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Non-Negative Moment Fitting Quadrature
Rules for Fictitious Domain Methods

Grégory Legrain

gregory.legrain@ec-nantes.fr
GeM Institute, UMR CNRS 6183, Ecole Centrale de Nantes, Université de Nantes, France

Fictitious domain methods enable to solve physical problems on unfitted grids, thereby
avoiding time-consuming and error prone meshing phases. However, an accurate integration
of the weak formulation is still mandatory, leading to the need for efficient quadrature strate-
gies in the elements that are partially located in the physical domain. Various methodologies
have been proposed to this end. Among them, the design of element-specific moment-fitting
quadrature rules seems promising. However, some of the resulting weights are usually nega-
tive and the points located out of the domain which may lead to a lack quadrature stability.
In this contribution, we aim to construct quadrature rules whose weights are all positive
and points all located in the physical domain. Such rules can be constructed based on a
non-negative least square resolution of the moment-fitting equations. The resulting quadra-
ture formulas are compared to empirical quadrature rules and different variants of classical
moment-fitting quadrature rules in both 1D and 2D. Benchmarks show that non-negative
moment-fitting quadrature rules are robust and efficient although their setup cost can be
significantly higher than classical moment-fitting. Finally, their application to linear elastic
and small-strain elasto-plastic problems highlight their robustness for engineering applica-
tions.

Keywords: X-FEM; high-order; fictitious domain; quadrature rules; moment fitting;
empirical interpolation; non-negative least square

1. Introduction

Advanced engineering applications such as those encountered in the aerospace industry rely on a tight
relationship between CAD and CAE. Classical workflows make use of the finite element method which
is a very robust and proven method. However, it is now admitted that the finite element method
struggles to fully integrate with CAD, mainly due to the geometrical conversions that occur during
the construction of the mesh. Geometries are affected in the process, and the topology of the model
is lost. This is why various alternatives have been proposed in the literature in order to answer this
issue: meshfree methods [1, 2], isogeometric analysis [3] and fictitious domains among others [4]. Such
methods enable a more efficient transition between CAD and CAE. In the following, we will consider
more specifically high-order fictitious domain methods such as the Finite Cell [5, 6, 7] or the high-order
eXtended Finite Element Method [8, 9, 10]. These approaches can effectively uncouple geometry and
approximation by extending the approximation domain away from the physical boundaries, avoiding
time-consuming meshing and geometry de-featuring steps (see figure 1). In addition, the use of higher
order basis functions lead to improved convergence rates and accuracy. Let us also mention that not
all the difficulties are caused by the meshing process: usual B-REP CAD description only describes the



surface of the domains, and commonly contains hole, overlap and badly oriented surfaces [11]. Ficti-
tious domain methods can be very robust in that regard, also simplifying the treatment of image-based
applications [12, 13, 14, 15]. The flexibility and robustness of the method regarding geometrical as-
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Figure 1: Setup of a mechanical problem using fictitious domain methods.

pects is balanced by the cost of the integration of the finite element operators. Indeed, approximation
elements partially located in the physical domain have to be integrated solely in this part (see detail
on figure 1). Various approaches have been proposed for the integration of these elements (see figure 2
for a general overview). The most common and robust methods are based the use of an embedded
spatially adapted integration mesh which can be constructed based on space-tree structures (figure 2b),
with [16, 17, 18] or without [5] any further tessellation. Note that such integration strategies can also
be constructed based on specific mesh slicing approaches [19]. The main drawback of these methods lie
in the resulting assembly cost, as numerous quadrature points are involved. Alternatively (figure 2c),
coarse sub-elements can be mapped appropriately on the real geometry by means of specific mapping
strategies [20, 21, 22, 23]. In the case of linear elastic problems, volume integrals can be recast into
boundary integrals [24] (figure 2d), decreasing the number of quadrature points. Recently, the construc-
tion of ad-hoc quadrature rules based on the moment-fitting equations has been advocated (figure 2e)
[25, 26, 27]. Quadrature points are usually positioned regarding the domain on which the integration
takes place, and quadrature weights are calculated so that it is exact for a given polynomial order.
The remaining difficulties with this method are twofold: (i) the weights may not be positive, which
deteriorates the stability of the quadrature rule and (ii) the quadrature points may be located out of
the domain which preclude their use for nonlinear problems with material variables.

The main purpose of this contribution is the following: (i) propose an approach to construct efficient
and robust quadrature rules (i.e. with positive weights and quadrature points located strictly in the
physical domain); (ii) assess the behaviour of moment-fitting quadrature rules more precisely, in partic-
ular with respect to the position of the quadrature points; (iii) evaluate the use of two other appealing
quadrature rules: empirical quadratures [28] and ”quality oriented”! moment fitting quadrature rules
[29].

The rest or the paper is organized as follows: section 2 motivates this work by illustrating some draw-
backs related to the use of negative quadrature rules, section 3 presents the theoretical background for
constructing the various quadrature rules that will be compared (classical and quality oriented moment
fitting quadrature rules, but also empirical quadrature rules). In particular, strategies for the derivation
of sparse positive quadrature rules are presented. These quadrature rules are compared in section 4 in
both 1D and 2D. The influence of the position of the quadrature points will be specifically considered.
Finally, non-negative moment fitting quadrature rules are assessed in the context of fictitious domain
methods.

IThis terminology is proposed here, as the approach is not named in [29]
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Figure 2: Integration over a domain of interest {2 embedded in an element. a. Geometry; b. Sub-
grid/Finite-Cell: the element is subdivided recursively and quadrature rules are defined on
the leaves of the subdivision; c. Mapped sub-element: a coarse triangulation of the domain is
blended on the real geometry; d. Divergence theorem: volume integrals are recast as boundary
integrals; e. Moment-fitting: quadrature points are arbitrarily chosen, and the moment-fitting
equations are solved to compute quadrature weights; f. Non-Negative moment-fitting / EIM
(Empirical Interpolation Method [28]): quadrature points are automatically selected among
a set of tentative quadrature points, and the corresponding weights computed.

2. Motivation

In this section, we motivate the search for positive quadrature rules through illustrations of some
drawbacks related to the use of negative quadrature rules. First, consider the integration of a 1D pulse-
like function on a broken cell that mimics some localized thermal source effect (figure 3). An arbitrary
set of quadrature points is chosen in order to define a seventh order rule and the corresponding weights
are obtained through the moment-fitting method presented in section 3.2. The corresponding points and
weights are given in table 1: Notice that four of them are negative. The resulting approximation of the
integral turns out to be negative (—1.64637) whereas the exact integral is obviously positive (0.17725).
On the contrary, using eight points Gauss-Legendre and non-negative moment-fitting? quadrature rules
both lead to accurate approximated integrals. In real problems, this quadrature error would lead to
misleading results in the area of interest.

As a second illustration, consider the quadrature of the Runge and abs functions 1/(1 + 2522) and
|z| on [—1,1] with an increasing number of points. These two functions were chosen because the Runge
function is notably difficult to interpolate on equispaced points, and the abs function is non-smooth.
The relative quadrature errors of Gauss-Legendre and moment-fitting method on equidistant points
are compared in figure 4. In this case, moment-fitting quadrature rules are negative for more than 9
points. It can be observed that while Gauss-Legendre quadrature converges with respect to the number
of quadrature points, it is not the case for moment-fitting: This behaviour is due to the analyticity
properties of the functions of interest (see [30]). On the contrary, moment-fitting rules with positive
weights (see section 3.5) are seen to converge properly (better than Gauss-Legendre in the abs case).

2See section 3.5
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Figure 3: Integration of a pulse function on the physical part [0.1,1] of an element [0,1]. Quadrature
points are depicted as circles (red=positive weight, blue=negative weight)

Abscissa Weight
0.21261261 0.40209976
0.37117117  -1.88397568
0.47747748  15.16705032
0.50900901 -17.50788951
0.58018018  4.67401643
0.81441441  -0.18383059
0.95405405  0.41874489
0.98288288  -0.18621563

e—(x—0.55)2/0401

Table 1: Integration of the pulse function between 0.1 and 1. Order 7 moment-fitting

rule points and weights.

As a last example, consider the mechanical problem consisting of a 1D bar of length 100 mm and
section 0.75 mm?, made of an elasto-plastic material with isotropic linear hardening (Young’s modulus
10000 MPa, tangent modulus 1000 MPa, yield stress 5 MPa) fixed on its left boundary and subjected
to a uniform line load f = 0.1 MPa (see figure 5). We consider a fourth-order approximation using
integrated Legendre shape functions on a five elements mesh. Gauss-Legendre quadrature is used in all
the elements (4 points) but the middle one, where moment-fitting quadrature rules of varying order are
built against evenly spaced points (see figure 5). In the linear-elastic regime, finite element operators are
integrated exactly for an order 2 x (p—1) = 6 quadrature rule (presented in figure 5). Reference source-
displacement and plastic strain curves using a Gauss-Legendre quadrature rules in all the elements
are depicted in figure 6. The calculation is now run using quadrature rules with increasing order in
the centre element (6,14, 16,18 and 20). The evolution of the maximum number of Newton-Raphson
iterations along the 20 loading steps is presented in table 2. It is shown that the Newton-Raphson
algorithm diverges when the quadrature order is increased. The iterative procedure is seen to converge
even in some cases involving negative quadrature rules. However, the local plastic strain does not
converge in the centre element, as presented in figure 7a. On the contrary, the approach advocated in
this contribution (section 3.5) is seen to converge properly (figure 7b).

These three simple examples highlight the need for positive quadrature rules not only from mathe-
matical arguments, but also from practical issues that may be encountered in both linear and nonlinear
finite elements.

3. Efficient quadrature rules for fictitious domain methods

In this section, we introduce various approaches for the integration of finite element quantities on
cut elements. We focus on approaches based on moment-fitting (figure 2e) and empirical quadratures
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between Gauss-Legendre quadrature and moment-fitting quadratures on equidistant points.
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Figure 5: Bar subjected to a line load. Example of quadrature points in the centre element.

(figure 2f), but also propose a strategy for the construction of non-negative moment-fitting quadrature
rules.

3.1. Quadrature rules for fictitious domain methods

The objective of the design of a quadrature rule is to approximate I, the integral of a function f(x)
over a given domain {2 (see figure 2a):

1= [ 19a2 =3 i, 1)

where n, is the number of quadrature points located at x; and w; their weights. In this work, we
alm to compare various quadrature construction methods with emphasis on their accuracy and the
positivity of their weights which is a desirable property for robustness (stability of the quadrature rule)
and non-linear computations (see section 2).
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Figure 6: Bar subjected to a line load. a. Right-end displacement versus source term; b. Plastic strain

Right-end displacement

a.

distribution and mesh nodes (x).

X

b.

Order Sign Max. Iter
6 >0 4
14 <0 8
16 <0 7
18 <0 7
20 <0 00

Table 2: Bar subjected to a line load. Evolution of the number of iteration with respect to the quadrature
order in the middle element (moment-fitting quadrature rules).

3.2. Moment fitting quadrature rules

Using the moment fitting method, it is assumed that the integrand f(x) is well approximated on a given
basis of m functions H = {h;};=1,. m:

f(x) = Z Bihj(x) (2)

where §; are the coefficients of the approximation on the basis. In this paper, we will consider two
types of polynomial bases of order p, in R? namely monomial basis

H:{xiyj,i,j:O,...,pq} (3)

and Legendre basis

where L;(z) are unidimensional Legendre bases. In these expressions, full tensorial spaces are considered,
but trunk spaces [31] will also be used. The integrand in I (eq.(1)) can be replaced by its polynomial
approximation on H. This leads to the so-called moment fitting equation that defines the set of weights
that ensure a correct integration of the polynomial approximation of f:

Tq

ZhZ(X])’wJ:/th(X)dQ, iil,...,m

j=1

()

This m x n, system should be solved for the location of the quadrature points x; and the corresponding
weights w;. The number of quadrature points is also a priori unknown, but as advocated in [27] we will
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Figure 7: Bar subjected to a line load. Plastic strain in the central element. a. Moment-fitting quadra-
ture rules; b. Positive moment-fitting quadrature rules using the approach developed in this
contribution (see section 3.5).

select ng > m in the following. Solving the moment fitting equations (5) with x; as unknowns renders
the problem nonlinear. In order to recover a linear problem, the location of the quadrature points is fixed
in advance. The problem is thus solved using a classical least-square solver. It is possible to position
the quadrature points only inside (2 [32], which is more convenient in the case where material variables
have to be stored. Unfortunately, this choice seems to lead to a degradation of the conditioning of the
least square problem, and thus to a decrease of the accuracy of the quadrature rules [32]. Alternatively,
it was proposed to locate them at the Gauss-Legendre quadrature points of the approximation element,
which leads to an improved robustness [32] to the price of points localized out of the physical domain
(2. Locating the quadrature points out of the physical domain can lead to severe issues in the nonlinear
setting, especially for the update of the material variables [33]. To this end, specific strategies have
been recently proposed [33, 34].

Constructing a moment fitting quadrature rule comes to the price of integrating the right-hand side of
the moment-fitting equations and solve a least-square problem. The integration of the RHS of eqn.(5)
(surface integral in 2D, volume integral in 3D) can be re-cast as a boundary integral thanks to the use
of the divergence theorem [27], but only in the linear setting [33]. Otherwise, a sub-grid [5, 18, 16]
quadrature rule can be used. Although this strategy can be quite expensive?, it is very robust and can
be amortized in the case of non-linear problems because of the repeated assemblies. Finally, it is worth
mentioning that there is no way to make sure beforehand that the resulting quadrature weights will be
positive, even if Tchakaloff [35] has proved that such solutions exist when n, = m in the case where the
location of the quadrature points is free, and when n, > m if the points are fixed [36].

3.3. Empirical quadrature rules

Empirical quadrature rules have been first advocated in [28], as an application of the Empirical Interpo-
lation Method. One can also cite [37] where the efficiency of the method was improved. The construction
of the quadrature rule is based on the Empirical Interpolation Method which is first introduced.

3.3.1. The Empirical Interpolation Method

The Empirical Interpolation Method [28] (EIM in the following) is a general multi-purpose interpolation
procedure. It constructs at the same time interpolation points and associated basis functions. Although

3Note that it is less expensive than the integration of the stiffness matrix as the integrands are cheaper to construct
than finite element integrands.



not optimal, the method can achieve exponential convergence [28] (under reasonable conditions) and
can be applied to any domain geometry. Finally, note that the method is hierarchical, which means
that adding new interpolation points does not lead to the update of the existing set of interpolation
points and basis functions. The method was originally introduced as a mean to deal with non-affine
parametric functions in the Reduced Basis method (see [38] for a review). The method can be used to
interpolate non-parametrized functions by the following reasoning [39]: Assume that we are interested
in the interpolation of a function f(x) that belongs to a space denoted as U:

M
F) = Inlfl(x) =) Bigi(x) (6)
i=1

where Z[f](x) is the interpolation of f and {¢;}, i = 1,..., M is a set of basis functions (at least C?)
that span a space Wy C U. The link with the EIM (which was introduced for parametric functions) is
done through the introduction of a parametric generating function G(-; i) that spans U by choosing p
within a parameter domain D: U = span{G(-; u) : € D}. The construction of Wy, is done by choosing
functions ¢; within a finite dimensional subset of U spanned by G(-; u): Wy = span{G(; u) : p € E},
with = of dimension M is a finite dimensional subset of D. For example, the generating function can
be constituted by the first M/ monomials or Legendre polynomials. To summarize, we look for the best*
M terms polynomial interpolation of any polynomial function.

The EIM algorithm which is detailed in Algorithm 2 constructs in a greedy fashion interpolation
points x} (also called magic points) and basis functions ¢;. At each iteration of the algorithm, the next
function and point are those that are the most poorly approximated by the current interpolation. It is
to note that BM | the matrix of the linear system used to enforce the interpolation (see Algorithm 2
for its definition) is lower triangular with unit diagonal and therefore invertible.

Once the EIM magic points and basis functions are constructed, it is possible to compute the poly-
nomial interpolation of any input function f(x) by solving the interpolation system:

BMp = f* (7)
where fi* = f(x}). Then, we can write f = Z,,[f] = Z£1 Biqi(x)

3.3.2. Empirical Quadrature Rules

Once the empirical interpolation (6) of f is known, its integration can be approximated by:

I:AJWMQzézammmz (8)

M
%Z/ q:(x)d2 ; 9)
=182 —

ws

where w; are the weights of the empirical quadrature rule. The problem with this expression arises from
the fact that B has to be computed for every new integrand through (7). Fortunately, it is possible to

overcome this issue by recognizing that BM is a (small) invertible matrix, and thus 8 = BM ! I
This operation can be done efficiently using the dtrtri routine from Lapack [40]. Writing the previous
equation in a matricial way and inserting the new expression of 3 leads to:

I= | f(x)d2~wTBM ' (10)
2

~wT f* (11)

4The optimality condition considered here will be defined later.



Using w; rather than w; allows to write the quadrature rule in a usual manner. The quadrature points
are chosen among a set of tentative points that can be located strictly in the physical domain. However,
there is no way to ensure that the quadrature weights are positive. This drawback restricts the use
of the empirical quadrature rules to linear elastic problems. Nevertheless, we will still consider this
approach in the benchmarks presented in section 4 for comparison purpose.

3.4. Quality oriented moment fitting quadrature rules

This quadrature rule setup strategy was introduced in H. Sun’s PhD thesis [41] as a robust integration
approach for Cut-Cell methods®. In [41], this quadrature rule is used in conjunction with robust cell-
cutting algorithms and is applied in [29] in a cut-cell adaptive Discontinuous Galerkin framework. The
quadrature rule is an improvement of the moment fitting quadrature rules presented in section 3.2. The
method works as follows: First, the projection of the integrand onto the polynomial basis is obtained
through a weighted least square fit:

- m 2
F = arg mFi‘anq <Z Fihi(xq) — f(xq)) (12)

where F' are the coefficients of the projection of f on H and ¢, is the (approximate) volume of the
Voronoi cell around x4. The solution of this problem writes:

F=(vcvhtvcs (13)

where C' € R"*™ 50 that Cyy = ¢4, V is the m X ny matrix associated to the moment fitting problem
(5) and f € R™ contains f(x4), ¢ =1,...,n,. Integrating the polynomial approximation of f(x) leads
to the following definition of the quadrature weights:

w=CcVT(vcvT)~1p (14)

where w € R™ contains the quadrature weights, and b € R™ corresponds to the right-hand side
of the moment-fitting problem (5) (integral of the basis functions). Note that the weights prove to
be independent of the integrand [41]. Once the quadrature points and weights are known, a quality
measure of the quadrature rule @ is introduced:

Q=w'C'w (15)

Quadrature rules defined as (14) are proved to converge, with @ also converging to one from above,
and the quadrature weights w, converging to ¢, > 0 when n, — oo. Sun et al. [41] proposed to
choose properly the location and number of quadrature points in order to ensure that the quality of
the quadrature rule is sufficient. In particular, magic points from the Empirical Interpolation Methods
are used in this quality oriented quadrature rule whose algorithm is presented in Algorithm 3. In the
following, the algorithm is modified in order to comply to both quality and positivity requirements
(testing against both Q > Q'™ and ming{wg} > 0). Consequently, intrinsic judgement on the original
method should not be made based on the undermentioned results.

3.5. Non-negative moment fitting quadrature rules

As an effort to construct positive quadrature rules, we propose a very simple approach to enforce
the positivity of the solution of the moment fitting problem (5). A similar idea for the construction
of quadrature rules was initially introduced in [30] in the 1D setting. First, let us note that it was
proved in [35, 42, 36] that the (nonlinear) moment fitting equation is guaranteed to have solutions with
ng, = m quadrature points in {2 and all positive weights (Tchakaloff’s theorem). Unfortunately, it may

5The method was not named in [41], so that ’Quality oriented’ is proposed here.



not be possible to capture these solutions when solving the linear moment fitting equation (with fixed
quadrature points). In this case, it is still possible to find such a solution, but with n, > m points
[30, 43, 36]. In order to extract a positive solution, we recast (5) into a non-negative least square
moment-fitting problem:

Minimize|Vw — d||3 subject to w; >0,i=1,...,n, (16)

where V' are the matrix and right-hand side d which appear in (5). Such a solution can be ob-
tained through the use of efficient constraint optimization solvers such as TRON (Trust Region Newton
method) [44] or LBFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) [45]. Unfortunately,
the number of quadrature points needed to ensure the existence of a positive solution may be large,
which would hinder the efficiency of the quadrature rule (even for the ”simple” case of equidistant points
on a hypercube, it was shown that n, > m [43]).

Fortunately Davis [42, 46] proved theorem 1 which states that it is always possible to find a ”sparse”
6 positive quadrature rule based on the resolution of the moment-fitting equations, provided that n, is
sufficiently large to ensure that a positive solution exists.

Theorem 1 (Davis [42]) If a quadrature rule of order p, exists with ng, > m points and positive
weights, then a quadrature rule of order p, exists with the same points, but with only m non-zero and
positive weights.

We propose to obtain this solution by considering non-negative least square solvers such as nnls [47].

This solver is based on an active set strategy which is proved to be convergent, finite and produces a
sparse solution (see algorithm 4 for an overview). Non-negative LASSO algorithms could be equally
considered [48]. Note that if there are too few tentative quadrature points, solving (16) may fail or
converge to a solution with a large residual (due to the fact that the positive solution exists when n, is
sufficiently larger than m). In the latter case, e > 0 such that 0 < ||[Vw —d||2 < ¢, and the quadrature
rule is not exact. Nevertheless, the quadrature rule can be sufficiently accurate if € is sufficiently small.
In the following, problem (16) will be solved using the scipy’s implementation [49] of the nnls algorithm
presented in [47].
In practice, to make sure that the number of tentative points is sufficient, the non-negative solver can be
embedded into an adaptive strategy that iteratively increases the number of tentative quadrature points
if it fails to converge to an accurate solution. This approach and a recursive one targeted to fictitious
domain methods are assessed in section 5. In the following section, the set of tentative quadrature
points is built using a regular grid, but any random or quasi-random sampling of the geometry could
be used. Like the empirical interpolation method, the approach selects at most m quadrature points
from the tentative set and computes the associated weights (see figure 2f).

4. Quadrature rules benchmarks

We present here various benchmarks in order to compare the quadrature strategies detailed in the
previous section. Both 1D and 2D benchmarks will be considered, and the accuracy of the integration
of both polynomial and non-polynomial quantities is assessed. The quantity that is chosen to compare
the methods is the relative error on the integration of an integrand function f :

I, —1,

. (17)

€pr =

where e, will be called Relative error in the following section, I., is the exact value of the integral of f on
the domain of interest, and I, is the value of the integral obtained by one the methods that are compared.
Note that in all the examples of this section, the integrals that are involved in the construction of the

6i.e. with m non-zero weights.
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quadrature rules are obtained through symbolic calculations using the sympy python library[50]. This
ensures that we are actually comparing the quadrature rule construction methods. In addition, the
tolerance for the non-negative least square solver is set near to machine accuracy (10~1°).

4.1. 1D benchmarks

The 1D benchmarks considered hereunder serve the two following objectives: (i) verifying the perfor-
mances of the four methods mentioned above in the case of polynomial integrands; and (ii) assessing the
dependency of the accuracy of moment-fitting approaches (classical and non-negative) on the location
of the quadrature points in the case of non-polynomial integrands.

4.1.1. Verification for polynomial functions

We consider the integration of polynomial functions of different orders p = 1,...,Pmax (Pmax = 10)

n [—1,1]. Quadrature rules of order p, = 7 are defined. Moment-fitting based quadrature rules are
obtained using both monomial and Legendre basis (cf eqns.(3) and (4)). py + 1 evenly spaced points
are selected for building these rules. The relative integration error e, with respect to p is plotted in
figure 8. Note that random polynomial functions are used as integrands. As expected, all rules are
exact up to machine precision as long as p < p,. Note also that all the quadrature rules have positive
weights for this example. Let us also stress that this desirable feature is enforced by construction in
the case of non-negative moment fitting rules and for the quality oriented quadrature rule (denoted as
Sun et al. in the remaining figures).

—— Moment Fit. Legendre (ip=8, Sign>0)

Moment Fit. Monomial (ip=8, Sign>0)
1073 { —e— Non-Neg. Moment Fit. Legendre (ip=8, Sign>0)
—#— Non-Neg. Moment Fit. Monomial (ip=8, Sign>0)
—— EIM (ip=8, Sign>0)
1 —< Sunetal. (ip=8, Sign>0)

Relative error

10-15

10-18 |

10-21

1 2 3 4 5 6 7 8 9 10
Polynomial order

Figure 8: Evolution of the relative error e, with respect to the polynomial order p of the integrand. All
quadrature rules are of order 7.

4.1.2. Influence of the position of the quadrature points on the accuracy

In a second verification benchmark, we look for the integration of a non-polynomial function f(z) =
sin(rz) in [0,1]. A non-polynomial function is chosen here because, as highlighted in [41], despite
the fact that a quadrature rule of order p, can integrate exactly the first p, terms of the polynomial
approximation of f, the rule may magnify the error associated to the remaining higher order terms.
One of the objectives of this benchmark is to study the interplay between the location of the quadrature
points and the actual accuracy of the quadrature rule. A set of 1000 tentative evenly spaced quadrature
points are first defined in [0, 1]. Then, n, of them are randomly picked and used as quadrature points
for the construction of classical and non-negative moment fitting quadratures (order p, = 7 hereunder).
These points also serve as candidate points for the EIM and quality oriented moment fitting. It is
important to mention here that no matter the location of the quadrature points, the resulting quadrature
rules integrate polynomial functions of order p, within machine accuracy. We gradually increase the
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Rule type r % positive % inaccurate

Classical. 1 0.3 1.5
Classical. 5 66 0.
Classical. 10 92.1 0.
Non Neg. 1 100 99.8
Non Neg. 5 100 10.5
Non Neg. 10 100 0.5

Table 3: 1D scattering: Rules positivity and failure ratios.

amount of (tentative) points from n, = (pg + 1) to ng = r x (py + 1) (r = 5,10) in order to study the
behaviour of the quadratures against this parameter. The corresponding results are depicted in figure 9
and compared to Gauss-Legendre, EIM and quality oriented moment-fitting (which are all positive here).
We can observe that although the average accuracy is on par with the other methods, moment-fitting
quadrature rules display a scattering between four and six orders of magnitude. Increasing r has a small
influence on the average but clearly decreases the scattering. Non-negative moment-fitting quadratures
also lead to such scattering, but to a smaller extent. This is due to the fact that only converged rules are
kept: for lower r, the majority of the random draws lead to low accuracy rules as positive solutions do
not exist, T'chakaloff’s theorem being not satisfied for such a few tentative points. Positivity and failure
ratios are displayed in table 3: one can observe that for low 7, positivity is hard to achieve, but that the
ratio growths significantly with = (which is consistent with Tchakaloff’s theorem). Non-negative rules
are always positives, but the lower the size of the tentative set, the harder the algorithm converges. The
filtering of the non-converged solutions explains the low scattering for r = 1 in figure 9. Finally, it is
noticeable that, for a given quadrature order, increasing the amount of quadrature points from its strict
minimum (r = 1) leads to more accurate rules for classical moment-fitting (two orders of magnitude
from r =1 to r = 5 here).

10'{ --- EIM (8 pts)

—-= Sun et al. (8 pts)

----- Gauss Legendre (4 pts)

10714 ~§— Classical Moment Fit. Legendre (8-80 pts)
~§~ Non-Neg. Moment Fit. Legendre (8 pts)

Relative error
-
<

Figure 9: 1D scattering: Relative errors for 1000 evaluations with n, = r X (p, + 1) random quadrature
points. Average and dispersion of the resulting moment-fitting rules are depicted. Gauss-
Legendre, EIM and quality oriented moment fitting error are depicted as constant dashed
lines (as they operate with already fixed quadrature points).

4.1.3. Partial conclusion

Based on these two simple 1D examples, important conclusions can be drawn. First, the accuracy
of moment fitting quadrature rules (both classical and non-negative) can be strongly affected by the
location of the quadrature points in the case where non-polynomial functions have to be integrated.
The positivity of the classical moment fitting quadrature rules is seen to depend on the choice of the
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quadrature points (number, but also location). Scattering and negativity of the quadrature rules can
be decreased by increasing the number of points in the quadrature. Second, EIM and quality oriented
quadratures are very accurate and automatically select the best set of quadrature points. Concerning
non-negative moment-fitting, an increase of the amount of tentative points improves both scattering
and error level (like classical moment fitting). Quite large sets of tentative points are necessary for the
algorithm to converge with a proper failure ratio. In practice (see section 6), the residual is used as a
criterion to check whether the number of tentative points has to be increased. Increasing the number of
tentative points has no influence on the cost of the final quadrature rule, as the algorithm always selects
the best p, + 1 quadrature points (and even less in some cases, due to the tolerances in the algorithm).
Finally, note that the second illustration presented in section 2 also highlighted the good properties of
non-negative moment-fitting rules for more challenging functions (Runge and abs functions).

4.2. 2D benchmarks

In this section, we focus on the integration over partial domains that are encountered in the calculation
of elementary quantities with fictitious domain methods. Three geometries are considered hereunder
(see figure 10). They all represent the integration over a square element (z,y) € [0,1]? filled with
different geometries. Again, we are interested in the accuracy of the approximated integral on the

Y Y Y

T T xr

Figure 10: Integration domains for the 2D benchmarks. From left to right: triangular domain, quarter
circle, corners (d = 51072 here). The element side is 1 in all cases.

subdomains through its relative error e,. We conducted benchmarks similar to those presented in 1D.
As the objective is to use these quadrature rules for nonlinear problems, quadrature points were chosen
exclusively inside the physical domain. These points are obtained by defining a regular grid of point,
keeping only those located in the domain. These tests are not presented here” and led to the following
conclusions for polynomial integrands:

e The accuracy of the moment fitting approaches strongly can depend on the geometry. It can be
close to machine precision (triangle) or quite large (quarter circle and corners). This behaviour
was also highlighted in [32] and imputed to the conditioning of the moment-fitting equations. This
motivated the authors to locate their quadrature points at Gauss-Legendre quadrature points (and
thus out of the domain of interest which is not convenient for nonlinear materials). Interestingly,
the closer r to one, the worse the behaviour of the classical moment fitting. Larger r enables to
recover machine accuracy;

e Non-negative moment fitting quadrature rules lead to accuracies similar to classical moment fitting
provided that the set of tentative points is sufficiently large. The size of this set depends both on
the order of the rule and on the geometry. Also, the higher the order of the rule the larger the
size of the tentative set needed to converge;

7Some raw material is however given in B

13



e Quality oriented quadrature rules lead to positive quadrature schemes, but also a somewhat larger
error level. This error level seems to be linked to the stability of the QR factorization that is needed
for the construction of the quadrature rule;

e EIM seems to be the more robust approach, despite the fact that the quadrature scheme is negative
for the three cases presented here;

Scattering benchmarks conducted with non-polynomial integrands led to the following conclusions:

e With respect to the results presented in 1D, more points were needed for Tchakaloff’s theorem to
hold (r = 10 led to less than 7% of positive rules for classical moment-fitting);

e A scattering in the accuracy of randomly generated rules is still noticeable;

e Larger tentative sets (with respect to 1D) may be needed so that the non-negative least square
solver can converge to the requested accuracy, depending on the geometry;

e For a given quadrature order, increasing r lead to more accurate classical rules (between 3 and 6
orders of magnitude accurate in average by increasing r from 1 to 5). If converged, non-negative
quadrature rules are not significantly influenced by the value of r.

4.2.1. Accuracy comparison with Gauss-Legendre moment-fitting

We now compare the accuracy of non-negative moment fitting quadratures to EIM quadratures and
classical moment-fitting quadratures on Gauss-Legendre points (advocated in [32]). Indeed, this last
approach is the state of the art for the use of moment-fitting quadrature rules in the context of fictitious
domain methods. Fighth order quadrature rules are considered here, and figure 11 illustrates the
location of the resulting quadrature points in the case of the triangular geometry presented in figure 10.
In the case of the EIM and non-negative moment-fitting, the points are selected by the algorithms
among the tentative set of points whose construction was presented in the previous section. Let us
mention that tensor product bases are used here in order to compare the three methods with the same
number of quadrature points (81).

EIM Gauss Legendre moment fitting Non-negative moment fitting
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Figure 11: 2D domains, accuracy comparison with EIM and classical moment-fitting. Resulting points
for quadrature rules of order 8. From left to right: EIM, moment fitting based on Gauss-
Legendre points, non-negative moment fitting.

The error levels for polynomial and non-polynomial functions are given in table 4. We can observe that
all the quadrature rules are exact up to machine precision if the integrand is a polynomial function.
EIM and non-negative moment fitting quadratures are very consistent and usually lead to the best
accuracy (although the EIM quadratures are not positive here). In addition to be negative, moment-
fitting quadratures based on Gauss-Legendre points are not as consistent as they depend quite heavily
on the geometry. In fact, this behaviour is in line with the conclusions of the previous section in terms of
the influence of the location of the quadrature points. Only the triangular case leads to results that are
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more accurate than EIM and non-negative moments fitting. This seems to be linked to the symmetry
of the geometry: Gauss-Legendre quadrature points are optimal on the square (full) domain, leading
to an accuracy of order 2p, — 1. This order of accuracy is preserved in the triangular case because of
the symmetry of the geometry and quadrature points with respect to the diagonal of the square. In the
case where the height of the triangle is halved and with the non-polynomial integrand, EIM and non-
negative quadratures lead to an error of 1.121077 and 1.44 10~ respectively, whereas moment-fitting
on Gauss-Legendre points leads to 3.69 107%. The convergence of the quadratures is finally monitored
for this last geometry (1 x 0.5 square triangle) by increasing the quadrature order from 4 to 14 with a
more complex (but regular) integrand: f(z,y) = sin(2.17 z) sin(6.37y). The corresponding results are
presented in figure 12: it is shown that all approaches converge due to the regularity of the integrand.
Gauss-Legendre moment-fitting and EIM converge at the same rate, but with a lower level for EIM
(three orders of magnitude). Non-negative moment-fitting converges at a higher rate, further improving
the error level.

Integrand GL Moment Fitting Non-Neg. Moment Fitting EIM
Triangular

Polynomial 7.310715 0. 2.6110713

Non-polynomial 4.27107° 2.11074 2.66104
Quarter circle (Radius 1.0)

Polynomial 7.921071° 9.010716 2.3410714

Non-polynomial 1.17107° 2.41107° 2.511078
Quarter circle (Radius 0.2)

Polynomial 1.241016 1491071 3.7107 1

Non-polynomial 121078 3.2310712 8.7710713

Corner
Polynomial 5.951071° 4.110716 8.32107 11
Non-polynomial 2.671073 1.57107 2.431078

Table 4: Comparison of the error levels of various quadrature rules of order 8. All the quadrature rules
involve 81 points. Polynomial integrand: random polynomial of order 8. Non-polynomial:
sin(mz) sin(37y) for triangular and corner geometry; 5=(r® — 1) + r2cos(26) for the quarter
circle. Refer to figure 10 for the geometries.
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Figure 12: Convergence of EIM, Gauss-Legendre moment-fitting and non-negative moment-fitting for
increasing quadrature order on a 1 x 0.5 square rectangle.
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4.2.2. Partial conclusions

These 2D benchmarks allow to refine the conclusions drawn in 1D: First, it is increasingly complicated
(if not almost impossible) to construct a positive moment-fitting quadrature rule with fixed quadrature
points when the spatial dimension increases, due to a prohibitive number of quadrature points. Second,
quality oriented moment-fitting quadrature rules are also more difficult to build if positivity has to
bee enforced (we were not able to construct such rules for some geometry/order couples with orders
close to p; = 18 — 20). Third, EIM quadrature rules are robust and efficient but are usually not
positive. Fourth, non-negative moment fitting quadrature rules lead to sparse and positive weights.
Their accuracy depends on the number of tentative quadrature points that should be sufficiently large
so that Tchakaloff’s theorem holds. Once these requirements are taken into account, non-negative
moment-fitting approaches lead to the best compromise in terms of quadrature efficiency (low number
of quadrature points) and accuracy. However, the setup cost of the method has to be assessed, which
is the objective of the next section.

5. Cost assessment and improvement

We now focus on the additional cost brought by the use of the non-negative moment-fitting method.
The focus is made on the 2D examples introduced in the previous section. First, a micro-benchmark
targeted at the cost of the use of nnls rather than a classical least square solver is considered. Second, an
approach is proposed to ensure the satisfaction of Tchakaloff’s theorem. Finally, the different methods
are compared on the three 2D representative cases presented in section 4.2.

5.1. Cost comparison with classical moment-fitting

Compared to classical moment-fitting approaches, the main significant overheads are (i) the use of a
non-negative least square solver while computing the quadrature weights and (ii) the extra size of the
moment-fitting problem (due to the higher number of tentative points).

In order to quantify this overhead, the time spent to solve the moment-fitting problem is measured and
compared for classical least-square and non-negative least-square solvers (respectively numpy’s lstsq
and scipy’s nnls). More precisely, 1stsq relies on Lapack’s dgelsd, whereas nnls relies on the fortran
implementation presented in [47] (which does not make use of any BLAS directive). This is why single-
threaded timings will be considered in the following. The monitoring of the relative solving time (nnls
time divided by lstsq time) is measured for increasing quadrature orders and numbers of quadrature
points (tentative for nnls), see figure 13. The number of basis functions is used as x-axis rather than
the order of the quadrature (which ranges from 1 to 19). This figure highlights the computational
overhead associated to the use of the non-negative least square solver rather than the classical one.
These curves underline a close to linear dependency of the overhead with respect to the number of basis
functions. We can observe that this algorithmic change leads to an increase of the computational time
of at most one order of magnitude in the most unfavourable case with large quadrature order and large
r (defined as follows: ny = r x m where n, is the number of quadrature points and m the number of
basis functions for a given quadrature order). On the contrary, if r is small (of the order of 1), then the
overhead drops below 2 (provided that nnls converges for this small amount of tentative points). It is
interesting to note that in this case nnls can even outperform lstsq.

We finally consider the worse case scenario (figure 14) where the timings are normalized with respect
to moment fitting quadratures with ny, = m (i.e. the cheapest quadrature rule using this approach,
which will inevitably be negative). Logarithmic scales are used here, so that a m3/? raise can be
highlighted asymptotically, independently of . With this new reference time, the cost penalty is very
large and increases up to two orders of magnitude. Again, we can also observe that when r is moderate,
we can actually expect a speedup for low order quadratures. These curves also enable to extrapolate
the overhead for 3D problems (with this particular solver): it turns out that for an order 16 quadrature
rule in 3D, we can estimate the overhead to range between 100 and 1000 times depending on r. These
results motivate the use of ad-hoc strategies to improve the robustness and efficiency of the method.
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Figure 13: Cost comparison: relative time versus the number of basis function for order 1 to 19 rules.
Coefficient r is defined as follows n, = r x m where n, is the number of quadrature points
and m the number of basis functions for a given quadrature order. a. Corner, b. Quarter
circle and c. Triangle. See figure 10 for an illustration of the geometries.

Note also that all the conclusions drawn in this section are closely related to the implementation
of the non-negative least square solver. We also let the solver converge up to machine precision when
possible which may be overkill for rules of moderate order. More efficient large scale solvers like ASA
[51] or SBB [52] would mitigate this issue. In particular, Luo and Duraiswami proved that a careful
implementation of the nnls algorithm together with multi-threaded BLAS could lead to remarkable
speedups [53]. In addition, it is very important to bear in mind that (i) the setup of the quadrature is
done once, while the quadrature itself may be used several times, especially for nonlinear problems and
(ii) ths resolution of the moment fitting equations is one step in the creation of the rule: constructing
the matrix and integrating the right-hand side of the system have a cost, so that the overhead depicted
in these micro-benchmarks is pessimistic upper-bounds, as it will be shown in the next sections.

Time Non-Neg. Mom. Fit. / Time Mom. Fit. (r=1)

Time Non-Neg. Mom. Fit. / Time Mom. Fit. (r=1.)
Time Non-Neg. Mom. Fit./ Time Mom. Fit. (r=1)

Figure 14: Cost comparison: relative time versus the number of basis function for order 1 to 19. Coef-
ficient r is defined as follows ny = r x m where n, is the number of quadrature points and
m the number of basis functions for a given quadrature order. The overhead is measured
with respect to the cheapest moment-fitting quadrature. a. Corner, b. Quarter circle and c.
Triangle. See figure 10 for an illustration of the geometries.

Comments on matlab’s Isqnonneg Matlab® provides an implementation of the non-negative least
square solver proposed by [47]. We do not advocate the use of this implementation because of the
following reasons: (i) While it seems to be relatively fast (sometimes faster that nnls Fortran imple-
mentation), its default accuracy is not sufficient for the class of problems considered here. (ii) Decreasing
the tolerances makes the algorithm more accurate, but significantly slower than the Fortran implemen-
tation in our tests. This stems from the fact that the algorithm is not exactly the one used in nnls.

8R2018b here.
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The latter implements partial updates of the unconstrained least square resolutions and also takes into
account the use of finite precision arithmetic in the implementation.

5.2. Performances improvements

As presented in the last section, we aim at keeping the overall cost of the setup of the quadrature rule
as small as possible.

5.2.1. Adaptive algorithm

One possible path is to keep the size of the moment-fitting problem as small as possible, but sufficiently
large to cope with Tchakaloff’s theorem. We propose here to select r arbitrarily (but small for efficiency
purpose) then increase it until a converged solution is found (see algorithm 1). Extra resolutions may
be involved if the solution is not found at the first try, but the number of quadrature points being
small, the cost is expected to be moderate. The increase of the size of the tentative set can be done
in many ways: for example through a regular grid of points of increasing resolution (similar to [32]),
or by using the quadrature points resulting from rules of increasing orders built on the space-tree +
level-set tessellation (see figure 15 a). Thanks to the developments detailed in the next subsection,
the convergence of this second enlargement strategy is actually provable (although there is no mean to
ensure that it is more efficient than the regular grid strategy).

Data: Quadrature order p, Residual tolerance tol

Result: Non-negative quadrature rule in dimension d: {(z;,w;)}i=1...(p11)4
1r=1;

2 Build the moment fitting right-hand side h;

3 do

4 | Set ng >r(p+1)? tentative points;

5 Build the moment fitting operator V;

6 Find the non-negative least square solution of Vw = h;
7 Compute the residual of the solution &;

8 Increase r;

9 while € > tol;

Algorithm 1: Non-negative moment-fitting quadrature: adaptive algorithm.

5.2.2. A recursive algorithm

The main theoretical difficulty for constructing non-negative quadrature rules at first try is the neces-
sity to satisfy Tchakaloff’s theorem. It turns out that in the case of fictitious domain methods, an
upper bound for r can be found. Let us consider the case of the quarter circle from figure 10. If the
corresponding element is treated using a level-set representation, then a tessellation of the physical
part of the element is already available from the space-tree 4 level-set quadrature although it contains
too many sub-elements (see 15 a). Yet, the amount of sub-elements can be decreased through a local
tessellation from the boundaries (see 15 b). If we attach standard (positive) quadrature rules of order
pq to these sub-elements, then the rule composed by the union of all the quadrature points and their
associated weights is solution of the moment-fitting equations. All the weights being positives, then this
set of points satisfies Tchakaloff’s theorem, and from Davis’ theorem (theorem 1) nnls will be able to
extract a sparse and positive solution. This set of points thus gives a proven working set of quadrature
points ready to be sparsified. However, this set of point must rather be considered as an upper bound
given its large size: working directly with these points would be too expensive.

We thus propose a recursive approach that will render practical the work on this set of points. The
procedure depicted in figure 16 works as follows: First, the quadrature mesh is partitioned hierarchically,
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Figure 15: Base quadrature meshes: a. sub-grid/space-tree; b. boundary tessellations

a. b.

Figure 16: Different levels of recursion of the base quadrature mesh and associated quadrature rules.
Circles represent the set of tentative points at each level. Filled circles are chosen by the
non-negative least-square algorithm.

see the colours in figure 16 a. The quadrature points on the individual elements in the partition are
used to construct a set of non-negative quadrature rules (one for each group of elements corresponding
to a partition). The number of elements in the partitions of this first level is chosen so that the moment-
fitting system is small and therefore solved efficiently by nnls (see previous section). In a second step
the partitions of the first level are used to define second level partitions (see the colours in figure 16 b).
Again, the union of the set of points obtained at the previous step satisfies the moment-fitting equations,
making possible to use these points to find a sparse positive solution to the equation. The process is
reproduced recursively until the final quadrature is obtained. By means of this strategy, it is possible
to construct efficiently non-negative moment-fitting quadrature rules without solving any large problem
and with a provable convergence.

5.3. Cost comparison for the overall construction of moment-fitting rules

In this section, we monitor the efficiency of the two methods proposed in section 5.2. The whole
construction process is considered here, not only the resolution of the moment-fitting equations as done
in section 4.2.1. We monitor the construction time for the three geometries presented in figure 10 in a
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Geometry Elts. in tesselation Tclassical tadapt./tclass. trecur./tclass.

Quart. circle 4308 9.78 11.49 3.02
Quart. circle coarse 43 1.17 5.67 7.49
Triangle 3208 7.27 10.49 3.65
Corners 1622 3.68 1.21 3.58
Sliver 1708 3.87 1.15 3.15

Table 5: Performance assessment for adaptive and recursive constructions of the quadrature rules. tqqss.
corresponds to the classical moment-fitting approach, t,4apt. to the adaptative algorithm from
section 5.2.1 and tyecur. to the recursive algorithm from section 5.2.2.

single threaded context. Note that all the algorithms are centred around the use of the tessellations for
integrating the right-hand side of the moment-fitting equations and choosing the quadrature points. In
particular: in the case of classical moment-fitting, the set of quadrature points is obtained by raising
the order of the base quadrature rule (on the tessellation) until » > 1. This approach avoids the
construction of voxelizations of the geometry as presented in [32]. The downside is that the number of
quadrature points can increase rapidly and may lead to unnecessary large r. The same strategy is used
for the adaptive algorithm 1. Thanks to Tchakaloff’s upper bound, we know that a solution will be
found at the latest when the order of the base rule reaches the order of the requested moment-fitting
rule.

Order 20 quadrature rules are constructed using local tessellations built from a space-tree with 8 levels
of recursion, and results are presented in table 5. Numbers show that the proposed point placement
method is not optimal for classical moment-fitting as the number of quadrature points can be quite
large (r > 1). It is however well adapted to the non-negative moment-fitting approach as it makes the
recursive method possible and renders the increase of the tentative set easy in the adaptive algorithm.
We can also see that in this case, the overhead due to the non-negative construction of the rule can
be restrained with the use of the two proposed algorithms. From the different testcases, the recursive
algorithm led to the most consistent results although it can be outperformed by the adaptive one in
some cases.

6. Application to realistic testcases

Non-negative moment fitting quadrature rules are now applied to fictitious domain mechanical test-
cases. Both linear elastic and elasto-plastic problems will be considered, with focus on the influence
of the quadrature rules on the accuracy of the solution, and its robustness. Like with the verifications
presented in the previous section, a set of ny; tentative quadrature points is generated in the matter part
of each element. The non-negative moment fitting approach presented in section 3.5 is then applied
to select ng quadrature points among the tentative points, and the associated positive weights. As
presented in the last sections, an insufficient number of tentative quadrature points can lead to a failure
of the non-negative least square solver. To ensure that the quadrature rule has a proper accuracy, the
recursive strategy from section 5.2.2 is considered. In addition, it is worth noting that in this section
the right-hand sides of the moment fitting equations are integrated on the quadtree quadrature sub-
grid. The cost of this procedure is moderate as it corresponds to the integration of standard scalar
valued functions, which is far less costly than integrating finite element quantities. In the linear elastic
case, this part could be speeded-up by the use of the divergence theorem which enables to integrate on
lower dimensional domains [32, 26, 25, 27]. In the elasto-plastic case however, this approach cannot be
considered.

6.1. Linear elasticity

We first present a common verification example: consider an infinite plate with a circular hole in its
centre which is loaded in uni-axial tension o, = 1.0 MPa along x axis (see Figure 17). The analytical
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Figure 17: Infinite plate with a hole subjected to uni-axial tension: geometry and approximation mesh.

solution of this problem is given in [9] and is used here as a reference solution for error monitoring.
A square of length L = 2.0 mm with a circular hole of radius a = 0.3 mm at its centre is considered.
Finally, tractions computed from the exact solution are applied on the boundary of the domain, and
three degrees of freedom (dofs in the following) are prescribed to zero in order to avoid rigid body
motion. The exact solution of this finite problem is therefore the same as the exact solution inside the
boundary. Young’s modulus is set to 1.0 MPa, and Poisson’s ratio to 0.3. A p-convergence study is
performed for p = 1 to 12, and the error in the energy norm is monitored with respect to the number of
dofs and quadrature points. The approximation mesh is composed of 4 x 4 quadrangular elements with
Legendre hierarchical shape functions. A sub-grid quadrature rule is considered here [5, 18, 16], even
if more efficient rules such as [19] are also available. After adaptation, the geometrical mesh size hg is
set to hy = h/128 near the interface if h is the mesh size of the approximation mesh, see figure 18a.
The 2116 quadrature points obtained by non-negative moment fitting for a quadrature order p, = 22
are shown in figure 18b for a 2 x 2 approximation mesh (529 quadrature points per element). The case
of the 4 x 4 mesh is also shown in figure 18 c: one can observe that a quadrature of order p, = 22
is used in the cut elements whereas a tensor product quadrature rule of order p, = 2 is used in the
other elements (p = 2 for this particular illustration). This is due to the fact that it is more efficient
to generate a quadrature rule once for all in the cut elements and use it for any p order used in the
approximation. On the contrary, the quadrature rule is linked to the approximation order in the other
elements. This strategy may seem inefficient, but it is not the case as the use of a sub-grid quadrature
rule of order 1 already leads to 8892 quadrature points, whereas the one presented in figure 18¢ (which
is accurate up to order 22 in the partial elements) involves less quadrature points (2224).

The evolution of the error in the energy norm with respect to the number of degrees of freedom
is plotted in figure 19a for the mesh and quadrature points depicted in figure 18c. As expected,
the convergence is exponential in the pre-asymptotic range, then levels-off for the coarser geometrical
approximation as the geometrical error becomes to dominate. The error is plotted as a function of the
number of quadrature points in figure 19b: it can be seen that, as expected, the non-negative moment
fitting strategy is clearly more efficient than the sub-grid quadrature rule in terms of accuracy per
quadrature point. The small increase of the number of quadrature points during the p convergence
stems from the dependence of the quadrature rules to the polynomial order in the elements that are
fully in the matter. It is also important to note that increasing the depth of the quadtree to improve
the geometrical accuracy has no influence on the number of quadrature points, as they solely depend on
the order of the quadrature rule (and not to the amount of integration cells in the geometrical mesh).

One should acknowledge that setting-up the quadrature rule has a cost. In the example depicted in
figure 18¢, the cost of a unique calculation with p = 12 (including the setup of the quadrature rule)
is already 57% lower than the cost of a calculation with sub-grid quadrature. Most of this time is
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Figure 18: Plate with a hole: a. approximation mesh (blue lines) and integration cells (hy = h/128);

b. Quadrature points of order p; = 22, 2 x 2 approximation mesh; c¢. Quadrature points

order p, = 2 elsewhere (4 x 4 approximation mesh)
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Figure 19: Plate with a hole: convergence. a. With respect to the number of dofs; b. With respect to
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Young’s modulus [Pa] 217.510°

Poisson coefficient [-] 0.3
Hardening modulus [Pa] 5 10°
Yield stress [Pa] 250106

Table 6: Elasto-plastic material coeflicients.

spent in the construction of the quadrature rule (98.8%). This means that the assembly phase can be
quickly amortized if multiple assembly is necessary. Indeed, this is the case here as we are working in
an adaptive environment: if the whole p convergence is considered as the timing of interest, then the
non-negative moment fitting quadrature strategy is 571% faster than the sub-grid quadrature.

6.2. Elasto-plastic problems

The advantage of having positive quadrature rules is more visible for nonlinear problems, as the stability
of the quadrature rule can have a noticeable influence on the convergence of the iterative algorithms (see
section 2). Moreover, this application involves multiple system assembly even at fixed p: we expect the
non-negative moment fitting strategy to be significantly faster than the sub-grid quadrature approach.
We consider elasto-plastic problems with von Mises yield criterion (J3) and linear isotropic hardening
under the small strain assumption. The material properties used for all the examples are summarized
in table 6.

6.2.1. Plate with a hole

€x

Figure 20: Plate with a hole subjected to uniaxial tension: a. geometry; b. final displacement.

The first elasto-plastic case uses the geometry of the previous section. The plate (Imx1m) is now
subjected to a uniaxial traction in the vertical direction by means of a prescribed displacement on its top
boundary (10 mm) (see figure 20a.). This top displacement is imposed gradually in 100 loading steps,
leading to the deformed configuration depicted in figure 20b. A reference solution is computed using a
linear approximation on a grid involving 256 elements along each direction (122917 dofs). High order
approximations on a 16 x 16 grid with p = 2,4 and 8 are considered in order to monitor the convergence
of the solution (resp 1557, 4093 and 15021 dofs). The geometrical accuracy is fixed to hy = h/64. The
final plastic zone for p = 8 is presented in figure 21 for both sub-grid and non-negative moment fitting.
A very good agreement can be observed although the first involves 585600 integration points versus
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only 26 734 for non-negative moment fitting. It is interesting to note here that the Newton-Raphson
iterative process was not able to converge when using classical moment-fitting quadratures (with points
inside the physical domain) due to the negativity of the weights. As highlighted in section 4.2, an
increase of the amount of quadrature point tends to lead to positive rules which, in this case, allowed
the Newton-Raphson algorithm to converge properly.

a. b c.

Plastic strain [-]

le12 0.00564 0.0113 0.0169 0.0226 0.0282 0.0338 0.0395 0.0451 0.0508 0.0564
L

Figure 21: Plate with a hole subjected to uniaxial tension: Plastic strain. a. Reference linear compu-
tation; b. p = 8 sub-grid; c¢. p = 8 non-negative moment fitting. The grid pattern in b. and
c. is linked to the structured nature of the underlying mesh.

The force-displacement curves are compared in figure 22. One can observe the convergence of the
high-order results towards the reference solution when p increases (figure 22a). Also, the high order
solution is as efficient as the linear solution as early as p = 4, with 30 times less dofs. Perfect accordance
between sub-grid and non-negative moment fitting is also observed (figure 22b).

2.5
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1.54

Resultant force [N]
Resultant force [N]

—— p =2 Non-neg. moment fitting
—&— p =4 Non-neg. moment fitting
—>— p =8 Non-neg. moment fitting

0.5

—+— p =8 Non-neg. moment fitting

—-=-- p=1 Reference é —&— p =8 Sub-grid
0.04 T T T T T T 0.0 T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010
Top displacement [mm] Top displacement [mm]
a. b.

Figure 22: Plate with a hole subjected to uniaxial tension: Force-displacement curve. a. comparison

with the reference computation; b. comparison between sub-grid and non-negative moment
fitting.

The costs of the computations are also compared in figure 23a where it can be observed that a
tremendous amount of time can be saved thanks to the small number of quadrature points involved.
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Looking more closely at the moment-fitting computations (figure 23b), we can conclude (i) that the
preprocessing time is of negligible influence in the timings and (ii) that increasing the polynomial order
mainly leads to an increase of the relative cost of the assembly of the finite element operators.

0.6

1.01 mmm Residual 1.0 mmm Residual
B Tangent B Tangent
I Preprocess I Preprocess

0.8 1 mmm Update 0.8 mmm Update

0.6 4 .6

0.44 .4 4

0.2 .2 4

0.0 —_ — — 0.0

Time
Time

0.4
0.2

Qv Qv &> > & 53 Qv > &
& & §° & & & & &
{,,o" ‘\o@ :,50 ‘,\o& r,\"o \,‘o& e\o@ \“0@ ‘\o@
& & & & & &
& & & & & &
a b.

Figure 23: Plate with a hole subjected to uniaxial tension: Timing comparison. Residual, Tangent, Pre-
process and Update stand respectively for the cumulative time for the residual computation,
the assembly of the tangent operator, the moment fitting processing time and the update
of the material variables at the quadrature points. a. With respect to sub-grid (normalized
time for each polynomial order); b. non-negative moment fitting, influence of the polynomial
order (normalized time for each polynomial order).

6.2.2. Plate with multiple holes

Figure 24: Plate with multiple holes subjected to uniaxial tension: a. Geometry; b. Final displacement.

We finish with an example involving multiple interfaces: a 2mx2m plate containing 19 holes of radius
100 mm (see figure 24a). It is still subjected to a uniaxial traction by means of a displacement of 10
mm on the top boundary, similar to figure 20a. This top displacement is imposed gradually in 120
loading steps, leading to the deformed configuration depicted in figure 24b. A reference solution is
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computed using a quadratic computation on a grid involving 256 elements along each direction. High
order approximations on a 16 x 16 grid with p = 2,4 and 8 are considered in order to monitor the
convergence of the solution (resp 1599, 4223 and 15615 dofs). The geometrical accuracy is fixed to
hg = h/64. The final plastic zone for p = 8 is presented in figure 25 for both reference and non-negative
moment fitting. Like for the last example, a very good agreement can be observed although the first
computation involves 903 988 integration points versus only 35109 for non-negative moment fitting.

Plastic strain [-]

le-12 0.0159 0.0318 0.0477 0.0636 0.0795 0.0954 0.111 0.127 0.143 0.159
L

Figure 25: Plate with multiple holes subjected to uniaxial tension: Plastic strain. a. Reference quadratic
computation; b. p = 8 non-negative moment fitting. The grid pattern in b. is linked to the
structured nature of the underlying mesh.

The evolution of the force-displacement curve with increasing polynomial order is also presented
in figure 26a. For this more complicated case, a 8" order approximation is necessary to match the
reference solution. Timing comparisons which are presented in figure 26b show similar trends compared
to the previous example. One can yet notice a slight increase of the contribution of the preprocessing
step due to the larger number of partitioned elements. The total computation time is 1.8 times faster
than the reference computation.

7. Conclusions and Outlook

In this contribution, we proposed a strategy to build sparse and positive moment-fitting quadrature
rules. The accuracy of this strategy was compared to various quadrature rule families in the context
of fictitious domain. Emphasis was put on the positivity of the quadratures weights and the use
of quadrature points strictly inside the physical domain so that the rules can remain robust in the
context of nonlinear problems. Four methods were compared: (i) classical moment-fitting; (ii) quality
oriented quadrature rules with positivity constraint; (iii) empirical quadrature rules and (iv) non-
negative moment-fitting quadrature rules. We have shown that classical moment-fitting quadrature
rules cannot lead to positive weights unless a very large number of quadrature points are considered.
The negativity of the weights is usually not an issue for linear problems, but can be problematic with
nonlinear computations. We also highlighted that the location of the quadrature points can have a
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Figure 26: Plate with multiple hole subjected to uni-axial tension. a. Convergence of the force-
displacement curve with increasing polynomial order; b. Timing comparison (normalized
time for each polynomial order). Residual, Tangent, Preprocess and Update stand respec-
tively for the cumulative time for the residual computation, the assembly of the tangent
operator, the moment fitting processing time and the update of the material variables at
quadrature points.

large influence on the accuracy with non-polynomial integrands for the moment-fitting quadratures
(classical and non-negative). This influence can be mitigated by increasing the number of quadrature
points. Quality oriented quadrature rules are also proved to converge to positive weights, and were
shown to lead to a solid accuracy. However, like for classical moment fitting, a larger number of
quadrature points has to be considered to satisfy positivity. Positivity was thus difficult to attain for
geometries representative of real cases. Empirical quadrature rules are robust and lead to the minimal
number of quadrature points. Unfortunately, it was not possible to enforce the positivity of the weights
which limits its use to linear problems. Finally, non-negative quadrature rules are sparse and accurate,
provided that the number of tentative quadrature points is sufficient. Yet, the cost of building these
quadrature rules is larger compared to classical moment-fitting (less than one order of magnitude slower
in our 2D experiments), even considering the optimized strategies proposed in section 5. Fortunately,
this additional cost can be amortized in the non-linear setting.

Applications of the non-negative quadrature rules to two-dimensional linear and nonlinear mechanical
problems have shown that the method is very efficient, and that the overhead induced by the setup
of the quadrature rule for each cut element was not significant with respect to the whole calculation
process. Future work on this topic will focus on 3D elasto-plastic calculations based on scanned data,
and the proper choice of efficient algorithms for solving the non-negative least square problem in case
where the size of the system becomes significant.

A. Algorithms description
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Data: G(-; ), p € E, set of tentative points {xx}, k=1,...,N
Result: EIM Magic points x} and basis ¢;(x),i=1,...,M

1 // Select the worse generating function

2 py = argmax,c= [|G(; p)llL= (o)

3 // Select the worse tentative point

4 X] = argmaxye(x,} |9(x; py)|

5 // Construct the interpolation function

6 q1(x) = G(spy)/G(x75 1)

7 // EIM Greedy loop

8 for m =2 to M do

9 // Define Z,,_1[G(-;u)] by solving for OB(u)

10 | BMB(n) = G(x*; ) with BM = g;(x?)

11 // Next p,, as the one associated to the worse parametric error
12 | py, = argmaxues |G 1) = Zm-1 [G(5 )] L= (2)

13 // Next X,, as the one associated to the worse spatial error
4| X, = arg maXee (x,} |9 (%5 ) = L1 [G(5 40)] (%)

15 // Construct the interpolation function

16| gm(x) = (G5 n) = Tn—1 (GG 1)) /(G005 1) = T2 [G (5 )] (X7,))
17 end

Algorithm 2: Greedy construction of the EIM interpolation of G(-; )

Data: Quadrature rule order p,, Quality threshold Q'™
Result: Quality oriented quadrature points {X,}q=1,....n, and weights {wg}w=1,....n,

1 // Initial number of quadrature points

2 Initialize {x,} with ny, = 0 the number of quadrature points
3 // Quadrature space (Legendre basis)

4 Initialize H with n, = dim(H)

5 // Basis for the EIM algorithm (monomial basis)
6 Initialize W with n, = dim(W) = n,

7 // Quality loop

8 while Q > Q"™ do

9 // Select a new EIM magic point

10 Compute a new magic point x* according to Algorithm 2
11 {xq} «x*

12 // Enlarge W if needed

13 if ng > 0.75n, then

14 np+=1

15 Update W

16 end

17 if ng > ny then

18 // Compute the weights

19 Compute the weights according to (14)

20 end

21 // Compute the quality of the quadrature rule
22 Compute @ according to (15)
23 end

Algorithm 3: Quality oriented quadrature strategy from [29]. Note that in this contribution,
the test on line 8 was replaced by ”Q > Q'™ and min {w,} > 0” as we are interested in positive
quadrature rules.
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Data: Moment-fitting matrix and right-hand side A (dimension m x n), = (dimension n),

tolerance €

Result: Non-negative least square solution « of Ax = b

// Initialization
P = () (passive set, free indices)
R=1{1,...,n} (active set, fixed to zero)
x, feasible all zero vector of dimension n
Set v = AT(b — Ax) (Lagrange multipliers)
// Main loop
while R # () and max(v) > e do
j = argmax,cgr(v)
P=PU{j}
R =R\ {j}
// Restrict A to the passive set of unknowns
AP =[Ajjljep
// Solve the restricted least square problem
s vector of dimension n
APsP =b
// Set active set variables to zero
sf=0
// Inner loop
while min(s”) < 0 do
« = min (Lf”_sl) for i € P where s; <0
Set x =x + a(s — x)
// Update R and P
R=RU{j} for j such as z; =0
P =P\ {j} for jsuchas z; =0
// Solve the restricted least square problem
APt =
// Set active set variables to zero
s®B=0
end
// Update x
rT=s
// Update Lagrange multipliers
v=AT(b- Azx)
end

Algorithm 4: Non-negative least square algorithm from [47].
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B. Additional 2D benchmarks

The benchmarks mentioned in the introduction of section 4.2 are presented here for the sake of com-
pletness.

B.1. Polynomial integrands

100 10°] —— Mom. Fit. Legendre (ip=196, Sign>0) 10°{ —— Mom. Fit. Legendre (ip=361, Sign<0)
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—e~ Non-Neg. Mom. Fit. Legendre (ip=36, Sign>0) ~e~ Non-Neg. Mom. Fit. Legendre (ip=36, Sign=0)
107 1071 —m~ Non-Neg. Mom. Fit. Monomial (ip=36, Sign>0) 107 —m~ Non-Neg. Mom. Fit. Monomial (ip=36, Sign=0)
~>— EIM (ip=36, Sign<0) —— EIM (ip=36, Sign<0)
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Figure 27: Accuracy for polynomial integrands of increasing order (order 7 rules) for the corner geometry
(points located inside the domain).
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Figure 28: Accuracy for polynomial integrands of increasing order (order 7 rules) for the triangular
geometry (points located inside the domain). Refer to figure 10 for the geometry.

B.2. Non-polynomial integrands
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Figure 29: 2D scattering: Relative errors for 1000 evaluations with ny = rnpasis random quadrature
points. Average and dispersion of the resulting valid moment-fitting rules are depicted. EIM
and quality oriented moment fitting error are depicted as constant dashed lines (as they
operate with already fixed quadrature points). Integrand: sin(mz)sin(37y) for triangular
and corner geometry; o= (r® — 1) +r?cos(26) for the quarter circle. Refer to figure 10 for the
geometries.
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