SUPPLEMENTARY INFORMATION:

Very high frequency probes for atomic force microscopy with silicon optomechanics

L. Schwab ${ }^{1}$, P. E. Allain ${ }^{2}$, N. Mauran ${ }^{1}$, X. Dollat ${ }^{1}$, L. Mazenq ${ }^{1}$, D. Lagrange 1, M. Gély ${ }^{3}$, S. Hentz ${ }^{3}$, G. Jourdan ${ }^{3}$, I. Favero ${ }^{2}$ and B. Legrand ${ }^{1, \mathrm{a}}$

${ }^{1}$ Laboratoire d'Analyse et d'Architecture des Systèmes, Université de Toulouse, CNRS UPR 8001, Toulouse, France
${ }^{2}$ Matériaux et Phénomènes Quantiques, Université de Paris, CNRS UMR 7162, Paris, France
${ }^{3}$ Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France

[^0]

Fig. S1: Scanning electron microscopy images of a probe tip fabricated using the VLSI process on silicon. (a) Top view of a $5-\mu \mathrm{m}$ long probe tip. Red disk radius is 50 nm , green disk radius is 25 nm . (b) Close view of the apex of the tip. Green disk radius is 25 nm . From the measurements the curvature radius of the apex of the tip is estimated to be smaller than 30 nm .

Fig. S2: Optical transmission spectrum of the waveguide coupled to the ring cavity. (a) Broad band spectrum. The transmission profile of the grating couplers produces a bell-shaped curve (red dashed line). Blue arrows indicate the optical modes of the ring cavity showing a free spectral range of 8.3 nm . (b) Optical mode at 1554.3 nm . A loaded quality factor of 10500 and a contrast of 69% are deduced from the measurement. (c) Optical doublet at 1562.5 nm . When optical quality factors are higher that 10000 typically, the optical mode appears split in a doublet caused by the degeneracy lifting of the clockwise and counter-clockwise modes propagating in the ring cavity. A loaded quality factor of 16900 (resp. 12000) and a contrast of 51% (resp. 47%) for peak 1 (resp. 2) are deduced from the measurement.

[^0]: ${ }^{\text {a }}$ Author to whom correspondence should be addressed. Electronic mail: bernard.legrand@laas.fr T.: +33561336811, F.: +33561336300

