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Abstract

This research is devoted to understanding the physical mechanism of cavitation
erosion in liquid flows at the fundamental scale of cavitation bubble collapse. Ca-
vitation bubbles form in a liquid when the pressure of the liquid decreases locally
below the saturated vapor pressure psatv . The bubbles grow due to low ambient
pressure and collapse when the surrounding liquid pressure increases again above
psatv . Bubble collapse near solid walls can result in high velocity liquid jet and shock
wave emission that cause high pressure loads on the wall. These pressure loads are
responsible for the erosive damages on solid surfaces, as observed in applications
like liquid fuel injection, hydrodynamic power generation and marine propulsion
(Brujan (2011), Franc et al. (2012)). On the other hand, the pressure loads from
collapsing bubbles are exploited for applications like shock wave lithotripsy, drug
delivery and cleaning surfaces (Lauterborn and Vogel (2013)). In this work, we
follow a numerical approach, which begins with the development of a compres-
sible solver capable of resolving the cavitation bubbles in the finite-volume code
YALES2 1 employing a simplified homogeneous mixture model. The solid material
response to cavitation loads is resolved with the finite element code Cast3M 2. A
one-way coupling approach for fluid-structure interaction (FSI) simulation bet-
ween the fluid and solid domains is pursued. In this simple approach, the pressure
field computed by the fluid solver at the fluid-solid interface is communicated
to the solid solver which computes the deformation induced in the material. In
the end, the dynamical events responsible for surface deformation are highlighted
from 2D vapor bubble collapse dynamics and associated pressure loads on the
solid wall are estimated. The response of different materials to bubbles collapsing
at different distances from the solid wall is discussed.
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1. Introduction

The motivation of this research is understanding the physical mechanism of
cavitation erosion in compressible liquid flows, with applications in the field of
aerospace, hydrodynamics, automotive, bioengineering etc. Cavitation is the ap-
pearance of vapor regions (or cavities) inside an initially homogeneous liquid when
the pressure decreases locally (Brennen (1995), Franc and Michel (2006)). Ana-
logous to boiling where water turns into vapor when the temperature reaches
the boiling point, in cavitation the phase change from water into vapor takes
place when the pressure decreases below its vapor pressure. The formation of the
bubbles or nucleation in liquid water is however quite complex, as pure water is
able to sustain pressure below the vapor pressure before the intermolecular bonds
break for the formation of cavities. In practice, microscopic dissolved gas or solid
impurities, known as cavitation nuclei, act as weak points in the continuum liquid
where the cavities grow once the vapor pressure is reached. Bubbles grow by vapo-
risation of liquid water as long as the local pressure is below saturation pressure.
When the local pressure increases again above vapor pressure, the condensation of
water vapor causes the bubble to reabsorb. Due to liquid inertia the reabsorption
is usually relatively slow at the initial phase, but becomes extremely rapid at the
final stages, this phenomenon is referred to as collapse. Pressure variations in a
flow are given by the flow dynamics in a given geometry, so the flow geometry
together with flow inlet and outlet conditions determines the regions of bubble
formation and bubble collapse. The collapse of vapor structures can generate the
emission of intense shock waves and also fast and focused liquid jets. Both are
known to generate local pressures that can be extremely high, often in the GPa
range.

Cavitation affects the performance and life cycle of a machine by producing
unwanted noise and vibrations, but also surface erosion, depending on the lo-
cation, duration and extent of the exposure to cavitating flows (Akcabay and
Young (2014), Hsiao and Chahine (2015)). Bubble collapse, if close to a solid
boundary, is believed to be causing the surface damage. The first numerical so-
lution for bubble collapse and rebound (or re-growth of bubble volume after col-
lapse) considering the compressibility of liquid water was proposed by Hickling
and Plesset (1964), which showed the emission of shock wave at the instant of re-
bound, propagating outwards from the bubble center. The dynamics of collapsing
bubble in an compressible liquid medium was further studied by Fujikawa and
Akamatsu (1980),Prosperetti (1987). On the dynamics of non-spherical bubble
collapse, Naude and Ellis (1961) and Benjamin and Ellis (1966) showed success-
fully that cavitation bubbles do not collapse spherically near solid boundaries and
explained the acceleration of a translating bubble cavity during its collapse, cou-
pled with the formation of a liquid micro-jet and formation of bubble vortex ring.
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The presence of a boundary retards the acceleration of surrounding liquid and as
a result, the liquid surrounding the bubble surface located far from the solid wall
attains a higher velocity. This high velocity of surrounding liquid near the bubble
surface far from the wall in comparison to the bubble surface closer to solid wall
gives rise to a liquid jet. The re-entrant liquid jet pierces through the bubble sur-
face opposite to the solid wall, thus accelerating one side of the bubble towards
the opposite surface. The velocity of the liquid jet was predicted to be very high,
on the order of few hundred m/s, which led to the hypothesis that the liquid jet
piercing the bubble and hitting the solid wall in a non-spherical collapse is the
primary cause of cavitation erosion. Many decades later, this hypothesis is still
debatable, nevertheless a much advanced review of the features of liquid micro-jet
properties can be found in Blake and Gibson (1987) and Obreschkow et al. (2011).
The collapse of a vapor bubble surrounded by a liquid can be represented as in
fig. 1, where pbubble is the pressure inside the bubble and pliquid is the surrounding
liquid pressure such that pliquid � pbubble.

Figure 1: Vapor bubble collapse due to imposed pressure difference pliquid � pbubble : non-
spherical bubble collapse near a solid wall.

The liquid jet is directed towards the solid wall and multiple shock waves
are emitted due to the impact of the liquid jet with the opposite bubble surface
and eventually, the solid wall. This highly dynamical sequence of events along
with high amplitude pressure peaks at the solid wall from emitted shock waves
and liquid jet needs to be resolved first to predict material response. Further
insights on numerical simulations of bubble collapse are provided by Johnsen and
Colonius (2009), Müller et al. (2010), Lauer et al. (2012) and on bubble collapse
near deformable surfaces by Gibson and Blake (1980), Gibson and Blake (1982).

Cavitation erosion takes place on concentrated areas of solid walls exposed to
cavitation. Collapses of vapor structures exert forces on the solid surface, leading
to high stress levels on and in the solid. A detailed review of hydrodynamic ca-
vitation erosion has been reported in Franc (2009), Brujan (2011), Franc et al.
(2012). Considerable research has focused on understanding the physics of bubble
formation and collapse near solid boundaries. However to date, a thorough un-
derstanding of how bubble collapse relates to surface erosion has been an elusive
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goal due to the different physical processes of fluids and solids, different temporal
scales of bubble collapse (∼ ms) and cavitation erosion (∼ months, years) and
computational limitations. As explained in Franc and Michel (2006), an elastic
wall would see a much smaller impact pressure compared to the rigid wall from
a high velocity liquid jet due to the damping effect of the wall whose displace-
ment allows for pressure to relax in the fluid. Therefore, the logical extension is
the fluid-structure interaction (FSI) study resolving both the fluid and solid dy-
namics during cavitation bubble collapse (Kalumuck et al. (1995), Hsiao et al.
(2014), Choi and Chahine (2016), Joshi et al. (2019)).

This research work thus focuses on developing a computational model of bubble
collapse dynamics close to a solid wall with FSI to aid in the development of ca-
vitation erosion prediction tools. A FSI methodology has been pursued by combi-
ning Computational Fluid Dynamics (CFD) and Computational Solid Mechanics
(CSM) on the scale of single bubble collapse. The focus is to develop the requi-
red methodology in the CFD solver YALES2 and CSM solver CAST3M to model
accurately a 2D bubble collapse near a rigid wall and predict material surface
deformation with one-way FSI. One-way coupling is intended from the fluid to
the solid only, in order to study the response of the solid to the fluid load. In
one-way FSI, the feedback of solid wall deformation is not considered on the fluid
dynamics. In the scope of this paper, there will be no effect of material surface
deformation on the evolving dynamics of the collapsing cavitation bubble. Des-
pite this simplification, one-way coupling is desirable both from a methodological
point of view (as a first step towards two-way FSI coupling in which the feedback
of solid wall deformation on the fluid is considered) and from an operational point
of view (the numerical simulation tools need not to be integrated one with the
other).

This paper is structured as follows : Section 2 introduces the CFD and CSM
solver methodology along with one-way FSI approach ; Section 3 presents the
2D bubble collapse dynamics ; Section 4 discusses the material response to the
pressure loads from collapsing bubbles followed by conclusions drawn in Section
5.

2. Numerical approach

2.1. Compressible flow solver

The numerical approach for simulating compressible cavitating flow is deve-
loped with the multi-physics solver YALES2 based on the finite volume method.
The solver is based on the pressure-based semi-implicit algorithm developed by
Moureau et al. (2007) for ideal gas flows. The Navier-Stokes equations in eq. (1) &
(2) for the conservation of mass and momentum forms the system of conservation
equations in our fluid flow modelling.

∂ρ

∂t
+∇ · (ρu) = 0 (1)
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∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · τ (2)

Here, ρ is the fluid density, u is the velocity, p is the pressure, τ is the viscous stress
tensor, t is the time, (∇) is the gradient operator, (∇·) is the divergence operator.
In our cavitation modelling approach, the fluid is assumed to be barotropic (i.e.
pressure depends on density only) and hence the energy equation is not used. In
incompressible flows, no pressure and density fluctuations are created due to the
velocity field. Consequently, the time step size of a numerical simulation is limited
by the Courant-Friedrichs-Lewy (CFL) condition in eq. (3) which determines the
distance travelled by the fluid moving with the convective velocity u.

CFL = |u| ∆t

∆x
< 1 (3)

Here, ∆t is the given time step and ∆x is the mesh size. To resolve acoustic wave
propagation in compressible flows, the finite propagation speed of the waves is
defined by the speed of sound c. This isentropic speed of sound is therefore :

c =

√
∂p

∂ρ
(4)

The compressible set of governing equations are hyperbolic in nature and any
fluctuation is transported at the speed of sound, so u±c in 1D. The dimensionless
quantity describing the ratio of convective velocity u to the speed of sound c, is
the Mach number Ma = u/c. The relationship between Courant-Friedrichs-Lewy
condition with acoustic propagation CFLacou for compressible flow and convective
CFL for incompressible flow is expressed as :

CFLacou = |u+ c| ∆t

∆x
=
u∆t

∆x

(
1 +

1

Ma

)
CFLacou = CFL

(
1 +

1

Ma

)
CFLacou

(
Ma

Ma + 1

)
= CFL

(5)

For a compressible flow simulation, the time step derived from the minimum of
(CFL,CFLacou) will be usually limited by the CFLacou condition. For a cavitation
bubble collapse in liquid water with c = 1483m/s, the Mach number stays small
for major part of the simulation and approaches Ma = 1 only during the final
stages of bubble collapse. An explicit treatment of the time step will lead to
very small time steps for such simulation and larger computation time. Thus, the
solver’s design down to the algorithmic level has an effect on the capability to
resolve such problems efficiently.
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The weak form or so-called integral form of the compressible Navier-Stokes
equations are solved in our solver, which allows to model discontinuities like shock
waves and phase boundaries in a cavitating flow. In the prediction-correction nu-
merical algorithm used, flow convection and acoustics are separated and time
advancement is performed based on the characteristic splitting of the compres-
sible Navier-Stokes equations. The prediction-correction algorithm solves for the
purely convective part of governing equations explicitly in the first step with a
constant acoustic source term for φ ∈ (ρ,m) as in eq. (6) & (7), where m = ρu is
the momentum.

ρ? − ρn

∆t
+∇ · (ρ̃un)− (ρ̃− ρn)∇ · un = 0 (6)

m? −mn

∆t
+∇ · (m̃⊗ un)− (m̃−mn)∇ · un = −∇pn +∇ · τn (7)

The speed of sound cn at time step n is computed before starting the time ad-
vancement to obtain the time step from CFLacou. A characteristic analysis of
the system of equations of this step shows that the eigenvalues are equal to the
convective propagation speed u and the step is only limited by the convective
CFL stability condition, independently of Mach number. For φ ∈ (ρ,m) in eq.
(6) & (7), φn is the value of φ before time advancement i.e. from the previous
time step, φ? is the value computed at the end of the prediction step and φ̃ is the
value computed at different steps of the time integration scheme. The stress terms
for pressure and momentum diffusion are explicit contributions, evaluated only at
the beginning of the time step. At the end of the prediction step, the equation of
state is used to estimate the intermediate pressure p? from ρ?.

It is worth noting here that this implementation is being specifically develo-
ped for modeling cavitating flows in liquid water, which will be modeled with a
barotropic equation of state. A barotropic assumption implies that the pressure is
only a function of density p = f(ρ). Therefore, the evolution of energy equation is
decoupled from the solver algorithm and by virtue of it, temperature evolution is
not resolved in our system of governing equations for the compressible cavitation
solver.

In the prediction step only eq. (6) & (7) are spatially discretized with a fourth-
ordered centered scheme (Malandain (2013), Roger et al. (2016)). The time inte-
gration scheme TFV4A developed by Kraushaar (2011) has been used to advance
the solution in time from tn to an instant tn+1 = tn+∆t, where ∆t is the time step
used. This fourth-order scheme is explicit in nature, and only uses the known so-
lution at tn. The scheme is based on the idea of blending the low storage, explicit,
fourth-order Runge-Kutta with a Lax-Wendroff-type scheme, where the in-built
numerical diffusion in the temporal scheme can be adjusted.

The speed of sound c∗ is updated at the end of the prediction step based on
the advected density field. This is especially important for multiphase flows where
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the different phases/components of the fluid can have varying orders of speed of
sound. The computation of speed of sound from the advected density at each
control volume is important near phase boundaries i.e. interfaces. Thus in the
correction step, the subsequent pressure field computation will have the correct
speed of sound of the fluid phase from the temporal evolution of density, most
importantly near fluid interfaces.

Before correcting the conservative variable in second step, the Helmholtz equa-
tion is solved implicitly with the Stabilized Bi-Conjugate Gradient (BiCGSTAB2)
linear solver (Vantieghem (2011)) for the pressure correction δp = pn+1 − p? in
eq. (8). The equation is derived by taking the divergence of momentum equation
during the correction step and using the continuity equation from the prediction
step to remove the unknown momentum mn+1. Thus, a discrete mass-conserving
equation for the corrected pressure pn+1 and pressure variation δp is obtained. The
second term on the LHS represents the influence of local flow on the acoustics.
The second and third term in LHS are negligible for low Mach number flows and
the Helmholtz equation with negligible acoustic presence tends towards a variable
density Poisson equation.

∇ · ∇
(
pn+1 − p?

)
−∇ · un

(c∗)2∆t

(
pn+1 − p?

)
− pn+1 − p?

(c∗)2∆t2

= ∇ · ∇ (pn − p?) +
ρ? − ρn

∆t2
+

1

∆t
∇ · (ρ?u?)

(8)

The governing equations for the correction step are obtained after removing eq.
(6) & (7) used in the prediction step from the full set of Navier-Stokes equations
in eq. (1) & (2). A temporal integration of the resulting equation after splitting
resolves the acoustic influence on the set of conservative variable φ ∈ (ρ,m),
taking into account the presence of acoustic source term in the prediction step. In
the correction step the pressure variation is used to express the variations of the
conserved variables in eq. (9) & (10) obtaining the updated field of ρn+1 & mn+1.

ρn+1 − ρ?

∆t
− 1

(c∗)2
δp

∆t
= 0 (9)

mn+1 −m?

∆t
− un

(c∗)2
δp

∆t
= −∇ (δp) (10)

The pressure p(n+1)c is computed again from the updated density ρn+1 through
the equation of state at the end of the correction step. This is to enforce strict
agreement between pressure and density in the phase interfaces for cavitating
flows, in agreement with the barotropic assumption. The discontinuities in the
orders of magnitude of density and speed of sound at the interface between vapor
and liquid regions can often give rise to numerical oscillations in the pressure
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Figure 2: Schematic of solver algorithm- (in yellow) modified algorithm to estimate intermediate
sound speed and corrected pressure from equation of state.

field. A situation may arise where the corrected pn+1 and ρn+1 do not satisfy the
equation of state in specific regions of phase interface.

A single fluid or widely called homogeneous mixture model is used to treat
the two-phase cavitating flow. A single fluid model treats the cavitating flow as a
mixture of two fluids of varying density and are quite popular in cavitation studies
(Goncalves and Patella (2009)). A homogeneous mixture of liquid and vapor is
assumed in two phase regions, with vapor volume fraction α = Ωv/Ω, where Ωv

is the vapor volume in a control volume Ω. The volume average density ρ in the
two phase region is expressed by the linear combination of liquid density ρl and
vapor density ρv in as :

ρ = αρv + (1− α) ρl (11)

The model assumes local kinematic equilibrium between phases which implies
same local velocity for both phases and thermodynamic equilibrium. The later
hypothesis implies that the phase change is infinitely fast, isentropic and in me-
chanical equilibrium. This allows us to distinguish the different phases in the
model - pure liquid water with α = 0 and a two phase liquid-vapor mixture region
separated from the pure liquid by ρsat,l in eq. (12).

α =

{
0 , ρ ≥ ρsat,l
ρsat,l − ρ

ρsat,l − ρsat,v
, ρ < ρsat,l

(12)

Here, ρsat,l and ρsat,v are the liquid and vapor densities at the saturation point,
respectively. In literature, homogenous mixture models have been used to resolve
large vapor structures like cavitating vortices or bubble clouds as well as single
bubbles. It does not require any empirically computed mass transfer term between
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the liquid and vapor phases. However since no interface is reconstructed in the
model, the surface tension effects are neglected.

The different phases are defined by equations of state which are barotropic,
meaning that the pressure is a function of the fluid density only. These equations
are used in the solver to evaluate analytically the pressure p from the density ρ.
The two-phase liquid-vapor mixture region is considered without the presence of
any non-condensable gas. The pure liquid phase is modelled with the modified
Tait equation of state in eq. (13), with the fitted model constants B and N given
in table 1.

p = (psat +B)

(
ρ

ρsat,l

)N
−B, if α = 0 (13)

In the two phase mixture region, phase transition is modelled following an isen-

Figure 3: Density vs pressure evolution in the cavitation model.

tropic path in the phase diagram proposed by Egerer et al. (2013) in eq. (14),
where the model constant C and saturation properties are taken at a reference
temperature Tref = 293.15 K, listed in table 1. The equilibrium pressure-density
evolution following an isentropic path in the phase diagram is shown in fig. 3.

p = psat + C

(
1

ρsat,l
− 1

ρ

)
, if 0 < α < 1 (14)

A consistent speed of sound based on isentropic relationship in eq. (4) is used
for the pure liquid as follows :

c =

√
(psat +B) N

(ρ)N−1

(ρsat,l)N
, if α = 0 (15)

The speed of sound in the homogeneous two-phase liquid-vapor mixture ba-
sed on the two-phase equation of state decreases dramatically as the fluid is not
composed of a single liquid phase anymore. This huge decrease in speed of sound
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at the phase interface, plotted in fig. 4 as “Isentropic two phase”, makes the flow
locally supersonic as soon as cavitation appears, and could give rise to spurious
numerical oscillations at the interface. As the purview of this work is the col-
lapse of cavitation bubbles and resulting pressure wave propagation in the liquid
medium, a constant speed of sound is implemented in the two-phase cavitation
region shown in fig. 4 as “Two phase”. In our numerical simulations, the shock

Figure 4: Speed of sound vs density evolution in the cavitation model.

waves propagating in the pure liquid are resolved accurately and shock propa-
gation speed in the two-phase cavitation region is assumed not to be relevant.
The shock propagation in the two phase region inside the bubble propagates at a
constant speed of sound of 1483.3m/s, obtained from the ρsat,l at 293.15K. The
model constants used in the cavitation model are summarized in table 1.

Property Value Unit
psat 2340 Pa
ρsat,l 998.1618 kg/m3

ρsat,v 0.01731 kg/m3

µsat,l 1.002× 10−3 Pa · s
µsat,v 9.727× 10−6 Pa · s
C 1468.54 Pa · kg/m3

N 7.132 −
B 3.078× 108 Pa
Tref 293.15 K

Table 1: Saturation properties of water.

For viscous calculations, a constant liquid viscosity µsat,l is used for pure liquid
phase whereas the implemented dynamic viscosity for the liquid-vapor mixture is
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given in eq. (16) :

µ = (1− α)

(
1 +

5

2
α

)
µsat,l + α µsat,v, if 0 < α < 1 (16)

The effective viscosity for liquid-vapor mixture is modelled as a quadratic law
with a maximum in the two phase region following the model proposed in Beattie
and Whalley (1982). The dynamic viscosity varies with the vapor volume fraction
α in the two phase region. In general, the high order centred space discretization
schemes used are oscillatory in nature. In the regions of numerical discontinuities
like wave fronts, the application of such schemes results in non-physical, spurious
oscillations. Their combination with Runge-Kutta type methods can become uns-
table and stabilizing measures need to be taken with strategies like numerical
diffusion in spatial and temporal discretization, adding artificial viscosity, high-
order filtering of solution fields. A nonlinear artificial viscosity proposed by Cook
and Cabot (2004), based on the high-order derivative of the strain rate tensor is
used to damp spurious oscillations near discontinuities. A mesh dependent artifi-
cial viscosity µartif is added to the momentum equation, defined as :

µartif = Cµρ (∆x)r
∣∣∣∣∂ru∂xr

∣∣∣∣ (17)

where ∆x is the mesh spacing, | | is a Gaussian filter applied to the absolute value
to ensure a smooth and positive µartif . Cµ is a model constant called the artificial
viscosity constant and r is a user-specified integer called the artificial viscosity
order and is set to 4 wherever applicable. Additionally, a high order filtering
of the solution variables based on volume-weighted averaging with a Gaussian-
type smoothing has been employed in order to stabilize numerical simulations.
Two different filtering strategies are employed, one filtering of the pressure field,
denoted by (| |p) and another filtering of the density field, denoted by (| |ρ). The

pressure filtering | |p does not affect the simulation accuracy and has been used

every iteration of the numerical simulations. The density filtering | |ρ on the other
hand can affect the temporal convergence of the solution and its overuse can
change the dynamical features of the solution, by creating an artificial diffusion
of density. Therefore a strategy to use density filtering | |ρ after every specified
number of iterations (typically on the order of tens of iterations) is used for the
simulations. This in effect allows the local spurious oscillations to grow nominally
for certain physical time and then the density filtering | |ρ is applied. The time
advancement algorithm and solution filtering has been validated using the shock
tube test case with an ideal gas detailed in Sarkar (2019).

The implemented homogenous mixture model for cavitating flow is validated
by considering the spherical collapse of a 2D bubble (radial collapse of a cylindrical
bubble). The analytical Rayleigh equation in 2D in eq. (18) is derived from the
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continuity equation in a cylindrical coordinate system (r, θ, z), where Ṙ is the time
derivative of bubble radius R(t) with respect to time t, pv is the vapor pressure and
p(Rb, t) is the pressure at any position of domain boundary Rb. It is important to
note that in eq. (18) Rb cannot be taken as infinite to assume a pressure condition
applied at infinity due to the logarithmic singularity in the equation. Therefore,
a finite cylindrical domain of radius Rb is taken to compute the evolution of a 2D
bubble collapsing under the influence of pressure p at the boundary.

(RR̈ + Ṙ2)ln
Rb

R
− Ṙ2

R

(
1− R2

R2
b

)
=
pv − p(Rb, t)

ρ
(18)

The numerical simulation is done with a circular domain in the x− y coordinate,
which is assumed to extend infinitely in z direction with outlet boundary condition
on the domain boundary. A 1/4th symmetrical domain is also considered, thus
reducing the computational domain by virtue of using two symmetrical planes.
The bubble is initialized with 100 cells along its radius for both the full and 1/4th

symmetrical test case. The numerical results for 2D vapor bubble collapse of initial
bubble radius R0 = 500 µm, α = 0.99 at pressure pv = 2194 Pa, surrounded by
liquid pressure p = 10 MPa, α = 0 is compared with the analytical result in
fig. 5. The analytical result is derived for a vapor pressure pv = 2194 Pa and
for domain boundary location Rb = 17R0. The non-dimensionalized temporal
evolution of bubble radius R plotted is resolved every 0.05µs except the last three
points which are resolved at every 0.25µs. The analytical and numerical result in
the plot are non-dimensionalized using the initial bubble radius R0 and collapse
time measured from the analytical solution, referred in this case as trayleigh =
8.75µs for Rb = 17R0. The numerical bubble radius is estimated from the evolving
area (since in 2D) of the bubble, with the bubble interface defined at α = 0.5
while the vapor volume fraction α is depended on the transported density. The

Figure 5: 2D Rayleigh collapse comparison for Rb = 17R0 (trayleigh = 8.75 µs), initial bubble
radius R0 = 500 µm.

numerical results give reasonable agreement with the analytical results, specifically
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the total duration of the bubble collapse is well captured for the case of Rb = 17R0.
There is some deviation in the predicted bubble radius in our numerical simulation
compared to analytical result, which is attributed to the difference between the
initial conditions assumed in the Rayleigh solution and the ones implemented
through the barotropic model.

Indeed, the analytical Rayleigh solution assumes a bubble in equilibrium with
surrounding liquid pressure kept very close to vapor pressure pv while the domain
boundaries are at a higher pressure p(Rb, t) with the pressure increasing towards
the boundary. On the other hand, the barotropic assumption does not allow to
simulate the liquid state at vapor pressure, so the bubble in the numerical set
up is surrounded by a nearly uniform liquid pressure of 10MPa from the bubble
interface to the domain boundary. Similarly, 3D vapor bubble collapse is valida-
ted against the Rayleigh-Plesset equation (Franc and Michel (2006)) discussed
elaborately in Sarkar (2019).

2.2. Solid mechanics solver

The role of solid mechanics computations is to predict the stress and displace-
ments inside a deformable body subjected to the action of forces and/or displace-
ments at its boundary. Here, the solid material response and surface deformation
prediction from impacting cavitation loads are carried out with the finite element
implicit solver Cast3M. The solver resolve the boundary value problem from the
conservation of linear and angular momentum of a deformable continuum. The
local equilibrium equations for linear and angular momentum are :

∇ · σ + f = ρa,

σ = σT .
(19)

Here, σ is the Cauchy stress tensor, f is the body forces, ρ is the material density,
a is the material acceleration and the superscript T denotes the transpose. In
cavitation erosion, on one hand, the pressure loading varies over time and on the
other hand, the importance of the forces of inertia has to be considered. Therefore,
the dynamic response of the solid has to be predicted. The deterministic implicit
solver in Cast3M (Di Paola et al. (2017a)) has been used to solve the non-linear
dynamic solid mechanics problem. Considering a static non-linear problem of small
deformation on a domain Ω, the equilibrium equation, constitutive law and small
deformation assumption gives :

∇ · σ + f = 0, (20)

σ = C : εe = C : (ε− εp) (21)

ε =
1

2
(∇ud +∇(ud)

T ) (22)
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Eq. (21) is Hooke’s law where σ and ε are the second order stress and strain tensor,
C is the 4th order stiffness tensor, ud is the displacement, ε is the total strain de-
composed in terms of elastic and plastic strain components εe and εp respectively.
After domain integration of the weak form of the equilibrium equation, the spatial
discretization of the finite element method leads to a system of equations given
in eq. (23), where F is the equivalent nodal force vector and B is the discretized
gradient operator defined from the element shape functions.∫

BTσdV = F (23)

For each time step, the equilibrium is found by minimizing the residual R =
F − BTσ. This is obtained through an iterative prediction-correction algorithm
where the displacement solution of the problem is first initialized via the elastic
prediction U = K−1R with K the tangent linear stiffness at the beginning of
the step. The strain tensor is then evaluated and the internal variables (here the
cumulated plastic strain) are updated which gives a new estimation of the stress
tensor σ and consequently a new residual R.

After introduction of inertial and viscous effect, the finite element system trans-
forms into :

M · Ü +D · U̇ +

∫
BTσ = F (24)

where U̇ and Ü are the nodal velocity and acceleration vectors, M is the mass
matrix and D is the damping matrix. Equation (24) can be interpreted as the
static equilibrium equation with added inertial forces (−M · Ü) and viscous forces
(−D · U̇). This equation is resolved using an implicit time algorithm.

The dynamic formulation will be used for the prediction of deformation of
solid from the temporal evolution of stresses on cavitation bubble collapse. In this
paper, the FEM simulations are conducted in 2D plane-strain conditions in order
to be consistent with the infinite third dimension assumed for the fluid domain.

Three different materials, namely aluminum alloy (Al-7075), duplex stainless
steel (St A-2205) and nickel-aluminum-bronze (NAB) are considered to estimate
the material response. For the three materials, the elastic regime is assumed as a
linear isotropic behavior described by the Young modulus E and Poisson ration
ν up to the initial yield stress σy. The plastic regime is described by a Von Mises
yield criterion with an isotropic hardening function known as Ludwik equation :

σVM = σy +Kεnp (25)

where the constant K is the strength coefficient, n is the strain hardening exponent
and εp is the accumulated equivalent plastic strain.

Data for material properties and yield strength summarized in table 2, are
taken from Roy et al. (2015) which were obtained with compression tests at a
strain rate of 1.0 s−1. The material behavior for Al-7075, St A-2205 and NAB are
shown together in fig. 6 for comparison.
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Material ρ [kg/m3] E [GPa] ν σy [MPa] K [MPa] n
Al-7075 2810 71.9 0.33 500 312 0.29

St A-2205 7805 186 0.30 560 917 0.51
NAB 7580 122 0.32 300 1205 0.56

Table 2: Material density, Young’s modulus, Poisson’s ratio and compressive properties at strain
rate 1.0 s−1 (Roy et al. (2015)).

Figure 6: Stress-strain curves for Al-7075, St A-2205 and NAB at strain rate 1.0 s−1.

2.3. Fluid-structure interaction : One-way coupling

In fluid-structure interaction (FSI) problems, solid structures interact with the
surrounding fluid flow. The partitioned approach also known as the staggered ap-
proach, used in this work, treats the fluid and solid independently with respective
numerical algorithms and interfacial conditions are used to exchange information
between fluid and solid solutions. Two solvers deal respectively with the fluid and
solid mechanics equations and exchange information at the interfaces. The parti-
tioned approach allows for different time steps for the fluid and solid that could
be optimized to resolve the different time scales of the two domains. The chal-
lenge is, however, to coordinate the algorithms to achieve accurate and efficient
fluid-structure interaction solution by keeping the two codes uncoupled.

The approach pursued in this paper is the uncoupled analysis called the one-
way fluid-structure interaction. The fluid domain is modelled alone by assuming
a rigid boundary in place of the solid. To this end, a purely CFD solver is used
which computes the pressure distribution p(x, t) as a function of space x and
time t along the fluid solid interface for the entire time duration of interest. Next,
the computed pressure p(x, t) is used in a separate calculation as time-dependent
boundary condition to load a deformable solid resolved with the CSM solver. This
in return gives the time-dependent response of the solid to the applied loads, as
represented in fig. 7.

The bubble collapse dynamics is solved with the semi-implicit CFD algorithm
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Figure 7: One-way FSI procedure.

from initial time tin to final time tfin with the pressure loads on the solid wall
extracted at equally spaced time intervals ∆tFSI . Let this be referred as CFD step
1. The pressure loads are then used as a time-dependent boundary condition to
advance the CSM computation from tin to tfin in CSM step 1. Only one step of
CFD and CSM computations are performed and this provides the solid state at
the end of the entire simulation as well as during the transients of the bubble
collapse.

3. Bubble collapse dynamics

The dynamics of 2D circular bubbles collapsing at different distances from a
planar solid wall are investigated for shock-induced collapse. A shock-induced col-
lapse refers to vapor bubble collapse induced by a shock wave propagating over
the bubble. A computational domain of size 10R0 × 5R0 is considered, where R0

is the initial bubble radius and taken as R0 = 500 µm. We take advantage of
symmetries by simulating only one-half of the 2D bubble in all the cases conside-
red. The bubble is resolved within in a region of uniformly spaced quadrilateral
cells with ∆x = ∆y = 5µm whereas the exterior domain has unstructured qua-
drilateral cells. Grid stretching is applied with a growth ratio of 1.05 towards the
outlet boundary with around 500, 000 computational cells in the entire fluid do-
main. The solid wall is located at the bottom of the computational domain. The
outlet boundaries are located at 10R0 in the positive x-direction and at 5R0 in
the y-direction. The outlet boundaries are equipped with Navier-Stokes Charac-
teristic Boundary Conditions (NSCBC) following Poinsot and Lele (1992). The
NSCBC boundary conditions allow the domain boundaries to be weakly reflec-
tive in our viscous multi-dimensional simulation. Importantly the propagation of
waves on the NSCBC-equipped boundaries is treated only in the boundary normal
direction. A spherical wave originating in the domain center, near the dynamical
bubble collapse region, will become nearly planar due to increased wave front ra-
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Figure 8: Computational domain for 2D bubble collapse - domain boundary 10R0×5R0, domain
size = 5× 2.5mm2.

dius as it approaches the boundaries located far, so that the previous assumption
is acceptable. Care needs to be taken anyway concerning the junction between
two differently oriented boundaries at the corners of the domain. Here, spurious
numerical artefacts may arise and propagate along the bisector. Therefore, the
domain length in the x-direction has been chosen to be twice as long as the one
in the y-direction.

In the single-fluid cavitation model, a bubble is initialized with a hyperbolic
tangent profile which assumes a continuous evolution of density through the in-
terface given in eq. (26). Here ∆x is the computational mesh spacing and df is the
analytical distance function to the interface in eq. (27), xi is the spatial coordi-
nate, xc is the position of the bubble center, ρv is the liquid-vapor mixture density
corresponding to psatv and ρl is the liquid density. The pressure at initialization is
obtained depending on ρv and ρl from eq. (13) & (14).

ρinit = ρv +

(
ρl
2

+
ρl
2
× tanh

(
df
∆x

))
(26)

df =

√√√√Ndim∑
i=1

(xi − xc)2 − R0 (27)

The bubble is initially resolved with 100 computational cells in the initial bubble
radius. The simulations are carried out with the semi-implicit CFD solver with a
limiting CFL = 0.01 and CFLacou = 0.5 giving a time-step ∆t smaller than 1 ns
for the entire simulation. The small value of limiting CFL is to ensure numerical
stability of the time advancement scheme in our cavitation modelling where the
fluid density decreases steeply at the phase interface. The smallest ∆t of about
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0.05 ns is during the most dynamical part of bubble collapse, when the liquid
jet velocity is very high (> 500 m/s) and multiple shock waves propagate in the
domain. The total simulation time for bubble collapse and subsequent material
response is tfin = 6 µs. A 4th order artificial viscosity model with a artificial

viscosity constant of 0.1 is used, along with density filtering (| |ρ) every 40 time

iterations and pressure smoothing by (| |p) at every iteration. It is important
to mention again that the smoothing and filtering steps are needed for solution
stability and have been extensively tested to have negligible impact on the solution
accuracy.

We will quantify the effects of bubble collapse on resulting wall pressure at
different non dimensional stand-off distance γ = h/R0, where h is the distance
between the solid wall and bubble center. Based on γ, the bubble position with
respect to the wall can be categorised as attached (γ ≤ 1) and detached (γ > 1)
bubbles. An attached bubble is initially defined as a circle cut by a plane due to
the presence of the wall. For such cases, R0 is the radius of a perfectly spherical
bubble that would have the same volume (surface in 2D) as the non-spherical
attached bubble.

We will present 2D collapse dynamics for attached (γ = 0.9, R0 = 495 µm)
and detached (γ = 1.4, R0 = 500 µm) vapor bubbles surrounded by water at
atmospheric pressure. A shock front is initiated at a distance of 2 mm from the
solid wall and initially both fluids are at rest :

vapor : ρ = 10 kg/m3, p = 2194 Pa,

liquid : ρ = 998.2 kg/m3, p = 101, 325 Pa.
(28)

3.1. Attached bubble (γ = 0.9)

The vapor bubble is attached to the solid wall and the distance between the
bubble center and shock front is 1.55 mm. On initialization, a shock front with
an amplitude of 50 MPa hits the bubble upper surface at t = 0.68 µs. The shock
front finally hits the solid wall at t = 1.3 µs and is reflected back in the domain.
The temporal evolution of a shock-induced attached bubble dynamics is shown
in fig. 9. The left half of each frame shows the density contour whereas the right
half shows the pressure contour. At 4.2 µs, the bubble surface area has shrunk to
approximately 5% of the initial surface and a liquid jet is formed from the bubble
upper boundary. The bubble shapes shown in the density contour matches with
the experimental observations of bubble collapse presented in fig. 10.

To quantify the wall pressure and relate it to the bubble dynamics, we will look
into the temporal evolution of pressure in fig. 11. The plot shows two curves, one
is the evolution of pressure pF00 on the wall at the axis of symmetry, denoted by
the point F00 in fig. 12. The second curve corresponds to the temporal evolution
of instantaneous maximum pressure on the solid wall, denoted by pmax−wall. It
should be noted that F00 is a point fixed in space, but this is not the case for the
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Figure 9: 2D attached bubble : (left) density and (right) pressure contour on each frame
showing temporal evolution of a shock-induced 2D bubble collapse, γ = 0.9, R0 = 495 µm, p =
0.1MPa, pshock = 50MPa, frame size = 2× 2.5mm2.

Figure 10: Experimental images for attached bubble collapse in atmospheric condition γ =
0.55, Rmax = 400 µm (Sarkar (2019)).
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location of the points contributing to pmax−wall. The other point in fig. 12 is F10
located on the solid wall at a distance of 1 mm from the axis of symmetry. This
1 mm wall length between point F00 and F10 on the fluid boundary is resolved
with 201 equally spaced computational nodes. There are three major pressure
peaks, each representing an important characteristic of the bubble collapse.

Figure 11: 2D attached bubble : pressure peaks at pF00 and pmax−wall on the solid wall for
shock-induced collapse, γ = 0.9.

Figure 12: Location of probe points on the solid wall : F00(x, y) = (0, 0) and F10(x, y) =
(0.001, 0).

The first peak of 1.97 GPa at 4.294 µs is the so-called water hammer pressure
pwh due to the liquid jet impact on the solid wall. This pressure can be expressed
as pwh = ρcujet, where ρ is the liquid density, c is the speed of sound and ujet is the
liquid jet velocity at impact. The local flow condition at the moment of collapse
in the impact location is density ρ = 1300 kg/m3, speed of sound c = 3000 m/s
and jet velocity 500m/s, giving a theoretical water hammer pressure of 1.95GPa
exhibiting a very good agreement with our numerical result. This illustrates how
very high pressure and velocities are achieved in the liquid during collapse. The
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liquid jet impact produces a shock wave, referred to as water hammer shock,
originating at the point where the liquid jet hits the wall. This simultaneous
effect of the jet flowing outwards after the impact with the wall and the shock
wave starts to collapse the remaining bubble (2D equivalent of a 3D torus) still
attached to the wall seen in fig.13. The remaining bubble is also deformed by the

Figure 13: Numerical schlieren showing the sequence of events during the remaining bubble
collapse-emission of primary and secondary shock, shock induced attached bubble collapse γ =
0.9, R0 = 495 µm, p = 0.1MPa, pshock = 50MPa, frame size = 500× 500 µm2.

inward movement of the surrounding flow induced by the collapsing bubble.
The second pressure peak of 2.52 GPa on the solid wall at t = 4.423 µs is due

to the remaining bubble collapse at an offset of 0.1mm from the bubble symmetry
axis. The pressure evolution at different time instants on the solid wall is shown
in fig. 14.

The shock waves emitted from the remaining bubble collapse travel along the
wall towards the bubble symmetry axis, giving the third pressure peak of 2.69 GPa
at t = 4.46 µs from the superimposition of shock waves and strong compression
of liquid in the center region. Finally, this shock wave from the bubble center
travels radially along the wall and in the computational domain attenuating in
magnitude with increasing distance from bubble center.

Few important observations can be made regarding the remaining bubble col-
lapse taking place at an offset of 100 µm from the bubble symmetry axis. The
remaining bubble collapse is driven by two mechanisms : firstly the inward-moving
flow, induced by the collapsing bubble which pushes the bubble surface towards
the symmetry axis. The second mechanism is the liquid jet flow propagating out-
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Figure 14: 2D attached bubble : pressure plots on the solid wall between points F00 and F10
at different time instants, shock induced attached bubble collapse γ = 0.9, R0 = 495 µm.
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Figure 15: Velocity vectors showing the flow field during the final stages of collapse near the
solid wall, γ = 0.9, R0 = 495 µm, p = 0.1MPa, pshock = 50MPa, frame size = 500× 500 µm2.
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wards from the symmetry axis along the wall, which pushes the remaining bubble
away from the symmetry axis. This can be seen in the velocity field shown in fig.
15. Once the remaining bubble collapses, a recirculation zone in the flow field is
generated close to the symmetry axis and the wall. Such a recirculation is sustai-
ned during the rest of the dynamical part when the shock wave compresses the
liquid on the symmetry axis and travels towards the side and top boundaries.

Secondly during the remaining bubble collapse, the importance of boundary
layer development can be seen in fig. 13. The remaining bubble collapse is split
into two parts by outward travelling liquid flow on the solid wall after the jet
impact. Due to the development of boundary layer, the fluid flow very close to the
solid wall moves at a slower velocity as compared to the rest of the outward flowing
liquid jet along the wall. A maximum flow velocity ux = 900m/s in the mesh cell
and local cell Reynolds number Rex = 4500 is computed for the outward flowing
liquid jet. The fast-moving liquid flow on the wall surface splits the remaining
bubble into two parts (fig. 13). A top part collapses first, at t = 4.40 µs, with the
emission of a primary shock wave. The rest of the remaining bubble attached to the
solid collapses next, at t = 4.42 µs, producing a secondary shock wave. Both the
primary and secondary shock waves travel radially outwards from the location
of remaining bubble collapse. It is worth mentioning that in our investigation,
the first grid point in the solid wall normal direction is located at a distance of
∆y = 5 µm. Therefore, the wall shear stress from the liquid jet flow has not
been reported as it would require much finer mesh in the wall normal direction to
resolve the boundary layers accurately. According to Zeng et al. (2018), the wall
shear stress is of the order of 100 kPa from the liquid jet flow along the solid wall
for a bubble R0 = 50 µm at γ = 1, resolved with a much finer mesh of first grid
point at ∆y = 0.1 µm.

3.2. Detached bubble (γ = 1.4)

In the case of detached cavity for γ = 1.4, the shock hits the bubble upper
surface at t = 0.51 µs, as it can be seen in figure 16. The bubble upper surface
flattens and moves towards the shock propagation direction i.e. towards the solid
wall. The shock front inducing the bubble collapse is reflected back from the solid
wall and interacts once more with the collapsing bubble. This interaction happens
at a relatively early stage of collapse, therefore this reflected shock does not retard
the formation of liquid jet in our simulation. During the final stages, the liquid
jet is formed compressing the bubble upper surface along the symmetry axis. The
evolving shape of the bubble matches well with the experimental observations as
can be seen in comparing fig. 16 & 17 for γ = 1.4.

In the final stages, the liquid jet is pushing the bubble upper surface which
collapses with the bubble lower surface resulting in the emission of a shock wave.
The shock produced is a water hammer shock from the liquid jet travelling with
the bubble upper surface collapsing on the bubble lower surface and the shock
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Figure 16: 2D detached bubble : bubble shapes in numerical simulation γ = 1.4, R0 =
500 µm, p = 0.1MPa, pshock = 50MPa.

Figure 17: Detached bubble collapse : bubble shapes in experimental images, γ = 1.4, R0 =
730 µm (Sarkar (2019)).
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subsequently propagates towards the solid wall. The maximum liquid jet velocity
is 750m/s at t = 4.1 µs which decelerates upon the collapse of the bubble upper
surface on the lower surface. Such generation of water hammer shock has been
reported experimentally by Lindau and Lauterborn (2003) and numerically by
Johnsen and Colonius (2009). At t = 4.20 µs in fig. 18, the shock speed of the
water hammer shock is 2400 m/s which is propagating in a liquid almost at rest
towards the solid wall. Along with the water hammer shock travelling towards the

Figure 18: 2D detached bubble : final stages of collapse showing shock propagation near the
solid wall γ = 1.4, R0 = 500 µm, p = 0.1MPa, pshock = 50MPa, frame size = 1× 2.5mm2.

wall, another shock wave is also created which travels in the opposite direction
seen at t = 4.20 µs in fig. 18. The shock wave propagating in the wall-opposite
direction is propagating at 2600 m/s in a flow field induced by the collapsing
bubble. The water hammer shock impacts the wall with peak pressure of 1.34GPa
at t = 4.26 µs shown in fig. 19 and the impacting shock is reflected back from
the solid wall. The reflected shock expands radially with the shock front travelling
along the wall and the shock intensity decreases with increasing wall distance from
the symmetry axis.
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Figure 19: 2D detached bubble : pressure peaks at pF00 and pmax−wall on the solid wall for
shock-induced collapse γ = 1.4, R0 = 500 µm.

In our numerical study, we assume that the cavitation bubbles are filled with
liquid-vapor mixture only, and that there is no non-condensable gas present in-
side the bubble. In practical cases, bubbles can entrap the dissolved gases from the
liquid water. In such bubble collapses, the bubble volume shrinks due to the hi-
gher ambient liquid pressure. Water vapor condensates similarly to what has been
discussed until now, but the entrapped non-condensable gas inside the bubble
undergoes compression. This first bubble shrinkage is commonly referred to as
the first collapse. Due to the high pressures reached inside the bubble during the
first collapse in presence of non-condensable gases, the bubble volume grows back
again from its state of minimum volume. This phenomenon is commonly referred
to as rebound. The collapsing bubble can thus undergo several collapses and re-
bounds depending on the volume of bubble and non-condensable gas content. In
the case of a detached bubble collapse undergoing multiple collapses and rebounds,
some part of the gas can move with the induced flow to form smaller satellites
bubbles, that can collapse subsequently, possibly very close to the solid wall. Our
model does not include the presence of non-condensable gases, and therefore, no
rebound is observed. So, in our study we restrict our analysis to the first collapse
to understand the liquid-vapor interaction in cavitation.

4. Solid material response

In order to better understand cavitation erosion mechanisms, the response of
the solid is now characterized both for attached and detached bubble collapse.
We will look into the response of the solid in a one-way coupled approach where
the pressure loads generated by the fluid are applied as time-dependent boundary
conditions on the solid, with no feedback to the fluid. This has the practical
advantage of allowing to perform, firstly a fluid only simulation and subsequently
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a solid only simulation. From the point of view of the fluid, this corresponds to
assuming the wall to be rigid with infinite impedance, reflecting any incoming
wave from the surface.

Figure 20: FSI coupling domain and interface between the fluid and solid, bubble radius R0 =
500 µm, (bottom) solid domain, size = 1× 2.5mm2, (top) fluid domain, size = 5× 2.5mm2.

We take into consideration the fluid and solid domains as shown in fig. 20.
The FSI coupling interface extends only 1mm from the bubble symmetry axis, as
most of the dynamical events take place in this region. The use of a much smaller
solid computational domain is possible due to the use of wave absorbers on the
bottom and right boundaries. The use of larger computational domains for the
solid (extending twice as much both in x and y directions) showed no influence
on the results. The FEM mesh used for the prediction of the material response is
shown in fig. 21. It consists mostly of quadrilateral 8-node elements refined close
to the fluid-solid interface. Some horizontal layers of 6-nodes triangular elements
ensure the transitions in the mesh sizes. The solid interface of 1 mm length is
resolved with 801 nodes applying a uniform grid spacing. More nodes are used on
the solid interface to resolve accurately the plasticity developed from propagating
shock waves with varying shock speed. On the other hand, fluid pressures are ob-
tained on uniformly spaced 201 computational nodes along the considered length
of solid wall. Therefore, the fluid pressures are interpolated between the fluid-solid
interface with non-matching mesh resolution. The fluid pressures on 201 nodes are
interpolated using a quadratic function to the 801 nodes on the solid boundary at
the fluid-solid interface.

The plots and contours of our 2D investigation for this symmetrical solid do-
main is presented for the three materials considered, namely Al-7075, NAB and
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Figure 21: Computational domain and mesh used for the FEM simulation - (left) full domain,
size = 1× 2.5mm2, Nelements = 9850, Nnodes = 29065, (right) zoomed view showing transition
of fine quadrilateral elements to coarse using layers of triangular elements.

St A-2205. The FSI coupling time is ∆tFSI = 5ns for the one-way coupling, which
means that the fluid pressure is extracted at the rigid wall every ∆tFSI for the
entire simulation duration and is applied at every ∆tFSI on the solid interface
as time-dependent boundary condition. It is worth mentioning that time-step in-
dependence studies for ∆tFSI were performed for the one-way coupling down to
∆tFSI = 1ns and no difference in the results was observed. At time equal to zero,
i.e. prior to applying the pressure load, the solid is considered at rest.

4.1. Attached bubble collapse (γ = 0.9)

In the case of an attached two-dimensional bubble initially in a liquid at at-
mospheric pressure, and collapsing under the influence of an impacting 50 MPa
shock wave, the solid wall interface position is shown in fig. 22. To recall, only
one-half of the problem is simulated taking advantage of the symmetry along the
y-axis, and the other solid computational boundaries are treated with wave absor-
bing characteristics. Wave absorbing boundaries allow the propagation of elastic
waves through the boundary in transient dynamic computations (Di Paola et al.
(2017b)) and the displacement of FEM nodes at the boundaries equipped with
wave absorption is not constrained in the 2D plane i.e. X and Y direction. It
physically means that we numerically simulate only a small part of a very large
solid material and no reflected elastic waves from the solid boundary reaches our
computational domain. This assumption, in return, implies that the solid will be
in a continuous state of elastic displacement or compression from the propagation
of elastic waves in the solid, since no wave reflection can occur to bring back the
solid to a rest state. In other words, there is no relaxation to a rest state in the
solid material.
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Figure 22: Solid wall interface profile. (a) after liquid jet impact t = 4.35 µs. (b) after entire
simulation time t = 6 µs, γ = 0.9, R0 = 495 µs. The displacement plotted is the difference
between the surface displacement and the displacement induced by plane elastic wave.

Therefore, it is important to note that the displacement we present in this
paper is the relative displacement defined as the final solid surface displacement
minus the displacement induced by the plane elastic wave propagation in the solid
domain. The surface node on the solid wall located at 0.95 mm away from the
axis does not see any of the dynamic loading from the collapsing bubble and only
displaces due to the plane elastic wave. This surface node displacement is taken
as the displacement induced by the plane elastic wave and subtracted from solid
surface displacement to obtain the relative displacement plotted in fig. 22. The
surface node at 1mm away from axis is not considered due to minor yet observable
boundary effects on displacement owing to its position at the intersection between
solid wall and wave absorbing boundary.

The liquid jet produces considerable relative displacement at the bubble sym-
metry axis. The maximum displacement (3.8µm) is obtained for Al-7075 specimen,
whereas the smallest surface displacement (1.4µm) is found for St A-2205 seen in
fig. 22 (a). The displacement in NAB from liquid jet impact is 2.6 µm at the
symmetry axis. The temporal convergence of the permanent plastic deformation
has been validated to check the convergence in time of the CSM calculations. At
the end of the simulation at 6 µs, the maximum plastic deformation has been
identified for NAB of 5.1µm at the bubble symmetry axis. It is worth mentioning
here that the initial yield strength of NAB is 300 MPa, which is the lowest of
the three materials considered. For each material, the plastic deformation at the
bubble symmetry axis is the cumulative effect of the pressure loads from liquid
jet impact and shock wave superimposition. In comparison, we obtain plastic de-
formation of 4.6 µm and 1.6 µm in Al-7075 and St A-2205 respectively. On the
other hand, the deformation at an offset of 0.135mm from symmetry axis is due
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to the pressure load from collapse of remaining bubble fragments. The maximum
plastic deformation takes place in NAB of 3 µm, followed by Al-7075 of 2.1 µm
and the least deformation in St A-2205 of 0.8µm from the remaining bubble frag-
ment collapse. The plastic response of Al-7075 and NAB are similar, whereas St
A-2205 clearly offers the maximum resistance to the induced pressure load due to
material strength.

Figure 23: von Mises stress σVM at different time instants during liquid jet impact (t =
4.295 µs), remaining bubble collapse (2D equivalent of 3D bubble torus at t = 4.420 µs) and
subsequent shock wave superimposition at bubble symmetry axis (t = 4.470 µs) for St A-2205
(σy = 560 MPa), γ = 0.9, R0 = 495 µm, frame size = 1× 1mm2.

The evolution of von Mises stress (σVM) in St A-2205 at different stages of the
collapse is presented in the snapshots of fig. 23 plotted at t = 4.295 µs, 4.420 µs
& 4.470 µs for liquid jet impact, remaining bubble collapse at an offset and shock
wave superimposition at the symmetry axis respectively. A value of σVM greater
than the initial yield strength σy (560 MPa for St A-2205) indicates the region
where the material will yield. To quantify the plasticity developed in the solid, we
will draw comparisons on maximum accumulated plastic strain Pmax

εp and surface
area under plastic deformation Aεp . The surface area under plastic deformation
Aεp is computed from the solid surface undergoing plastic strain of at least 0.5%
and above. The maximum accumulated plastic strain Pmax

εp for Al-7075, NAB and
St A-2205 are respectively 0.255, 0.0972 & 0.0856 whereas the surface area under
plastic deformation Aεp are respectively 5.523 × 10−8 m2, 9.816 × 10−8 m2 and
2.052× 10−8 m2, as summarized in table 3.
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Material Pmax
εp Aεp (m2)

Al-7075 0.255 5.523× 10−8

NAB 0.0972 9.816× 10−8

St A-2205 0.0856 2.052× 10−8

Table 3: Maximum accumulated plastic strain Pmax
εp and area under plastic deformation Aεp

for shock induced attached bubble, γ = 0.9, R0 = 495 µm, at t = 6 µs.

Figure 24: Accumulated plastic strain Pεp for the three considered material at the end of
simulation time t = 6 µs, R0 = 495 µm, frame size= 1 × 1 mm2. The symmetry axis is on the
left boundary of each image.

The contour of the accumulated plastic strain Pεp at the end of the simulation
(i.e t = 6 µs), for all the considered materials is shown in fig. 24. For the three
materials, the maximum plastic deformation region is located near the bubble
symmetry axis where most of the dynamical events takes place. Although the
Pmax
εp in Al-7075 is 2.6 times higher than NAB, the Aεp is highest in NAB i.e. 1.77

times that of Al-7075. This again is related to the material properties considered,
where the yield strength of NAB is σy = 300 MPa whereas for Al-7075, it is
σy = 500 MPa. In addition to the plasticity at the bubble symmetry axis, the
propagating shock waves on the solid wall lead to the generation of significant
plasticity along the length of the solid wall.

4.2. Detached bubble collapse (γ = 1.4)

In the case of detached bubble at γ = 1.4, the only impact pressure is the
water-hammer shock impacting and travelling on the solid wall. Since there is
no bubble rebound considered, at no point does any part of the vapor bubble
reaches the wall. The radially propagating shock wave hits on the symmetry axis
and travels along the wall. The response of the considered material after the
shock wave has propagated along the wall at t = 6 µs is shown in fig. 25, where
the relative displacement discussed previously is plotted. The solid wall interface
undergoes displacement all along the considered wall length, with the maximum
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Figure 25: Solid wall interface profile after entire simulation time t = 6µs, γ = 1.4, R0 = 500µm.

plastic deformation of 1.2 µm for NAB. At the end of the simulation, only NAB
shows a small pit near the symmetry axis whereas the displacement for St A-
2205 and Al-7075 demonstrates a wavy solid interface with maximum relative
displacement at an offset from the symmetry axis. The region of maximum relative
displacement corresponds to the region of maximum accumulated plastic strain
Pmax
εp in the solid.

The accumulated plastic strain Pεp contour for a detached bubble collapse is
shown in fig. 26. The region with maximum plasticity is at an offset distance from
the bubble symmetry axis for all the three materials. The Pmax

εp in Al-7075 is 0.014
located at a distance of 450 µm from the symmetry axis and at a depth of 45 µm
from the solid surface. Similarly Pmax

εp in NAB and St A-2205 is 0.0109 and 0.00539
respectively, located nearly in the same region in the solid as Al-7075. Using the
same definition for area under plastic deformation Aεp as before, we find plastic
surface area of 5.019×10−8m2, 3.681×10−8m2 and 6.243×10−12m2 for Al-7075,
NAB and St A-2205 respectively. The values of Pmax

εp and Aεp are summarized in
table 4.

Material Pmax
εp Aεp (m2)

Al-7075 0.014 5.019× 10−8

NAB 0.0109 3.681× 10−8

St A-2205 0.00539 6.243× 10−12

Table 4: Maximum accumulated plastic strain Pmax
εp and area under plastic deformation Aεp

for shock induced detached bubble, γ = 1.4, R0 = 500 µm at t = 6 µs.

A few observations can be made : the maximum plastic strain from the im-
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Figure 26: Accumulated plastic strain Pεp for the considered material at t = 6µs, γ = 1.4, R0 =
500 µm, frame size= 1× 1mm2. The symmetry axis is on the left boundary of each image.

pacting shock wave is found for Al-7075. The maximum plastic strain is located
at an offset from the bubble symmetry axis. Such an offset in the maximum plas-
tic strain region has been reported in the doctoral thesis of Paquette (2017) and
more recently analyzed in Joshi et al. (2019), where it has been interpreted in
terms of solid material characteristic time, as it will be recalled below. Although
the maximum plastic strain region is located at an offset, the propagating shock
does generate non negligible plasticity all along the length of solid wall. The Aεp
is the highest for NAB similar to what is found for attached bubble collapse. A

Figure 27: Temporal evolution pressure and sound speed on the wall for shock induced detached
bubble collapse, γ = 1.4, R0 = 500 µm.

few points about the propagation of the impact shock wave could be explained
here. Comparing it with spatial evolution of pressure, we can essentially see the
radially propagating shock wave with its maximum at different location on the
wall at different time instants, presented in fig. 27. Looking at the evolution of
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the speed of sound c on the wall obtained from fluid calculations, it can be seen
that near the symmetry axis, the shock speed on the wall is very high whereas it
starts decreasing as the shock moves along the wall after the impact. Then, the
offset in the position of the region of maximum plasticity has been attributed to
the inertial effects in the solid, where due to high shock speed on the solid surface
near the symmetry axis the solid cannot respond fast enough to the pressure load,
and the rate of plasticity increases at an offset with decreasing shock speed as
the propagating shock wave moves away. The wall shear stress from the high fluid
velocity in the wall parallel direction, possibly in the order of few hundred kPa
based on literature, could possibly contribute further to the plastic strain at an
offset on the solid wall. Despite the fact that the wall shear stress would be many
order smaller in magnitude than the propagating shock wave pressure along the
wall, one shall recall that plasticity is created by shear in the material, and not
by normal stress. As seen previously in the fig. 25, plastic deformation takes place
more or less everywhere on the solid interface. The maximum surface displace-
ment is of the order of 1.6 µm for NAB whereas it is less than 1 µm for Al-7075
and St A-2205. This is consistent with our observation where NAB absorbs much
of the energy from the shock waves and plasticizes more. For a detached bubble
collapse, the pit formation is near the symmetry axis for NAB, whereas Al-7075
and St A-2205 undergo pit formation at an offset from the symmetry axis. The
overall pit depth in a detached bubble collapse is smaller in comparison to an
attached bubble collapse.

5. Conclusions and perspectives

In the course of this work, an investigation on the mechanism of cavitation
erosion at the fundamental scale of a single bubble collapse is carried out. The
objective is to model the dynamics of collapsing bubbles near rigid and deforming
materials and characterize the material response by coupling the fluid and solid
mechanics. A compressible cavitation solver is developed in YALES2 for CFD
simulation of liquid water and two-phase cavitating flows in 2D and 3D. The com-
pressible Navier-Stokes equations are solved together with the equations of state
defining all the fluid phases to model small scale as well as large scale cavita-
ting structures efficiently. The solver takes compressibility and viscous effects into
account, and uses non-reflective boundary conditions. It is capable of resolving
highly dynamic pressure fields generated by violent collapses of vapor structures
inside the flow field. The solid mechanics simulations have been performed with
the finite-element solver Cast3M to predict the dynamical behaviour of the mate-
rials. Wave absorber elements are used to prevent the reflection of elastic waves on
the outer boundaries of the simulated domain. The elastic-plastic response of alu-
minum (Al-7075) alloy, nickel-aluminum-bronze (NAB) alloy and duplex stainless
steel (St A-2205), following a power law relationship between stress and strain in
the plastic regime, is compared for attached and detached bubble cases.
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The dynamics of the bubble collapse has been presented for shock-induced
collapse. The dynamic evolution of attached bubbles shows three major events
- firstly the liquid jet impact on the solid wall resulting in the water hammer
pressure. Secondly the collapse of the remaining bubble (2D equivalent of 3D
bubble torus) at an offset from the symmetry axis. Finally the strong compression
of liquid at the symmetry axis from the superimposition of the shock waves emitted
from the remaining bubble collapse. For a detached bubble, the water hammer
shock emitted when the bubble upper surface collapses on the bubble lower surface
is the source of pressure loading on the solid wall. Overall, the bubble dynamics has
been captured quite accurately for the considered stand-off distances, matching
well with the existing literature and experimental data. The magnitude of the
pressure loading on the other hand varies depending on the mechanism driving
the bubble collapse and the stand-off distance, and has been found to be higher for
attached bubble collapse. In the investigation of material response, the attached
bubble collapse is found to cause maximum plastic deformation and pit formation
at the bubble symmetry axis. The induced plastic deformation results from the
liquid jet impact pressure and the interaction of the shock waves arising from
remaining bubble collapse. The plastic deformation in detached bubble collapse
is located at an offset from the symmetry axis which is attributed to inertial
effects in the solid from propagating shock waves. Overall we found higher plastic
deformation and pit formation on the solid from a collapsing attached bubble.
However, it is obvious that the one-way coupled FSI procedure introduces some
approximations as the feedback of solid deformation on the fluid pressure is totally
neglected. Therefore, it is possible that under some circumstances, the ”true” solid
response would be different, nevertheless this provides at least a first-attempt
solution of such a complex problem.

The CFD methodology developed for simulation of cavitation has been exten-
sively tested in two dimensions, but its application to three-dimensions is straight-
forward. An animation of a three-dimensional bubble cloud collapse can be found
online 3. We generated a random bubble cloud with bubble radii varying from
R0 = 250 µm to R0 = 500 µm at different stand-off distances. A larger cloud re-
levant at the industrial scale would require much larger computational resources
and time.
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