{F>5} |V)? + Re? (W) + P« K||¢||3ex. O
z Qe

FIn2(F)

As for the remark above equation (5.20), we can replace the orthogonality condition JRe fB(J o R)UB(—d.21.R) 0:Q.Q 70 =
0 by

ERe/ (9d(V1($ - d€1)V_1(x + dgl))|d:dCW(x)d$ =0 (63)
B(d.et,R)UB(—d.el,R)

in Propositions 1.11 and 1.12.

Proof [of Theorem 1.13] This proof follows closely the proof of Proposition 1.12.

First, from Lemma 2.3 and the definition of 0,1 Q). in Lemma 2.7, we check that 0,, Q. and 9,1 Q. are odd in
x1, and for ¢ = Q.9 € CSO(]RQ\{cLé’l, —Jcé'l},(D) with V(z1,22) € R2, ¢(x1,72) = ¢(—w1,22), we check that in
B(d.et, R) U B(—d.qe1, R), Q.47 is even in 2. Therefore, these two orthogonality conditions are freely given.

We decompose as previously for, €1, €2, €3 three real-valued parameters,

Y= (p* =+ Elch + 52aw2Qc =+ EgCQCr)CQC.

We suppose that
ach(ﬁ = E)fie/ alszC@ =0,

D%e/
B(d.et,R)UB(—d.e1,R) B(d.et,R)UB(—d.et,R)

e [ iQup =0,
B(d.el,R)UB(~d.el,R)
and we show, as in the proof of Lemma 5.5, that we can find 1, ¢€5,e3 € R such that

1] + lea] + lea] < 0cso(c™) o]l e,

and ¢* satisfies the five orthogononality conditions of Lemma 6.4 (we recall that two of them are given by symmetry).
Here, since we did not remove the 0-harmonics, the error is only controlled by ||| HEGP instead of ||¢||c. For instance,
we have ‘

L 72 (22778 ~0,0.20) )| < 000 (IQ (a7 = 0ol

Now, from Lemma 6.4, since ¢* € H,, ", we have

BoP(¢") = KW*H%&E
We continue, as in the proof of Lemma 5.5, with |e1| + |e2| + |e3| = oc_>0(1)|\<p||ng;> and Lemma 6.3. We show that
B5P(0) > Kl

We conclude the proof of Theorem 1.13 by density. |

7 Local uniqueness result

This section is devoted to the proof of Theorem 1.14. This proof will follow classical schemes for local uniqueness
using the coercivity. Here, we will use Propositions 1.11 and 1.12, with the remark (6.3).
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7.1 Construction of a perturbation

For a given ¢ € R2, 0 < |c_7| < ¢ (co defined in Theorem 1.1), X € R? and v € R, we define, thanks to (1.1), the
travelling wave

Q:=Qz(.—X)eM. (7.1)

We define a smooth cutoff function n, with value 0 in B(#d.ei, R+ 1) (R > 10 is defined in Theorem 1.5), and 1
outside of B(d.ei, R+ 2) U B(—d.ei, R+ 2). The first step is to define a function ¥ such that

(1=mQ¥+nQe” —1) = Z - Q, (7.2)
with Qv satisfying the orthogonality conditions of Propositions 1.11 and 1.12. We start by showing that there

— - 7 - oL
exists a function 1 solution of (7.2). We denote §/(ce3, ) := |(ce3 — ¢).-%-| and 6+ (ces, ¢) == |ces. 5| At fixed
-1

le’| ||
[

¢, these two quantities characterize ¢, since they are the coordinates of the vector ce3 — ¢ in the basis (&, %)

/
Bl

1

We will use them as variables instead of ¢ , this decomposition being well adapted to the problem.

Since both Z and |Q| go to 1 at infinity, we have that such a function ¢ is bounded at infinity. The perturbation
here is chosen additively close to the zeros of the travelling wave, and multiplicatively at infinity. This seems to be
a fit form for the perturbation, and we have already used it in the construction of Q..

Lemma 7.1 There exits ¢ > 0 such that, for 0 < ¢ < ¢o and any A > 1—00, with Z a function satisfying the

hypothesis of Theorem 1.14 and Q defined by (7.1) with § < |c_;| < 2c¢, there exist K, K(A) > 0 such that

sl ce_>,c7 ot ce_>,c7
Z—Q||01(B(0.,A))<K(A)||Z—Qc||H5Xj+K<|X+ D) TR ).

We will mainly use this result for A = A+ 1, A > 0 defined in Theorem 1.14.

Proof We recall that such a function Z is in C*(IR?, C) by elliptic regularity.
We start with the estimate of w:= Q. — Z in B(0,A). Since both Z and Q. solve (TW,.), we have

—Aw = (1 - |Qc|2)Qc - (1 - ‘Z|2)Z +icOz,w.
From Theorem 8.8 of 7], 2 := B(0,A), 2Q = B(0,24),
w2 (0) < KA)([wllme0) + licds,w + (1= 1Qc*)Qc — (1 = 1Z*) Z| 1220 )-
We compute that
(1-1Q:)Qc = (1 =122 = (Qc = 2)(1 — [Qcl*) + Z(1Qc| = 121)(1Qc] + 12)).
From [6], we have that any travelling wave of finite energy is bounded in L>(IR?) by a universal constant, i.e.

therefore
11— 1QL+1Z|(1Qcl + 12]) < K

for a universal constant K. Thus,
(1= 1Q*)Qc — (1— |Z|2)Z||L2(2Q) < Kjw| g2 20),
and we deduce, from Lemma 2.6, that
[wllg2@) < K(A)([[wllgr20) + [licds,wllz220) + [wl[L220)) < K(A)[[w]gge.
By standard elliptic arguments, we have that for every k > 2,

[ wllwra) < KA ) |[wl g
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By Sobolev embeddings, we estimate
lwller @) < K(A)[[wllwaz ) < K(A)[lw] gge. (7.4)
From (7.4), we have
1Z = Qll~(0) < 1Q = Qcllr=() + lwllL=(0) < 1Q — QcllLo(wz) + K (A)||w]| .
We estimate
1Q = QcllL~mzy = [1Qzs(.—X)e" — QcllLo(m2)

< Qa( = X)e = Qs(- — X)|leem2) + Qs (- — X) — Qg ll Lo (w2)

+ Q7 = Qg lleme) + Q)52 — Qell=m2).-
We check, with Theorem 1.1 and Lemma 2.7 that [|[VQ|| oo (r2) + ¢2[|0cQ|| oo (r2) + €| 0cr Q| oo (r2) + [[iQ]| oo (m2) <
K, and that it also holds for any travelling wave of the form Qz(. — Y)e if 2¢ > |d] > ¢/2,Y € R? and B € R.

We check that [|Qz(. — X)e™ — Qz (. — X)|| L (re) < |e7 = 1][|Qz (. — X)|| L= (m2) < K|y, and we estimate (by
the mean value theorem)

1Qa( = X) = @zl ne) < KIX NIV e ) < KX

Similarly, we have

Qs — Qaa lLem2) < K

and ||Q‘C7‘52 — QcllLo(m2) < K%. We deduce that (since ¢ < 1)
ol ce_>,c_; o+ ce_>,c_7
1Q - Qullimquey < K (|X| § TG0 TR ), (7.5)
and thus . R
sHl(ced, &y 6+ (ces,d)
1Z = Qllz=(B0.a) S KMZ = Qcllggr + K <|X| t—Qm  t o thl)- (7.6)

Finally, from Lemmas 2.1, 2.2 and 2.3, 3,1 Q. = —2+.VQ. and equation (2.11), we have
HV@mQHLx(Rz) + 02||vacQHL°°(]R2) + CHvacJ-QHLOO(IRQ) + ||iVQc||Loo(R2) < K.
We deduce that

— -
/ /

sl ce_>,c ot ce_>,c
(022 )+ (02 )“‘M ;

IV(Q = Qc)llLeme) < K <|X +

and, by (7.4),

sl ce_2>,c7) 5t(ces,d
D) L TR L ).

IV(Z = @)L= B0.a) S KMZ = Qcllpgr + K <|X +

Lemma 7.2 There exists €o(c) > 0 small such that, for Z a function satisfying the hyptothesis of Theorem 1.14
with

Sl ce_>,c_; o+ ce_>,c_7
(8.0) 4 TR 4y <ot

X+

there exists a function Qi € C'(R?,C) such that (7.2) holds. Furthermore, for any A > 12, there exists K, K(A) >
0 such that

Sl ce_>7c_; ot c_>,g
||Q¢||CI<B<0,A»<K<A>|Z—Qc||Hg;+K<X|+ (G) T ).
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N
N
)

Proof First, taking €o(c) small enough (depending on c), we check that § < |/
We recall equation (7.2):
(1=mQ¥+nQ(c" 1) = Z - Q.
We write it in the form
v —1-9) = 202,

and in {n = 0}, we therefore define
p=220
o
Now, we define the set  := B(0, A + 1)\(B(d.€1, R — 1) U B(—d.€1, R — 1)). In this set, we have that

3
Q

< Keo(e) + KAN)Z = Qclluge
cH®)

by Lemma 7.1 and (2.12). Therefore, since e¥ — 1 — ¢ is at least quadratic in ¢ € C*(Q, C), by a fixed point
argument (on H(¢) := % —n(e¥ —1—1)), which is a contraction on [|¢)|| e ({,0y) < p for > 0 small enough),

we deduce that on Q, given that ¢ and ||Z — Q.|| HEp are small enough (depending on A for ||Z — Q.|| Heng), there

exists a unique function 1 € C*(, C) such that ¢ + n(e¥ — 1 — 1)) = ZéQ in Q. By uniqueness, since we have a

solution of the same problem on {n = 0} which intersect €2, we can construct Qi € C*(B(0,\ + 1), C) such that
nQY + (1 —n)Q(e¥ —1) = Z —Q in B(0, A + 1).

Furthermore, we use here the hypothesis that, outside of B(0,)), |Z — Q.| < po. We deduce that (taking
po < 1) there exists § > 0 such that |Z| > § outside of B(0, ). In particular, since A can be taken large, we have
that outside of B(0,A), n = 1. The equation on % then becomes

and by equation (2.12) and | Z| > d, we deduce that there exists a unique solution to this problem in C*(R?\ B(0, \), C)
that is equal on B(0, A+ 1)\B(0, \) to the previously constructed function .

Therefore, there exists Q¢ € C*(R?,C) such that (1 —1)Qv + nQ(e¥ — 1) = Z — Q in R2. Furthermore, we
check that (by the fixed point argument), since {n # 1} C B(0, A),

Z-Q
Q

||¢||C1({n¢1}) < K H
Cl({n#1})

Sl ces,c 5t(ces,

(02 ) (c ! )

< KWIZ = Qs + K <|X| T

From equation (2.12) and Lemma 7.1, we have

1Q¢llcrsoay < I1Z = Qllermo.ay + Klvler ey + KMZ — Qcll e
Sl ce_>,(/7 ot ce_>,c7
< K<A>|Z—@c||Hg;+K<X|+ 0,0) T 1 1y).

This concludes the proof of the lemma. O

Lemma 7.3 The functions Q and 1), defined respectively in (7.1) and Lemma 7.2, satisfy
pi=Qpe HSP.

Furthermore, ¢ € C?(R2,C) and there exists K ()\, ¢ || Z — QCHH%xp,so, Z) > 0 such that, in {n =1} (i.e. far from
the vortices),
K (A 1Z = Qellugr.20.2)

V] + Re(@)] + [Av] < T ,
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K (N el Z = Qellgr 20, 2)
(1+7)3

[VRe(4)] <

and
K ()‘a c, ||Z - QCHHZXvag(b Z)
)| < :

|[Tm(y) + iy a5

We remark that here, since ¢ - 0 at infinity (if v # 0), we do not have Qi € Hg. This is one of the main

exp

reasons to introduce the space Hg, ™. See Appendix C.1 for the proof of this result.

Lemma 7.4 The functions Q and 1, defined respectively in (7.1) and Lemma 7.2, satisfy, with ¢ = Q,
(LGP (#), (0 +17Q)) = B (),

where Ly (p) = (1 = n)Lq(e) +nQLG (), with

L) = —Ay — 2%62.%/} + 4.V + 20Re ()| Q.

Furthermore,
Lo(p) = QLG (Y).
See Appendix C.2 for the proof of this result.

The equality (L5 (¢), (¢ +i7Q)) = B, () is not obvious for functions ¢ € C*(R?, C) N Hy, P (because of
some integration by parts to justify) and we need to check that, for the particular function ¢ we have constructed,
this result holds. We will use mainly the decay estimates of Lemma 7.3.

Morally, we are showing that, since L (i7Q) = 0, that we can do the following computation: (Lg(p), o+ivQ) =
(o, Lo(e +ivQ)) = (¢, Lo(p)) = Bo(y). The goal of this lemma is simply to check that, with the estimates of
Lemma 7.3, the integrands are integrable and the integration by parts can be done to have (Lg‘p(cp), (p+17Q)) =

B (¢)-

7.2 Properties of the perturbation
We look for the equation satisfied by ¢ = Q1 in the next lemma.

Lemma 7.5 The functions Q and ¢, defined respectively in (7.1) and Lemma 7.2, with ¢ = Q, satisfy the equation
Lo(QY) —i(ce3 — ). H () + NLige (v) + F (1) = 0,
with Lg the linearized operator around Q: Lg(p) = —Ap —ic.Vy — (1 —|Q*)¢ + 2Re(Qy)Q,
S() i= e — 1= 29%e(y),

F() == Qn(—=V. VY + |QI*S(v)),

V(Qy)(1 =) + QVyme?
(1 —n) +ne?

and NLjoe(¥) is a sum of terms at least quadratic in 1, localized in the area where n # 1. Furthermore,

[(NLioc(¥), Q¢ + im))| < K(|Q¥llcr (nr1y) + WDIQU I (eay)-

H(y) :=VQ +
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Remark that here, the equation satisfied by ¢ has a “source” term, i(ce_2> —d ).H (1), coming from the fact that
Z and ). might not have the same speed at this point. We will estimate it later on.

Proof The function Z solves (TW.), hence,
i(ces —d)NZ =—id NZ -ANZ—-(1-1|Z2*)Z.
From (7.2), we have

Z=Q+(1-nQy+nQe” —1).
We define
Ci=1+v¢ —e?.
We replace Z = Q + (1 —7)Qvy +nQ(e?¥ — 1) in —id.NZ - AZ — (1 —1|ZJ?)Z exactly as in the proof of Lemma

2.7 of [4], by simply changing V, ¥, c¢és, 1 respectively to Q, v, d,1— 7. In particular, E — icd,,V becomes 0 (since
TW(Q) = 0). This computation yields

i(ce3 — ).V Z = ((1 - n) +ne¥)(Lo(Qv) + NLioo(¥)) + F(1)).

Furthermore, we have that ((1 —7) + ne¥) # 0 by Lemma 7.2 and equation (C.2) (for the same reason as in the
proof of Lemma 2.7 of [4]), and we compute (as in Lemma 2.7 of [4]) that

ne¥

o
(1—n)+new:”+’7(1_”)( : ) e

(1—=n)+ne¥

Furthermore, we have

VZ = VQ-QVn¢+VQUL—n)+n(e’ —1))+QVy((1—n)+mne?)
VQ(1 —n+ne?) —QVn¢ + V(QY)(1 —n) + QVyne?,

hence
vz - QVn¢ V(Qy)(1 —n) + QVyme”
S SE—— e Y
(1—n)+ne? (L—n)+ne” (L—n)+ne”
therefore, with NLj..(¢)) = ﬁiloc(w) + i(ce_2> — 07)(11%%, we have

-
/

Lo(Qy) —i(ces — ). H (1)) + NLioe(v) + F(1)) = 0.

Finally, we check, similarly as in the proof of Lemma 2.7 of [4], that

[NLioc (). Qb+ i) < K(1Qlloxcorsy + 1D [ |1 NLul)],

hence
[(NLioc(¥), Q¢ + im))| < K(|Q¥llcr (nz1y) + WDIQU I (1)) -
O

Now, we want to choose the right parameters -, d , X so that ¢ satisfies the orthogonality conditions of Propo-
sition 1.11 and 1.12 (with remark (6.3).

Lemma 7.6 For the functions Q and 1), defined respectively in (7.1) and Lemma 7.2, there exist X, de R2,v€eR
such that

-

sl (ce3, d) N 5L (ce3,d)

c? c

A,c

|X‘ + + h’l < O\|Z—Qc“H8‘?—>0(1)’

and

Do, QQUA = e / 02, QQUA = 0,

B(d; ,R)UB(dj ,.R)

c/,2’

9%/
B(d

g RUB(dg . R)
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9%/ 0,LQQY#0 =0,
B(d5 ,R)UB(d5 .,R)

/1’ 2

Re / 94V Qu#0 =0
B(d~ ,R)UB(d~ _,R)

e/, 1’ c!,2

Eﬂe/ w =0,
B((dy ,+d5 ,)/2.R)

where dc~,71 and dg,_Q are the zeros of Q, d being the closest one of deer, and 4V is the first order of @ by

Theorem 1.1 and (1.1).

c1

See Appendix C.3 for the proof of this result.

Here, the notations for the harmonics are done for @), and are therefore centered around d , or d&,2' This
means that ¥7%(z) = ¢(z) — %! (ry) with 7y := |z — di,|,z—dg, = r1ei® € R? and ¢°2 being the 0-harmonic
of ¢ around d; ; in B(dg,,l,R)7 and ¥7%(z) = Y(z) — Y22 (ry) with ry 1= |z — d&,2| in B(dc~,72,R) and ¥%! being
the 0-harmonic of ¢ around d; ,. We will denote ¥0(x) the quantity equal to 11 (r;) in the right half-plane and
to 192(ry) in the left half-plane. Remark that d;, € R?, whereas d. € R. We recall that, taking || Z — QCHH(Z"C"

Lot o -
small enough, we have % < 1, and in particular, for ¢ small enough, it implies that § < |¢/| < 2c. We recall

A, . . .
that OHZC—chng)xp—m(l) is a quantity going to 0 when ||Z — Qc”Hg‘CP — 0 at fixed X and c.

7.3 End of the proof of Theorem 1.14
From Lemmas 7.3 and 7.6, we can find ¢ = Q¢ € H," such that

— -
/

oll(ces, ) 6+ (ce3,d)

A,C
X+ —2 + : + vl < "Hzchqugwo(l)’ (7.9)
and
Re / 02, QQY70 = Re / D, QQY70 = 0,
B(d; ,R)UB(d; ,,R) B(d; ,R)UB(dj ,.R)
Re / 0aV QU7 = Re / 9,L QQU#0 = 0,
B(d; ,,RUB(d; ,,R) B(d; | ,R)UB(d} ,.R)

i)%e/ 1) = 0.
B((dg,+d5 ,)/2,R)

Now, from Lemma 7.5, ¢ satisfies the equation

Lo(QY) —i(d — c3).H() + NLioe (v) + F(1) = 0. (7.10)

We remark that
Lq(Qy) = (1 = n)Lq(Qy) + nQLG(¥),
and by Lemmas 7.3 and 7.4,

(L =n)Lo(Qy) +1QLg (), Q¥ +iv)) = B5T (¢).
We deduce that
BG®(¢) — (i(c — ce3). H(¥), Q¥ + 7)) + (NLioe(), Q(¥ + 7)) + (F (1)), Q(¢ + iv)) = 0. (7.11)

Since QY € H%Xp by Lemma 7.3, with the orthogonality conditions satisfied (see Lemma 7.6), we can apply
Propositions 1.11 and 1.12 with remark (6.3). We have

BG(p) = Klelle + K(o)llell e (7.12)

74



7.3.1 Better estimates on ¢ — 06—2>

The term i(c/ — ce3).H (1) contains a “source” term, because Z and @Q do not satisfy the same equation (since the

travelling waves Z and @ may not have the same speed at this point). We want to show the following estimates:

1 A,C
ezt @) < (K (1) + 0} gamalD) el + 05,0 a (Dol (713)
and
(6 ) < (K (1) 4 0.y ) 19l + 015, oDl (7.14)

This subsection is devoted to the proof of (7.13) and (7.14).
Step 1. We have the estimate (7.13).

We take the scalar product of (7.10) with ¢?0.Q, which yields
(i(¢ — ce3).H(1), *0:Q) = (Qv, *L(0:Q)) + (NLioe() + F(1), *0.Q).

We check here, with the L estimates on 1 and its derivatives, as well as on 0.Q (see Lemma 2.3 and 7.3), that
(Lo(Qy),c?0.Q) is well defined and that all the integrations by parts can be done.

We recall that H(¢) = VQ + V(sz(llfzg)ﬁﬁyw"ew, and we check that, since 1 — 7 is compactly supported (in a
domain with size independent of ¢, ), with equation (7.8)

‘<Z.(C~, ) QU ) + QVne?
U (=) +ne?

,cQacQ>\ < K|(@ - ced).(miQVe, 20.Q)|
+ KW — Bl

We compute with Lemma 2.3 that

iQve.co.Q) = | [ mviieea)
< / nme(vw)Jm(Qc2acc2)‘+’ / nIm(V)Re(Qc?0.Q)
RQ RZ
< | [, e vomQem@))| + Klelig:
R2 ¢
¥ |¢C\/ | meeea),
R2

From Lemmas 2.2 and 2.3, we check that fm n%e%@@@) < K, and furthermore,
V(Im(Qc*9.Q))| < 10.Q[IVQ| + Kc*|[VI.Q|

and with Lemma 2.3 (with o = 1/2), we check that

K

|V (Im(Qc*9.Q))| < AT e

thus, by Cauchy-Schwarz,

[ () v om(QQ) | < Kol

Using |¢ — ce3| < K(¢)(0!(ce3,d) + 6+ (ce3, d)) < Oﬁ\’ZcfQCHHexp*)O( ) and ||¢]le < K||g0||Hexp we deduce that
Qe

. 1—n)V(Qy) + ne?QV
i o LR IR 2,03 < 350l
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Furthermore, we check that, by symmetry (see (2.3)),

(i(d — ¢e3).V1Q, 20.Q) = 6" (ce3 )<|ﬁ: vQ, 30 Q>

Furthermore, from Lemma 2.8, we have Lq(0.Q) = iV ;Q, therefore, from Proposition 1.2,

<C_i vVQ, 2o, Q> =B (0:.Q) = =27 + 0c—0(1).

e

We deduce that

oM(ce3, &) < K|(Qu, @ L(0:Q)) + (NLioe (v) + F(¥), Q) + 05 6y oDl
Qe

Now, since Lg(0.Q) = i%.VQ, we check that

(Q¥,?Lo(0.Q)) = ¢ <Q¢7i|g|-vQ> :

and

1‘ Ay

+

~

R?2

(o055

From Lemma 5.4, we deduce that

Re(rh)Tm ( .VQQ)

e

Q0. L@@ < K (1) el
Now, we check easily that, with Lemmas 7.1 and 7.5,
[NLioe(0). 20.)| < Kl Iellor oo < 050Dl
To conclude the proof of estimate (7.13), we shall estimate
(P E0Q) < 0}, Dlelinge + (KD + 01 g0 el
with F() = Qn(—=V¥.Vi + |Q|?S(v))). First, we estimate, for A > \ > %, with Lemma 7.2,
-Quiven. o) = | [ im(veviceoa)
R

2.2
< [ avepieoaq

< K||V¢||Loo(3(o,x)m{n¢o})\// 77|V1P|2\// n]c*Q0.Q|?
B(0,)) B(0,))

+  [IPQO:Q| L~ ®>\B(0.A)) / NVl
R2\B(0,\)

A c
< 9 %-q. \|Hexp%o( Melle + oasoo(D)llelle,
since, by Lemma 2.3, |c?Q0.Q| <

K __
X a+m)i/ze

= QuVY-76,0.Q) 015 ,p 0 (DIl

We deduce that
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Now, in {n = 1}, since e¥ = @ and 1 — K)o < ﬁ 14 Kup (by our assumptions on Z), we have |PRe ()]

We deduce, with Lemma 7.1, that in {n # 0},

A,c
Re()] < Ko + )7 10 0 (1)

< Kpo.

With S(¢) = e2%¢(¥) — 1 — 2%e(1)), we check that, in n # 0, |S(¥)| < K|Re()|? (given that g and || Z — Qcll g

are small enough), and with similar computations as for [(—QnV.V, ¢20.Q)|, we conclude that
(F().20.Q)| < 0ol

This concludes the proof of
1
7= e 2 A,c
sll(ces, d) < ojy_q. HHexHo( Ml g + (KC In (C) + 0|ZQC||H§;M0(1)> lelle.

Step 2. We have the estimate (7.14).

Now, we take the scalar product of (7.10) with ¢d,. Q:

<7’(C_; - C€—2>)H(1/1)7 cac* Q> = <Q7/1, CLQ(acLQ» + <NLIOC(1;[}) + F(¢)7 cacL Q>

We check that, since

(i c3) TQUEDEATIT 05, Q) < K|(@ — c&).{(1 — n)iQVe, 0. Q)

+ K7 @l

and

|(niQV, cO.1 Q)| Jre nRe (ViQcd. Q)| L
Jre 1Re(VY)Im (Qcdor Q)| + | [g2 nIM(Ve)Re (Qed,» Q)|
Jre nRe(V)V (I (Qcd,2 Q)| + K|l pllpreye
lellc fzaz nRe? (QcacLQ) .

We check, with Lemmas 2.2 and 2.3, that

+ AN

/ nRe® (Qcd.LQ) < K
R?2

and
~ — K(c
¥ (3m (QBQ)) | < [VQI0.- QI +190,-Q1 < 15 .
therefore, as for the previous estimation,
LG (1—77)V(Q1/J)+7761"QV1/)
(i(2 - ez2). CEITLOLIEATE, 50| < 0} g g0 (Do

We check that, by symmetry (see equation (2.3))

(i(d — ce3).VQ,cd,. Q) = 6+ (ce3, ) <i|‘i:|.vcg,ca&@>
C

Furthermore, from Lemma 2.8, we have Ly (9,0 Q) = VQ, therefore, from Proposition 1.2,

-1
c <7,C_,VQ,3¢LQ> = —BQ(@CLQ) = 27+ 0c~>0(1).
i
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We deduce that
o+ (ced, ) <

K|(Qv, cLq(0.+Q)) + (NLioc(v) + F(¢), c0.1. Q)| + OHZ QCHHexp_)o( >||‘PHH5"P~
As previously, we check that

|<NLloc(¢) (w) co, lQ>| ||Z Q. ”Hexp%o( )H‘pHH;"" "‘Oﬁ\’ZC,QC”HeXPHo(l)”‘pHC
Qe

_;L
|<Qw, = @>

—»J_

/%ew) ( vczcz)
R? ||

and from Lemma 2.8, we have

(Q, Lq(0:: Q)

N

)

-1
[ ) (ﬂm@)
R2 /|

and with Lemma 5.4, we deduce that

1
Qv Lo(0.- Q)| < Kcln( >||<P||c
We conclude that

- 1
1/ — 2 A,c
(e, 0) < (KC . (c) +0H27Qc||H§;P”°( )> Ielle + 7 _q. HHexp%( el mgge-

7.3.2 Estimations on the remaining terms

Let us show in this subsection that

|(i(¢ — ce3)-H(), Q¥ + iv))] + | (NLioe (), Q¢ + iv))| + [(F (), Q¢ + i)

A,C
< (oﬁo<1> + 005tz o) +KA0) 118 + 05— 1 yza oDl g (7.15)

Step 1. Proof of [(NLie(1)), Q(¢ +i7))| < 05, uHex}Ho( Meplzzee-

From Lemma 7.5, we have

|(NLioc (), Q¢ 4+ 7)) < K(|Q¢lcr ((nr1y) + |7|)\|<PH§11({77¢1})’

therefore, from Lemmas 7.2, 7.6 and equation (7.9), we deduce

|<NLloc(¢) Q¢>| HZ QC”Hexp_m( )H‘PHI%IS‘"'

Step 2. Proof of .
(i(¢ — ce3)-H(), Q¢ + iv))]

A, 2
< (0001 + 00 0] 161 + 035y oDl

We separate the estimation in two parts. Flrst we look at (i(d — ce3).H(y), Q). We recall that H (i) =

_ P -
vQ + 4 ")(Vl(?nl/ﬁ;zz QVY " and, since | — ce3| < HZ Qoll,s exp_)0( ) and 1 — n is compactly supported, we check

easily that

. _ ¥
(s - o LRI IOV ) <
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15l so 0D (0IQVY, QU)| + K (@) lgo).

Furthermore, we check that

(@QV.Qu) < | [ 9ew)m(Vu) QP

N ’ /R M) Re(Ve)| QI

and by Re(v)Im(Ve)|Q|*n| < K||¢l|3. Now, by integration by parts (using Lemma 7.3), w
have
[ amwmewnier] < | [ sewameaiory
b [ e v e
| amw)mew)iQPvs .
and by Cauchy-Schwarz, we check that
[ e < Klelg

We deduce that

(@ - ez L=0¥@ + Qv

2
(1—1n)+ne? ,Q¢>’ Hz Q. |\Hexp_>o( )H‘PHHS‘P-

-1
vaQ, Qw> <i|cc7|.VQ,Qz/;>i.

< ’_va. Qw> K () el

S 1 .
(@~ TQQu < (Kt (7)) + 0y ) 1918 + 015 g, Dl

Finally, we write

—

(i(d — ¢e3).VQ,Qu)| < dI'(ce3, &) + 0% (ce3, )

/\
:1‘ u

With Lemma 5.4, we check that

’< o Qw>

With (7.13) and (7.14), we deduce that

1‘“

< (00s0(0) + 0} g D)) 161 + 01 g,y (Dol
Now, we look at (i(¢ — ce3).H(v), Qiv). We check that

(iVQ, Qi) = /me vQQ) = / V(QP —1) =0,

thus

U-0)9@0) +1°9% o, ),

i(d — ce3). i) = {i(d — cep).
(@ = c22) (), Qin) = (i@ — ez, LT 00

In the area {n # 0}, since |y| = o} (1) by Lemma 7.6, since

HZ Q¢ HHpr —0

- 1
— A,
@ — @ < K (cln( ) 0l )) Il + o350 el
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by estimates (7.13) and (7.14), we check that

(5 1 =n)V(QY) +1e’QV)~— c
/{n;ﬁO} e (Z(C ~ &) (1=mn) +ne? Qw) <O, gr-oll Mol

and therefore (with Lemma 7.3 that justifies the integrability)

(i — ¢e3). H (), Qin)| < ’v(éf — ce3). /R 77|Q|29{e(V1/))‘ +oj5- @l oo (1 Mplrexe-

K (/\;CJ\Z—QCHHG‘QxP 7EO7Z>
(147)2

K (/\;C7HZ—QCHHEXP 7607Z>
(1+r)3

By integration by parts (since |Re(v))| <
7.3) and Cauchy-Schwarz,

and [Re(Vy)| < by Lemma

/RQTI|Q|29%(V¢)) < ‘/}Rz Vn|Q|2§Re(¢)‘ + ‘/IR? nV(IQQ)%e(w)‘

< K©O)leluge

Since || = oﬁ’ZiQCHHemO(l) by Lemma 7.6 and |/ — ce3| < (K(c) + al*’;QCIHexﬁoa)) lipllzzeze by (7.13), (7.14)
Q Qe

and Lemma 6.1, we conclude that

(i(¢ = c&3).H(4), Qin)| < o) _g, nHexHo( Mol zrese-

Step 3. Proof of [(F (), Q(¢ + i7))| < (OT’ZC_QCIHSXP_)O(I) + K)\O) lell2.
Qe

We recall
F(y) = Qn(=V.Vy + |Q*S(4)),
S(y) = M) _ 1 — 2Re(1)).
First, we look at (F'(¢), Q). We have

[(F (), Qy)] < QL — n)V. VY, Q)| + [(Q(1 — n)|QI2S(¥), Q).

We check that [[¢]| L g2y < K9] L mn 5.0 + K@l s0.x) < KXo +0)5_0. HHexp_m(l)

|<QUV¢V¢,Q¢>| < ||4P||L°°(IR2) /]R2 TI|V¢|2 < (K)\O + OHZ Q. HHexp_)o( )) HLPH(%

Finally, since [[¢[|fo®2) < K a uniform constant for ¢ and [|Z — QcHHg‘P small enough,

(QRIQPS (), Q)| < @l /R IRE(W) < (mw 007l gz 0L >) el

Now, we compute

(F@).Qil < | [ =Selive-70)1QP + nlQpRe(s(w))

and since S(1)) is real-valued, we check that, since |y| = oﬂ‘Z Q. by Lemma 7.6,
H

exp*}()( )

(FW). Qi < 1l [ aITURIQR <0 g, 0Dl
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7.3.3 Conclusion

Combining the steps 1 to 3 and (7.12) in (7.11), we deduce that, taking ¢ small enough, and then ||Z — QC||H5xp
small enough (depending on ¢ and \), we have

0 > Klelg+K(llellee

A,c A,c
= (00(0) + Kt + 015 g, D) 161 = 01 g0 oD ol

hence, if 11 is taken small enough (independently of any other parameters) then ¢ small enough and ||Z — Q.|| HEP

small enough (depending on A and c¢),
K(e)lleldgs + Klpl2 <.

We deduce that ¢ = 0, thus Z = Q. Furthermore, from (7.13) and (7.14) we deduce that ¢ = ce3, and since Z — 1
at infinity, we also have v =0 (or else ||Z — QcHHg‘p = 400). This concludes the proof of Theorem 1.14.

A Estimates on the travelling wave

A.1 Proof of Lemma 2.6

Proof From Propositions 5 and 7 of [10] (where n = 1 — |Q.|?), we have in our case, for x = ro € R? with
reR*Y,|o] =1, 0 = (01,02) € R?, that

1 203

252
CO’2

_ B 2 2022
=5+ <1f%+ 22)

r2(1 = 1Q.|*)(ro) — ca(c)

uniformly in ¢ € S when r — +o00, where a(c) > 0 depends on ¢ and Q.. Remark that our travelling wave is
axisymmetric around axis zo (and not z; for which the results of [10] are given), hence the swap between o7 and
o2 between the two papers. We have

c 4 2
1 202 1*?*(2*?)”2

.2 202 2 2\ 2 2.2\ 2
1-< + 2 _c? o3 _c? co)
2 2 7 T2 -5+

this shows in particular that |Q.| = 1 when r > L is possible only in cones around sin(f) = oy = +,/ %

Therefore, for ¢ small enough, for some v > 0 small and R > 0 large (that may depend on c¢), we have

2
| n=1aPiel > (e m) [ =
R2

R2\(B(0,R)UD(v)) (1 + 1)

where D(v) = {rew € R?,

sin(f) + ;762/3‘ < fy}. We want to show that for ¢ € Hg,,

_02/
|l 2 |l
= < CO(¢,7, R) Vel + =03 |-
/D(w)u(]RQ\B(O,R)) (1+7)2 R2 R2\(B(0,R)UD()) (1 +7)?
For 6y any of the four angles such that sin(f) + ;:Zig = 0, we fix r > 0 and look at () as a function of

the angle only. We compute, for 6 € [0y — 23,00 + 28] (8 > 0 being a small constant depending on « such that
{x =re?® € R2,0 € [0y +3B,00+ ]} N D() = 0, and such that D(v) is included in the union of the [0y — 3, 6y + 3]
for the four possible values of 6),

26+
o(0) = p(28+0) — /0 Dpip(©)dO,
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hence,
00+38
0(8)] < |(28 + 6)| + /9 | log(@))ae
This implies that
2T
PO < 21026+ 0)? + K / 9p0(©)d0
0

by Cauchy-Schwarz, and, integrating between 6y — 8 and 6y + 3 yields

6o+ 00+383 27
/ (026 < 2 / o(0)d0 + K / 1p0(6) 2.
0o—p 0o+ 0

Now multiplying by ﬁ and integrating in r on [R, 4o0[, we infer

2 2
/ / [l 2rdrd0 < 2/ / [l 2rdrd9
0—0oc[—B,8) Jre[R4oof (1 +7T) 0—00c(8,38] Jre[R, 400 (1 +7T)

+ K(c.5.R) / V|2dz
]R2

|p|*dx 2
R2\(B(0,R)UD(y)) (1 + |2[)? R2
using
00l _ |0p0l? 2
< < .
Therefore,
/ |op]? < K/ o 2dx+K(c,B,%R)/ Vol2ds,
D(URAB(O,R)) (1+7) R2\(B(0,R)UD(v)) (1 +7) R2
and thus o
¥ 2 2], 42
<K(eBR) [ 96+ (1= QW
/1&2\3(0,1%) (1+7)? R2
We are left with the proof of
lol? / 2 o
<K@B R ([ Vel + . (A1)
/B(O,R) (1+7)? R2 r2\B(0,R) (1 +7)?
We argue by contradiction. We suppose that there exists a sequence ¢, € Hg, such that [ B(0,R) % =1
and [, [Von|* + fRQ\B(O R) % — 0. Since ¢, is bounded in H*(B(0, R + 1)), by Rellich’s Theorem, up to a

subsequence, we have the convergences ¢,, — ¢ strongly in L? and weakly in H' to some function ¢ in B(0, R+ 1).

In particular fB(o Rt1) |[V¢|? = 0, hence ¢ is constant on B(0, R+ 1), and with fB(o RA1\B(O.R) (Jf‘:)z = 0 we have
I 2

¢ = 0, which is in contradiction with 1 = fB(O R) % — fB(O R) % by L?(B(0, R + 1)) strong convergence.

This concludes the proof of this lemma. O

A.2 Proof of Lemma 2.14

Proof From equations (2.7) and (2.1), as well as Lemmas 2.6 of [4], 2.13 and the mean value theorem, in
B(dee,de?),

Qe = VI+[V -1

0cs0(1) + Vi (. — deef) = VA

0c—0(1) + |de — del[|0r, V]| Lo (m2)

0c—o(1), (A.2)

Qe — VA

INCINCIN N
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which is the first statement.

For the second statement, we write Q. = Vi (. — dce_f)V,l(. — dce_1>) + T, and from equation (2.5) (with some
margin), we have

0c—>0(1) )

[VT| <
Furthermore, since Vi = Vil — dNCe_f),
V(Vil. — dee)Vor(. + deet)) — VV; =
VVi(. = dee))Vor (. + deel) — VVi + Vi — dee] ) VVoi (. + deed),
and from (2.2), in B(d.eq, Jé/Q), we have

00%0(1)

VV_i(. +d.e])| < .
| 1(+ 61)\ 1+ 7

We compute
VVA(. = dee))Voi(. + deel) — VVL = VVi(. — deel) (Voi(. + deel) — 1) — VVI + VVi (. — d &)

and, from (2.1), in B((Le—f,&l”), we have |V_i(. 4+ deei) — 1| = 0.0(1). Finally, from Lemmas 2.1 and 2.13, we
estimate (with the mean value theorem)

‘dc_&vc| _ OcﬁO(l)

VVi(. —de]) = VVi| < |de —du|  sup  |V2Vi(e —d)] < K12 (1)
de(de,de]U[de,de] (1+7)2  (147)2

hence
00—)0(1)
147
Now, writing w = Q. — VI, in B(&;?f, Q(E/Q), we estimate (since TW.(Q.) = 0 and AV, — (|f/vl\2 — 1)"}1 =0)

IVQ.— VVi| < (A.3)

|Aw] = | — 160y Qe — (1 — |Qul?) Qe + (1 — [Vi2)Th| < 220l
1+7r

by equations (2.6) to (2.10) and (2.1). Furthermore, by equations (2.6) to (2.2), we have

00%0(1)

[V (Aw)| < At

We check, as the proof of (A.2), that, in B(czce_f, ZCE/Q),
|w] = 0cs0(1),
and, similarly, with equations (2.2) and (A.3), that

[Vw| = 0.-0(1)

7 =

in B(c’lvce_f,QJ:}/Q). By Theorem 6.2 of [7] (taking a domain = B (x —dee, 2= “ell), and @ = 1/2, but it also

holds for any 0 < « < 1), we have, for z € B(cfce_f, QCE/z),

(1+ 7)) V2w(e - dad)| < K(Jwllere + 1+ )| Aw]lon @),

and from the previous estimates, we have [[w||c1(q) = 0c—0(1) and [|Awl|c1 () < 0(6110,:(11))7 therefore

Oc~>0<1)

2 17\ 2
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B Proofs related to the energy space

B.1 Proof of Lemma 3.4

Proof We recall that
Iolfig, = [ 1902 +11= 1@ l? + Re2(@ep),

and since, for all A > 0,
Ko [ WP rleP < [ 961 QPP + RE@ep) < Kol [ VP + ol
B(0,\) B(0,\) B(0,\)

by standard density argument, we have that C°(R?, €) is dense in Hg, for the norm |||/ g, -

We are therefore left with the proof that C°(R2\{d.e7, —d.e1 }, C) is dense in C2°(R2, €) for the norm |-z, -
For that, it is enough to check that C°(B(0,2)\{0},C) is dense in C°(B(0,2),C) for the norm H.||H1(B(072)5.
This result is a consequence of the fact that the capacity of a point in a ball in dimension 2 is 0. For the sake of
completeness, we give here a proof of this result.

We define n. € C°(B(0,2),R) the radial function with n.(x) = 0 if |z| < ¢, n.(z) = —lTrE‘(g) + 1if |z] € [¢,1]
and 7.(z) = 1if 2 > |z| > 1. Then, we define 1.y € C*°(B(0,2),R) a radial regularisation of 1. with 7. x(z) =0
if || < /2 such that n. x — 7. in H'(B(0,2)) when A — 0. Finally, we define 1. 5 s = 1-.x (%) for a small § > 0.

Now, given ¢ € C°(B(0,2),C), n-x6p € CZ(B(0,2)\{0},C) for all ¢ > 0,A > 0,6 > 0, and by dominated

convergence, we check that
N N
B(0,2) B(0,2)

when § — 0. Furthermore, we compute by integration by parts

/ IV(neps0)* = / nZ5.5Vel? +2/ Ve .57 2. 6Re(Vipp)
B(0,2) 0.2) B0,

4 / Ve sl
B(0,2)

= / 773,,\75|V<P|2—/ o> Ane 2 57606
B(0,2) B(0,2)

Now, extending ¢ to R? by ¢ = 0 outside of B(0,2), we have by change of variables

o

When § — 0, we have by dominated convergence that fB(o 2) 77?,/\75|V<p|2 — fB(o 2) |Vi|? and

(O AT A 575 = / (O2AT s s = / (o[2(28) A AT -
2) R2 R2

)

/ 02 (26) Anearier = [0]2(0) / Aneanen = —|oP(0) / Vil
R2 R2 R2

Now, taking A — 0, we deduce that

lim lim IV (engo)? = / Vel? — o[2(0) / V2.
B(0,2) R2

A—086—0 B(0,2)
From the definition of 7., we compute
| 1vnp
RQ

L |
——7rd
/5 ln(s)QrQT "

1 1
= —— [ -a
ln(s)Q/E r "

-1
= o Y
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when ¢ — 0. We deduce that

lim L T 2 _ 2,
E% )\1—>H10 51—I>I%) B(0,2) |V(n67)\7680)| »/B(O,Q) |v<‘0|

This concludes the proof of this lemma. m]

B.2 Proof of Lemma 4.1

Proof Werecall that Lo, (¢) = —icOp, p—Ap—(1—|Qc]?)o+2Re(Qe) Q.. Writing ¢ = Q¢ € C*(R2\{d.e1, —d.e1}, C),
we decompose

LQc (90) = —ic0z,VQc — AYQ. — 2V Q.. Vi + 2m€(¢)|QC|2Qc + TWC(QC)1/)~
Since TW.(Q.) =0,

Lo (¢),¢)
(1=n)Lq.(0), ) + (nLq.(¢), Qe)

- (1 = mRe((~icdu,p — Ap = (1 = |Qc*)p + 2Re(Qep) Q) P)

4 /R (D, Y Qe — AYQ. — 2VQ. VY + 2Re(8) Qe *Q0IQT).

(
(

By integration by parts,
[ (= mel(—iedo — A — (1= 1QuP)p +2016(@ip)Q0)9)
= | =T = Sty 0) — (1= Q) lol? + 29862
- / VnRe(Vep).
R?2
Similarly, we compute

[ Re((icD,, Q. — AUQ. ~ 2V QT+ 21| QL QL))

[ 1O, 001QuP) — Re(AUQ + 2REWQUI! ~ 206(Q.TUOD)

= QU Im(0r, ) Re() = Re(Dry ) o)+ 2R Qul — 2Re(VQL-VV2.)

+

/ NIVRIQ 2 + 2 / Re(VQu00) Re(Vri) + / Vi Re(Void) | Q2.
]R2 ]Rz ]Rz

We continue, we have
- [ @ ors(0,,0)3m()

- / 1] Qe PRe ()T (B, ) + / D] Qel PRe())Im(e) + 2 / 1Re(0, Qo) Re () Im (1),
R2 R2 R

2

as well as

[ e(VQT0D) = [ e(Q Q0 Me(Ved) + [ n0m(V Q@) Im(V),

R R
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therefore
[ (i, 0Q. — AvQ. — 29Qu T + 281 QIAT)
= [ HIVOPIQUE + 296 )1 Qe + 26T 0, )Re(1)
[ nCRe(0,,Q.Q0Me()Im(w) — 2Im(T Q) In( V)
e[ ounme@ImIQ + [ TnseveniQ
]Rz ]R2
Since icOy, Qe = AQ. + (1 — |Q:|*)Q., we have cRe(0,,Q.Q.) = Re(iAQ.Q.). By integration by parts,
2 [ aReiAQ)Pe(d)Im(v)
R2
= 2 VnIm(VQ.Qo)%e(v)Im(v)

R2

. / IV QQ0)-Re(Veh) Im(1h) — 2 / (Y Q.Qe) Re(1))Im(Vh),
R2 R

2

and

NIM(VQcQc)Im(Vii))

2

NIM(VQeQe) (Im(V)Re () — Tm (1)) Re(Ve))).

2

I
b b
T~

Combining these estimates, with

/ Vi Re(Vpp) = / V. (Re(VQuo)WI? + Re(Vir) | Quf?),
R2 R2

we conclude the proof of
(Lq.(9), ) = BoY (9).

Now, for the proof for By, (), the computations are identical, simply replacing ¢ by 0, n by 9, and Q. by V;.

B.3 Proof of Lemma 6.1
Proof First, let us show (6.2). We have

el mr (i< < Kllollmg,

and, by equation (2.12) and Lemma 2.6, we check that

/ Re2(v) < Ko, .
{r>5}

and also that

[ cn [ <kl
(7>5) 72 In(7)? (iz5) (1+7)2 e

Furthermore, we compute, by equations (2.12), (3.1) and Proposition 2.5,

| wepsx [ |vw|2|czc|4<f<</ Vel + [
(7>5} {75} {725} {725}

= =

V@:I%F) < K(O)ellg, -
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We deduce that (6.2) holds, and therefore Hg, C H,". Now, we check that

il

1iQelZyo < Qs renoy) + K / " /{ Vil < e (B.1)

{7>5} 7'2 1n )
With regards to the definition of ||.||¢, we check easily that

lelle < llell g

Finally, we recall the definition of Bgip(go)from equation (1.4),
BE() = [ (1= (Tl = Relicdhup) - (1= QWP ol + 206 @)
— [ InOR(VQQOIVE ~ 29m(VQQ)Re() ()
[ Dl QPR Im(y)
o [ VIR + 2w
[ I (T Q) IV Re(w) + 2elQu I, ) Re()

For A > 0, we have ||| g1 (B(0,7) < K(c, )\)||<p||H5xp, therefore (since 1 — 7 is compactly supported) we only have to

check that the integrands in the last two lines are in L!(IR?), and this is a consequence of Cauchy-Schwarz, since

/Rzn(WlﬂlQIchQJr?me ()|Qcl* + 4 [Im(VQeQc) Im(Ve))Re ()] + 2¢]Qc*|Tm(a, 1) Re(1)])

<K [ n(99F + R @) < Kl
R c
Furthermore, for two cutoffs 7,7’ such that they are both 0 near the zeros of Q. and 1 at infinity, we have
Bola(e) = By (#)

[0 = )17l = Relicdo2) - (1= Q) lol? + 296 @es)

o V(0 —n)-(Re(VQeQo)|Y|* — 23m(VQeQc)Re(v)Im (1)) — cOay (11 — 1) | Qc[*Re(v) Im(1)

4 / (0 — D) (V2IQl? + 29862 (1) Qo)
R2

[ = mEIn(T QDI (V) Re(w) + 2lQuTm(Dr, ) Re()

and, developping ¢ = Q. (see the proof of Lemma 4.1) and by integration by parts using that n — ' # 0 only in
a compact domain far from the zeros of @Q., we check that it is 0.
Finally, for ¢ € Hq,, Bg,(¢) and B, (p) are both well defined. We recall

Bo) = [ IV6P = (1= 1QPef + 29 @)
_ _ . — o . o 2
o[ G =metionen) —c [ amsio... 000w
+ 2 / nRepIMO,, ¥|Qc|* + ¢ / Oy nRepIMY| Q.|
R2 R2

b /R Ry Imd,, (1Qcl?).
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With the same computation as in the proof of Lemma 4.1, we check that for ¢ € C®°(R2\{d.é1, —d.€,},T), we
have

Bq.(¢) = BoP(9).

With the same arguments as in the density proof at the end of the proof of Proposition 1.4, we check that this
equality holds for ¢ € Hg,. O

C Proofs related to the local uniqueness

C.1 Proof of Lemmas 7.3

Proof From Lemma 7.2, for any A > %,

Sl ce_2>7c_; ot ce_2>,c_7
||Q¢||01<B(O,A»<K<A>|Z—QC||H35+K<X|+ (G,) TG 4y, )

therefore, we only have to check the integrability at infinity of Q¢ to show that ¢ = Q¢ € H5". In {n = 1}, we
have
P _
e¥ =—.
Q
We have shown in the proof of Lemma 7.2 that K > ‘%‘ > §/2 outside of B(0,\) for some § > 0, and together
with (C.1), we check that

llloog=1y) < K (A 1Z = Qellugs o) (C2)

/ 7|Q¢|2 < Ho0.
{

n=1} 72 In(7)?

This implies that

Similarly, we check that, in {n = 1}, since e¥ = %,
Vo= vz-g -2
Q Q ’
therefore
V6 < K (A2 = Qellgr.20) (V(Z = Q)] + 1VQ)). (C3)
From Theorem 2.5, we have
K(c,Z)
Z < ;
V2|4 90 < o)
therefore,
| I9QPIE <+
{n=1}
and

e K, Z)
/{n_l}w(z QF < /{n_l}(1+r)4<+oo.

We deduce that f{nzl} |V)|? < 400, and, furthermore, equation (C.3) shows that

K (A ellZ = Qellugr <0, 2)

Vel < (1+7)2

in {n=1}.
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Now, still in {n = 1}, we have
Qe = Z,

we deduce that Qe~"(e¥ ™7 — 1) = Z — Qe~". Now, we recall that ||¢||co(m=1}) < K ()\, 1Z — chlHZgiwo} thus

|Re(e¥t — 1 — (Y +i7))| < K ()\, |Z — QCHHS‘I’,EO) |Re(e¥ T — 1)|. We deduce from this, with (C.1) that, in
{n =1}, with 3[[¢ + iyl p m2) < [Re(e?™ = 1)| < K¢ + iyl oo (r2),

Re()] = [Re(y+ i)
< [Re( T = 1)] + [Re(e T — 1 - (1 + i)
< K (MIZ = Qellugr, 20 [Re(e+7 = 1)]
(2 - Qe-)@em
< K (M2 = Qellmgr.=o) |me< o7 )
< K (M2 = Qellagr. o) (Re(Z = Qe™)| + [Im(Z = Qe™7)Im(Qe™ — 1)),

From Theorem 2.5,

» i K(c, 2)
[Re(Z — Qe )| < |Re(Z — 1)| + |Re(1 — Qe™)| < TETE
and K(e.2)
—iv\~y i )
|Im(Z — Qe™")Im(Qe"” — 1)| < T+
K(}\,C,‘IZ—chlHexp,EmZ)
We conclude that, in { = 1}, we have |Re(v)| < Qe hence

(1+r)?
/ Re? () < +o0.
{n=1}

This concludes the proof of ¢ = Q¢ € HyP. We are left with the proof of the following estimates, [At)| <

K (Al Z-Qell yzn 0.2 ) o E(helz-Qulyge.e0.2) K (Al Z-Qellyzn 0.2
Erae , [Im(y+iv)| < == and |Re(Vy))| < T in {n=1}.

We recall that, in {n = 1}, V¢ = e;; V(Z-Q)— %(1 — e™¥), from which we compute, by differentiating a
second time,

_ -
Ay = _WV(QZQ)e—w _ %Qe—w.V(Z - Q)+ —eQ A(Z-Q)
AQ _ vQ.VQ _ V@ -
— —Q (1—e ¢)+7(1—6 w)_j-v¢e v,

Using Theorem 2.5, AQ = —id.VQ — (1-1Q1*)Q, Z = —icd,Z — (1 — |Z|*)Z and previous estimates on v, we
check that, in {n =1},

K (A el1Z = Qelluge .0, 2)
(147)? '
We have Qe~ " (e¥*" — 1) = Z — Qe™ in {n = 1}, therefore

|AY] <

7
= 07

eVt
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We check, since [|9[|co(fn=1}) < K (/\, |1Z — Qc||Hg‘?,€o), that we have by Theorem 2.5
I+ < K (A2 = Qellugezo ) [Tm(e? 7~ 1))

Z

K ()\507 ||Z - QC||HZ;CP7€07Z)
(1+47) '

~X

Finally, since Vi) = e;;V(Z -Q) - v?Q(l —e V) = %e‘w - VQ—Q, we check with Theorem 2.5 that, in {n =1},

n (g ) ()

< [me (sze_w> ’ L [Re(VOQ)|

[VRe(y)]

N

QZ |Q[?
~ S\ v _ - v Q 2
< sz () e 5] -
K(AelZ=Qellugr0.2) | ey K (Mo llZ = Qelluge.c0.2)
< = Jm | —= ||+ c .
(1+7)? ‘ (QZ)‘ 1+7)3

We compute in {n = 1}, still using Theorem 2.5,

Jm (eﬂb) — me(e_w_”QZe””
QZ QZ?

K(|3m(e™" =" = )Re(QZe™)| + [Re(e ™ ™7)Im(QZe)))

K ()"C’ 1Z - Qc”Hg;j,EmZ)

N

< T +K ()\, ¢ || Z — QCHHEX?EO, Z) [Im(QZe™)|
K<>‘vcv|\Z*Qc||Hg‘j,€0,Z) p
S (1+7) +K(/\’Cv ||Z—Qc\|ng,€o,Z> (IQe™ —1[+[Z —1])
_ K (\e 12 = Qellgn 20, 2)
- (1+r) '
This concludes the proof of this lemma. O

C.2 Proof of Lemma 7.4

Proof First, let us show that Lq, (®) = Q.Lf (¥) if ® = Q. ¥ € C*(R? C). With equation (7.1), it implies that
Lo(p) = QL5 (%). We recall that

Lo (®) = —AD —icdp,® — (1 — |Q.|*)® + 291e¢(Q.2)Q..,
and we develop with & = Q. U,
Lo, (®) = TW.(Qo)¥ — Q.AY — 2VQ.. V¥ — icQ.0r, ¥ + 2Re(V)|Q.*Q.,

thus, since (TW,)(Q.) = 0, we have Lo (®) = QcLbc(\I’)~
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Now, for ¢ = Qv, we have

(T =n)Lolp) +nQLG (1Y), (¢ +i17Q))
— [ 5= nLel@lF Q)
2 a5 V@ i Py dop,2
o [ arse ((~a -2 T2 w0+ i2v0 ) @F)) 4 rlpnew)

With Lemma 7.3, we check that all the terms are integrable independently (in particular since ¢ +ivQ = Q(¢ +1i7)
and [|(¢ + iv)(1 + 7)1 ({y=1}) < +00 by Lemma 7.3). We recall that Lo(p) = —Ap +i&Ve — (1 - |Q*)¢ +
29e(Qy)Q, and thus

[ (=L@ T Q) = [ (1 -n)OEvies) - (1= QP + 29(@)
+ [ a—mme-a0p) 1 [ (- nRe(Le()Q)
We recall that 1 — 7 is compactly supported and that ¢ € C?(IR?, C). By integration by parts,
| a=moe-n0p) = [ a-niver - [ vnsme(vep),

and we decompose

w\w\

/R S n)Re(nLq()iQ) (—ApiQ + &V Q)

mRe((1 - Q*)¢i@Q).

By integration by parts, we have

/ (1 —n)Re(EVeQ) = *5-/ —VnRe(0Q) + (1 —n)Re(0VQ)
RQ RZ
and

[ a-mme-a010) = [ -Vne(ieVQ) - ReVoQ) + [ (1L )Re(ioQ).
R? R? R?2
Combining these computations, we infer

Re((1 = n)Lo(p)(p +ivQ))

R2

[ =m0l + Re(ieTop) - (1= [QF ol + 2%¢(Q0)

- /]R2 Vn.Re(Vpp)ye. /]R2 ViRe(pQ)
— 5 (/]R2 Vn.(Re(ipVQ) — me(iVSDQ)O

7 [ 0= RA-aVQ +i(1 - [QF)Q + iAQ))
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Since —AQ +ic.VQ — (1 —|Q*)Q = 0, we have —.VQ +i(1 — |Q|*)Q + iAQ = 0, therefore
[ el =) La(e)lo + Q)
= [ A=Vl +ReliaTop) - (1= (@Rl + 246(Q)
- ) V. Re(Vep)

(e [ e + [ Inoove) - mevoQ)).

Uuntil now, all the integrals were on bounded domain (since 1 — 7 is compactly supported).
Now, by integration by parts, (that can be done thanks to Lemma 7.3 and Theorem 2.5)

[ narne-av@rm) = [ valeP(vo@T )
R2 R2
O R CRER ez a)
RZ
SN
+ [ Qs
Now, we decompose (and we check that each term is well defined at each step with Lemma 7.3 and Theorem 2.5)
[ napse (-2 hve) @)
R2
= 2 [ R(VQQ.VYD) -2 | ae(VQQ.VuTm).
R?2 R2
with
2 [ iR(VQQVYD) = <2 [ 4R(VQQ)Re(Vii)
R?2 R2
o2 m(VQQ).Im(VeD)
R2

and since V(|Q]?) = 2R¢(VQQ), we have

nlQPsie (( -y —2Y2 vo) @)
f e ((~ov -2

_ / nQPIVY? +2 / (1 = m)Im(VQQ) Im(Ved)
IRQ IR2
+ / V0 QPR(VH@ T 7)) + 2 / IN(VQQ). Im(V{))-
R2 R2
We continue. We have

2 / PIM(VQQ) In(Vd) = 2 / nIm(VQQ) Re()Im(VeH)
RQ

R2

_ 2/ 1IM(VQQ).Re(Vip)Im (1),

R2
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and by integration by parts (still using Lemma 7.3 and Theorem 2.5),
= / nIm(VQQ) Re(Veh) Im(4:)
R2
— 2 [ ym(VQ)Re(w)Im(Ve)
RZ
b2 [ m(aQQ)Re()Im(v)
R2
+ 2 - Vn.Im(VQQ)NRe(v)Im(v)).
We have Im(AQQ) = Im(ic.VQ — (1 — |Q|*Q)Q) = Re(€.VQQ), therefore

RS ((—Aw - 2VQQW> (wm))

/ HQEIV[2 + 4 / IM(VQQ) Re(1))Im(Ve))
RZ R?

+ o2 / IM(VQQ) Im(Vi(i)))
RZ
+ o2 / 1Re(ZVQQ)Re (1) Tm (1)
]:RZ
+ [ THIQPR(THEF 7)) +2Im(TQQ)e(w)Im())
Now, we compute
/ NQPR(VU(F T ) = & / N QPR(T)Im(s + i)
R?2 R?2
-z / NIQPIM(V ) Re (1),
RQ
and by integration by parts (still using Lemma 7.3 and Theorem 2.5),
/ QPRI +iy) = & / VilQIP%Re(4)Im(y + i)
R2 R2
-z / IV (1Q%)Re()Im (e + i)
RZ
-z / NI QPRe()Im(V).
RQ
Since V(|Q|?) = 2R¢(VQQ), we infer
vQ

[ iapse((~av 23250 iave) @)
R2 Q

[ HIQEIVOE + 49m(7QQ) 3e() Jm(Vs) — 22 m(V)Re(1)

+ 2 [ aam(VQQ)Im(vu))
- 2 [ aREvQQRe()
+ [ IRIQPR(TUEF ) + 20m(VQQ)Re(v)Im()

_|_

/ Vil QRe($) Im() + i7).
RQ
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Combining these computation yields

[ NPT = B

(e [ e+ [ vieiove) - 5900

R2

L9 /R _1Im(VQQ).Im(V(ir))
~ o /R IRe(EVQQ)Re(v)
+ / Vi1 |QP%Re(Vein)
R2
- 5VLQVU\QIQ%2(¢)-

We compute, by integration by parts (still using Lemma 7.3 and Theorem 2.5), that

2 / PIm(VQQ)IM(V(i)) = -2 / Im(VQQ) Re(Vy)
R2 R2
= 2 /R VnIm(VOQ)Re()
+ o2 [ amaQQRe)

and since IM(AQQ) = Re(E.VQQ) and Re(Viy(iy)) = vIm(V), we have

RGO +0Q) = BZR()

_ 7<—a [ wameea)+ Vn.me(wvc?)—me(zwc))))

R
o2y /}R | V1. Im(VQQ)Re(¢)
+ o /R VnIQPIm(VY)
_ &y /R  VnlQPSRe(v).

we check that Re(0Q) = [Q*Re(), Ne(ipVQ) = ~Ne(VQQ)Im(¢) + Im(VQQ)Re (1) and that

—Re(iVeQ) ~Re(iVQcQY) — Re(iVY)|Q?
= Im(VQQ)Re(v) + Re(VQQ)Im(¥) + Im(V4)|QI,

thus concluding the proof of

[ (1570 1) = B3 ().

C.3 Proof of Lemma 7.6
Proof For X = (X3, Xs), ¢ € R?, we define, as previously, the function

Q = QC7(. - X)Em.
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We define, to simplify the notations,
Q= B(dg,)l,R) U B(d(;,g,R)
O —B <(dc7,1 +dc_7,2) R)

and

2

which is between the two vortices. We define

X1 Re [, 0z, QQY70
Xo Re [, 02,QQ¢7°
G| 01 | =] *Ref,0aVQy*° |,
02 Re [, 0.0 QQp70
vy Re [, i)

where ¢ (used to defined Q = Q5 (. — X)e™) is given by 6, = 6/l(ce3, &) and 8y = 6 (ces, ).
Here, we use the notation 9.Q for 0.Qcjc=. We remark from (7.7) and the definition of 7, that in Q, we have

Qv=2-Q.

First, we have

slH(ced, )y 6+ (ces,d)

A,C 2, 2,

||Q7/)H01(Q) < OHZ_QCHHCXp_m(l) + K <X| + 2 + c + |7| s (0'4)
Qe

which is a consequence of Lemma 7.1. By Lemma 5.1, we compute that

A,c
< ) .
S 02—l e —0(L)
;

@
coocoo

We are going to apply the implicit function theorem on H = G — G(0), and find a point A such that H(A) = G(0)
since G(0) is small, which implies G(A) = 0.
Let us compute dx,G. We recall that Qv € C*(IR?, C). Since  depends on X, we have

8X2m€/a£2QQ¢7EO = me(aﬁﬁaQQw#o)
Q

o0

JRECCer
Q
[ ot (0.005.Q).

By estimate (C.4), we have

Re (0, QQUA0) | + / Re(02,,,QQ070)| <
o0 o
" oll(ce3,d) | o*(ces, d)
onzfQCHH%xcHo(l) + K <|X + 5 N C |

and since QY = Z — Q and %70 = ¢ — 4% in Q, we check that,

/Q Re (8I2Q8X2(Q1/)¢0)) = - /Q 0., Q) + /Q Re(0,, QX (QUV)).
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Now, using Q¢ = Z — Q, we check that, in B(d |, R), where x = rietf

2
om0, (QU°) = Ox, (Q /0 7z Qde)

Q
_ aIQQ/%Z_ngl
+ Q/% “Qd01+Q/2w —(Z = Q)@ 4.

27
+ Q/O D, (?C_gQ)del

Therefore, we estimate (since R is a universal constant)

/ Re(D, QOx (QUIY)) | <
B(d; .R)

ey o™ (00 [ =)

Let us show that, in B(d |, R),

+ K||Z - Qllcr (o

2w
Q/ Mdel — 0es0(1). (C.5)

We have in this domain that 3% = 1+ 0.0(1) and |[VQ. — fol\ = 0.—0(1) by Lemmas 2.14 and 2.15, where V;

is the vortex centered at d We deduce that, in B(d |, R),

2 _aw 27 _6L V
Q/o TZQdOI = Vl/o V721d91 + 0c—0(1).

1

Finally, by Lemma 2.1, we check that 12V1 has no 0-harmonic around d 1 therefore
Y4 " 0 Vigg g (C.6)
1 ; v, 1=0. .
By symmetry, the same proof holds in B(d ,, R).
Adding up these estimates, we get
w3t [ 0,007 +
Q

c Sl €_> 5t C€_2>,C
%N7-a. |Hexpao(1)+0H0(1)+K<|X|+ & E )} (C )1 p).

By a similar computation, we have

‘8}(2%2/ 8,1VQ1/}7£O — / Re (GdV&,;QQ)‘ <
Q Q

sll(ces, ) 6+ (ces,d)
>\ 2 25
\ZC QCHHE.xp_m(l) +0cs0(1) + K <|X| + 2 + c + 9 -

By Lemma 5.1 and Theorem 1.1 (for p = +00), we have

/ Re (advm)‘ <
Q

[ (c2aCQM)‘ n
Q

/Qme ((0aV — C23¢Q)3x2Q)’ = 0c—0(1).
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Similarly, we check

Q o
¢ st (ce3,d)  6t(ces,d)
ﬁz QC\|HexP_>o( )+0Ho(1)+K<|X|+ > )+ - +
Still by Lemma 5.1, we have

/Qme (aleawzQ)‘ = 06*}0(1)

With the same arguments, we check that

‘8X2/CacLQQ¢¢O <
Q

sll(ced, ) 6+ (ces,d)

/\ c 2 25

012-q. HHepoo(l) +0c—0(1) + K <|X| + 2 + c + 1l
Finally, with equations (2.6) to (2.10) and (C.4), we check easily that

ol\(ce3,d) | ot (ce3,d)
Ox2 ( //w> - QeuHexHo( )+ 0c0(1) + K (IXI t—a—t———+hl].
We deduce that
X1 0
Xo fQ |6z2Q|2
Ox,G| o1 |+ 0 <
P 0
Y 0
sll(ced, ) 6+ (ces,d)
)\c 3, 5.c
%1z-Q. uHexﬁo(lHocﬂo(lHK <|X|+ s + ——+
We can also check, with similar computations, that
Xl fQ |a®1Q|2
Xo 0
ox,G| &1 |+ 0 <
P 0
Y 0
sll(ced, &y 6+ (ces,d)
/\c 3, 5.c
% z-Q. uHexHo( )+ 0cs0(1) + K <|X|+ 2t —— + Dl
We infer that this also holds with a similar proof for the last two directions, namely
X 0
Xo 0
F95G | o |+ Jyleto.Q)? || <
P 0
Y 0
c sl I( 6—> 7) 5¢(Ce—2>7 7)
ﬁ\z Qe HHCXp—m(l) +o0c50(1) + K <|X| + = + y + |9
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(using the fact that 94V is differentiable with respect to 1, which is not obvious for ¢29.Q and is the reason we
have to use this orthogonality) and

X1 0
Xo 0
(3852G (51 -+ 0 g
(52 fQ ‘C@CLQP
0% 0
sll(ced, )y 6+ (ces,d)
A,c 2, 2,
N grsol1) + 0cono(1) + K (|X| ¢ SCR) | TR ).
We will only show for these directions that, in B(d; , R)
2m 28 27 8

‘Q | e+ ‘Q [ 5201 = o),

o @ o @

the other computations are similar to the ones done for dx, F' (using Lemma 5.1).
We recall from Lemma 2.3 that, in B(d; ;, R),

[c*0.Q — 9aV llcr(ay ,.r) = 0c—0(l);

where [|04V + 0z, Villcr(B(d 4 LR) = 0c—0(1), V1 being centered around a point d; € R? such that

|dc-; — dcv,1| = Ocﬁo(l).
Therefore, we check that

27 92 27
C 86 az A\
‘Q/O oliei| < Vi [ 2| o)
= 00—)0(1)
from (C.6). Finally, we have, from Lemma 2.7 that 0,.Q = —xl"sl(ce—%"?).VQ, where 219" (¢%:¢) i L rotated by
an angle 6+ (ce3, ). We remark that, in B(dz ,, R)
2 ed; . VQ ™ ed; V'V
’Q/ ——=——df| < ’V1/ —————db| + 0c-0(1)
0 Q 0 Vi

and

‘V /27r Cdc-;J.VVl 20
1 0 Vl 1

by (C.6) and the same result for d,, instead of d,,. Therefore, since ’vaéL(ce—gvg/) —d; 1’ < K in B(d

&,1’R>7
2‘”08LQ
i 2577
‘Q/o Q

=0

N

27 ¢ (xl"sl(ce_%"?) —d; 1) V@
o/ T+ ol
0

N

Ke + 00—)0(1)
= 00%0(1)'
Finally, we infer that
X1
Xo
oG | & +
02

~ Re fQ, Q

coc oo
N
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sl-l(ce c_;) 5J‘(c_>e -;)

A, . ,
%Nz-q. \lmxwo“) + 0c—0(1) + K <|X| t0 — + + 1
The proof is similar of the previous computations, and we will only show that, in (2,

10,(QU70) < o). |\chp—>o(1)

We have
0,(QU70)] = 105(QY) — 8,(Qu°)|
< [e-g Y "
< %5 a. lugzoo(L)

From Theorem 1.1, fRe fQ, Q = Re fQ, —14 0cs0(1) < —K < 0. We conclude, by Lemma 5.1, that, for ¢ and
|Z — QcHHg‘P small enough, dG is invertible in a vicinity of (0,0,0,0,0) of size independent of ||Z — QcHHg‘P-

Therefore, by the implicit function theorem, taking ¢ small enough and £(c, A) small enough, we can find X,c €
R2,~ € R such that

§H(ces, ) 6+ (ces, )
3 +
C &

| X+

A,C
+ ‘,Y| g O‘IZ_Qc‘lHPQXP—?O(l)’

and satisfying
Re / 0, QQUP = Pe / 00, QQUP = 0,
(d7 7R)UB(d 700 R) B(d R)UB(d R)

o

9{2/ 04V Qu#0 = Sﬁe/ 0,1 QQY# =0,
B(d B(d

RUB(d ,.R) 5 RUB( . R)

‘.Re/ i = 0.
B((de,’ler;,,z)/Q’R)

e’ 1’ 27
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