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1.  Introduction
The atmospheric boundary layer (ABL) ranges from hundreds of meters to several kilometers depending 
on meteorological conditions, mainly wind, temperature, and humidity. Thus, structure of ABL is modified 
by the daily cycle of heating and cooling over Earth's surface producing three canonical types of boundary 
layers: convective or unstable, neutral, and stable boundary layers. Convective boundary layer is commonly 
observed during day when the surface is heated by the sun resulting in a positive buoyancy force, while sta-
ble boundary layer occurs during night when surface is cooled by radiation producing a negative buoyancy 
force, and neutral boundary layer is the case between the former two with little or no buoyancy.

The structure of ABL has an important effect on anthropic activities such as mesoscale weather forecasting 
or pollutant dispersion in urban areas (Fernando et al., 2001). To better understand ABL and related urban 
processes, numerical simulation is a good complement to field measurements and wind tunnel experiments 
(Blocken, 2015). In the past much attention has been paid to the accurate CFD modeling of the ABL, both 
using Reynolds-averaged Navier-Stokes and large-eddy simulation (LES) approaches.

LES (Sagaut, 2006), which is a high-fidelity approach for the unsteady simulation of turbulent flows, has 
been successfully applied to simulation of ABL (e.g., Andren et al., 1994; Beare et al., 2006; Nieuwstadt 
et al., 1993; P. Siebesma et al., 2003). Among the key issues raised in the development of LES, one must 
mention the development of i) subgrid models to account for the influence of unresolved scales of motion 

Abstract  A large-eddy simulation tool is developed for simulating the dynamics of atmospheric 
boundary layers (ABLs) using lattice Boltzmann method (LBM), which is an alternative approach for 
computational fluid dynamics and proved to be very well suited for the simulation of low-Mach flows. 
The equations of motion are coupled with the global complex physical models considering the coupling 
among several mechanisms, namely basic hydro-thermodynamics and body forces related to stratification, 
Coriolis force, canopy effects, humidity transport, and condensation. Mass and momentum equations are 
recovered by an efficient streaming, collision, and forcing process within the framework of LBM while 
the governing equations of temperature, liquid, and vapor water fraction are solved using a finite volume 
method. The implementation of wall models for ABL, subgrid models, and interaction terms related to 
multiphysic phenomena (e.g., stratification, condensation) is described, implemented, and assessed in 
this study. An immersed boundary approach is used to handle flows in complex configurations, with 
application to flows in realistic urban areas. Applications to both wind engineering and atmospheric 
pollutant dispersion are illustrated.

Plain Language Summary  We have described a new tool for large-eddy simulation (LES) of 
atmospheric flows in this paper. LES with the lattice Boltzmann method (LBM) was used to simulate dry 
and cloudy atmospheric boundary layers (ABLs), along with flows in complex urban areas. To validate our 
LBM-LES solver, we first simulated the four basic ABL cases coming from the previous intercomparison 
of LES codes. These were the neutral, convective, stable, and cloudy convective boundary layers. Then 
three extra cases for ABL with canopy effects were performed by our solver. The altitude-dependent drag 
force and heat release source term were introduced and assessed in the present solver compared reference 
data. At last, the ProLB tool was successfully assessed considering two urban flow configurations: wind 
prediction in Shinjuku district in Tokyo, and gaseous pollutant dispersion in the Champs Elysées district 
in Paris. In both cases, very satisfactory comparisons with experimental data were recovered.

FENG ET AL.

© 2020. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivs 
License, which permits use and 
distribution in any medium, provided 
the original work is properly cited, 
the use is non-commercial and no 
modifications or adaptations are made.

ProLB: A Lattice Boltzmann Solver of Large-Eddy 
Simulation for Atmospheric Boundary Layer Flows
Yongliang Feng1 , Johann Miranda-Fuentes1, Shaolong Guo1, Jérôme Jacob1, and Pierre Sagaut1

1Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, Marseille, France

Key Points:
•	 �An efficient large-eddy simulation 

tool within framework of lattice 
Boltzmann method is developed 
for simulating the dynamics of 
atmospheric boundary layers and 
urban flows

•	 �Immersed boundary approach 
coupled with wall models is 
introduced to handle flows in 
complex configurations, with 
application to turbulent flows in 
realistic urban areas

•	 �The basic core, wall models, 
subgrid models, and interaction 
terms are described, implemented, 
and assessed in various micro-
meteorological flows and urban 
flows

Correspondence to:
P. Sagaut,
pierre.sagaut@univ-amu.fr

Citation:
Feng, Y., Miranda-Fuentes, J., Guo, 
S., Jacob, J., & Sagaut, P. (2021). 
ProLB: A lattice Boltzmann solver of 
large-eddy simulation for atmospheric 
boundary layer flows. Journal of 
Advances in Modeling Earth Systems, 
13, e2020MS002107. https://doi.
org/10.1029/2020MS002107

Received 14 MAR 2020
Accepted 17 DEC 2020

10.1029/2020MS002107
RESEARCH ARTICLE

1 of 26

https://orcid.org/0000-0002-2707-6529
https://doi.org/10.1029/2020MS002107
https://doi.org/10.1029/2020MS002107
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020MS002107&domain=pdf&date_stamp=2021-02-26


Journal of Advances in Modeling Earth Systems

on the resolved ones, ii) wall models when the grid is too coarse to allow for the use of the no-slip bound-
ary condition at solid walls, and iii) well-suited numerical schemes that ensure stable simulations without 
masking the physical subgrid model effects.

Most of numerical tools for simulation of ABL flows are developed in the framework of conventional fi-
nite difference or finite volume methods, for example, UCLA-LES (Stevens et al., 2005), PALM (Maronga 
et al., 2015), ICON (Dipankar et al., 2015), MicroHH (Heerwaarden et al., 2017), PyCLES (Pressel et al., 2015), 
and EULAG (Prusa et al., 2008). The lattice Boltzmann method (LBM) is an alternative approach for the 
simulation of complex fluid dynamic problems, which is a recast of the Navier-Stokes equations in a form of 
simplified kinetic equations for the time evolution of probability distribution function of designer particles. 
This numerical method is based on a two steps algorithm with first a local treatment called the collision step 
and then a streaming of the postcollision to the first-order neighbors of the local node. This procedure en-
sures advantages for massively parallel computations since there is no need to access second or third order 
neighbors as it is done for high order numerical scheme in classical Navier-Stokes methods. This method 
is classically discretized on Cartesian grids with hierarchical embedded sub domains using a ratio of two 
on the grid spacing between each sub domains and the use of immersed boundary conditions for boundary 
treatment. Using this procedure, the preprocessing step in case of complex area is much more easier than 
with classical methods. The LBM is also very interesting considering its low numerical dissipation for un-
steady flows. In summary, the benefits of LBMs include strong scalability in high-performance computing, 
low numerical dissipation, and the ability to simulate extremely complex geometry. LBM can be regards as 
a mesh-free method, which can significantly reduce the turnaround time including meshing compared with 
conventional methods. Thanks to its advantages, the LB methods quickly extended to large scale and spread 
toward exascale applications: automatic shape optimization of full-scale vehicles (Cheylan et al., 2019), ur-
ban scale environment flows (Ahmad et al., 2017; Jacob & Sagaut, 2018), meteorological flows (Feng et al., 
2019a), and complex biological flows (Chateau et al., 2017) have been successfully addressed, often with 
outstanding results.

LES has been implemented within the lattice Boltzmann framework using mainly the subgrid model (e.g., 
Bartlett et al., 2013; Eggels, 1996; Hou et al., 1994; Premnath et al., 2009a,b; Teixeira, 1998; Yu et al., 2006). 
In one approach, subgird modeling can be theoretically developed in the mesoscopic physics framework, 
which possesses some inherent consistency with kinetic theory and multiscale analysis (Chen et al., 2004; 
Succi, 2020). In the other approach, the existing subgrid modeling techniques in Navier-Stokes equations 
can be incorporated in the LB models, such as Smagorinsky model (Teixeira, 1998; Wilhelm et al., 2020), 
approximate deconvolution model (Malaspinas & Sagaut, 2011; Sagaut, 2010). Classically, the eddy viscos-
ity approach in LBM is that subgrid scale dynamics can be parameterized via a turbulent or eddy viscosity 
that is added to the molecular viscosity giving a total viscosity to be used in the LBM algorithm. Several 
extensions have been proposed for compressible flows of low-speed thermal flows but, to the knowledge of 
the authors, a LBM-based LES approach for atmospheric flows including stratification/buoyancy effects, 
humidity, condensation effects and complex media such has forest canopy has not been proposed up to now.

This paper describes a lattice Boltzmann tool for LES of turbulent flows and thermal convection in ABLs, 
including neutral, stable, convective, and cloudy convective ABLs as well as urban flows. The paper is or-
ganized as follows. Section 2 reviews governing macroscopic equations along with condensation and sub-
grid model. Section 3 presents the LBM, the finite difference method for water transport, and wall model 
implementation in boundary conditions. Section 4 investigates and discusses simulations on neutral, stable 
and convective ABL with canopy effects, as well as cumulus convection with phase change. The LBM-LES 
tool is then assessed considering two urban flow configurations in Section. 5. Finally, Section 6 summarizes 
the capabilities and assessment of the present tool and draws perspectives.

2.  Equations of Motion
The ABL is assumed to be a mixture of dry air, water vapor, and liquid water, with respective mass fractions 
qd, qv and ql (qv being often referred to as specific humidity). A well-known approximation in the study of 
atmospheric and oceanic flows is the so-called Boussinesq approximation, which basically assumes that 
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density variations due to buoyancy forces are small compared to a reference state. The reference state is 
taken to be a hydrostatic state (ρ0, p0, T0). Commonly, hydrostatic pressure p0 and T0 decrease with height by

   0 0
0

d d,
d d p

p T gg
z z c� (1)

Instead, one often uses the potential temperature θ


 

   
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/d p
0

0

(0)
( )

R c
pT
p z

� (2)

Since dθ0 = 0 in the isentropic reference state, one finds that the reference potential temperature is constant, 
θ0 = Θ0.

2.1.  Navier-Stokes Equations

The governing equations of turbulent flows in ABLs are the filtered Navier-Stokes equations under the 
Boussinesq approximation.
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where ui denotes the components of the velocity vector (ux, uy, uz) and xi represents the components of the 
position vector (x, y, z). The hydrodynamic pressure p″ = p − p0(z) represents the departure of the pressure p 
from reference state pressure p0(z). Fb,i is the buoyancy term due to the gravity. Fc,i is the Coriolis term due to 

the Earth's rotation. The turbulent stress  
i ju u  denotes the subgrid momentum flux, which is responsible for 

the complicated chaotic nonlinear nature of turbulent flows. Hereafter ″ are deviations from the hydrostatic 
reference state and ′ indicate fluctuations from the filtered value of the variable.

2.2.  Temperature and Water

Associated prognostic conservation equations for the temperature liquid and vapor mass fractions are (the 
air mass fraction being deduced as qd = 1 − qv − ql)
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Here, cp is the mass heat capacity of dry air; Dθ and Dq are the temperature and water diffusion coefficients. 
Q is the mass transfer rate between the liquid and gas water phases and Lv is the mass latent heat of water. 

  ju ,  
v jq u  and  

l jq u  are subgrid fluxes of heat, vapor and liquid water fractions. The subgrid terms are 
closed in the next section using the eddy viscosity paradigm. The mass transfer rate between the liquid and 
gas water phases Q can be directly included into the conservation equations, thereby reducing the number 
of partial differential equations, and resulting in a condensation model based on two invariant variables 
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(mass fraction of total water qt and liquid water potential temperature θl). The model based on a set of gov-
erning equations about invariant variables (qt, θl) is referred to as the 1eq model, whereas the model based 
on the variables (ql, qv, θ) is referred to as the 2eq model. The 1eq model is detailed in Appendix A.

2.3.  Phase Transition Modeling

It is assumed in the present model (see Sommeria,  1976 for details) that the rate of phase transition is 
infinitely fast, or equivalently, that the liquid and gas phases are in thermo-chemical equilibrium at every 
time. Under this assumption, saturation properties provide additional relations between qv and ql. The sat-
uration specific humidity is
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and where ϵ = Rd/Rv is the molecular mass ratio of vapor water to that of dry air.

Under the infinitely fast relaxation approximation, the source term in Equation 4 is given by  Δ / ΔlQ q t.  
In practical numerical implementation, Δql is straightforwardly used, which can then be computed from
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 


 
    

 

2 2
0 0 0

2 2
0

1 .s v v

vp d

q L R T
Lc R T


� (8)

The virtual temperature θv in the buoyancy term is defined hereafter as
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The mass fraction of liquid water and vapor water can be computed by the phase transition model of the 
1eq model which is detailed in Appendix A. Thus, the potential temperature used in Equation 9 can be 
computed from liquid water and liquid water potential temperature by
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Π
v

l l
p

L q
c� (10)

2.4.  Buoyancy and Coriolis Forces

The external force terms like the buoyancy term in Equation  3b are incorporated through a body force 
Fi = Fb,i + Fc,i. Under the Boussinesq approximation, the buoyancy term is given by,

  , 0
0

Θ
Θb z v
gF� (11)

The effects of a rotating reference frame on an f plane can be included through the Coriolis force. The accel-
eration due to the Coriolis force Ff,i is computed for the two horizontal velocity components as

  , ( )c x g yF f V u� (12)
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 , ( )c y g xF f U u� (13)

where Ug and Vg are the geostrophic wind components. A similar approach is used for all additional force 
terms considered in the present study, for example, canopy drag Fc,i in Equation 3b. Specific components 
canopy drag are discussed in Section 4.5.

2.5.  Subgrid Modeling

The governing equations of turbulent flows, thermal convection and humidity transport in ABLs are the 

filtered Navier-Stokes equations. The subgrid terms  
i ju u ,   ju ,  

v jq u  and  
l jq u  are closed in the present work 

using the eddy viscosity paradigm. Therefore, the subgrid fluxes are expressed as
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where νt, Dh,t, and Dq,t are the subgrid viscosity, subgrid thermal diffusivity, and subgrid humidity diffusivity, 
respectively. In the classical Smagorinsky approach, the subgrid viscosity is given by,

  2
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where λ = (CSΔ) is a mixing length defined by the Smagorinsky constant CS and a filter length Δ (taken 
equal to the grid size in this work) and  2 ij ijS S S∣ ∣  is the magnitude of the strain rate tensor,
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Since stratification has an effect on subgrid scales of motion and therefore the energy transfer from resolved 
to subgrid scales, the amplitude of subgrid viscosity must be modified accordingly. This is classically done 
by modifying the subgrid length scale (Deardorff, 1980; Moeng, 1984). In the case of stable stratification, the 
eddy viscosity νt = λ2fB|S| is reduced by the buoyancy factor fB.
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where    2
0/ Θ /N g z. For subgrid heat flux in filtered temperature equation, the turbulent thermal 

diffusivity is related to eddy viscosity through a turbulent Prandtl number


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t
t h

h t
Pr
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In this study, the vapor and liquid water fractions are assumed to have the same humidity diffusivity. Fol-
lowing the same analogy, the humidity diffusivity is related to the thermal diffusivity by
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
,
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t
t q

q t
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where Dq,t is turbulent humidity diffusivity and Prt,q is turbulent Prandtl number for humidity. Hereafter, ν, 
Dθ and Dq denote the total viscosity, the total thermal diffusivity and the total humidity diffusivity, respec-
tively. These total diffusivities include both molecular and turbulent parts.

2.6.  Surface Layers and Boundary Conditions

2.6.1.  Sponge Layers

It is worth noting that ABL simulations frequently use sponge zones to damp spurious wave generation 
at computational domain top boundary, and that an external force can also be used for that purpose. The 
damped solution field is expressed as,

    ( ) ( ) ( ) ( )t t t t z t t        sponge target
� (20)

where ϕ could be density, velocity, temperature, or humidity and ϕtarget its corresponding target value, and 
σsponge(z) is the absorbing strength. The second term in the right hand of (20) correspond to the force to be 
added,

     , sponge target( ) ( Δ )s iF z t t� (21)

The shape of the absorbing strength and target values require some attention. Following (Xu & Sagaut, 2013), 
the following profile of absorbing strength is used in this work,
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where Lsponge is the width of the sponge layer, and z0 is its starting position. On the other hand, the target 
field ϕtarget is often given by the test case specification; if it is not known, it is set equal to an average field 
calculated at each time step using the method presented in (Chevillotte & Ricot, 2016), namely,

      ( Δ ) (1 ) ( ) ( Δ )t t C t C t t� (23)

where C is a small value parameter.

2.6.2.  Surface Models

LES of ABL flows requires the use of wall models to account for small scale dynamics in the vicinity of the 
ground and additional effects such as roughness effects. Most of these models evaluate the surface fluxes 
of the horizontal momentum components, temperature and humidity using the Monin-Obukhov similarity 
theory. The Monin-Obukhov relationships for the bottom boundary are (Dyer, 1974),
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where κ = 0.41 is the Von Kármán constant, u* is the friction velocity, θ* is the characteristic temperature, q* 
is the characteristic humidity, and L is the Obukhov length given by,


  




2
* 0

* 0 *( 0.61 )
uL

g q
� (25)

The functions ϕm and ϕh depend on the stability parameter z/L which defines in turn the type of boundary 
layer. For neutral case ϕm = 1 whereas ϕh does not apply because potential temperature is uniform over the 
domain. For other cases, these functions are given by (Dyer, 1974),

    1/4if / 0 (1 16( / ))mz L z L� (26a)

   1/2(1 16( / ))h z L� (26b)

    if / 0 1 5( / )m hz L z L� (26c)

where z/L < 0 for convective case, and z/L > 0 for stable case.

Besides, a surface model for turbulent viscosity is necessary to consider the fact that turbulence is damped 
close to the wall. A blending function is used at the second off-wall node considering the mixing length 
close to the wall

1 1 1

0 0  n n n
z z
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( ( ))

� (27)

where λ0 = CSΔx and n is a free parameter, set to unity in the following simulations.

2.6.3.  Boundary Conditions

In all simulations, a free slip condition is used for the top boundary, whereas the Monin-Obukhov wall model 
is implemented at the bottom boundary. The implementation of Monin-Obukhov formulation depends on 
the chosen boundary condition in the different stratification situations. Three possible options are available:

1.	 �Both the friction velocity u* and the characteristic dynamic temperature θ* are specified when fixed mo-
mentum fluxes and a fixed surface heat flux are given. Under these conditions, the Obukhov length can 
be computed directly from expression (25). Thus, velocities, temperature, stress and heat flux of the first 
node from wall can be calculated according Monin-Obukhov formulation

2.	 �The friction velocity u* is given and surface heat flux is unknown. In this condition, L needs to be re-
trieved from the implicit relationship of Monin-Obukhov formulation. An iterative procedure is adopted 
to calculate L with fixed u*. After L is obtained, L is used to obtain velocities, temperature, stress and heat 
flux in the same way with the first type

3.	 �Both the friction velocity u* and surface heat flux are unknown. In this condition, L needs to be retrieved 
from the implicit relationship of Monin-Obukhov formulation with two variables. A double loop itera-
tive procedure is adopted to calculate L with variables u* and θ*

4.	 �The treatment on humidity qt and q* is the same as the one of potential temperature. Then the vapor and 
liquid humidities qv and ql are calculated by phase transition model

3.  Numerical Method: Hybrid Lattice Boltzmann Solver
3.1.  The LBM

3.1.1.  Basic Core

LBMs is developed from Lattice Gas Automata (Chen and Doolen, 1998; D'humières & Lallemand, 1986; 
Qian et al., 1992) for fluid dynamics. Space and time are classically discretized on a Cartesian grid, whereas 
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particle velocities are discretized on a so-called DdQq lattice (d dimen-
sions and q discrete velocities ciα). In this study the D3Q19 lattice stencils 
(Figure 1) is selected considering its lower number of degree of freedom 
compared with the D3Q27. The discrete velocities and corresponding 
weights are given as follows:

 





 


     
        

,

[(0,0,0),1 / 3] 0
[ , ] [( 1,0,0),(0, 1,0),(0,0, 1),1 / 18] 1 6

[( 1, 1,0),( 1,0, 1),(0, 1, 1),1 / 36] 7 18
ic w� (28)

The flow problem is then solved for fα(xi, t), namely the density distribu-
tion functions of particles with velocity cα,i at (xi, t) by the so-called lattice 
Boltzmann equation. Solution of this equation is usually computed using 
a second-order accurate Strang splitting, resulting in the definition of a 
local collision step (Equation 29a) followed by a nonlocal streaming step 
(Equation 29b) solved according a Lagrangian scheme:

   coll ( , ) ( , ) Ω ,i if x t f x t� (29a)

    coll
,( , Δ ) ( Δ , )i i if x t t f x tc t� (29b)

with Ωα the collision operator and 
coll ( , )if x t  the post collision distribu-

tion functions.

The schematic diagram of algorithm of LBM with collision and streaming steps are illustrated in Figure 2. 
In one time marching loop, the density distribution of particles marked in red advected from the nearest 
neighbor sites and then collided locally. Following the evolution of distribution functions, the macroscopic 
quantities such as density ρ and momentum ρui at the time step t + Δt are updated by distribution functions 
in their velocity moments,




   f� (30a)

 


   ,i iu f c� (30b)

For the local collision step, the single relaxation time model (BGK model) (Qian et al., 1992) is wide-
ly used in the literature because of its simplicity; however, it suffers from numerical instability in 
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Figure 1.  D3Q19 lattice.

Figure 2.  Schematic diagram of algorithm, left: prestreaming, right: poststreaming.
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case of high Reynolds number flows (d'Humières et  al.,  2002). To solve this problem several colli-
sion models exhibiting better stability and accuracy properties have been developed last years such 
as multi relaxation times (d'Humières et  al.,  2002), cascaded (Geier et  al.,  2006; Geier,  2008), cen-
tral moments (Premnath & Banerjee,  2011) or regularized models (Coreixas et  al.,  2017; Latt & 
Chopard,  2006; Malaspinas,  2015; Mattila et  al.,  2017). This approach was further improved by Ja-
cob et  al.  (2018), who proposed a dynamic hybrid recursive regularized (HRR) single relaxation 
time model with self-adaptive dissipation for LES of high Reynolds number flows and Reynolds-Av-
eraged Numerical Simulation (Wilhelm et  al.,  2018). Therefore, the HRR collision model (Jacob 
et al., 2018) is used in the present work. Starting from the BGK collision model (Equation 31a) and 
the classical decomposition of the distribution function in an equilibrium and a nonequilibrium part  
(    eq neqf f f ), the postcollision distribution function is expressed as

f x t f x t f f   
coll eq

( , ) ( , ) ( )
 

  
1� (31a)

 
 

   
 

eq neq1( , ) 1f x t f� (31b)

 
 

   
 

eq neq1( , ) 1 ( )f x t f� (31c)

where 
eqf  and 

neqf  are the equilibrium and non equilibrium function, 
neq( )f  is hybrid recursive 

regularization on off-equilibrium distribution function. τ is the dimensionless relaxation time which 
is linked with kinetic viscosity by ν = (2τ − 1)/6. Subgrid viscosity is implemented in the LBM method 
by replacing the molecular viscosity by the effective viscosity νeff = ν + νt in this formula, leading to a 
consistent implementation (Malaspinas & Sagaut, 2012; Sagaut, 2010). The local equilibrium distribu-
tion 

eqf  is given by

f w
c u

c c c

eq i i

s

ij ij

s s

 
 


   






, ,
( )

(

2

0

4 6
2

1

6

3

 

                    , ,
( ) ( )

, ,
( )

)( ) ( )(xxy yzz xxy yzz xxy yzz xxy    0 0 0
yyzz

xzz xyy xzz xyy xzz xyy

( )

, ,
( )

,

)

( )( ) (

0

0 0
3



              ))( )

( )(

( ) ( )

, ,
( )

 

   

xzz xyy

yyz xxz yyz xx

0 0

0
3



              zz yyz xxz yyz xxz
( )

, ,
( ) ( )

) ( )( )
0 0 0   

    

� (32)

where the second-order Hermite polynomials      2
, , ,ij i j s ijc c c  and       2

, , , , [ ]ijk i j k s ijkc c c c c  cor-
respond to the second and third order Hermite polynomials with  1 / 3sc  being lattice sound speed, 

        , , ,[ ]ijk i jk j ik k ijc c c c  and δij is the classical Kronecker matrix. (0)
ij i ju u  and (0)

ijk i j ku u u  
are respectively the second and third order coefficient of Hermite polynomials.

As previously discussed, the classical BGK collision model considering only the unfiltered non equilibrium 
distribution function    neq eqf f f  is not stable for high Reynolds flows. A stabilization procedure based 
on the reconstruction of the non equilibrium part is done through an hybrid recursive regularization (HRR 
[Jacob et al., 2018]) considering the projection of 

neqf  on the Hermite polynomials basis ( (1)
ij ) and its ap-

proximation by finite differences ( (1,FD)
ij ) expressed as

   (1) neq
, ,ij i j

i
c c f� (33a)

 
   

    
    

(1,FD) 2 2Δ
3

j i k
ij s ij

i j k

u u ut c
x x x

� (33b)
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The HRR operator is then expressed as


 

 

( )

(

,
( , )

, ,

f w
c c

ij ij

s s

xxy yzz

 
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 
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 

 

  
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1 1

3

HRR HRR

  (( ) ( )(( , ) ( , )
, ,

( , )     yyz xxz yyz xxz yyz xx
1 1 1HRR HRR HRR     zz

( , ) )1 HRR 


� (34)

where    (1,HRR) (1) (1,FD)(1 )ij ij ij    is the hybrid regularized second-order off-equilibrium moment 
with     0,1  an arbitrary weighting coefficient and   (1,HRR) (1,HRR) (1,HRR) (1,HRR)

ijk i jk j ki k iju u u     is the 
third order off-equilibrium moment recursively reconstructed. The second-order isotropic central differ-
ence scheme is employed to compute the numerical gradient operator and a value of σ = 0.99 is adopted in 
this work.

3.1.2.  Implementation of Buoyancy, Coriolis, and Sponge Forces

The external force terms like the buoyancy term in Equation 3b are incorporated through a body force Fα 
added to the right hand side of Equation 29. The HRR lattice Boltzmann equation with forcing term is ex-
pressed as (see Feng, Boivin, et al., 2019)

   
 

    
 

coll eq neq1( , ) ( , ) 1 ( )i if x t f x t f F� (35)

and the macroscopic density ρ and momentum ρui incorporated the general forcing term Fi are updated as




   f� (36a)

 


   ,
Δ
2i i i
tu c f F� (36b)

where Fi are the components of the external force and the forcing term in HRR-LB equation is expressed as


  



  
    
    

,,
,2 4

11
2

j ji i
i i

s s

c uc u
F c F

c c
� (37)

3.1.3.  Implementation of Boundary Conditions

In contrast to the conventional CFD methods, an extra step is required for implementation of the boundary 
condition in the LB method. By using the updated velocities on boundary nodes, the distribution functions 
on the first off-boundary nodes is recovered via the nonequilibrium reconstruction as follows

   eq neq (1) (1)( , ) ( , ).i ij ijkf f u f  � (38)

where the density at the first off-boundary node is extrapolated from neighboring nodes. (1)
ij  and (1)

ijk  are 
computed as

 
   

    
    

(1) 2 2Δ
3

j i k
ij s ij

i j k

u u ut c
x x x

� (39)

  (1) (1) (1) (1)
ijk i jk j ki k iju u u   � (40)
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where the velocity gradients on boundary nodes are computed on these nodes using a first-order biased 
finite difference scheme, for example,


 

 , ,
1 ( )

Δ
y

y b y i
b

u
u u

x x
� (41)

where uy,b is the y component of velocity at boundary.

3.2.  Finite Volume Method for Advected Scalar Quantities

For scalar fields like the total water specific humidity it is possible to use either another set of distribution 
functions (Zhang et al., 2011) or a hybrid approach in which conservation equations for these quantities are 
solved using a classical finite volume/finite difference method. The hybrid approach is used here, in order 
to minimize the number of degrees of freedom per cell of the global method.

The same method is used for all advected scalar quantities (temperature, humidities, etc.) The convec-
tive flux is constructed using the Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) 
scheme, while the classical second-order accurate centered difference scheme is adopted for the diffusion 
term and term of viscous dissipation. The third order MUSCL scheme (Kim et al., 2001) is adopted in this 
study to preclude spurious wiggles. For example, the x component of the advection term in Equation 4a is 
expressed as

    



1/2 1/2

, Δ
i i

x x iu u
x x

� (42)

θi+1/2 for instance, can be given as











 
 


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L
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u
� (43)

and

     

     
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  

 
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where κ = 1/3, and,

   

   

     

     

 
 
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 

   
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i i
i

i i
r

� (45)

where i represents index of grid rather than lattice discrete velocity. The van Albada limiter function 
φ(r) = 2r/(1 + r2) is used to avoid spurious oscillations (Hirsch, 2007).

Besides, the diffusion term is approximated by calculating gradient by a central difference scheme.
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� (46)

where Dθ is total diffusivity of potential temperature and the same expres-
sions are used to solve for y and z directions.

3.3.  Immersed Boundary Approach for Complex Geometries

The present LBM-LES tool is augmented via implementation of im-
mersed boundary approach to handle arbitrary geometries while using 
embedded Cartesian grid. The previous boundary conditions for solid 
surfaces are implemented in a local reference frame associated to the sol-
id surface in the following way.

Typically, the variables on boundary node A that will enforce a Dirichlet 
boundary condition for the wall model has to be computed. First, two ref-
erences points (N and R) are defined and arranged, which are located on 
the normal line to the wall passing through the boundary node A as de-
scribed in Figure 3. N is the intersection point of immersed solid surface 
Ω and the normal line. R is the reference point with  2.5ΔNR x distance 
away from point N. The macroscopic values on point R are interpolated 
from the neighbors of ◦ by using the Shepard's Inverse Distance Weight-
ing (IDW) method (Shepard, 1968).

 


 

 
1 1

( , )
( ) ( ),

( , )

pN
i j

i jN pj j i j

d x x
x x

d x x
� (47)

     2 2 2( , ) ( ) ( ) ( )i j j i j i j id x x x x y y z z� (48)

where d (xi, xj) denotes the distance between point xi and its neighbor xj. The exponent index p is a free 
parameter in the IDW method and p = 2 is typically recommended (Gao et al., 2007) and adopted in the 
present implementation. Once the variables of reference point R are computed, the wall models can be 
implemented in the local reference frame. Details of implementation of boundary conditions, including 
the coupling with wall models for turbulent flows, are available in (Feng et al., 2019b; Wilhelm et al., 2018).

4.  Benchmarking: HRRLB-LES Solver for ABLs
4.1.  Neutral Boundary Layer

ABL under neural condition proposed in the cross-comparisons of (Andren et al., 1994) with slight modifica-
tions is used to accessed the LBM-LES solver. We use here a simulation domain of 1,280 × 1,280 × 1,500 m as 
in (Chow et al., 2005). Periodic conditions are employed in the horizontal direction, and the roughness length 
for Monin-Obukhov similarity is set as z0 = 0.1 m. The atmospheric boundary flow is driven by a large-scale 
pressure gradient which results from the balance with a geostrophic wind of (Ug, Vg) = (10, 0) m s−1. The fol-
lowing force is introduced through a source term in the lattice Boltzmann equation (see Equation 37),

  , ( )c x g yF f V u� (49a)

 , ( )c y g xF f U u� (49b)
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where the Coriolis parameter is f = 10−4 s−1. Simulation was initialized 
with a reference density of ρ0 = 1 kg m−3, and the analytical Ekman pro-
file for velocity given by (Cushman-Roisin & Beckers, 2009)

u U z H z H
x g
   1 exp( / )cos( / )� (50a)

u U z H z H
y g
 exp( / )sin( / )� (50b)

where H is the domain height which corresponds approximately to the 
boundary layer height. The numerical simulation was performed over 
30 dimensionless time periods tf as in (Chow et al., 2005). Two different 
grids were used with Δx = 32 m, Δx = 16 m, and average results were tak-
en over the last six periods that correspond approximately to the inertial 
oscillation period 2π/f.

Figure 4 shows the mean velocity profile compared with the results of 
(Senocak et al., 2007). The mean velocity is averaged in the horizontal 
plane direction and in time period, and it is normalized with u*. The nu-
merical results of finer mesh have a better agreement with the reference 
values. On the whole, it can be observed that even though grid is coarse, 
the LBM with Smagorinsky model can well predict the flow structures.

The friction velocity is crucial in prediction of fluid flow in ABL. Table 1 
compares the values of friction velocity obtained in this work with those 
from the intercomparison (Andren et al., 1994). Quantitatively speaking, 

quite consistent results on difference grid resolutions are obtained by our LBM-LES solver. From the above 
observation, accuracy and compatibility of the wall model for neutral boundary layer is well proven in our 
simulations.

To obtain a more intuitive comparison, the normalized stresses obtained from time statistic of the neutral 
atmospheric boundary layer are compared with reference values is plotted in Figure 5. With the increasing 
grid resolution, the results gradually close to total stress in reference, which implies the good grid conver-
gence feature of the present LBM-LES solver.

4.2.  Stable Boundary Layer

The stable atmospheric boundary layer (SBL) is considered the most challenging case for LES because ed-
dies are smaller than in the neutral case; therefore, the resolved turbulence is harder to maintain if the 
grid is not fine enough. Here we simulate the SBL proposed in the intercomparison of (Beare et al., 2006). 
It consists of a 400 × 400 × 400 m domain where the flow is driven by a geostrophic wind of Ug = 8 m s−1, 
Vg = 0 m s−1 and Coriolis parameter of f = 1.39 × 10−4 s−1. Periodic boundary conditions are applied in the 
horizontal directions. At the top boundary, a free slip condition is applied along with a sponge layer over 

the last 100 m. Monin-Obukhov relationships with a roughness length of 
z0 = 0.1 m and a surface cooling of 0.25 K h−1 are applied to the bottom 
boundary.

The initial velocity profile is a constant velocity in the horizontal direc-
tion equal to the geostrophic values ux =  Ug, uy =  Vg and zero vertical 
velocity. The initial temperature profile is set as,

 
     

265 K 100 m
265 100 Γ K 100 m

z
z z� (51)

where Γ = 0.01 K m−1 is a constant slope of potential temperature from 
height of 100 m to the top of the domain. Initially, a random perturbation 
of 0.1 K is applied below 50 m is to trigger the turbulence flow.
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Figure 4.  Mean velocity profile (neutral case).

u* (m/s)

Δx = 16m (Smag) 0.419

Δx = 32m (Smag) 0.429

Andren/Moeng 0.425

Mason/Brown bsct 0.448

Mason/Brown nbsct 0.402

Nieuwstadt 0.402

Schumann/Graf 0.425

Table 1 
Friction Velocity (Neutral Case)



Journal of Advances in Modeling Earth Systems

Simulations were performed using 3.125, 6.25, and 12.5 m grids with subgrid model. Smagorinsky constant 
of CS = 0.23 for subgrid model was suggested in (Beare et al., 2006) by sensitivity analysis is too large for the 
6.25 m resolution in our study, thus it is set to CS = 0.15 and used the same value for the 3.125 and 12.5 m 
grids.

The numerical simulation time was set as 9 h, and results were averaged over the last hour. Figure 6 shows 
mean profiles of velocity and potential temperature compared to the results with 2.0 m mesh in the inter-
comparison (Heerwaarden et al., 2017). Results by the present LBM-LES solver well reproduced the super-
geostrophic jet characteristic of stable layers. Temperature profile on Figure 6 have a good agreement with 
references values at the bottom of the boundary layer, and the inversion layer takes place at a little higher 
altitude.

4.3.  Convective Boundary Layer

The convective boundary layer case is taken from (Nieuwstadt et al., 1993) who conducted an intercompar-
ison of large-eddy codes from four research groups. The simulation domain is 6,400 × 6,400 × 2,400 m to 
which we add a sponge layer of 600 m, so the total domain height in our study is 3,000 m. The roughness 
length used for the Monin-Obukhov relationships is z0 = 0.16 m.

The convective boundary layer is set in terms of temperature and convective velocity scales defined by,

 
   
 

1/3

* *
0 *

, s
s i

g Qw Q z T
T w

� (52)

where g is the gravity, T0 is a reference temperature, Qs is the surface temperature flux, and zi is the boundary 
layer height. As the boundary height is not known a priori, an approximate boundary height of zi0 = 1,600 m 
is used to define initial conditions. The surface is heated by a constant temperature flux of Qs = 0.06 K m s−1. 
Considering Qs, zi0, and a reference temperature T0 = 300 K, the convective velocity and temperature scales 
are w∗0 = 1.46 m s−1 and T∗0 = 0.041 K. A time scale derived from zi0 and w∗0 is t∗0 = 1,096 s. With these 
scalings, the initial conditions are given by,

For z ≤ zi1 = 0.844zi0


 

    
 
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0.1 1
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Figure 5.  Momentum flux (neutral case). For component u′w′, the resolved part is denoted by the solid line and the 
modeled on is plotted by the dash line.
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For z > zi1

    0 1 ΓiT z z� (54a)

   0x y zu u u� (54b)

where r is a random number uniformly distributed between −0.5 and 0.5, and Γ = 0.003 K m−1 is a constant 
temperature gradient over the boundary layer. Simulations were performed for 11 time periods 11t*, and 
averaged results are calculated on the last 1 h.

The research groups that participated in the intercomparison of (Nieuwstadt et al., 1993) used different 
parameters for discretization and subgrid model. Some of them used non uniform grids, so their vertical 
meshes ranges from 20 m to 60 m. Two of the groups reported a Smagorinsky constant of CS = 0.18 and tur-
bulent Prandtl of Pr = 0.33 even though subgrid model differs among them. We decided to use these values 
in our simulations, and a uniform mesh with two resolutions of Δx = 50 m and Δx = 25 m.

The average temperature profile by our LBM-LES solver is plotted in Figure 7. We compare here our results 
with that from (Schmidt & Schumann, 1989) where averages are taken at 6t*, since the temperature profiles 
were not given in (Nieuwstadt et al., 1993). A common characteristic of the convective boundary layer is 
that mean temperature is roughly constant in the mixed layer, approximately the zone between 0.1 and 0.9 
z/zi0. This characteristic is well satisfied with the Δx = 25 m and Δx = 50 m mesh sizes.

Figure 7 also shows the profile of vertical turbulent heat flux. The boundary layer height is defined as the 
height where this flux reaches its minimum value; this minimum value is known as the entainment flux 
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Figure 6.  Mean velocity and temperature (stable case). The results were averaged on the ninth hour and compared 
with the reference data in (Heerwaarden et al., 2017).
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−〈w′θ′〉. In general, our simulations at coarse grid give smaller values for the entrainment flux in (Nieuw-
stadt et al., 1993). The main reason is the under-resolution of small scale turbulent motion on coarse grid, 
which is not balanced by a posteriori reconstruction of subgrid contributions. As discussed in Chapter 9 
of (Sagaut, 2006), reconstruction of subgrid fluxes is a controversial issue since LES filter is unknown and 
subgrid viscosity model are not designed to model the subgrid fluxes but to enforce a physical balance of 
resolved kinetic energy.

4.4.  Shallow Cumulus Convection

A shallow cumulus convection is simulated by the LBM-LES solver to evaluate the moist thermodynamics 
and its interaction with subgrid modeling. The shallow cumulus convection simulations follows the setup 
of the Barbados Oceanographic and Meteorological Experiment (BOMEX) model intercomparison case (P. 
Siebesma et al., 2003). This is the most prevalent shallow cumulus LES case. Siebesma and Cuijpers (Siebes-
ma and Cuijpers, 1995) conducted an early LES based on a case from the BOMEX field experiment.

In this case, a height dependent geographic wind ug is given by a linear formula ug = (−10 + 1.8 × 10−3z) m 
s−1 and the Coriolis parameter is set to f = 0.376 × 10−4s−1. The initial conditions for velocity, liquid water 
potential temperature and total water mixing ratio are linear profiles following the values given on Table 2.

The temperature and humidity surface fluxes are 8 × 10−3 K m s−1 and 5.2 × 10−5 m s−1, respectively. The 
shear stresses are prescribed by u w u u u u

i i
  *

/
/ ( )

2
1
2

2
2 1 2 , with u* = 0.28 m s−1.

Moreover, additional terms are added to represent the large-scale forcing which could not be represented 
directly in the LES. The source terms of momentum conservation equations, temperature equation, and 
water equations are parameterized considering the effects of large-scale subsidence, radiative cooling and 
moisture effects. Their details are described in (P. Siebesma et al., 2003).

The LBM-LES solver with condensation scheme has been employed to reproduce the case at two resolutions 
of Δx = 80 m and 40 m in domain of 5,000 × 5,000 × 3,000 m. Time interval is 0.54 s on coarse mesh and 
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Figure 7.  Mean temperature at 6t* and resolved vertical heat flux at 6.5t* (convective case). For normalized heat flux, 
the resolved part is denoted by the solid line and the modeled on is plotted by the dash line.
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0.27 s on fine mesh, respectively. Smagorinsky constant of CS = 0.23 and 
turbulent Prandtl of Pr = 0.33 is adopted both for potential temperature 
and water equations. Small random perturbations are applied to initiate 
turbulence, and both of the simulations are run for 6 hours. Statistics are 
performed during the final hour.

Figure 8 shows profiles of turbulence statistics from the simulations. 
All of the results are in good agreement with the reference data from 
(P. Siebesma et al., 2003). Consistent results are clearly obtained with 
comparison of data from coarse mesh and fine mesh. The mean pro-
files of velocities, potential temperature, vapor water and liquid water 
on fine mesh are confirmed closely to reference values. The mixed 
region below the surface of 540 m is well captured, which has valid the 
accuracy of wall model with complex moist thermophysics. Further-
more, the conditionally unstable layer from 540 m to 1,500 m, and the 

inversion layer from 1,500 to 2,000 m are also clearly observed in the results. Both the results obtained 
by 1eq model and 2eq model are presented in Figure 8 and the 1eq model (liquid water potential tem-
perature θl and total water qt) exhibited better performance on prediction of liquid water and liquid 
water potential temperature, thus the 1eq model is used as the default condensation model in the 
ProLB solver.

4.5.  Neutral, Stable, and Convective ABL With Canopy Effects

The present LBM-LES method is further assessed considering the flows in neutral, stable and convective 
boundary layer over a forest canopy. In this configuration, the forest is modeled as a nonuniform homog-
enized porous medium. The forest model is implemented as a volumetric source term in both the mac-
roscopic momentum and temperature equations. More precisely, altitude-dependent drag force and heat 
release source term are introduced within the forest. This heat source is assumed to be proportional to solar 
radiation; therefore, it achieves the largest value at the canopy top and diminishes exponentially through it 
with an extinction coefficient γ = 0.6,

  
 


exp( )h cS Q A
z

� (55)

The canopy-top heat flux Qh is prescribed as a constant value that defines the type of stability, name-
ly a positive source for convective case, a negative source for stable case, and no source for the neu-
tral case. The values studied in this section are, 1) Neutral BL: Qh  =  0.0  K  m  s−1, 2) Convective BL: 
Qh = 0.015 K m s−1, and 3) Stable BL: Qh = −0.0035 K m s−1. The downward cumulative leaf-area index 
Ac in Equation 55 is given by,

 hc z fA a dz� (56)

The leaf-area density af is related to the forest profile. Nebenführ and Davidson (2015) used an empirical 
profile, while a beta probability distribution profile is used by (Markkanen et al., 2003). The later solution 
is used in the present work, with parameters α = 3 and β = 2 as in (Banerjee et al., 2017), leading to
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Note that this is a dimensionless expression, which can be adapted to different forest parameters. Thus, us-
ing the same leaf-area index LAI = 4.3 as (Nebenführ & Davidson, 2015), the dimensional value of leaf-area 
density is obtained through af(z) = (LAI/h)af (z/h).
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Height (m) qt (g kg−1) θl (K) u (m s−1) v (m s−1)

0 17.0 298.7 −8.75 0

520 16.3 298.7

700 −8.75

1,480 10.7 302.4

2,000 4.2 308.2

3,000 3.0 311.85 −4.61 0

Table 2 
Initial Conditions for Cumulus Case
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The forest is assumed to be horizontally homogeneous with a drag coefficient of CD = 0.15. The drag force 
is finally evaluated as

 , ( )f i D f iF C a z Uu� (58)

Results are compared with the Navier-Stokes based reference LES simulations and field measurements from 
a forested region in the south-east of Sweden reported in (Nebenführ & Davidson, 2015). The computational 
domain size is 400 × 400 × 400 m with a canopy of height h = 20 m. The flow is driven by a geostrophic 
wind such as Ug = 5 m s−1, Vg = 0 m s−1, and the Coriolis parameter is set equal to f = 1.22 × 10−4 s−1. The 
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Figure 8.  Mean profiles (convective cumulus case).
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initial temperature is uniform, with θ = 300 K. Lateral boundaries are periodic, a free slip condition with a 
sponge layer of thickness 50 m is imposed on the top boundary, and while bottom boundary is assumed to 
be adiabatic with Monin-Obukhov relationships for velocity. The simulations were performed over 3 h of 
physical time, and results were averaged over the last hour. A uniform grid with Δx = 4m with Δt = 0.03 s 
as applied in the simulation within the canopy.

Results for the neutral case are displayed in Figure 9. The field measurements uncertainties are represented 
with error bars. Note that the lowest field measurements were taken at z/h ≈ 2; therefore, the results are 
normalized with friction velocity calculated at the same height, that is,

       
1/42 2

*u u w v w�

A very good agreement is observed on both the mean velocity profile and the resolved shear stress profile.

Results obtained in the convective and stable cases are shown in Figures 10 and 11, respectively. The veloc-
ity profiles exhibit a good agreement with field measurements and simulations for the convective case, and 
also show an excellent agreement for the stable case. It is worth noting that the stable case shows however 
smaller velocities above the canopy.

Resolved and modeled vertical momentum fluxes in convective and stable ABL with canopy effects are 
also presented in Figures 10 and 11, respectively. Results are within the range of field measurements above 
z/h = 3 but deviate at z/h = 2.

The resolved turbulent vertical heat flux is shown in Figure 12. An excellent agreement between the present 
results and reference data is obtained both in convective case and stable case. In general, the present simu-
lations give smaller values on the resolved flux in top region for stable ABL, phenomena that might be due 
to the use of a sponge layer to prevent the growth of spurious wiggles and waves.

5.  Benchmarking: Complex Urban Flows
The last illustrations of the capabilities of the present LBM-LES simulation tool deal with urban flows in 
complex geometries. The first case deals with the prediction of wind in realistic urban areas, while the sec-
ond is related to atmospheric dispersion of pollutant in urban areas.
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Figure 9.  Mean longitudinal velocity profile (left) and resolved and modeled turbulent shear stress (right) predicted by the present LB-LES method in neutral 
boundary layer with canopy effect. The reference data in (Nebenführ & Davidson, 2015) are denoted by symbols. LB, lattice Boltzmann; LES, large-eddy 
simulation.
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5.1.  Wind Prediction in Shinjuku District in Tokyo

The first test case for urban flow prediction deals with the prediction of urban wind conditions, including 
wind gusts for evaluation of pedestrian comfort in the Shinjuku district in Tokyo (Jacob & Sagaut, 2018).

This configuration belongs to the data basis of the Architectural Institute of Japan. An area of 1 km2 is 
selected, including all buildings, in which mean wind field measurements are available for the sake of vali-
dation. The case of North wind is selected for the sake of illustration.

A computational domain of size 4,600 × 5,000 × 1,500 m is defined. Different grid resolutions have been 
considered. In the coarse grid, medium and fine grid cases, the smallest mesh size near solid surfaces is tak-
en equal to 2, 1 and 0.5 m, respectively. The total number of grid points ranges from 22 × 106 (coarse grid) 
to 136 × 106 (fine grid) with a value of 54 × 106 for the medium grid case.

Location of probes used for field measurements and comparisons with LBM-LES results are displayed 
in Figure 13, showing that at all probe locations (except one) numerical results are within measurement 
uncertainties.
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Figure 10.  Mean longitudinal velocity profile (left) and resolved and modeled turbulent shear stress (right) predicted by the present LB-LES method in 
convective boundary layer with canopy effect. The reference data in (Nebenführ & Davidson, 2015) are denoted by symbols. LB, lattice Boltzmann; LES, large-
eddy simulation.

Figure 11.  Mean longitudinal velocity profile (left) and resolved and modeled turbulent shear stress (right) predicted by the present LB-LES method in 
stable boundary layer with canopy effect. The reference data in (Nebenführ & Davidson, 2015) is denoted by symbols. LB, lattice Boltzmann; LES, large-eddy 
simulation.
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5.2.  Pollutant Dispersion in Paris

The capability of the LBM-LES tool to predict the dispersion of a gase-
ous pollutant in complex urban areas is now illustrated. For the sake of 
validation, the MODITIC data basis is used (Merlier et al., 2019; Robins 
et al., 2016).

The present configuration corresponds to the dispersion of a neutral gas 
released on the ground at a constant rate in the “Avenue des Champs 
Elysées” district in Paris, for which wind tunnel data have been produced. 
The main wind direction and the pollutant source location are shown in 
Figure  14, and results shown here are related to Configuration 1. The 
smallest mesh size is taken equal to H/45, where H is the mean building 
height, leading to a total number of grid points equal to 175 × 106 for the 
configuration 1.

The normalized mean pollutant concentration obtained in both wind 
tunnel experiments and LBM-LES simulations are displayed in Fig-
ure 15. It is observed that very satisfactory results are obtained, includ-
ing in small streets crossing the main avenue. This last observation 
shows that a reliable prediction of transverse diffusion in urban areas 
is obtained.

6.  Conclusion
We have described a new tool for LES of atmospheric flows in this paper. LES with the LBM was used to 
simulate dry and cloudy ABLs, along with flows in complex urban areas. The subgrid model for the LES was 
the classical Smagorinsky model with a given constant. For dry ABL we used mass, momentum, and poten-
tial temperature as governing equations, whereas for cloudy ABL, in addition to mass and momentum, we 
used liquid and vapor water specific humidities and potential temperature equations. Total water specific 
humidity is the sum of water vapor and liquid water humidities, and condensation occurs when total water 
exceeds saturation value. Governing equations were solved by the LBM and by using a finite volume scheme 
for potential temperature and water specific humidities.

To validate our LBM-LES solver, we first simulated the four basic ABL cases coming from previous intercom-
parison of LES codes. These were the neutral (Andren et al., 1994; Chow et al., 2005; Senocak et al., 2007), 
convective (Nieuwstadt et al., 1993; Schmidt & Schumann, 1989), stable (Beare & Macvean, 2004; Beare 
et al., 2006), and cloudy convective boundary layer (P. Siebesma et al., 2003). Then three extra cases for 
ABL with canopy effects were performed by our solver. The altitude-dependent drag force and heat release 
source term were introduced and assessed in the present solver compared reference data in (Nebenführ & 
Davidson, 2015).

For the neutral case, Coriolis force was added to the LBM, and simulations were performed with Δx = 16 m 
and Δx = 32 m meshes. This case was very sensitive to subgrid model, and only results with subgrid model 
were satisfactory and presented in the paper. Mean velocity profile, friction velocity and Reynolds stresses 
predicted in our simulations were in good agreement with literature results. For the convective case, we 
performed the numerical simulation on Δx = 25 m and Δx = 50 m grids with subgrid model. Average tem-
perature profile with subgrid model shows very good agreement with literature results. For stable boundary 
layer, we used Δx = 3.125 m, Δx = 6.25 m, and Δx = 12.5 m meshes with subgrid model. Mean velocity 
profile were well reproduced the supergeostrophic jet typical of stable layers. The mean profile of velocity 
and temperature were in a good agreement with references values.

In assessment of condensation scheme and interaction of forcing terms: condensation, large-scale forc-
ing, a low-level drying, and radiative cooling, the cumulus cloud case was considered by the LBM-LES 
solver. Very good agreement was obtained for mean velocity, liquid water potential temperature, and 
vapor water specific humidity on Δx = 40 m and Δx = 80 m meshes with subgrid model. Liquid water 
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Figure 12.  Resolved vertical heat flux (convective and stable canopy). The 
reference data in (Nebenführ & Davidson, 2015) is denoted by symbols and 
solid lines represent resolved vertical heat flux and dash lines represent the 
modeled part.
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compares very good to the reference result on the finer mesh, but yields pretty small values on the 
coarser mesh.

The present LBM-LES method was further assessed considering the flows in neutral, stable and convective 
boundary layer over a forest canopy. The forest was modeled as a nonuniform homogenized porous medi-
um and implemented as a volumetric source term in both the macroscopic momentum and temperature 
equations. In general, excellent agreements between the present results and reference data were obtained in 
neutral convective case and stable ABLs with forest canopy effects.

At last, the LBM-LES tool was successfully assessed considering two urban flow configurations: wind pre-
diction in Shinjuku district in Tokyo, and gaseous pollutant dispersion in the Champs Elysées district in 
Paris. In both cases, very satisfactory comparisons with experimental data were recovered.
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Figure 13.  Locations of the probes inside Tokyo Shinjuku district used for in situ field measurements (top-left), simulated normalized velocities compared with 
wind tunnel and fields measurements (top-right). and complex flow structure illustrated by Q-criterion (bottom).
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Appendix:  Condensation model by invariant variables: 1eq model
Governing equations and condensation model based on two invariant variables (mass fraction of total water 
qt and liquid water potential temperature θl) are alternatively used and denoted as 1eq model. Equations 4b 
and 4c can be combined to cancel the source term Q in a
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Figure 14.  Visualization of the simulated area around the “Avenue des Champs Elysées.” Configuration 1 is selected in 
the present article.

Figure 15.  Visualization of the normalized concentration obtained for dispersion of a neutral gas around the “Avenue des Champs Elysées.”.
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It then become more convenient to rewrite the energy conservation equation using an approximate expres-
sion of the liquid water potential temperature
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thereby canceling the source term. Where required, ql can then be computed from qt as

 max(0, ).l t sq q q� (A.5)

In that framework, however, sq  cannot be evaluated directly from Equation 5, as T is not available. It is 
instead approximated from
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where q* corresponds to Equation 5, evaluated at T = Π.θl, rather than Π.θ. Compared to the former ap-
proach, only two equations of invariant variables (θl, qt) need to be solved in the reduced model, and the 
relaxation step is replaced by a recovery procedure, which is performed using the approximate expression 
of saturation humidity following Equation (A.6). In the same approach, the subgrid fluxes are expressed as
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publication/339901171_data_ProLB_ABL) with an individual DOI number 10.13140/RG.2.2.27679.10400.
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