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Abstract: Charging of insulators modifies local electric field distribution and increases potential threat to the safety of

the gas insulated equipment. In this paper, surface charge tailoring techniques are classified and reviewed by introducing

a Dam-flood model. Technical solutions of different charge tailoring methods are compared and discussed. The outlook

of potential solutions to suppress charge accumulation is recommended and discussed based on industrial consideration.

This paper serves as a guide handbook for engineers and researchers into the study of charge tailoring methods.

Meanwhile, we hope that the content of this paper could shed some lights upon charge-free insulators to promote the

industrial application of HVDC GIL/GIS.

Keywords: Epoxy resins; direct fluorination; surface charge migration; DC surface flashover; HVDC GIL.

1. Introduction

Surface charge accumulation at the surface of insulators inside the HVDC GIL results in electric field

distortion and potentially triggers the surface flashover [1]. The pioneering research dates back to 1982 when

Cooke found that the insulator surface accumulates charges when the surface charge arrival rate exceeds the

surface charge conduction rate [2]. Since then, studies regarding gas-solid interface charge behaviors and
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characterization techniques [3] as well as charge tailoring methods begin to draw worldwide attentions.

Efforts have been paid to control these charges, in which the implementation of nano coatings and fillers

played very important role in dielectric property enhancement [4-10].

Nanodielectrics attract more attentions in recent years. The DC conductivity of polyaniline was found

increased by doping with TiO2 nano-fillers, and a very large dielectric constant of about 3700 at room

temperature was observed [4]. According to literature 5, a consistency between predictions and impedance

measurements verifies the impact of atomic coordination-number imperfection on the dielectric performance

of nanometric semiconductors. The effectiveness of nano-fillers is also verified in literature 7 and 8 that a

decrease in surface charge accumulation and an increase in surface flashover voltage were obtained. Results

from literature 9 again verified that an ordered and nonlinear nano coating introduced on epoxy surface serves

as a useful way to decay surface charges and increase surface flashover voltage. A surface treatment creating a

nano surface layer by DBD plasma also decays surface charge effectively when using silicone rubber as a base

material [10].

In recent years, due to the urgent requirement of HVDC GIL driven by the expansion of HVDC projects,

especially offshore projects, the problem of surface charge accumulation has become tremendously

pronounced [11-14]. As a consequence, extensive research studies regarding surface charge behavior has

become a focus which is a specific challenge [7-10]. However, suitable surface charge tailoring methods still

remain to be a difficult problem which captures the interests of researchers.

It has been accepted that the surface charge is either from the conducting current from the volume/surface,

or due to charge transport along the direction of electric field lines in the gas phase [15]. Meanwhile, it has

been indicated that due to the differences in local electric field stress, dominant charge types at different

positions of the insulator are field-dependent, as shown in Figure 1 [16]. Surface flashover at DC voltage has

been verified to be triggered by expansion of analogous ineffective region due to homo-polar charge injection

[17]. Recent study verifies that the evolution of surface charge clusters, presented by dust phase transition,

plays a key role in triggering unpredictable insulation surface flashover [14]. Accordingly, when dealing with

methods to suppress the surface charge accumulation, it is very important to firstly clarify the dominant

charge origin and charge property, as well as the way these charges influence surface flashover voltage under

Page 2 of 54AUTHOR SUBMITTED MANUSCRIPT - NANO-127285.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



specific insulation-electrode arrangement. Bearing in mind this we can further consider suitable manners

targeting the decay of these charges.

Figure 1. Field-dependent model of dominant charge behavior. Unclear factors represents electrostatic charges,
bulk charges, charges from cosmic or PDs, and polarization in the volume, etc.; trapping from gas represents enhanced
gas ionization following Townsend's law; injection from volume represents charges injected from volume; SP, CHeP, and
CHoP stand for surface potential, hetero-polar charge and homo-polar charge [16].

In this paper, to help the reader identify the source of the charge at the gas-solid interface, which is very

important while usually be neglected, and the suppression methods more intuitively, we introduce a Dam

model to explain interestingly how gas-solid interface charges are categorized based on which the

corresponding charge tailoring methods are reviewed and discussed. The outlook of potential solutions to

suppress charge accumulation is recommended and discussed based on industrial consideration. We hope that

this paper can be useful for engineers and researchers into the study of charge modification methods and could

shed some lights upon charge-free insulators to promote the industrial application of HVDC GIL/GIS.

2. Dam-flood model
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Figure 2. Equivalent diagram of Dam-flood model.

Table1. Flood-dam model and the corresponding surface charge tailoring techniques.

Flood-dam
model

Corresponding
orientation for

charge
suppression

Key points Features Literature

Flood-spilling Increasing surface
charge decay

Direct fluorination

Increasing surface charge
decay rate by increasing
surface conductivity

[18-36]
Etching; deposition [37-44]

SiO2/Epoxy coating; TiO2/Epoxy
coating [45, 46]

Gamma rays; ozone treatment;
radical scavenger [47-50]

Dam
reinforcement

Inhibiting
homo-polar
charges from
volume

Cr2O3 coating
Suppressing charge injection at
metal-dielectric interface by

introducing deep traps
[33, 51]

K2Ti6O13 Whisker ;
C60 particle

Suppressing conducting
current [52, 53]

Dredging
Decaying/avoiding
charges near high
electric field zone

Shape modification Optimizing local electric field [2, 54-62]

Nonlinear particles; non-linear
coatings

Optimizing local electric field
and increasing local surface

charge dissipation
[9 ,63-71]

Comprehensive
management

Initiatively
controlling and
decaying charges

Modifying spacer shape and
doping with nonlinear materials

Adaptively controlling the
charge location and decay

property
[72-75]

Causing heavy casualties, the flood to houses and populations is equivalent to the charge triggered surface

flashover to gas insulated electric power systems. The triggering process for floods can be slow which is due

to the destruction/degradation of the forest over years, while some types of floods can be developed over a

few days due to continuous heavy rain drop. Correspondingly, surface charge accumulation on the insulator

can be a very slow process due to numerous discrete processes on smallest scale, e.g. charge

injection/extraction at the electrode-insulation interfaces, trapping and de-trapping, charge generation and

recombination, polarization, etc. [76], while in some cases the surface charge amount can be increased

dramatically in a short period in case of ionization due to local metal particles [2].

The dam, representing as the insulator to separate high voltage from the ground, is a barrier that restricts

or stops the flow of water and suppresses progression of the floods. The solution for flood control via the
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construction of a dam can be divided into four aspects: Flood spilling, dam strengthening, dredging and

comprehensive management, which corresponds to different charge tailoring orientations, as shown in Table 1

and Figure 2. To be more specific, in case when the upstream water level rises, spilling prevents flooding in a

manner of keeping water flowing downstream, which is equivalent to increase the surface charge decay rate to

have a lower amount of surface charges; By dam reinforcement, the dam becomes stronger so that the water

pressure does not endanger the safety of the dam, which is equivalent to increasing the inception electric field

for charge injection so as to suppress injected homo-polar charges; Dredging is a commonly used approach to

increase the canal depth and therefore increase the capacity of canals for carrying water/floods. Regarding the

charge tailoring solution, by means of material modification and shape improvement, local electric field can

be optimized and the withstand voltage of the spacer can thereby be increased; Based on canal diversion, the

sediments can be dredged and saved for farmlands and the flood can be prevented. Such comprehensive

management methods have the synergistic effect to control surface charges of insulators, i.e. to control the

position of charges and initiatively decay these charges. The Dam model constituents and the corresponding

surface charge tailoring techniques can also be found in Table 1.

3 Flood-spilling-increasing surface charge decay

Given the idea of Flood spilling, a more conductive surface with higher surface decay rate is obtained.

Capability of fluorination, plasma treatment, surface coatings, gamma ray irradiation, and ozone treatment,

etc., have been verified in increasing the surface conductivity and surface charge decay by researchers [30, 33,

37, 45, 47, 49].This chapter firstly reviews the results from the above mentioned methods, and a comparative

analysis among the research characteristics from each research group is presented.

3.1. Surface fluorination

Surface fluorination treatment is performed based on the interaction between fluorine gas and the polymer

surface. A stable C-F surface layer with different byproducts can be formed and thereby the surface property

can be controlled [24] and a fluorinated coating with certain surface conductivity is obtained.

3.1.1. Researches in Tongji University
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In 2011, Z. An et al. conducted pioneering researches on surface fluorination treatments on epoxy resin

[20]. They used an F2 / N2 mixture with a volume of 12.5% F2 to fluorinate the epoxy resin sheet with a

thickness of 0.55 mm, and the results showed that the surface conductivity was increased from 1.1 × 10-17 S to

8.7 × 10-14 S, with a value increasing by 3 orders of magnitude. They believed that the decrease of surface trap

depth and the adsorption of water on the surface in the vicinity of air are the main reasons responsible for

increase of surface conductivity. Based on their preliminary results, they modified epoxy sheet to suppress the

accumulation of surface charges effectively by introducing a surface with lower conductivity through the

fluorination[19]. In order to further understand the mechanism of the suppression of the charge accumulation

on the insulator surface, they further studied the effect of temperature and fluorination duration on electrical

properties of epoxy based materials [21].

Figure 3 shows the surface conductivities of the epoxy before and after fluorination. The results showed

that the surface conductivity of the fluorinated sample at various humidity levels is significantly higher than

the untreated sample, and the surface conductivity increases with the increase of the fluorination temperature.

They concluded that the increase in fluorination temperature increases surface conductivity (from 10-17S to

10-13S at 20% relative humidity level ).

Further, they showed that the surface conductivity of samples can be related to fluorination time duration

at different relative humidity levels [22]. Figure 4 shows the surface conductivity of the original and surface

Figure 3. Surface conductivity measured at different RH levels and room temperature for the original sample

and samples fluorinated at 25, 55, 75, and 95°C[21].
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Figure 4. Surface conductivity at different RH levels for the untreated and surface fluorinated samples for

times of 10, 20 and 30min [22].

fluorinated samples at different relative humidity levels. The results show that as the fluorination time

duration increases, the surface conductivity increases, while this trend is opposite in case of humidity changes.

They concluded that temperature and fluorination time duration are two important factors controlling the

fluorination process and the surface conductivity, noting that the effect of temperature on the surface

conductivity is more significant than that of the fluorination time duration [18]. In subsequent researches, they

investigated the discharge characteristics and AC/ DC flashover performance of surface fluorinated epoxy

insulators [23, 36].

3.1.2. Researches in University of Southampton

G. Chen et al. employed the same fluorination treatment method on the epoxy films [27-29]. Compared

with Z. An’s work, G. Chen’s research paid more attention on the breakdown property of the epoxy. They

found that with the prolongation of the fluorination time duration, the surface flashover voltage was increased

significantly. Meanwhile, their results showed that the leakage current increases with the fluorination duration,

which is different compared with results obtained by other researchers [19-21, 32]. As shown in Figure 5, the

leakage current of samples fluorinated for 30mins and 60mins are 2.4×10-11A and 4.12×10-11A, respectively,

which is much higher than that of the untreated sample.
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Figure 5. DC conductivity measurement for 250μm epoxy resin sample being treated after different
fluorination time [29].

In their subsequent studies, they paid more attention to the charge suppressing mechanism [25]. They

believed that the increase in the surface conductivity may not be due to the fluorine layer itself, but because of

the moisture absorbed by the surface layer [26]. It is interesting to note that according to a recent report, the

conductivity of the fluorinated layer has a negative correlation with increase of the temperature [15], while the

result provided by G.Chen implies that increase of the conductivity by fluorination process is due to absorbed

surface moisture, which can be the rationale behind this phenomenon.

3.1.3. Researches in Tianjin University

B. Du et al. Studied the surface charge decay property of fluorinated epoxy samples [30]. The surface

flashover voltage of samples with different fluorination time durations are evaluated. They introduced the

carrier mobility and trap distributions to analyze the effect of fluorination on surface charge behaviors and

flashover characteristics [30]. Furthermore, a novel cone-type insulator with surface conductivity gradient

based on direct fluorination treatment was developed, as shown in Figure 6 [31].The results showed that the

flashover voltage of the σ-FGM insulator is 36.3% higher than that of the traditional insulator due to a

uniform electric field distribution.
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Figure 6. Insulators with interfacial σ-FGM: a four-gradient tapered insulator (F-45-30-15-0) [31].

3.1.4. Researches in Tsinghua University

Following Z. An ’s pioneering research regarding fluorination of epoxy resin, J. He et al. focused mainly

on surface fluorination treatment of Al2O3 filled epoxy resin insulators, which pushed these researches much

closer to the industry applications [24]. In their studies, different surface modification methods are employed

to evaluate the effect of fluorination on epoxy based insulation products [32, 33, 35]，

Figure 7. Electroluminescence intensity of samples before and after surface fluorination at -20kV [34].

Electroluminescence as a parameter to characterize epoxy-based composites before and after fluorination

was introduced [34]. Here electroluminescence is defined as a surface light emission that may involve both

solid and gas emissions following impact by energetic carriers. It has to be distinguished from pure bulk

emission from solids that normally require higher fields to be triggered [77, 78]. The results showed that the

electroluminescence curve of the sample after fluorination is more stable than that of the non-fluorinated

sample (as shown in Figure 7), and the EL pulse corresponding to the F_60 min sample is significantly

suppressed. They believed that the surface of the sample becomes flatter after fluorination, thereby the micro

plasma activities due to the concentration of the electric field on the surface alumina edges and corners at the
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gas-solid-conductor triple junction are suppressed. They emphasized that these micro-discharges are likely to

be a potential consequence of surface heteropolar charges and can thereby increase the possibility of

undetermined surface flashover under both AC and DC voltage, which were also discussed in their follow-up

research work [14, 79]. In 2017, the physical mechanism of fluorination on carrier migration and the impact

on flashover voltage were explored and the inhibitory effect of fluorination on surface discharge corrosion

was preliminary studied( as shown in Figure 8(a)) [35]. Z. An further studied the improvement of surface

electro-corrosion performance by fluorination in 2019 [23]( as shown in Figure 8(b)). Both researches

confirmed the resistivity of the fluorinated epoxy surface layer to corona discharge is significantly improved

[23, 35].

Figure 8. (a) Surface image of experimental samples before and surface flashover in SF6 [35];(b) SEM
photographs of the discharge degraded surface of the virgin and the fluorinated samples respectively after the
5th and 10th flashover [23].

3.1.5. Analysis and discussion

Looking at the similarities of the results in these 4 different groups, we can conclude that several key

parameters play important roles in determining surface properties, among which the surface conductivity, trap

distribution, surface morphology significantly affect the surface charge decay and surface flashover voltage.
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Table 2. Fluorination test conditions and results of different research groups.

Authors Ref. Matrix

Surface conductivity test conditions Fluorination parameter
Surface

conductivity
(10-18S)

Ambient
gas

Temperature
(°C)

Relative
humidity

Fluorination
temperature

(°C)
Fluorination
time (mins)

Z. An

[21] Epoxy
resin Air 25 20%

- - 7
25

30

20
55 40
75 900
95 50000

[18] Epoxy
resin

High
purity N2

25 20%

- - 9
25

30

10
55 30000
75 300000
95 800000

[22] Epoxy
resin Air 25 20%

- - 7

50
10 40000
30 10000
60 8000

G. Chen

[26] Epoxy
resin

Air 25

Before
drying

- - 1886
50 60 4940

After
vacuum
drying

- - 1406

50 60 2040

N2 25 After N2
drying

- - 1406
50 60 3480

[25] Epoxy
resin Air 25 Not

mentioned

- - 113.2

50 30 432
60 1006

B. Du [31] Epoxy
/Al2O3

Air 25 Under 30%

- - 450

25

15 800
30 1400
45 1790
60 1900

J. He

[24] Epoxy
/Al2O3

High
purity N2 25 Under 10%

- - 0.00097

50
15 370
30 21
60 0.86

[32] Epoxy
/Al2O3

Air 16 10%-14%

- - 0.88

50
15 368
30 20.5
60 0.86

[32] Epoxy
/Al2O3

SF6 16 10%-14%

- - 0.892

50
15 374
30 21
60 0.864

However, based on the results of previously published literature, it is still difficult to confirm which parameter

plays dominant role on surface charge decay process and surface flashover property. Table 2 shows the

surface conductivity values presented in different research studies. Two general conclusions can be obtained:

(1) The surface conductivity is increased dramatically with short fluorination time (within 30mins), while it

decreased when the samples are treated after long term fluorination, except for results obtained by G.Chen [27,

28]. (2) The decreasing rate of conductivity with fluorination time duration accelerates with increase of

temperatures. Apart from that, based on the results presented in [21][22][24] and [32], the surface conductivity

of untreated epoxy or epoxy based composites ranges from 9×10-22S to 7×10-18S, with the difference up to 1 to
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4 orders of magnitude in their values. Usually, the leakage current has very large difference with respect to

electric field, temperature and duration of applied dc voltage. Meanwhile, if the measurement was repeated for

several times, the injected charges and depolarization process from previous tests can further influence the

leakage current, resulting in a lower leakage current value. When it comes to samples after fluorination, we

can find some similarity that the surface conductivity can be increased by 3-5 orders of magnitude with short

fluorination time, while the long fluorination time results in a surface with conductivity similar to the

untreated samples. This finding is applicable to both alumina-doped epoxy and pure epoxy.

It has been widely accepted that a higher surface conductivity results in a higher surface charge decay rate.

However, it should be pointed out that the increase in surface flashover voltage due to fluorination cannot

merely be attributed to increase of charge decay kinetics. In [32], the surface conductivity of fluorinated

sample for 60min is 8.64 × 10-19S, which is slightly lower than the surface conductivity of untreated samples

8.92 × 10-19S (refer to Table 2), while the flashover voltage, similar to that with short fluorination time, is

much higher than the untreated sample (as shown in Figure 9). We believe that the surface morphology after

long fluorination time has more influence on surface flashover voltage than the surface charge decay.

Figure 9. The DC surface flashover voltage of original and fluorinated samples for 15 min, 30 min and 60
min in air and SF6 [32].

Considering the feasibility of industrial applications, fluorination is applicable to insulators of any shape

and size. However, it has disadvantages such as: the mechanism of the fluorination is complex, which needs

further investigation. In addition, it is still unclear that the fluorinated coating can be stable since insulators are

exposed to temperature variation under dc voltage. As for the aging of the fluorination layer, T. Shao tested
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the surface charge decay rate using sheet samples, and the results showed that there is no obvious aging effect

after 5 days storage of the directly fluorinated samples in ambient air [41]. However, the experiment was

conducted in the ambient air, which cannot demonstrate real operation condition subjected to temperature and

electric field changes, so it cannot be regarded as a direct fluorination stability test.

As reported in our recently published paper, the conductivity of the fluorinated layer has a negative

correlation with the increase of temperature (as shown in Figure 10). This means that when the temperature

rises, the conductivity of the fluorinated layer decreases, which can reduce the rate of charge dissipation [15].

This process has been verified, which is not reversible. In this case, the surface charge decay rate for short

time fluorianted spacer would somehow be affected.

Figure 10. Stable surface leakage current and bulk leakage current changing trend with the increase of
temperature using a new short time fluorinated spacer [15].

3.2. Plasma treatment

Plasma refers to an ionized gaseous medium which consists of a gas of ions and free electrons. Based on

its unique property, it can be used to modify dielectric surface, modifying surface trap level distribution,

carrier mobility, and surface conductivity of the material [37, 38, 40, 41]. Commonly used low-temperature

plasma-treated discharge includes dielectric barrier discharge (DBD), atmospheric pressure plasma jet (APPJ),

and the like. In this section, we focus on studies regarding plasma-treated surface and the dielectric property

enhancement.
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3.2.1. Researches in Chinese Academy of Sciences

Electrons in non-thermal plasmas can induce molecule excitation, ionization and dissociation, hence,

resulting in the chemical bonds breaking for surface modification [80, 81]. T. Shao et al. performed

pioneering studies over DBD plasma treatment in epoxy based polymers and found that the plasma treatment

effectively increases the surface hydrophilicity of epoxy resin, which in turn augments surface charge decay

rate [38]. Meanwhile, the anti-aging property of the epoxy-based samples was studied. Figure 11 shows the

surface potential decay of samples after the plasma treatment. Samples were charged by corona discharges

with a

Figure 11. The surface potential decay of epoxy samples aging effect (a) and (b) with plasma treatment time
10 and 60 s measured right after plasma treatment (c) and (d) with plasma treatment time 10 and 60 s
measured 4 days later [38].
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amplitude of -4.5 kV, the temperature was 20 °C and the relative humidity was 20%. The results showed that

the surface potential decay was slower on the samples measured after 4 days, while the aging resistance of the

atmospheric-pressure dielectric barrier discharge (AP-DBD) etching method is not improved significantly.

Based on their previous research results, they further conducted in-depth research on sample modification

methods based on plasma treatment in 2017 [39, 40, 43]. They found out that the plasma deposition process

can increase the aging resistance more effective than the direct plasma treatment mentioned in their previous

work [38]. In their test setup, non-thermal plasma generated by gliding arc discharge driven by high-frequency

high-voltage power supply are used to deposit SiO2 film on the surface of epoxy resin, and the reaction

precursor is tetraethyl orthosilicate (TEOS) [43]. They realized that when the deposition time exceeded 5s, a

thin film with a thickness of 219nm containing Si-O-Si and Si-OH groups can be stably formed on the epoxy

surface. Meanwhile, with this surface layer, the water contact angle and the surface resistivity were

significantly reduced compared with pure epoxy samples, which increases surface charge decay rate

significantly [40].

T. Shao et al. further studied the feasibility of plasma deposition on surface charge property and

deposited SiOx thin film on the surface of epoxy resin by AP-DBD [37, 39].The results showed that the initial

surface charge density was reduced by 12% and the flashover voltage was increased by 42% after plasma

deposition treatment. They believed that the mechanism for the increasing of these properties is due to the fact

that SiOx films with a thickness of 50-200 nm introduce shallow traps, which increases the surface

conductivity and thereby reduce the accumulation of surface charges. In 2019, they compared the effect of the

three methods of plasma etching, plasma deposition and direct fluorination on the basis of previous researches

[41, 42]. The surface charge decay rate of epoxy based samples after DBD deposition (96%) and fluorination

(95%) is higher than DBD etching (34%) [42]. The results from the above mentioned studies indicate that

AP-DBD deposition has best performance in increasing the surface charge decay rate of the sample [41].

3.2.2. Researches in Xi’an Jiaotong University

D. Min et al. studied the effect of surface plasma treatment on the surface charge decay property of

epoxy based composite with different treatment time (1min, 3min, 5min) [44].They found out that the surface
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conductivity reaches 1.4 × 10-17S which is 2 orders of magnitude higher than that of untreated samples.

Meanwhile, the correlation between surface flashover and the surface conductivity showed that the DC

surface flashover voltage increases with the increase of the surface conductivity (Figure 12), whose reason

they believed was due to the surface charge decay [44].

Figure 12. Relation between surface flashover voltage and surface conductivity [44] .

3.2.3. Analysis and discussion

Table 3 shows the key parameters selected for each research group according to different treatment

methods. Most of the results show an upward trend regarding the surface conductivity of samples after plasma

treatment, with the increasing value of 1 to 4 orders of magnitude. However, it is worth noting that contrary to

changing laws of surface conductivity after fluorination, the surface conductivity after plasma treatment for 1

minutes is higher than that after treated after 5 minutes. That is to say that the longer the processing time, the

higher the surface conductivity will be. Meanwhile, it should be emphasized that DBD deposition methods

showed excellent anti-aging performance than AP-DBD [41, 42]. However, the problem regarding forming a

uniform discharge to coat the sample surface of large areas ready for industrial applications should be further

studied.

Page 16 of 54AUTHOR SUBMITTED MANUSCRIPT - NANO-127285.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 3. Treatment time and results of different plasma processing methods.

Research
group Ref. Treatment type Processing time

Surface
conductivity（10-18s）

T. Shao

[43]

Untreated 0 1810

Plasma enhanced chemical
vapor deposition (PECVD) to

deposit SiO2 thin films

1s 3810
3s 6390
5s 24100
10s 85100
15s 113000

[38]

Untreated 0 30000

AP-DBD etching
10s 68000
60s 190000
180s 250000

[37]

Untreated 0 900

APPJ Plasma Treatment to
Deposit SiOx Film

1min 9000
3mins 70000
5mins 60000
10mins 30000

[42]

Untreated 0mins 900
AP-DBD etching 5mins 7000

AP-DBD Plasma Treatment to
Deposit Ar/TEOS 10mins 300000

Direct fluorination 30mins (At 50 °C) 90000

[41]

Untreated 0 270.3
AP-DBD Plasma Treatment to

Deposit Ar/TEOS
5mins 1000000
10mins 1010000

Direct fluorination
15mins(At 50 °C) 3330
30mins(At 50 °C) 50000
60mins(At 50 °C) 100000

[39]

Untreated 0 2230

AP-DBD deposited SiOx film
3min 2000000
5mins 5000000
10mins 54700000

D. Min [44]

Untreated 0 0.1

HD-1B plasma modification
device

1min 13
3min 14.5
5min 10

3.3. Coatings

Commonly used coatings to modify surface charge behaviors include: magnetron sputtering coatings,

spray coatings, dipping and plasma coatings.

3.3.1. Research review

Nano-TiO2/EP coatings can increase surface charge decay of epoxy resin, which was developed by Y. Tu

et al. [46]. When the content of nano-TiO2 particles is 1% and 3%, the surface charge is mainly concentrated

near the high-voltage electrode while when the content of nano-TiO2 particles is 5% and 7%, the surface
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charge settles near the grounded electrode. When the particle content is 3%, the surface conductivity reaches a

maximum value which is 2 × 10-17S [45].

Figure 13. Weibull distributions of flashover voltages of the uncoated and epoxy (EP)/graphene (GR) coated
insulators [82].

Meanwhile, B.Du et al. prepared epoxy (EP)/graphene (GR) coated insulators with different doping ratios

by dipping and found out that the flashover characteristics of the samples are increased dramatically, as shown

in Figure 13 [82]. However, they verified that when the content of nanographene reaches 0.15%, the flashover

voltage of EP / GR coated insulators is lower than that of uncoated insulators. They believed that adding of

proper nanographene content on the surface layer increases the trapping energy and density of EP / GR

composites; thereby the surface charge decay rate of the insulator is increased.

G.Zhang et al. proposed a structurally nacre-mimetic coating on epoxy insulators achieved by using a

facile flow-induced co-assembly technique. By doing so, a faster charge dissipation and higher surface

flashover voltage were observed, as shown in Figure 14 [83].

Figure 14. Surface charge density distribution on cone-type insulators after application of a −20 kV dc
voltage for 30 minutes [83].
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3.3.2. Analysis and discussion

Table 4 summarized the feature parameters regarding epoxy coatings in the above mentioned research

groups. In addition to the parameters researches focusing on after fluorination or plasma treatment, i.e. surface

conductivity and surface roughness, these two research groups attempt to explain charge tailoring mechanism

by introducing the charge carrier mobility. Y. Tu et al observed that, the carrier mobilities of the coatings,

with 1 wt% and 3 wt% micro-SiO2 particles, reach as high as 11 × 10-13 m2 / (V·s) and 17.5 × 10-13 m2 / (V·s),

while the carrier mobility introduced by nano-SiO2 particle composite coatings with a doping amount of 3wt%

is the highest around 86 × 10-13 m2 / (V·s). The above three samples have been verified effectively to inhibit

the accumulation of surface charges on epoxy resins. However, in the study conducted by B. Du et al, the

0.1wt% nanographene / EP composite coating results in a DC flashover voltage of up to 33kV, while the

carrier mobility of this sample shows the lowest value around 0.14 × 10-13 m2 / (V·s) compared with other

samples. However, the carrier mobility of the samples in [45] is 2 orders of magnitude higher than that in [82].

Therefore, it can be assumed that the carrier mobility can only be used as an auxiliary basis for explaining

surface flashover voltage, while other factors such as the coating material intrinsic property, surface

morphologies, etc. need to be comprehensively evaluated. The dominant factors to determine the effectiveness

of surface charge controlling methods on insulators need to be further explored. In addition, the anti-aging

property of the coating and its stability against the cold and heat cycles still need further consideration, which

also greatly limits the industrialization of such coatings methods.

Table 4. Relationship between Carriers and Doping Amount of Different Coating Materials.

Research
group No./ref Coating material

The average
particle size of the
coating doped
particles 10-9m

Coating
thickness
10-6m

Coating doping
content
wt%

Carrier
mobility

10-13m2/(V·s)

Y. Tu

[45] Nano-SiO2 / EP composite
coating 60

170 -190

0 7
1 5.2
3 86
5 30

[45] Micron SiO2 / EP composite
coating 700

1 11
3 17.5
5 9.5

B. Du [82] Nanographene / EP composite
coating 500-5000 Not

mentioned

0 0.38
0.05 0.18
0.1 0.14
0.15 0.46

3.4. Other methods

Page 19 of 54 AUTHOR SUBMITTED MANUSCRIPT - NANO-127285.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



In addition to the methods already mentioned, the following techniques are also discussed by researchers

as candidates to modify surface charge behaviors, which includes: gamma ray treatment, roughness treatment,

ozone treatment, and radical scavenger treatment.

3.4.1. Gamma rays

In 2010, Y. Gao et al. found that the surface charge decay rate of epoxy insulator is accelerated after

epoxy sample being treated by gamma rays, and the surface potential decay rate shows the best results when

using the 1000 kGy irradiated sample [47, 48]. They attributed the increased charge dissipation to the decrease

in trap depth.

3.4.2. Surface roughness treatment

In 1983, Nakaishi K et al. found that unpolished cylindrical insulators present a “bow-tie” like surface

charge distribution under DC voltage(as shown in Figure 15), and the surface charge uniformly distributes

when the surface is polished, believed to be attributable to the increase in conductivity after grinding[58].

Figure 15. Probe measurement of residual charge distribution on the spacer. (a) The untreated sample,(b) The
sanded sample [58].

Kumada et al. conducted similar work to change the surface smoothness of the conical epoxy insulator

with sandpaper. They found lower surface charge density in the polished areas, but a large amount of charges
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accumulate at the junction of the polished and unpolished areas, as shown in Figure 16. Based on such

findings, they believed that the uneven conduction on the insulator surface is the cause of the surface charge

accumulation [84].

(a) (b)
Figure 16. (a) Sand blasted region on the spacer. (b) Charge distribution after 240 hours’ voltage application
for the spacer with nonuniform surface conductivity [84].

Further, J. Xue et al. studied the surface charging property and surface flashover characteristics in SF6 / N2

mixed systems using epoxy alumina insulator samples with different surface roughness [85]. Under positive

DC voltage, the average surface flashover voltages for samples with surface roughness of 0.58 μm, 5.19 μm,

7.48 μm, and 9.24 μm were 15.48 kV, 16.24 kV, 16.76 kV, and 17.55 kV, respectively. Compared with the

untreated surface (0.58 μm), the positive DC voltage increased by 4.86% (5.19 μm), 8.27% (7.48 μm), and

13.32% (9.24 μm), respectively (as shown in Figure 17). The DC flashover voltage can be increased by 20%

to 25% after the surface is roughened. They believed that the increase in surface flashover voltage firstly is

mainly due to the increase in the leakage distance caused by surface treated roughness and blockage. Secondly,

the surface conductivity was decreased slightly, but it was still higher than untreated sample. At the same time,

the introduced deep traps would also inhibit the surface charge accumulation, increase the insulation strength,

and increase the corresponding flashover voltage. It is concluded that the surface roughness treatment can

suppress the surface charge accumulation and improve the surface flashover voltage.
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Figure 17. Surface flashover performance on spacer with different amount of surface roughness under
positive DC voltage stress [85].

3.4.3. Ozone treatment

The effect of ozone treatment on the surface flashover performance of epoxy / Al2O3 composite was

studied and the results showed that the surface conductivity by ozone treatment for 4h is increased by 2 orders

of magnitude compared with the untreated sample, as shown in Figure 18 [49]. The density of shallow traps

increases with the increase of treatment time, while the energy of shallow surface traps decreases with the

increase of treatment time. Authors believed that the change in these two parameters simultaneously increases

the charge carrier of the sample and increases the surface charge dissipation rate.

Figure 18. Surface conductivity of epoxy resin micro-composites before and after ozone surface treatment
[49].

3.4.4. Radical scavenger
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In 2013, H. Tarik Baytekin et al. proposed that scavenging for free radicals from surface could be a more

efficient way to increase surface charge decay rate, than controlling the surface charges itself [50]. They

argued that these free radicals coexist with the charge and stabilize them on the surface. When they are cleared,

the surface discharge occurs faster.

Figure 19. (a) Four kinds of radical scavengers; (b) charge decay of pure PDMS charged by corona
discharge either (+) or (−), and free radicals(white spots) distribution of different samples in 30 minutes;(c)
charge decay of PDMS/5 mM DPPH charged by corona discharge either (+) or (−), and free
radicals(white spots) distribution of different samples in 30 minutes [50] .

They performed a series of charging experiments with native polymers, as well as polymers doped with

small amounts of chemical substances scavenging the radicals such as (as shown in Figure 19

(a))(T)-a-tocopherol (vitamin E), bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate (HALS),

2,2-diphenyl-1-picrylhydrazyl (DPPH) or 2,2-diphenyl-1-picryl hydrazine (DPPH-H), and the results showed

that the presence of free radical scavengers reduced the tendency of the polymer to generate static electricity

effectively during contact charging. Figure 19 (b) and (c) show that under the corona discharge, the surface

charge attenuation of the sample with added DPPH, is significantly higher than that of the original sample.

However, this radical scavenger approach may not work for thermosetting materials such as epoxy resins.

We performed similar researches using astaxanthin, which serves as a strong oxidant, to treat epoxy based

materials. The results showed that a good level of charge dissipation can only be found in samples just after

treatment, and this charge dissipation ability gradually decreases with time. After storage for 24 hours in air
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and in SF6, we found that the surface potential decay rate becomes invalid with the same charge decay rate as

that of the untreated samples (as shown in Figure 20).

Figure 20. Epoxy surface potential decay curve of epoxy resin treated with astaxanthin and stored at 0.1
MPa SF6 for different certain times (Soak for 10 minutes, test after drying).

The charging mechanism of contact electrification-(triboelectrification) and electrification due to electric

fields or corona are very different from each other. One involves material transfer, surface oxidation,

reorientation of polar molecules; however the other involves mainly oxidation and may be reorientation. The

impact of specific physical or chemical reaction processes on this event needs further research. In addition, in

H. Tarik Baytekin ’s study, they used PDMS, an elastomer with very low Tg, and molecules or chains were

very active at the surface (and also in the volume) at the room temperature. For this reason, antioxidant

molecules could find the active groups easily at the surface, and discharg occured rapidly. Epoxy may not

have these characteristics.

3.4.5. Analysis and discussion

Table 5 shows the results obtained from different treatment methods in this section. It can be found from

[85] and [49] that compared with the roughness treatment that can increase surface conductivity by 1 order of

magnitude, the ozone treatment effectively increases surface conductivity of nearly 2 orders of magnitude

after treating the sample for 2 h. Meanwhile, the increase ratio of the flashover voltage of samples by different

treatments shows that the surface flashover voltage of the treated sample by roughness method was increased

by 13.37%, while the surface flashover voltage of the ozone-treated samples is increased by 20.93%. It should
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be noted that due to the differences in samples and experimental setup, it would be difficult to make

comparisons regarding surface flashover properties.

The radical scavenger treatment method uses the coexistence of these free radicals to achieve the purpose of

eliminating charges indirectly by eliminating free radicals. However, for the radical elimination mechanism of

epoxy based samples, more studies should be carried out. Meanwhile, the aging behavior and anti-aging

property should be more important while dealing with products in industrial applications. Gamma ray shows

very good property in surface charge decay rate. However, such methods are complicated and might threaten

the human health if not been controlled properly. Besides, g-ray produces homogeneous modification of the

material, meaning that both surface and volume leakage should be modified. The treatment may have

detrimental effects to bulk insulation.

Table 5.Modification methods and corresponding results of each research group.

Research
group No./ref Treatment

method Parameter

Result
Surface

conductivity
10-18S/m

Surface potential
decay ratio
(at 1000s)

Flashover voltage
kV

(Increasing rate)

Y. Gao [47] gamma-ray
irradiation

Untreated 7%
100kGy irradiation 10%
1000kGy irradiation 15%

J. Xue [85]
Surface
roughness
treatment

Roughness:0.58μm 5.8 15.5
Roughness:5.19μm 80.6 16.2（+4.91%）
Roughness:7.48μm 99.0 16.8（+8.27%）

Roughness:9.24μm 22.3 17.6（+13.37%）

D. Min [49] Ozone
treatment

Untreated 1100 20% 21.5
Processing 2h 25000 100% 24.7（+14.88%）
Processing 4h 90000 100% 26.0（+20.93%）

4. Dam reinforcement-suppressing charge from volume conduction and gas ionization

In order to decrease the conduction current from the volume, manners of coating or doping are usually

used, while coating on the conductor surface and/or smoothing the conductor surface both can decrease micro

discharge and thereby limit charges from gas ionization.

4.1. Suppressing charge from volume conduction current

In order to suppress charge from the volume, we focus on the metal/insulation interface as well as the bulk

property.
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4.1.1 Cr2O3 coating

A dense, ordered Cr2O3 nano-coating created by the magnetron sputtering method on the epoxy surface

was verified as a good way to restrain charge injection from metal/insulation interface, which is due to deep

traps introduced by the coating [33, 51]. The effect of fluorination, plasma treatment, and Cr2O3 coating on

charge suppression property using epoxy samples were compared and results showed that the Cr2O3 coating

has the best charge injection suppression behavior, followed by surface fluorination as shown in Figure 21

[33].

Figure 21. Surface potential increment from 0.5 min to 2 min [33].

4.1.2 Nano-doping

Z. Zhang et al. verified that surface-modified silica nanoparticles can be used to suppress the leakage

current of epoxy [86]. Figure 22 presents the variation of volume conductivity (ρv) of epoxy nanocomposites

with different filler fraction and the results show that for the non-linear change of the volume conductivity (ρv)

of the alkyl-modified nanoparticles with the proportion of filler, the maximum ρv value is obtained at a low

filling fraction (1wt%). They believed that the effect of the volume resistivity on the surface modification of

nanoparticles can be attributable to two possible reasons: (1) Low-polarity nanoparticles have a large number

of highly insulating alkyl groups and a small number of hydroxyl groups and / or absorbed water molecules

(that is, charge carriers (ions) that increase conductivity under an electric field); (2) Surface modification

changes the Maxwell-Wagner-Sillars polarization behavior of the composite material, thereby affecting the

electrical conductivity of the composite material.
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Figure 22. The volume resistivity (ρv) of epoxy and epoxy nanocomposites at room temperature ρv–filler
fraction curves [86].

G. Zhang et al. introduced different contents of Buckminster-fullerene C60 into epoxy resin to limit the

mobility of charge carriers in the material [52]. They found that the electrical conductivity of 100ppm C60 /

epoxy composite decreases dramatically with a value of 1.0 × 10-18S / cm, which does not exceed 20% of the

conductivity for pure epoxy resin. They believe that deep traps introduced are responsible for the inhibition of

charge injection.

The above mentioned studies focused on methods to suppress charge injection. However, S. He et al.

focused on restraining the charge transport inside the bulk by doping K2Ti6O13 whiskers into epoxy based

material [53]. They took advantage of the thermal barrier effect of K2Ti6O13 whiskers to suppress the transport

of homo-polar charges in the bulk, and the result demonstrate that the introducing the K2Ti6O13 whiskers can

effectively restrain heat propagation due to its excellent thermal barrier property, which in turn limits charge

transport effectively, especially at temperature gradient.

4.1.3. Analysis and discussion

It has been shown that C60 and SiO2 nano-fillers can reduce the sample volume conductivity. As shown in

the Table 6, the best property of epoxy samples are obtained when the doping amounts of the C60 nano-filler

and SiO2 filler are 100 ppm and 1%, respectively. However, compared with doping of C60 and SiO2, the

doping with K2Ti6O13 whisker takes advantage of its thermal barrier effect in effectively prevent the diffusion

of heat under condition of temperature gradient.
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Table 6.Modification methods and corresponding volume conductivity of each research group.

Research
group Ref. Processing

method Sample composition
Ambient

temperature
°C

Doping
amount

Volume conductivity
10-16S/m

Z. Zhang [86] Nano-doping Epoxy/C16H33@SiO2 20

0 5.26
0.5 4.39
1% 4.167
2% 5.29
5% 5.21

G. Zhang [52] Nano-doping Epoxy/C60 20-25

0 6.1
1ppm 4
10ppm 2.7
24ppm 2.2
100ppm 1.0
200ppm 1.2
1000ppm 6.9

S. He [53] Micron
doping

Epoxy/Al2O3

12-14
0 58.48

Epoxy/Al2O3/K2Ti6O13 10% 96.15
Epoxy/Al2O3/asbestos 10% 44444.4

4.2 Suppressing charge from gas phase

The electric field at the micro-protrusions on the rough electrode surface can be enhanced to a level

under which micro-discharge will take place. Controlling the surface roughness of electrodes can effectively

suppress the source of charge generated by the micro-discharge from the gas phase [87-89]. Figure 23 shows

stabilized currents measured in both polarities with respect to electric field ranging from 2 to 30 kV·mm−1,

with electrodes A, B, and C, and fixed gas condition (0.6MPa, 20 °C, RH ≈ 30%) [88]. In both polarities,

currents are strongly influenced by the high voltage electrode roughness, with a two orders of magnitude

difference between electrodes (A) and (C).
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Figure 23. Current measured in SF6, versus electric field for three different electrode roughnesses, (0.6MPa,
20 °C, RH ≈ 30%) (a) in positive polarity;(b) in negative polarity [88].

5. Dredging-local electric field modification

Dredging is a commonly used approach to increase the canal depth and therefore increase the capacity of

canals for carrying water. With respects to spacers, by means of material modification and shape controlling,

local electric field can be optimized and the flashover withstand voltage of the spacer can thereby be increased.

To achieve this goal, nonlinear materials are usually adopted to modify the local electric field, and shape

modification of insulators can also be a good way to optimize local electric fields.

5.1. Nonlinear Conductive composite

In 1999, F. Messerer et al. coated dupont conductive powder which contains titanium oxide and tin oxide

on the surface of epoxy resin. They found that the maximum value of the electric field on the surface of the

insulator is reduced from 36.7kV / cm to 29.6kV / cm under the DC voltage of 100kV after coating on a

cylindrical sample of polyethylen with a diameter of 2cm [90]. When the surface conductivity of the insulator

is increased to 10−11 - 10−12S, the electric field distribution on the surface of the insulator can be effectively

improved [91]. Based on the preliminary conclusion on electric field optimization taking advantage of
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distributed conductivities, nonlinear conductivity composites, which have nonlinear behavior with respect to

the electric field, are considered by researchers worldwide. This chapter mainly reviews the application of

nonlinear materials in the modification of local electric fields.

5.1.1 Bulk doping

In 2013, M. Tenzer et al. proposed an insulator using oriented “MFF (Minatec® functional filler)” filler

[92, 93]. These commercially available particles are flake-shaped mica pigments, covered by a thin tin oxide

layer doped with antimony and titanium dioxide. Figure 24(a) shows that such MFF-doped epoxy composites

have good nonlinear conductivity properties related to electric field strength [94]. Meanwhile, the electric field

distribution of MFF-doped insulators presented in Figure 24 (b) shows a more uniform electric field

distribution on the surface under the effect of room temperature and temperature gradient than the traditional

spacer.

Figure 24. (a) Bulk conductivity of MFF-doped epoxy under different electric fields and temperatures [94];(b)
Electric field distribution of conventional insulator and MFF-filled insulator [92].

B. Du et al. studied effect of SiC particles on electrical characteristics [63, 65] and the results showed that

with the increase of the filler content, the threshold value of nonlinear conductivity has a downward trend,
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with their values of 8, 2.8 and 2 kV/mm for samples with doping ratios of 3, 10 and 14 vol% as shown in

Figure 25(a) [63]. They further found that with the increase of temperature, the flashover voltage of untreated

samples becomes higher than SiC-doped samples, as shown in Figure 25 (b), (c) and (d) [65].

Figure 25. (a) Relation between the bulk conductivity and the electric field strength [63], (b) the flashover
voltages of samples with different filler contents at 20°C, (c) the flashover voltages of samples with different
filler contents at 50°C, and (d) the flashover voltages of samples with different filler contents at 70°C [65].

Figure 26. DC surface flashover voltage values of insulators with different mass fraction of SiC particles. (a)
cone type insulator model and (b) post type insulator model [66].
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Surprisingly, an opposite trend was reported regarding insulators doped with SiC [66]. As shown in Figure

26, the DC flashover voltage at 0.4 MPa SF6 gas of cone type insulators and post type insulators with different

SiC contents has descending trend, except for cone type insulator with doping ratios of 20% and 25%.

5.1.2 Surface coating

ZnO is deposited on epoxy surface by a magnetron sputtering to prepare functional gradient surface layer

[64] and the surface flashover voltage was improved significantly. Subsequently, the concept of the interfacial

electric field self-regulating (IER) insulator was put forward and the tapered insulator with EP/SiC composite

material was prepared as the IER insulator [67]. β-SiC ring-clad insulators with different doping contents

(15%, 20%, and 25%) were prepared and DC surface flashover voltage in the medium of 10% to 90% SF6 / N2

mixed gas at 0.1MPa was tested. Figure 27(a) shows the DC flashover voltage results. The flashover voltage

of EP / SiC coated insulator is higher than conventional insulators, and the surface flashover voltage increases

with the increase of SiC content. However, for EP / SiC-coated insulators with higher SiC content, the reduced

volume resistivity of the EP / SiC coating results in higher leakage current and power loss (as shown in Figure

27(b)).

(a) (b)
Figure 27. (a) Measured flashover voltages of the conventional insulator and IER insulators with different SiC
contents and (b) leakage current and loss power of the IER insulators with different filler contents [67].

Apart from that, J. Xue et al. sprayed a non-linear conductive coating composed of SiC filler and epoxy on

the insulator surface [68,69]. The surface charge distribution patterns under DC voltages with different SiC

contents are displayed in Figure 28 [68]. With the increase of SiC content, surface charges show firstly an

increasing and then a decreasing trend.
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Figure 28. Surface charge distribution patterns with different SiC contents [68].

As an example for the positive flashover test in air at 0.1MPa, the positive flashover voltage is

non-linearly distributed by increasing the SiC content. They divided this phenomenon into three stages: the

decline stage (0-10%wt), the improvement stage (10%wt -33%wt), and the degradation stage (33%wt

-50%wt), as shown in Figure 29. When the content is 33%wt, the flashover voltage shows the highest value.

Figure 29. Surface flashover in 0.1MPa air on SiC/epoxy coated spacers with different SiC mass fractions
[69].

Then J. Xue et al. turned their attention to the influence of SiC particle size in SiC/epoxy coating [70]. As

shown in Figure 30, the results showed that surface charges are significantly suppressed by SiC/epoxy

coatings, especially using smaller SiC particle size. Flashover voltage in 0.1MPa 20% SF6/N2 mixtures

increases gradually with decrease of SiC particle size.
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Figure 30. Flashover voltage of SiC/epoxy coated alumina/epoxy spacers with different SiC particle size in
0.1MPa 20% SF6/N2 mixtures. (a) Positive DC. (b) Negative DC [70].

Then they proposed surface conductivity graded coating scheme to overcome the drawbacks of entire

coating manner [9]. Four kinds of surface graded coating schemes are considered, as shown in Figure 31.

Figure 31. Different surface graded coating schemes. (a) Raw spacer. (b) High conductive coating locates
close to HV electrode (HV-coating). (c) High conductive coating locates close to GND electrode
(GND-coating). (d) High conductive coating locates at the middle of spacer surface (SPM-coating). (e) High
conductive coating locates close to both HV and GND electrode (HV-GND-coating) [9].

The surface flashover tests are conducted on raw alumina/spacers and with different surface conductivity

graded coating (SCGC) schemes when SiC content is 10%wt. The results are shown in Figure 32. The result

shows that HV-coating has the best effect in increasing of surface flashover voltage.
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Figure 32. Surface flashover voltage with different SCGC schemes [9].

J. Tang et al. prepared epoxy matrix composites with different contents of nano-SiC particles to coat on

epoxy resin [71].Figure 33 shows the surface trap distribution of samples with and without additive of

nano-particles. With the SiC particles doping, shallow traps were introduced, leading to an evidently decline

of trap energy level, which would be beneficial to the process of charge de-trapping and extraction.

Figure 33. Surface trap distribution of nano-SiC/Epoxy composites [71].

5.1.3 Analysis and discussion

In this section we chose representative results from the above mentioned research groups for comparison

and discussion. Table 7 summarizes the effect of non-linear conductive composite modifications on the

surface potential decay rate and flashover voltage based on the available literature. As it can be seen, a wide
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range of parameters including shape of sample, processing method, test environment, doping amount and

applied voltage could directly influence on the results. In literature [63], a direct relationship between doping

amount and surface potential decay rate which shows increase of the doping rate for square sheet sample and

under positive applied voltage leads to surface potential decay rate enhancement was presented, however, this

relation for disc sheet samples and under negative voltage can not be seen. Literature [65] shows that

temperature rise increases the rate of surface potential decay for the same doping amount except for 14 %

doping at 70 °C. Moreover, the presented results in [67] describes the flashover voltage enhancement with the

growth of doping amount for conventional insulator. Zhang et al. investigated the doping amount from 0 to

50 % for cone type spacer and coating processing and the results show the maximum flashover voltage

happens at 10 % doping. Literature [66] studied the flashover voltage for different doping amount from 0 to

30 % for two types of samples including post type and cone type insulator; for post type insulators, doping

decreases the flashover voltage, yet 25 % doping causes 4.6 % growth of the flashover voltage for cone type

insulator.

Meanwhile, regarding the surface flashover voltage at different temperatures, the temperature dependent

conductivity should be very important since it affects the charge decay rate significantly, resulting in a

changing the surface flashover dispersion. However, problems lie in the difficulty of measuring the surface

conductivity at high field and high temperatures since surface flashover would be triggered even at very low

field (i.e. 30 kV/mm), during surface conductivity measurement, even for well protected and polished

electrodes. Meanwhile, in consideration of practical applications, most studies conducted tests at low pressure,

which the electric field cannot reach that high compared with the real cases where the gas pressure reaches

0.4MPa or more. For non-linear materials, due to its property sensitivity with respects to electric field

variations, testing under operating conditions must be considered. In addition, the long term aging test and

material property variation under transient pulses should further be performed.
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Table 7. Non-linear conductive composite modification methods and corresponding results of each
research group.

Research
group Ref. Sample

shape
Treatment
method

Test environment

Doping
mass
ratio

Results

Surface potential
measurement Flashover voltage test

Temperature
°C

Relative
humidity

Applied
voltage
kV

Surface
potential

decay ratio at
1200s

Environ-
ment

Flashover
voltage
kV

(Increasing
rate)

B. Du

[63] Square sheet

Doping

20

30%

0

+8

5%

Air 0.1MPa

-
3% 7.5%
10% 31.5%
14% 38.1%

[65]
Disc sheet

20

0

-7

19.51% 14.9(0)

6% 15.8% 15.6
(+4.8%)

14% 51.9% 17.2
(+15.7%)

50

0 84.37% 16.0(0)
6% 29.73% 15.2(-5.1%)

14% 91.3% 14.1
(-12.0%)

70

0 100% 15.0(0)
6% 81.48% 14.3(-5.0%)

14% 60.78% 12.4
(-17.3%)

[67] Conventional
insulator Coating 25 -

0

-

10%SF6/N2

0.1MPa

33.3(0)
15% 34.5(+3.6%)
20% 45.3(+36%)
25% 48.8(+46.5%)

G. Zhang [69] Cone type
spacer Coating 10-15 ＜10%

0

20%SF6/N2

0.1MPa

-45.0(0)
2% -40.0(-11.1%)
10% -54.0(+20%)
20% -53.0(+17.8%)
33% -34.0(-24.4%)
50% -30.0(-33.3%)

S. He

[66] Post type
insulator

Doping -

0

SF6
0.4MPa

-420(0)
5% -360(-14.3%)
10% -340(-19.0%)
15% -320(-23.8%)
20% -160(-62.0%)
25% -180(-57.1%)

[66] Cone type
insulator

0

SF6
0.4MPa

-280(0)
5% -245(-12.5%)
10% -243(-13.2%)
15% -270(-3.6%)
20% -290(+3.6%)
25% -293(+4.6%)
30% -280(+0%)

5.2. Shape improvement

Apart from introducing nonlinear materials which modifies local electric field decently, modifying the

profile of insulator to adjust the electric field line distributions can also be a useful approach to suppress

charge accumulation and realize local field improvement. In 1982, Cooke found that the charging of the

insulator would be associated with a particular nearby source [2], and he believed that the overall geometry of

insulators plays an important role in surface charging. Similar conclusions were also presented in his early
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papers [57, 95]. Since Cooke's 1982 paper, the surface charge accumulation phenomenon has been highlighted

by researchers using different model spacers.

5.2.1. Literature review

In 1983, a very detailed study on surface charging phenomenon and mechanism was conducted by

Nakanishi et al. [58]. Based on their experimental results [2, 58], Fujinami put forward an anti-charging

spacer model that has no normal field component over the surface, as shown in Figure 34 [56].

Figure 34. Spacer model designed by Fujinami [56].

After 1988, the investigation of surface charge transport in real-sized spacers accelerates the research

progress in exploring the surface charge transport mechanism [54, 55]. However, the implementation of

industrial application of HVDC spacers has still been hampered by the non-reproducibility of some

experimental results and difficulties in interpreting the surface charge distribution of field measurements. In

1991, Nitta and Nakanishi introduced a design principle that states that the surface of the spacer should

intersect the electric field lines at an angle as acute as possible so as to reduce the normal electric field

component as much as possible [55]. Based on their design idea, cone type spacer and post type spacer for

±500 kV GIS were manufactured, as shown in Figure 35.
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Figure 35. Spacer for ±500 kV HVDC GIS. (a) Cone type spacer and (b) post type spacer [55].

Figure 36. Distributions of electric field and its components on spacer surface concave side. (a) Disc-basin
spacer, (b) cone -basin spacer, and (c) half conical-basin spacer [59].

Figure 36 shows the combined field strength E, field strength tangential component Et and field strength

normal component En calculated by T. Hasegawa et al. for the design of a 500 kV DC GIS bus in 1997 [59].

It can be found that the En of the semi-conical basin insulator is lower than that of the conical insulator, which

can effectively suppress the accumulation of surface charges.

In 2004, E. Volpov summarized the general criteria for reliable insulator performance in high-voltage DC

gas insulation systems [60], and proposed generalized design criteria for HVDC insulators. He believed that
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the first principle for the optimal design of columnar insulation structures is that the maximum value of the

electric field strength along the insulator is smaller than the insulation margin. In this basic principle, the

initial normal electric field strength on the gas side of the solid-gas surface should be as small as possible.

Meanwhile, for the cone type insulator, the maximum value of the initial normal electric field strength and the

initial tangential electric field strength distinctively should be less than the threshold. His research results

provide quantifiable design criteria for insulator design applied in HVDC GIS.

Figure 37. Three different shapes of insulators [62].

Z. Jia et al. focused on the comprehensive influence of the material and shape of the insulator on its

flashover characteristics under DC voltage. Figure 37 shows insulators with different shapes used for

experimental comparison [62]. The result showed that the flashover voltage of the umbrella skirt insulator was

the highest at each pressure.

In our recent research [61], a criterion was put forwordwhich focused on the balance of tangential and

normal electric field compments along the surface of insulators. And a novel HVDC cone-type insulator was

developed, as shown in Figure 38.

Figure 38. ±100 kV novel DC cone-type insulator [61].
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The novel DC cone-type insulator passed a series of tests according to standards in gas-insulated

equipment [61], which provided a better performance than the traditional AC insulators in the same voltage

level. It is noted the flashover voltage of the novel insulator under DC superimposedlightning inpluse voltage,

exceeded the evaluation standard. in the 1: 4 SF6 / N2 gas mixture at 0.7 Mpa.

Meanwhile, a ±200 kV spacer as shown in Figure 39, was further developed. Comparison between the

200kV dc spacer and a 220kV AC spacer was performed by DC surface flashover and polarity reversal tests at

0.3MPa SF6 (as shown in Figure 40). For DC spacer, the surface charge density of convex surface is lower

than 10 μC/m2, and that of concave surface is lower than 5 μC/m2. For AC spacer, the surface charge density

of concave surface is higher than 10 μC/m2, and it even reaches to 18 μC/m2 on the convex surface. The

flashover voltage of AC and DC spacers are both lower than that in the DC linear-boost test. The flashover

voltage of AC spacer after polarity reversal decreases more than that of DC spacer, from 420 kV ~ 440 kV to

less than 360 kV. In addition, the linear-boost flashover voltage of DC spacer is slightly higher and more

stable than the AC spacer. The polarity reversal flashover voltage of DC spacer is slightly lower than the

linear-boost flashover voltage.

Figure 39. Physical pictures of the DC spacer. (a) Concave surface side and (b) convex surface side.

(a) (b)
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Figure 40. (a) Time varying curves of surface charge density along the surface of AC and DC spacers after
applying 240 kV voltage, and (b) surface flashover voltage test results at 0.3 MPa SF6.

One difficulty with gas-insulated components under DC stress is to predict the field distribution in the

solid spacers and in the gas in the vicinity of the spacers. DC spacers must be able to withstand not only long

time DC stress but also switching and lightning overvoltages and DC polarity reversal. All these factors have

to be considered when DC spacers are designed. There is therefore a need to develop methods to investigate

charge accumulation and field distributions on spacer surfaces. As a charging counter measure surface coating

of insulators was introduced for the first time. The spacers used were made of a standard epoxy with alumina

filler. Some of the spacers have been covered with a slightly conducting film. The spacer surfaces were

cleaned with alcohol before mounting. This treatment gave charge-free surfaces. The potential shift for the

covered spacers reached its equilibrium faster in a few days. After polarity reversal, the potential shift

reversed and reached steady state with the same time constant as before. In Figure 41 a summary of obtained

results for both coated and uncoated spacers is shown. The faster re-distribution on the coated spacers

documents that in this case surface conduction is the dominant process. As a summary the results from the

1980s obtained for uncoated and coated surfaces indicate that suitably chosen surface coatings can be used to

control the field distribution at the surface of solid spacers under HVDC stress, making SF6 insulated

components feasible in HVDC applications as well as in HVAC.

Figure 41. The time dependence of max and min voltages of the initial zero contour for the coated (A) and
uncoated spacer (B). The time (T) is given in days. The arrows indicate polarity reversals [12].
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Another approach to avoid charge accumulation is to make the resistive field distribution equal or similar

to the capactive field distribution by design and proper choice of material properties[56, 96-98]. The influence

of temperature and temperature distribution must be considered.

The magnitude of the electric field at the solid-gas insulation interface (gas side) for various ion densities

is shown in Figure 42. For short times, the capacitive field (denoted AC) is tangential to the surface, resulting

in a negligible ion capture volume and a maximum field located near the HV conductor. In contrast, for the

DC steady state (no ion case), the presence of a temperature gradient across the insulation enhances the field

in the less conductive region, i.e. near the grounded tank. For the same reason, DC field lines in the gas

toward the solid have now a normal component and build up a capture volume for ions[99].

Figure 42. Electrical field at the solid-gas interface for various ion production rates. Insets show field lines in
the gas (white) and solid (red) with example of ion capture volume (yellow region) [99].

Based on the research for material characterisation and the usage of multi-physics simulation tools the

analysis of electrical field distribution is now possible with high precision, taking the following parameters

into consideration: temperature and electrical field dependent characteristics of the used insulating materials,

accumulation of space- and surface charges and the superposition of DC and impulse voltages[100]. Hence,

the comparison between capacitive and steady-state resistive electric field strength distribution (gas side) for

the HVAC partition insulator (Figure 43) and the new developed HVDC partition insulator (Figure 43), shows

lower dielectric stress on the DC-design and under DC with some minor drawback in the case of AC[101].

Page 43 of 54 AUTHOR SUBMITTED MANUSCRIPT - NANO-127285.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 43. Comparison between capacitive and steady-state resistive electric field strength distribution (gas
side) for the HVAC partition [101].

For the optimized HVDC design, the improvement shown with a significant reduction of the dielectric

stress was obtained by geometrical optimization and insertion of a current collector, compared to the AC

design[102]. The temperature gradient across the insulation considered for the simulation is equal to the worst

case under service conditions and maximum continuous current.

5.2.2 Analysis and discussion

Shape modification as an approach to suppress surface charge accumulation of the insulator has advantages

such as simple operation process and high reliability, which is preferred by manufactures. The temperature

dependent conductivity may influence electric field distributions at DC, which results in irregular charge

behaviors. This issue should be considered carefully. Currently, we see some favorable evidences regarding

manufacturing of HVDC spacers, as is discussed in [61, 101, 102] , however, it is still a pity that no design

margin used for qualifying a charge density as well as a electric field stress/normal component value that is

acceptable for the stable operation of HVDC spacers. This unfavorable situation is mainly due to the lack of

knowledge regarding mechanism of charge triggered surface flashover at DC voltage. Some footprints

explaining charge-induced flashover are discussed in [14] and [17]. However, there is a long road ahead for us

before filling this research gap.

6. Comprehensive management-initiatively charge decay method
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A novel design of HVDC spacer (shown in Figure 44) was introduced based on the concept of adaptively

controlling surface charges using nonlinear materials. This method, unlike commonly used traditional

approaches, proposed a novel idea of controlling the location of accumulated charges and then properly

decaying of these charges, which fundamentally solves the problem of surface charge accumulation. The

electrical and mechanical test results show that the charge adaptively controlled spacer has high operating

capability under DC voltage and has great industrial application potential [72-75].

Figure 44. Side view of the charge adaptively controlling spacer [73].

The charge adaptively controlled spacer with a mass ratio of 20% SiC in the insulation region and 30%

SiC in the charge adaptively controlled region shows the best results as indicated in Figure 45 [75].

Figure 45. DC surface flashover test results of experimental samples (red line shows the increasing of dc
voltage ) [75].

7. Challenges and suggestions for future work

7.1 Surface charge origin and models
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Before choosing the charge tailoring methods, we should firstly clarify the charge type we were to deal

with, i.e. the homo-polarity charge due to conduction current and/or the hetero-polarity charge from the gas.

Under this premise, we can regulate the charge in a targeted manner. Recently published research proposes a

fairly convincing field-dependent charging theory, as has already discussed in the introduction, which can

serve as a reference for ways determining charge origins [16].

Based on the charge origins, this paper introduces a Dam-flood model and classifies the surface charge

tailoring methods proposed by different researchers. However, during chemically changing the surface

conductivity, which has been verified to be an important way changing surface flashover voltage, the surface

morphology is usually changed. This makes it difficult for us to discern what parameter plays a decisive role

in surface flashover voltage improvement. For example, in the fluorination process, is it the morphology

optimization or the increase of conductivity that really contributes to the surface flashover improvement?

Further, surface conductivity determines surface charge dissipation performance, which is an important

parameter that has been evaluated in the scheme by researchers. However, results obtained by previous

researchers showed different conductivity values that make it impossible to compare and find the optimal

margin to determine a suitable surface conductivity suitable for industry application.

Figure 46. Distribution range of the surface conductivity of epoxy based samples before and after surface
modification.

Figure 46 presents the surface conductivity of epoxy based samples before and after surface

modification.[24, 31, 32, 41, 42, 44, 49, 85, 90] It is worth noting that the surface conductivity of the base

material without modification defers significantly, which ranges from 9.7×10-22S to 3.4×10-14S. Surface
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modification increases surface conductivity and better surface property can be obtained. Further, we can see

that fluorination results in a surface conductivity ranging from 8.6×10-19S to 9×10-14S, which is relative lower

compared with plasma treatment. However, coatings introduce a surface conductivity up to 1.11×10-9S which

is much higher compared with other surface modification methods. Surface roughness and ozone treatment

increase surface flashover voltage while the trivial surface conductivity change is shown.

Such large difference over results in surface conductivity, to our knowledge, can be partially due to

differences in test setup and environment condition (i.e., air pressures, ambient gases), electrode arrangement,

electric fields, etc.. Meanwhile, as a variable material which shows different properties produced by different

companies, epoxy resin may probably be another factor responsible for such variations in measurement results.

We would suggest that all tests and measurements to be based on practical industrial applications, and the test

environmental condition should strictly follow the industrial application environment. In addition, there are

various methods for characterizing material properties, and there is still a lack of unified measurement

standards. Even if the same epoxy resin and the same processing technology are used, the conductivity

measured by each research group is different, and some are several orders of magnitude different. (For

example, the untreated epoxy conductivity measurement Z. An and G. Chen's group are different [19-21, 27,

28], and after the same treatment method, the surface conductivity of fluorinated samples such as J. He and B.

Du have a greater difference [30-32]). Such dispersion makes it difficult to compare and evaluate the

effectiveness of a certain treatment method, which hinders the selection of surface conductivity during the

preparation of insulators operating under DC voltage. It is necessary that the same measurement methods and

conditions are selected to ensure replicability of tests to obtain the similar measured values. We recommend

the conductivity measurement guidelines proposed in [103], by E.C. Salthouse. Based on this criterion,

extension of measurement time to 24h is needed to further ensure the stability and accuracy of the results. The

measurement environment is suggested to be combined with the real operating environment of the insulator,

especially for the use of non-linear materials as modified insulators.

7.2 Conductivity and traps
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Regarding the all charge tailoring techniques mentioned in this work, resistivity and traps are parameters

that researchers concerned more about. The transition of electrons from the Fermi level to the conduction band

requires energy to overcome the forbidden band whose width represents the resistivity of the polymer. When

the polymer is modified either by surface modification or the volume doping, it is equivalent to introduce new

impurities whose energy levels locates intermittently between the Fermi level and the conduction band of the

polymer. Under such case, when the electrons cross the forbidden band, the energy levels introduced by

impurities serves as a ‘step’, and it will be easier for electrons to overcome the forbidden band before reaching

the conduction band. As a consequence, it can be conceived that the forbidden band becomes narrower and the

trap density of the material becomes shallower, resulting in smaller resistivity [104].

As has been indicated by researchers that shallow traps increase surface charge decay, which is similar to

the effect of increasing surface conductivity. Meanwhile, it has been verified that a surface with higher

conductivity facilitates surface charge decay in a manner of surface leakage current while surface charge

decays through bulk or/and recombination with charges of opposite polar in air when a surface with low

conductivity s used [105-107]. It should be emphasized that deep traps can only be effective to inhibition of

charge injection as a manner to suppress surface charge accumulation in case they are being created in the

electrode/dielectric interface other than over the gas/solid interface-which prevents charge decay from

insulator surface.

8. Conclusion

This paper introduces a Dam model, based on which surface charge tailoring techniques are classified

and reviewed in a manner of increasing surface charge decay, inhibiting homo-polar charges from volume

conduction, decaying/avoiding charges at high electric field, and initiatively controlling and decaying charges.

Technical solutions of different charge tailoring methods are compared and discussed. The outlook of

potential solutions to suppress charge accumulation is recommended and discussed based on industrial

consideration. Based on the reviewing of published literature, we can sense that the current researches still

needs further improvement, especially in the unity of measurement methods as well as the mechanism of

increasing of surface flashover voltage. Meanwhile, for further studies, the transition from laboratory research
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to industrial production should also be considered. Before successfully developing of charge-free insulators,

the progress and improvement in this field requires our joint efforts both in charge tailoring mechanism and

treatment method.
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