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Introduction

This paper is dedicated to the numerical resolution in moderate dimension of the following McKean-Vlasov Forward Backward Stochastic Dierential Equations (MKV FBSDEs)

X t = ξ + t 0 b(s, X s , Y s , Z s , L(X s ), L(Y s ), L(Z s )) ds + t 0 σ(s, X s , L(X s )) dW s Y t = g(X T , L(X T )) + T t f (s, X s , Y s , Z s , L(X s ), L(Y s ), L(Z s )) ds - T t Z s dW s (1) with b : R × R d × R k × R k×d × P 2 (R d ) × P 2 (R k ) × P 2 (R k×d ) → R d , σ : R × R d × P 2 (R d ) → R d , g : R d × P 2 (R d ) → R k , and f : R × R d × R k × R k×d × P 2 (R d ) × P 2 (R k ) × P 2 (R k×d ) → R k .
W t is a d-dimensional F t -Brownian motion where (Ω, A, F t , P) is a given ltered probability space and T > 0. ξ is a given random variable in L 2 (Ω, F, P; R d ) and P 2 (R n ) stands for the space of square integrable probability measures over R n endowed with the 2-Wasserstein distance

W 2 (µ, ν) = inf E[(X -X ) 2 ] | X, X ∈ L 2 (Ω, F, P; R n ), L(X) = µ, L(X ) = ν .
At last L(.) is a generic notation for the law of a random variable.

This kind of equation is linked to non local PDEs kwown as master equations. We refer to [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I-II[END_REF],

chapter 4 and 5 of volume 2, for an introduction on the subject. In [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], it is shown for example that under regularity conditions, when the drift b is independent of time and the law L(Z t ), the driver f does not depend on time and the law L(Z t ), σ does not depend on time, then the resolution of equation (1) provides a way to estimate the solution of the equation ∂ t U(t, x, µ)+b(x, U(t, x, µ), ∂ x U(t, x, µ)σ(x, µ), µ, η).∂ x U(t, x, µ)

+ 1 2
Tr[∂ 2 xx U(t, x, µ)σσ (x, µ)] + f (x, U(t, x, µ), ∂ x U(t, x, µ)σ(x, µ), µ, η)

+ R d
∂ µ U(t, x, µ)(y).b(y, U(t, y, µ), ∂ x U(t, x, µ)σ(x, µ), µ, η) dµ(y)

+ R d 1 2 Tr[∂ x ∂ µ U(t, x, µ)(y)σσ (y, µ)] dµ(y) = 0 on [0, T ] × R d × P 2 (R d ) (2)
with initial condition U(0, x, µ) = g(x, µ) on R d × P 2 (R d ), and where η is a notation for the image of the probability measure µ by the mapping x ∈ R d -→ U(t, x, µ) ∈ R k . Under suitable assumptions, [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF] proves that the solution to (1) admits the so-called decoupling eld representation Y s = U (s, X s , L(X s )) where (t, x, µ)

∈ [0, T ] × R d × P 2 (R d ) → U (T -t, x, µ) is a classical solution to
(2). See Theorem 2.9 and equation (2.12) in [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF]. Their results are stated in the more general of dynamics depending in the joint law of (X t , Y t ) but we state them here with the particular case of dependence in the marginal laws L(X t ), L(Y t ) to be coherent with (1). This MKV FBSDE representation is used in [START_REF] Chassagneux | Numerical method for FBSDEs of McKean-Vlasov type[END_REF] to build a numerical scheme for the approximation of (2) when the drift b is independent of Z. The equation above is non local due to the integral terms and the term ∂ µ U(t, x, µ)(y) stands for the Wasserstein derivative of U in the direction of the measure at point (t, x, µ) and evaluated at the continuous coordinate y.

Equations (1) appear as well as probabilistic formulations of mean-eld games or mean-eld controls characterizing the value function V of the game. Mean-eld games are introduced by [START_REF] Lasry | Jeux à champ moyen. I Le cas stationnaire[END_REF] and [START_REF] Lasry | Jeux à champ moyen. II Horizon ni et contrôle optimal[END_REF] to model games with interactions between many similar players. In this theory, each player's dynamics and cost take into account the empirical distribution of all agents. At the limit of an innite number of players, the search for a Nash equilibrium with close loop controls boils down to a control problem concerning a representative player whose law enters in the cost and dynamics.

Two probabilistic approaches based on Forward Backward Stochastic Dierential Equations can be used to solve these problems:

A rst approach called the Pontryagin approach consists as shown in [START_REF] Carmona | Probabilistic Analysis of Mean-Field Games[END_REF] in applying the strong Pontryagin principle to these control problems. Under regularity and convexity conditions, Y t appears to be a stochastic representation of the gradient of the value function V . In this case the coecients b, f of the related MKV FBSDE (1) do not depend on Z t , L(Y t ), L(Z t ) and k = d.

Another approach called the Weak approach permits to solve the optimization problem by estimating directly Y t as the value function V of the problem as shown in [START_REF] Carmona | A probabilistic weak formulation of mean eld games and applications[END_REF]. In this case the coecients b, f of the related MKV FBSDE (1) do not depend on Y t , L(Y t ), L(Z t ) and k = 1.

The numerical resolution of equations (1) is rather dicult since:

The dynamics are coupled through both the drift and the driver of the BSDE.

The McKean-Vlasov structure of the problem requires to solve a xed point in probability spaces.

In the linear-quadratic setting (with quadratic cost to minimize but linear dynamics) the weak approach applied to mean-eld problems gives a problem in low dimension but with quadratic coupling in Z t appearing in the backward dynamic. In contrast, the Pontryagin approach exhibits a problem in potentially high dimension (the Z component is a d × d matrix in this case) but with a linear coupling in Y t which is easier to solve numerically.

In the case of mean-eld games, only the law of X t is present in the dynamic of (1). In mean-eld games of controls (also called extended mean-eld games, see [START_REF] Achdou | Mean Field Games of Controls: Finite Dierence Approximations[END_REF] and the references therein), individuals interact through their controls instead of their states as in the model of trade crowding in [START_REF] Cardaliaguet | Mean eld game of controls and an application to trade crowding[END_REF]. The law of the control thus appears in the dynamic of (1) and may give rise to some FBSDE depending on the law of Z t in the weak approach or the law of Y t in the Pontryagin approach.

Existence and uniqueness of a solution to the fully coupled system (1) are studied by [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I-II[END_REF] when the drift does not depend on the law of Z. Their Theorem 4.29 gives existence of a solution under a non-degeneracy condition. However, uniqueness is a priori only expected to hold in small time, as stated in Theorem 4.24 from [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I-II[END_REF]. In the latter we will assume that existence and uniqueness hold for the MKV FBSDE we aim to solve.

In [START_REF] Chassagneux | Numerical method for FBSDEs of McKean-Vlasov type[END_REF] and [START_REF] Angiuli | numerical probabilistic approach to MFG[END_REF], tree and grid algorithms are proposed and tested in dimension 1. It is worth mentioning that these techniques suer from the so-called curse of dimensionality and cannot be applied when the dimension describing a player state is high (typically greater than 3 or 4). This is due to the discretization of the state space.

However, new approaches using machine learning are developed since 2017 to solve non linear parabolic PDEs through a BSDE representation. Two kinds of methods have emerged:

The rst to appear are global methods rst proposed in [START_REF] Han | Solving high-dimensional partial dierential equations using deep learning[END_REF] to solve semi-linear PDEs.

They rely on a single high-dimensional optimization problem whose resolution is dicult. It consists in the training of as many neural networks as time steps by solving in a forward way the backward representation of the PDE solution. The Z t process is represented by a dierent neural network Z θ i with parameters θ at each date t i . Instead of solving the BSDE starting from the terminal condition, the method writes it down as a forward equation and an optimization problem aiming to reach the terminal condition g(X T ) by minimizing a mean squared error E|Y T -g(X T )| 2 . The approach is extended to fully nonlinear equations (nonlinear in the solution, its gradient and hessian) in [START_REF] Beck | Machine Learning Approximation Algorithms for High-Dimensional Fully Nonlinear Partial Dierential Equations and Second-order Backward Stochastic Dierential Equations[END_REF] and the authors show that the methodology can solve some equations in high dimension. [START_REF] Chan-Wai-Nam | Machine Learning for Semi Linear PDEs[END_REF] showed that it is more eective to used a single network for all dates and besides proposed an original xed point algorithm to solve semilinear PDEs.

A second kind of local methods rst proposed in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] is based on local optimization problems solved at each time step in a backward way. Contrarily to the global method, the successive optimization problems are here in moderate dimension. Each optimization step at date t i consists in the training of only two local neural networks Y θ i , Z θ i with parameters θ. For instance, instead of solving 1 optimization problem with N neural networks in the global method, [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] solves N learning problems with 2 neural networks. Moreover the resolution is simplied by the initialization of the neural networks at time t i to their previously computed values at time t i+1 , which provides a good approximation for the current value. This strategy is inspired by the standard backward resolution of BSDE with conditional expectations from [START_REF] Bouchard | Discrete-time approximation and Monte-Carlo simulation of backward stochastic dierential equations[END_REF] and [START_REF] Gobet | A regression-based Monte Carlo method to solve backward stochastic dierential equations[END_REF]. The methodology is extended to the much more challenging case of fully nonlinear PDEs in [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] by combining it with some ideas proposed in [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF]. Extensive tests performed in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] show that the local method gives better results than the global one, such as [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] in the case of fully nonlinear dynamics. Especially, these papers show that local methods can be used with a larger time horizon T than the global method.

Machine learning techniques to solve coupled FBSDEs are investigated by several authors in [START_REF] Han | Convergence of the Deep BSDE Method for Coupled FBSDEs[END_REF] and [START_REF] Ji | Three Algorithms for Solving High-Dimensional Fully Coupled FBSDEs Through Deep Learning[END_REF], and a rst method for McKean-Vlasov FBSDEs with delay is studied by [START_REF] Fouque | Deep Learning Methods for Mean Field Control Problems with Delay[END_REF] for a linear quadratic equation in dimension one. Similar and more general ideas are presented and tested in dimension one in [START_REF] Carmona | Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II The Finite Horizon Case[END_REF] alongside convergence results, together with an additional method directly solving mean-eld control problems by minimizing the cost without writing down optimality conditions. The resulting algorithms proposed all rely on the global approach rst initiated in [START_REF] Han | Solving high-dimensional partial dierential equations using deep learning[END_REF].

Our paper aims to extend these methods and to propose new ones for the resolution of McKean-Vlasov FBSDEs in moderate dimension, and go beyond one dimensional examples for which standard methods are already available (see [START_REF] Achdou | Mean Field Games: Numerical Methods[END_REF][START_REF] Lauriere | Numerical Methods for Mean Field Games and Mean Field Type Control[END_REF]). In fact, one major advantage for the use of neural networks for solving control problems is their ability to eciently represent high-dimensional functions without using space grids. We also study the inuence of the maturity T on the algorithms.

We rst propose to modify the previously proposed algorithm to stabilize its convergence. Our modication allows us to reduce the variance of the estimators used in the dynamic of X t and Y t .

Then we propose a second algorithm relaxing the xed point iteration algorithm by adding a neural network learning the distribution of the solution thanks to a penalization in the loss function. At last we propose a resolution scheme based on some local resolution as in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF].

To simplify the presentation, we consider rst order interaction models, that is to say that the dependency of the drift and cost function with respect to the laws L(X t ), L(Y t ), L(Z t ) only concerns expectations in the form

u t = (u X t , u Y t , u Z t ) := (E[ϕ 1 (X t )], E[ϕ 2 (Y t )], E[ϕ 3 (Z t )]), (3) 
for some continuous functions ϕ 1 , ϕ 2 , ϕ 3 with adequate domains and codomains. In this framework we can rewrite by abuse of notation

b(s, X s , Y s , Z s , L(X s ), L(Y s ), L(Z s )) = b(s, X s , Y s , Z s , u s ) σ(s, X s , L(X s )) = σ(s, X s , u X s ) g(X T , L(X T )) = g(X T , u X T ) f (s, X s , Y s , Z s , L(X s ), L(Y s ), L(Z s )) = f (s, X s , Y s , Z s , u s ).
For instance when ϕ 1 , ϕ 2 , ϕ 3 are power functions with positive integers as exponents we recover probability distribution moments. See Remark 1 for more general cases beyond rst order interaction.

We provide multidimensional tests to show how these machine learning approaches can overcome the curse of dimensionality on some test cases rst coming from a mean-eld game of controls: we solve the FBSDE derived from the weak approach and the Pontryagin approach. We also consider an example arising from a non linear quadratic mean-eld game. Then we compare all the methods on some general test cases of FBSDE involving linear or quadratic dependence on the processes X t , Y t , Z t and on their distributions.

The structure of the paper is the following: in sections 2 and 3 we describe the proposed schemes, and in section 4 we provide a numerical study of our methods in dimension 10 (except for the onedimensional Example of Section 4.2). We show that our algorithms can solve non linear-quadratic models with small maturities.

Machine learning global solvers

In this section we propose three global algorithms based on the approach in [START_REF] Han | Solving high-dimensional partial dierential equations using deep learning[END_REF].

Algorithm principle

We propose a generalized and rened version of the Algorithm 2 from [START_REF] Carmona | Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II The Finite Horizon Case[END_REF]. We recall that a similar technique with additional networks is used in [START_REF] Fouque | Deep Learning Methods for Mean Field Control Problems with Delay[END_REF] for delayed McKean-Vlasov equations but is tested only on a one dimensional linear quadratic example. Our methods also take advantage of dierent expectation computation methods, introduced in section 2.2. We present in section 4 several tests in dimension 10 where the laws of X, Y, Z are involved.

We consider the Euler-Maruyama discretized FBSDE system (1) on a regular time grid t k = kT N for k ∈ 0, N :

X t i+1 = X t i + b (t i , X t i , Y t i , Z t i , u t i ) ∆t + σ t i , X t i , u X t i ∆W i Y t i+1 = Y t i -f (t i , X t i , Y t i , Z t i , u t i ) ∆t + Z t i ∆W i , (4) 
with terminal condition Y t N = g(X t N , u X t N ) and initial condition X 0 = ξ. We recall that u t is dened in (3). We note ∆t := t i+1 -

t i = T N and (∆W i ) i=0,••• ,N -1 := (W t i+1 -W t i ) i=0,••• ,N -1
the Brownian increments. In the FBSDE theory, one requires the processes (X t i , Y t i , Z t i ) to be F t i -adapted.

Therefore the backward part of the system can also be written in the conditional expectation form

Y t i = E[Y t i+1 + f (t i , X t i , Y t i , Z t i , u t i ) ∆t|F t i ] Z t i = E[Y t i+1 ∆W i ∆t |F t i ], (5) 
where we see how the process Z is dened. This process, specic to the stochastic case, allows the Y component to be F t -adapted, even though we x its terminal condition. It is a major dierence between backward ordinary dierential equations and backward stochastic dierential equations.

We see that the whole system is coupled therefore we need to design a method allowing to solve simultaneously both equations of (4). We solve the system by the Merged Deep BSDE method introduced in [CWNMW19]. Z t i is approximated by a single feedforward neural network Z θ z (t i , X t i ) and Y 0 by a neural network Y θ y (X 0 ) with parameters θ = (θ y , θ z ). With this point of view, the discretized Brownian motion W t acts as training data in the language of machine learning, so that we can generate a training set as large as desired. Extensive tests conducted in [START_REF] Chan-Wai-Nam | Machine Learning for Semi Linear PDEs[END_REF] show that the use of a Merged network improves the training in comparison with the Deep BSDE method of [START_REF] Han | Solving high-dimensional partial dierential equations using deep learning[END_REF]. Indeed it lowers the number of parameters to learn hence reduces the complexity of the problem. It empirically improves the accuracy of the method but also makes the training faster. That is why we focus on this architecture.

It is also used by [START_REF] Carmona | Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II The Finite Horizon Case[END_REF] which considers controls in the form ζ(t i , X i ) i=1,...,N for a neural network ζ. The use of recurrent networks such as Long Short Term Memory networks as in [START_REF] Fouque | Deep Learning Methods for Mean Field Control Problems with Delay[END_REF] is possible but tests achieved in [START_REF] Chan-Wai-Nam | Machine Learning for Semi Linear PDEs[END_REF] seem to show that is does not bring more accuracy on Markovian problems. Other alternatives may include the GroupSort network [START_REF] Anil | Sorting Out Lipschitz Function Approximation[END_REF] for a better control of the Lipschitz constant of the approximation, or some special networks preserving some properties of the solution but they have not been tested.

The motivation for such an approximation comes from the notion of decoupling eld, also used for numerical purposes in [START_REF] Angiuli | numerical probabilistic approach to MFG[END_REF] or [START_REF] Chassagneux | Numerical method for FBSDEs of McKean-Vlasov type[END_REF], which gives the existence of functions u, v (see the paragraph below (2)) such that

Y t = u(t, X t , L(X t )), Z t = v(t, X t , L(X t )). (6)
Numerically, it is enough to consider Y and Z as a function of the couple (t, X t ). In fact, the law of the solution (and therefore its moments) can be seen as a function of t. That's why we search for a representation

Y t = u(t, X t ), Z t = v(t, X t ). (7)
The forward-backward system is transformed into a forward system and an optimization problem aiming to satisfy the terminal condition of the BSDE through the loss function E Y T -g X T , u X t N 2 . To simplify notations, X i := X t i and similarly for Y and Z.

In practice the loss function is minimized with the Adam gradient descent method [START_REF] Kingma | A Method for Stochastic Optimization[END_REF]. In any case, the goal of our scheme is to learn both the optimal control and the distribution of X t , Y t , Z t . In the following, B is the batch size, that is the number of particles we will sample to approximate the loss function in expectation form, see for instance (10). N is the number of time steps and M is the number of previous batches expectations to keep in memory.

We use for Z and Y feedforward neural networks with 3 hidden layers (d +10 neurons in each) with hyperbolic tangent function as activation functions and an output layer with identity as activation.

It is worth noticing that because the merged neural network takes the couple (t, X) as inputs, we cannot use batch normalization since the distribution of X i is not stationary over time.

Estimation of the expectation

A key step for the methods is to estimate the mean-eld parameter u. It has a signicant eect on the algorithms performances. We note θ m = (θ y m , θ z m ) the neural network parameters at optimization iteration m and u

i = (u X i , u Y i , u Z i ) the estimation of u t i .
In the algorithms described below, the approximated processes are considered as functions of the parameters θ of the neural network.

Several methods can be used to approximate the moments of the solution involved in the stochastic

McKean-Vlasov dynamics:

Direct: use the empirical mean of the current batch of particles

u i = 1 B   B j=1 ϕ 1 (X j i (θ m )), B j=1 ϕ 2 (Y j i (θ m )), B j=1 ϕ 3 (Z j i (θ m ))   , i = 0, • • • , N -1. (8) 
Alternatively one could use instead the last batch particles to estimate the law

u i = 1 B   B j=1 ϕ 1 (X j i (θ m-1 )), B j=1 ϕ 2 (Y j i (θ m-1 )), B j=1 ϕ 3 (Z j i (θ m-1 ))   , i = 0, • • • , N -1. (9)
The dierence lies in the fact that in one case the optimization of the parameters θ m at iteration m modies the current estimation of the law whereas using the previously computed parameters θ m-1 xes the law and simplies the optimization problem. In practice, for the numerical tests of Section 4 we use the formula (8). This approach requires to handle very large batches, typically of the order of B = 10, 000 sample paths get a reasonable approximation of the laws. This is the approach used by [START_REF] Fouque | Deep Learning Methods for Mean Field Control Problems with Delay[END_REF] and [START_REF] Carmona | Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II The Finite Horizon Case[END_REF].

We solve the following optimization problem

min θ=(θ y ,θ z ) 1 B B k=1 Y k N (θ) -g X k N (θ), 1 B B j=1 ϕ 1 (X j N (θ)) 2 (10) X j i+1 (θ) = X j i (θ) + b t i , X j i (θ), Y j i (θ), Z θ z t i , X j i (θ) , u i ∆t + σ t i , X j i (θ), u X i ∆W j i Y j i+1 (θ) = Y j i (θ) -f t i , X j i (θ), Y j i (θ), Z θ z t i , X j i (θ) , u i ∆t + Z θ z t i , X j i (θ) ∆W j i u i = 1 B   B j=1 ϕ 1 (X j i (θ)), B j=1 ϕ 2 (Y j i (θ)), B j=1 ϕ 3 Z θ z t i , X j i (θ)   X j 0 = ξ j ∼ ξ, j = 1, • • • , B Y j 0 (θ) = Y θ y (X j 0 ), i = 1, • • • , N -1.
The Global Direct solver leads to algorithm 1. Algorithm 1 Global Direct solver 1: Let Y θ y (•) be a neural network with parameter θ y , dened on

R d and valued in R k , Z θ z (•, •) be a neural network with parameter θ z , dened on R + × R d and valued in R k×d , so that θ = (θ y , θ z ) is initialized with value θ 0 = (θ y 0 , θ z 0 ).
2: for m from 0 to K do Stochastic gradient iterations 3:

Sample (ξ j ) j=1,••• ,B from B independent copies of the initial condition ξ. 4: Set ∀j ∈ 1, B , X j 0 (θ m ) = ξ j ∈ R d , Y j 0 (θ m ) = Y θ y m (ξ j ) ∈ R k .

5:

for i from 0 to N -1 do 6:

u i = (u X i , u Y i , u Z i ) = 1 B B j=1 ϕ 1 (X j i (θ m )), ϕ 2 (Y j i (θ m )), ϕ 3 Z θ z m t i , X j i (θ m )
7: for j from 1 to B do 8: Sample δ j i from a d-dimensional standard Gaussian vector. 9:

X j i+1 (θ m ) = X j i (θ m ) + b t i , X j i (θ m ), Y j i (θ m ), Z θ z m t i , X j i (θ m ) , u i ∆t + √ ∆t σ t i , X j i (θ m ), u X i δ j i 10: Y j i+1 (θ m ) = Y j i (θ m ) -f t i , X j i (θ m ), Y j i (θ m ), Z θ z m t i , X j i (θ m ) , u i ∆t + √ ∆t Z θ z m t i , X j i (θ m ) δ j i 11:
end for 12:

end for 13:

X N (θ m ) = 1 B B j=1 ϕ 1 (X j N (θ m )),
14:

J(θ m ) = 1 B B j=1 Y j N (θ m ) -g X j N (θ m ), X N (θ m ) 2 15:
Calculate ∇J(θ m ) by back-propagation.

16:

Update θ m+1 = θ m -ρ m ∇J(θ m ).

17: end for

Dynamic: a method which dynamically updates the estimation on (M + 1)B samples. The expectations from the last M batches are kept in memory in an array

(ζ i,r ) i = 0, . . . , N -1, r = 0, . . . , M -1 initialized with values (E[ϕ 1 (ξ)], ϕ 2 (0), ϕ 3 (0)) N ×M . At iteration m -1, ν (m-1) i
is dened as the empirical mean on these previous sample paths.

On a new batch, the expectation is computed by averaging the previous estimation ν (m-1) i and the current batch empirical mean by the following algorithm used for i = 0, • • • , N -1:

ν (m-1) i = 1 M M -1 r=0 ζ i,r , u i = M ν (m-1) i + 1 B B j=1 ϕ 1 (X j i (θ m )), B j=1 ϕ 2 (Y j i (θ m )), B j=1 ϕ 3 (Z j i (θ m )) M + 1 , ζ i,m%M = 1 B   B j=1 ϕ 1 (X j i (θ m )), B j=1 ϕ 2 (Y j i (θ m )), B j=1 ϕ 3 (Z j i (θ m ))   . ( 11 
)
The notation m%M refers to the remainder of the Euclidian division of m by M . This technique allows to use smaller batches of size 100 or 1000. Thus it is more ecient in terms of convergence speed in comparison with the direct approach. This method can be seen as a dynamic xed point approach.

The idea behind this update rule comes from online learning in machine learning. 1/M can be interpreted as a learning rate quantifying the updating speed. From the current estimation of the particles law, we introduce a small correction related to the new observed samples.

Therefore the estimation is much more stable through iterations compared to the instantaneous update of the law used by the Direct method. After M batches, the older samples are forgotten, since they don't represent anymore the current law. Indeed we expect the convergence for a good choice of M . If this parameter is too small the stabilization would be inecient and on the contrary a too large M would slow down the learning process by introducing a bias in the law. For instance in our numerical experiments of Section 4 we use M = 100 for a total of 2000 gradient descent iterations.

Remark 1. If the law dependence is more general than a rst order interaction and is given by a continuous function F : µ ∈ P 2 (R d ) → R k then the Direct method can be straightforwardly applied to the equation by estimating F (L(X t )) by the so-called empirical projection

F ( 1 B B j=1 δ X j t i
) for identically distributed particles (X j t i ) j=1,...,B on a time grid t 0 , • • • , t N . Concerning the Dynamic approach, it would require to keep in memory the previously computed particles from the last M batches which is costly.

Remark 2. The xed point approach is known to be convergent theoretically only for small maturities. In practice, the theoretical bound on the maturity found on the simple example given for example in paragraph 3.1 in [START_REF] Angiuli | numerical probabilistic approach to MFG[END_REF] is far too pessimistic. We will see that the restriction is not relevant on all our test cases.

For a given iteration m, given the estimations (ζ i,r ) i = 0, . . . , N -1, r = 0, . . . , M -1 of u i on the last M iterations, we perform one gradient descent step for the following optimization problem

min θm=(θ y m ,θ z m ) 1 B B k=1 Y k N (θ m ) -g X k N (θ m ), 1 B B j=1 ϕ 1 (X j N (θ m )) 2 X j i+1 (θ m ) = X j i (θ m ) + b t i , X j i (θ m ), Y j i (θ m ), Z θ z m t i , X j i (θ m ) , u i ∆t + σ t i , X j i (θ m ), u i X (θ m ) ∆W j i Y j i+1 (θ m ) = Y j i (θ m ) -f t i , X j i (θ m ), Y j i (θ m ), Z θ z m t i , X j i (θ m ) , u i ∆t + Z θ z m t i , X j i (θ m ) ∆W j i u i = 1 B   B j=1 ϕ 1 (X j i (θ m )), B j=1 ϕ 2 (Y j i (θ m )), B j=1 ϕ 3 Z θ z m t i , X j i (θ m )   u i = M -1 r=0 ζ i,r + u i M + 1 X j 0 = ξ j ∼ ξ, j = 1, • • • , B Y j 0 (θ m ) = Y θ y m (X j 0 ) i = 1, • • • , N -1.
Then we update (ξ i ) i by forgetting the oldest estimation and keeping in memory the new one, (u i ) i (see ( 11)). The Global Dynamic solver is given more explicitly in algorithm 2.

Algorithm 2 Global Dynamic solver 1: Let Y θ y (•) be a neural network with parameter θ y , dened on R d and valued in R k , Z θ z (•, •) be a neural network with parameter θ z , dened on R + × R d and valued in R k×d , so that θ = (θ y , θ z ) is initialized with value θ 0 = (θ y 0 , θ z 0 ).

2:

Set ∀i ∈ 0, N -1 , ∀r ∈ 0, M -1 , ζ i,r = (E[ϕ 1 (ξ)], ϕ 2 (0), ϕ 3 (0)).
3: for m from 0 to K do 4:

Sample (ξ j ) j=1,••• ,B from B independent copies of the initial condition ξ.

5:

Set ∀j ∈ 1, B , X j 0 (θ m ) = ξ j ∈ R d , Y j 0 (θ m ) = Y θ y m (ξ j ) ∈ R k .

6:

for i from 0 to N -1 do 7:

u i = 1 B B j=1 ϕ 1 (X j i (θ m )), B j=1 ϕ 2 (Y j i (θ m )), B j=1 ϕ 3 Z θ z m t i , X j i (θ m )
8:

u i = ( u i X , u i Y , u i Z ) = M -1 r=0 ζ i,r +u i M +1
9: for j from 1 to B do 10: Sample δ j i from a d-dimensional standard Gaussian vector.

11:

X j i+1 (θ m ) = X j i (θ m ) + b t i , X j i (θ m ), Y j i (θ m ), Z θ z m t i , X j i (θ m ) , u i ∆t + √ ∆t σ t i , X j i (θ m ), u i X δ j i 12: Y j i+1 (θ m ) = Y j i (θ m ) -f t i , X j i (θ m ), Y j i (θ m ), Z θ z m t i , X j i (θ m ) , u i ∆t + √ ∆t Z θ z m t i , X j i (θ m ) δ j i
13: end for 14:

ζ i,m%M = u i 15:
end for 16:

X N (θ m ) = 1 B B j=1 ϕ 1 (X j N (θ m )),
17:

J(θ m ) = 1 B B j=1 Y j N (θ m ) -g X j N (θ m ), X N (θ m ) 2 18: 
Calculate ∇J(θ m ) by back-propagation.

19:

Update θ m+1 = θ m -ρ m ∇J(θ m ).

20: end for

Expectation: estimate u t by a neural network Ψ θ Ψ with input t and parameters θ Ψ .

u i (θ Ψ ) = Ψ θ Ψ (t i ) = (Ψ X θ Ψ (t i ), Ψ Y θ Ψ (t i ), Ψ Z θ Ψ (t i )), i = 0, • • • , N. (12) 
A penalization term

E   λ N N -1 i=0 Ψ θ Ψ (t i ) - 1 B   B j=1 ϕ 1 (X j i (θ)), B j=1 ϕ 2 (Y j i (θ)), B j=1 ϕ 3 (Z j i (θ))   2 2   ,
is added to the loss function. We will see that in practice this method is quite involved to use because the performances heavily depend upon the choice of the parameter λ. This approach provides a relaxation of the xed point method.

We solve the following optimization problem

min θ=(θ y ,θ z ,θ Ψ ) 1 B B k=1 Y k N (θ) -g X k N (θ), 1 B B j=1 ϕ 1 (X j N (θ)) 2 + λ N N -1 i=0 u i (θ Ψ ) -Ψ θ Ψ (t i ) 2 X j i+1 (θ) = X j i (θ) + b t i , X j i (θ), Y j i (θ), Z θ z t i , X j i (θ) , Ψ θ Ψ (t i ) ∆t + σ t i , X j i (θ), Ψ θ Ψ (t i ) X ∆W j i Y j i+1 (θ) = Y j i (θ) -f t i , X j i (θ), Y j i (θ), Z θ z t i , X j i (θ) , Ψ θ Ψ (t i ) ∆t + Z θ z t i , X j i (θ) ∆W j i u i = 1 B   B j=1 ϕ 1 (X j i (θ)), B j=1 ϕ 2 (Y j i (θ)), B j=1 ϕ 3 Z θ z t i , X j i (θ)   X j 0 = ξ j ∼ ξ, j = 1, • • • , B Y j 0 (θ) = Y θ y (X j 0 ) i = 1, • • • , N -1.
The Global Expectation solver is described in algorithm 3. The parameter λ is chosen by trial and error.

Algorithm 3 Global Expectation solver 1: Let Y θ y (•) be a neural network with parameter θ y , dened on R d and valued in R k , Z θ z (•, •)

dened on R + × R d , Ψ θ Ψ (•) = (Ψ X θ Ψ (•), Ψ Y θ Ψ (•), Ψ Z θ Ψ (•)
) dened on R + be neural networks with parameters θ z , θ Ψ , taking values respectively in R k×d and R d ×R k ×R k×d , so that θ = (θ y , θ z , θ Ψ ) is initialized with value θ 0 = (θ y 0 , θ z 0 , θ Ψ 0 ).

2: for m from 0 to K do 3:

Sample (ξ j ) j=1,••• ,B from B independent copies of the initial condition ξ.

4:

Set ∀j ∈ 1, B , X j 0 (θ m ) = ξ j ∈ R d , Y j 0 (θ m ) = Y θ y m (ξ j ) ∈ R k .

5:

for i from 0 to N -1 do 6:

u i = 1 B B j=1 ϕ 1 (X j i (θ m )), B j=1 ϕ 2 (Y j i (θ m )), B j=1 ϕ 3 Z θ z m t i , X j i (θ m )
7: for j from 1 to B do 8: Sample δ j i from a d-dimensional Gaussian vector. 9:

X j i+1 (θ m ) = X j i (θ m ) + b t i , X j i (θ m ), Y j i (θ m ), Z θ z m t i , X j i (θ m ) , Ψ θ Ψ m (t i ) ∆t + √ ∆t σ t i , X j i (θ m ), Ψ X θ Ψ m (t i ) δ j i 10: Y j i+1 (θ m ) = Y j i (θ m ) -f t i , X j i (θ m ), Y j i (θ m ), Z θ z m t i , X j i (θ m ) , Ψ θ Ψ m (t i ) ∆t + √ ∆t Z θ z m t i , X j i (θ m ) δ j i 11:
end for 12:

end for 13:

X N (θ m ) = 1 B B j=1 ϕ 1 (X j N (θ m )),
14:

J(θ m ) = 1 B B j=1 Y j N (θ m ) -g X j N (θ m ), X N (θ m ) 2 + λ N N -1 i=0 u i -Ψ θ Ψ m (t i ) 2 15: 
Calculate ∇J(θ m ) by back-propagation.

16:

Update θ m+1 = θ m -ρ m ∇J(θ m ).

17: end for

We will compare the performances of these techniques on several examples in section 4.

A local solver

We also propose a local method inspired by the Deep Backward Dynamic Programming introduced by [HPW20] and [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF]. It considers local minimization problems between contiguous time steps.

In this case there are as many networks as time steps. We replace a global optimization setting by a set of smaller problems.

In this method for i ∈ 0, N -1 , Z i and Y i are approximated by a neural network (Z i

θ z i (•) , Y i θ y i (•)) with parameters θ = (θ y 0 , θ z 0 , • • • , θ y N -1 , θ z N -1 ). At iteration m, with θ m = (θ y m,0 , θ z m,0 , • • • , θ y m,N -1 , θ z m,N -1 ) , we simulate X i (θ m ) with the previously computed parameters θ m . X j i+1 (θ m ) = X j i (θ m ) + b t i , X j i (θ m ), Y i θ y m,i X j i (θ m ) , Z i θ z m,i X j i (θ m ) , u i ∆t (13) + σ t i , X j i (θ m ), u i X ∆W j i .
This rst step allows to nd the areas visited by the controlled process. Using R samples, we compute the empirical mean

m m i = 1 R R j=1 X j i (θ m ) and variance V m i = 1 R R j=1 X j i (θ m ) 2 - 1 R 2 R j=1 X j i (θ m ) 2 of X i (θ m ).
We estimate u t as in the Dynamic method (11):

u i = 1 R   R j=1 ϕ 1 (X j i (θ m )), R j=1 ϕ 2 Y i θ y m,i t i , X j i (θ m ) , R j=1 ϕ 3 Z i θ z m,i t i , X j i (θ m )   u i = M -1 r=0 ζ i,r + u i M + 1 .
A priori R can be dierent from the batch size B. It is the batch size used for the estimation of the law with the previously computed parameters. In the numerical tests of Section 4 we use B = 100 or B = 300 for the backward optimization and a larger value R = 50000 for the Monte-Carlo forward estimation of the law. Then we solve backward problems to nd the θ m+1 by sampling B independent copies of X i through a Gaussian distribution N (m m i , V m i ) with frozen parameters θ m :

First sample B independent copies X 1 N , • • • , X B N of X N following a Gaussian distribution N (m m N , V m N ). Y N θ y m+1,N (X j N ) is set to the terminal condition g X j N , u X N .
For i from N -1 to 0:

Sample B independent copies X 1 i , • • • , X B i of X i following a Gaussian distribution N (m m i , V m i ).
Diuse according to the dynamics (13) of X, starting from

X 1 i , • • • , X B i , to obtain X 1 i+1 , • • • , X B i+1 .
Solve the local optimization problem

min θ=(θ y ,θ z ) 1 B B j=1 Y i+1 θ y m+1,i+1 X j i+1 -Y i θ y X j i + f t i , X j i , Y i θ y X j i , Z i θ z X j i , u i ∆t -Z i θ z X j i ∆W j i 2 ,
starting from the parameter value θ m+1,i+1 . We can then update the θ value by denoting as θ m+1,i the argmin value of the minimization problem.

Repeat the previous steps for the iteration m + 1 until reaching K iterations.

In the version of the Local Dynamic solver given in algorithm 4, we use the dynamic update of the expectations introduced previously in the dynamic solver of section 2. In this algorithm H stands for the number of gradient steps to perform at each step of the algorithm and R is the number of samples for the laws estimation.

Remark 3. Because we have to learn the dynamic of the forward process, the use of a backward resolution is not as obvious as in [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on nite horizon: convergence analysis[END_REF][START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on nite horizon: numerical computations[END_REF]. We have to alternate between forward dynamic estimations and backward resolutions. More precisely, here we solve fully coupled FBSDEs, whereas the works [HPW20; PWG21] consider decoupled FBSDEs, where the forward process X can be simulated independently of Y, Z. Estimating the law of X and sampling from a normal distribution allows us to decouple and solve locally the FBSDEs in areas visited by X and its law. However, because of this freezing of the forward dynamics, another xed point problem has to be solved. Other approaches for fully coupled FBSDEs like [START_REF] Han | Convergence of the Deep BSDE Method for Coupled FBSDEs[END_REF] and [START_REF] Ji | Three Algorithms for Solving High-Dimensional Fully Coupled FBSDEs Through Deep Learning[END_REF] rely on the global machine learning method initiated by [START_REF] Han | Solving high-dimensional partial dierential equations using deep learning[END_REF]. Notice that we estimate the law dependent part of the dynamics in the rst loop but for the resolution loop, we use a normal distribution as training measure. Another natural training measure could be the empirical law of the process. Here, we employ an hybrid method between the two methods proposed in Remark 2.1 from [START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on nite horizon: numerical computations[END_REF]. We exploit the approximated control to estimate the law of X and use a Gaussian law with the same two rst moments as X as training measure. In the numerical examples of [START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on nite horizon: numerical computations[END_REF], the authors also use Gaussian distributions as training measures, but with xed parameters through the iterations. Here we adapt the training measures during the training to have the same expectation and variance as the controlled process thanks to an exploration step.

Algorithm

4 Local Dynamic solver 1: Let (Y i θ y i (•), Z i θ z i (•)) be some neural networks dened on R d with values in R k × R k×d for i = 0, • • • , N -1 and parameters θ = (θ y 0 , θ z 0 , • • • , θ y N -1 , θ z N -1
) initialized with values θ 0 = (θ y 0,0 , θ z 0,0 , • • • , θ y 0,N -1 , θ z 0,N -1 ).

2: Set ∀i ∈ 0, N , ∀r ∈ 0, M -1 , ζ i,r = (E[ξ], 0, 0). 3: for m from 0 to K do 4:

Sample δ j i from a d-dimensional standard Gaussian vector, i = 0, • • • , N , j = 1, • • • , R.

5:

Sample (ξ j ) j=1,••• ,B from R independent copies of the initial condition ξ.

6:

Set ∀j ∈ 1, R , X j 0 (θ m ) = ξ j ∈ R d .

7:

for i from 0 to N do Forward estimation of the laws 8:

l m i = 1 R R j=1 X j i (θ m )
9:

u i = 1 R R j=1 ϕ 1 (X j i (θ m )), R j=1 ϕ 2 (Y i θ y m,i X j i (θ m ) ), R j=1 ϕ 3 Z i θ z m,i X j i (θ m )
10:

V m i = 1 R R j=1 X j i (θ m ) 2 -1 R 2 R j=1 X j i (θ m )
2 11:

u i = ( u i X , u i Y , u i Z ) = M -1 r=0 ζ i,r +u i M +1
12:

ζ i,m%M = u i (θ m )
13: for j from 1 to R do 14: 

X j i+1 (θ m ) = X j i (θ m ) + b t i , X j i (θ m ), Y i θ y m,i X j i (θ m ) , Z i θ z m,i X j i (θ m ) , u i ∆t + √ ∆t σ t i , X j i (θ m ), u i X δ

22:

x j i = l m i + V m i Θ j i 23:

x j i+1 = x j i + b t i , x j i , Y i θy h x j i , Z i θz h x j i , u i ∆t + √ ∆t σ t i , x j i , u i X Ξ j i 24: if i = N -1 then 25: Y j i+1 = g x j N , u N X 26: else 27: Y j i+1 = Y i+1 θ m+1,i+1 x j i+1
28: end if 29: end for 30:

J i ( θh ) = 1 B B j=1 f t i , x j i , Y i θy h x j i , Z i θz h x j i , u i ∆t + Y j i+1 -Y i θy h x j i - √ ∆t Z i θz h x j i Ξ j i 2

31:

Calculate ∇J i ( θh ) by back-propagation.

32:

Update θh+1 = θh -ρ h ∇J i ( θh ).

33:

end for 34:

θ m+1,i = θH

35:

end for 36: end for 4 Numerical results

The algorithms are implemented in Python with the Tensorow library [START_REF] Abadi | TensorFlow: A System for Large-scale Machine Learning[END_REF]. Each numerical experiment is conducted using a node composed of 2 Intel® Xeon® Gold 5122 Processors, 192 Go of RAM, and 2 GPU nVidia® Tesla® V100 16Go. The multi-GPU parallelization on the global solver is conducted using the Horovod library [START_REF] Sergeev | Horovod: fast and easy distributed deep learning in TensorFlow[END_REF]. The methods we test are: Global Direct: algorithm 1 at page 7. Batch size B = 10000. The name depends on the two choices made regarding the algorithm: the use a Global or Local method but also what law estimation technique is applied. If the algorithm is applied to equations coming from the Pontryagin (abbreviated in Pont.) or the Weak approach, it is specied in its name.

In the following tables, the incorrect results are highlighted in red. In Section 4.1 the three best results are highlighted in green whereas in Section 4.3 only the best value is.

Linear price impact model

We use a linear-quadratic mean-eld game of controls model studied in [START_REF] Angiuli | numerical probabilistic approach to MFG[END_REF] and [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I-II[END_REF] for comparison. This model is useful for numerical tests since the analytic solution is known. The MFG of controls model for the representative player is given by:

min α∈A E T 0 c α 2 α t 2 + c X 2 X t 2 -γX t • u t dt + c g 2 X T 2 subject to X t = x 0 + t 0 α s ds + σ W t . ( 14 
)
and the xed point E[α t ] = u t . In this case, the mean-eld interaction is exerted through the law of the control process.

The Pontryagin optimality principle gives the system:

           dX t = -1 cα Y t dt + σ dW t X 0 = x 0 dY t = -(c X X t + γ cα E[Y t ]) dt + Z t dW t Y T = c g X T . ( 15 
)
In this case, the output Z of the neural network is a matrix of size d × d and Y is a vector of size d.

The weak representation of the value function gives:

           dX t = -1 cα σ -1 Z t dt + σ dW t X 0 = x 0 dY t = -c X 2 X t 2 + γ cα X t • σ -1 E[Z t ] + 1 2cα σ -1 Z t 2 dt + Z t dW t Y T = cg 2 X T 2 . ( 16 
)
In this case, the output Z of the neural network is a vector of size d and Y is a scalar. Therefore

we may be able work in higher dimensions.

Remark 4. With LQ models, the dynamics of Y is linear in the Pontryagin approach and quadratic in the Weak approach. Thus the potentially high dimension of one method is counterbalanced by the complex dynamics of the other technique.

For our numerical experiments we take c X = 2, x 0 = 1, σ = 0.7, γ = 2, c α = 2/3, c g = 0.3. If not stated otherwise, the simulations are conducted with T = 1, d = 10, ∆t = 0.01. All methods except Global Expectation Weak and Local Dynamic Weak converge to the exact solution for small maturities. These two solvers do not converge to the right solution for any time horizon.

The choice of the parameter λ inuences a lot the output of the Global Expectation Pontryagin scheme, as observed in Table 1. The best results are obtained when λ is of order 10 but we notice that a large range of values seems to work ne for very small time horizon T . However the Global Expectation Weak scheme never works. We will not test the expectation methods on the other test cases they are less ecient than the other methods.

We see in Figure 2 that the Local Dynamic Pontryagin method needs more iterations for the loss to stabilize than the Global methods. We cannot hope for more iterations to help the convergence in the Global Weak methods since the loss in the learning curves of Figure 3 reaches a plateau.

The algorithms solving the system coming from the Pontryagin principle perform better than the others. The dynamic estimation of the expectation allows to gain training speed and to smooth the loss, as seen in Figure 1 and Table 2. As another accuracy test, we can also plot the optimal control for which we have an analytical expression. We see in Figures 4,5 

dX t = -ρY t dt + σ dW t , X 0 = x 0 dY t = arctan(E[X t ]) dt + Z t dW t , Y T = arctan(X T ). ( 17 
)
This model comes from the Pontryagin principle applied to the mean-eld game problem

min α E T 0 1 2ρ α 2 s -X s arctan(u s ) ds + g(X T ) dX t = α t dt + dW t , X 0 = x 0 ,
with the xed point u s = E[X s ], and where g is an antiderivative of arctan. We take the same model parameters as in [START_REF] Carmona | Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II The Finite Horizon Case[END_REF] (T = 1 and x 0 = 1) and obtain in Figure 6 with all our methods the same results as in their Figure 4. For the numerical resolution we choose 100 time steps. Notice that we use 3 hidden layers with 11 neurons in each when [START_REF] Carmona | Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II The Finite Horizon Case[END_REF] uses 100 neurons by layer. We see that our smaller number of neurons is enough for this example resolution. The duration of the methods are given in Table 3 which illustrates again the speed gain in using the dynamic method.

Beyond the mean-eld games case

In this Section we design non Linear Quadratic models in order to test the limitations of our methods. We construct general MKV FBSDES with explicit solutions following a log-normal distribution.

Let X i t be dened by

dX i t = aX i t dt + σX i t dW i t , (18) 
X i 0 = ξ, (19) 
with a, σ, ξ ∈ R. We obtain explicitly

X i t = ξe (a-σ 2 2 )t+σW i t , h i t := E[X i t ] = ξe at , k i t := E[(X i t ) 2 ] = ξe (2a+σ 2 )t .
We choose u : (t, x) → e αt log n i=1 x i and the following dynamic for Y t

Y t = e αt log i X i t = e αt i log(ξ) + (a - σ 2 2 )t + σW i t ,
such that

c t := E[Y t ] = e αt i log(ξ) + a - σ 2 2 t , d t := E[Y 2 t ] = e 2αt   i log(ξ) + a - σ 2 2 t 2 + i σ 2 t   .
As we have Y t = u(t, X t ), we obtain

Z i t = σX i t ∂ x u(t, X t ) following: Z i t = σe αt e i t := E[Z i t ] = σe αt , f i t := E[(Z i t ) 2 ] = σ 2 e 2αt . Introducing φ(t, x) := ∂ t u + i ax i ∂ x i u + i (σx i ) 2 2 ∂ 2 x 2 i u = e αt α log i x i + i a - σ 2 2 , u(t, X t ) solves the PDE ∂ t u + i ax i ∂ x i u + i σ 2 2 ∂ 2 x 2 i u -φ(t, x) = 0.
This semilinear PDE is related to the BSDE associated with the driver f (t, x) = -φ(t, x) for forward dynamics (18).

Using some chosen R d valued functions ψ and R k valued functions κ, we express all dynamics in a

McKean-Vlasov setting: 

                     dX i t = (aX i t + ψ(Y t , Z i t , E[X i t ], E[(X i t ) 2 ], E[Y t ], E[Y 2 t ], E[Z i t ], E[(Z i t ) 2 ]) -ψ e αt log i X i t , σe αt , h i t , k i t , c t , d t , e i t , f i t dt + σX i t dW i t X i 0 = ξ dY t = -f (t, X t , Y t , Z t , E[X t ], E[X 2 t ], E[Y t ], E[Y 2 t ], E[Z t ], E[Z 2 t ]) dt +Z t dW t Y T = e αT log i X i T ( 20 
f (t, X t , Y t , Z t , x 1 , x 2 , y 1 , y 2 , z 1 , z 2 ) = -φ(t, x) + κ(Y t , Z t , x 1 , x 2 , y 1 , y 2 , z 1 , z 2 ) -κ e αt log i X i t , σe αt , h i t , k i t , c t , d t , e i t , f i t . and f : R × R d × R × R 1×d × R d × R d × R × R × R 1×d × R 1×d → R.
We consider two models of this kind for numerical tests.

A fully coupled linear example

We consider a linear McKean-Vlasov FBSDE in Y t , Z t and their law dynamics for X t and Y t : We take a = b = 0.1, α = 0.5, σ = 0.4, ξ = 1. The three algorithms demonstrate good performances on this test case. Both processes Y, Z are well represented by the neural network.

                                   dX i t = (aX i t + b(Y t + Z i t + E[X i t ] + E[Y t ] + E[Z i t ]) -b e αt log d i=1 X i t + σe αt + h i t + c t + e i t dt + σX i t dW i t X i 0 = ξ dY t = φ(t, X t ) + b(Y t + 1 d d i=1 Z i t + 1 d d i=1 E[X i t ] + E[Y t ] + 1 d d i=1 E[Z i t ]) -b e αt log d i=1 X i t + 1 d d i=1 σe αt + 1 d d i=1 h i t + c t + 1 d d i=1 e i t dt + Z t dW t Y T = e αT log d i=1 X i T . (21 
However the Local Dynamic method is less precise than the global methods when the maturity grows. We see in Table 4, Figure 8, Figure 9 that the Local Dynamic method is biased when T = 1 when the Global methods achieve a great accuracy. It looks like the results of the Local Dynamic method cannot be improved since the loss attens in Figure 7.

A fully coupled quadratic example

We consider a quadratic McKean-Vlasov FBSDE in Y t , Z t and their law dynamics for X t and Y t : We consider a quadratic McKean-Vlasov FBSDE in Y t , Z t and their law dynamics for X t and Y t : We take a = b = c = 0.1, α = 0.5, σ = 0.4, ξ = 1. We observe in Table 6 convergence of the methods for small maturities and divergence beyond T = 1. Note that the dynamic estimation of the expectation prevents the algorithm to explode for T = 1, contrarily to the Global Direct method. However, it does not converge to the true solution in this case. Indeed the loss plateaus at the value 2 in Figure 10 (right), so the terminal condition of the BSDE is not properly respected. The Global Dynamic method also produces better result than the Global Direct one (see Figure 14 and Table 6). We notice from Figure 13 and Figure 14 that the estimated Y, Z processes have the good shape but some errors are still present after convergence.

                                                                         dX i t = (aX i t + b(Y t + Z i t + E[X i t ] + E[Y t ] + E[Z i t ]) + σX i t dW i t -b e αt log d i=1 X i t + σe αt + h i t + c t + e i t +c Y 2 t + (Z i t ) 2 + E[(X i t ) 2 ] + E[Y 2 t ] + E[(Z i t ) 2 ]) -c e 2αt log d i=1 X i t 2 + σ 2 e 2αt + (h i t ) 2 + c 2 t + (e i t ) 2 dt X i 0 = ξ dY t = φ(t, X t ) + b(Y t + 1 d d i=1 Z i t + 1 d d i=1 E[X i t ] + E[Y t ]) + b d d i=1 E[Z i t ]) -b e αt log d i=1 X i t + 1 d d i=1 σe αt + cE[Y 2 t ] -b 1 d d i=1 h i t + c t + 1 d d i=1 e i t + c(Y 2 t + 1 d d i=1 (Z i t ) 2 + 1 d d i=1 E[(X i t ) 2 ]) + c d d i=1 E[(Z i t ) 2 ]) -c e 2αt log d i=1 X i t 2 + 1 d d i=1 σ 2 e 2αt -c 1 d d i=1 (h i t ) 2 + c 2 t + 1 d d i=1 (e i t ) 2 dt + Z t dW t Y T = e αT log d i=1 X i T . (22 
Concerning the Local Dynamic method, we see in Figure 12 that the estimated expectations are stable around zero for a few iterations but then become negative. It may be due to the lack of a contraction for the xed point problem. The loss explodes for T = 1.5, as seen on the learning curve from Figure 11. For T = 1, we see that it stays above 10.

Conclusion

We have shown that neural network methods can solve some moderate dimensional FBSDE of McKean-Vlasov type. Comparing the dierent algorithms we nd out that:

The dynamic update of the expectation is ecient in terms of computation speed (about 30% faster than direct method) and seems to smooth the learning curve.

For the mean-eld games of controls example, the Pontryagin approach performs better than the Weak one for large maturities. On the contrary, the Weak approach is the best for small maturities.

For the fully coupled linear model we observe no convergence problem whereas for the fully coupled quadratic one we can solve only the equation on a small time horizon. However the Local Dynamic method is not very accurate for larger maturities.

The Local Dynamic method faces more diculties for quadratic problems than the global methods do. It also requires more iterations, hence more time, to converge.

The expectation law estimation method does not work well and requires to empirically choose a proper penalization parameter, which is troublesome.

The methods can be used in dimension 10, thus applied to more realistic problems than usually.

For instance, in the price impact model, the number of dimensions corresponds to the number of assets involved in the trading. Thus, developing methods able to deal with problems in high dimensions can help us to handle large portfolios.

We recommend the use of the global method combined with dynamic moment estimation which oers the best accuracy and training speed among all the tested methods. For linear quadratic mean-eld games of controls, it appears to be better to use the Weak approach for small maturities and the Pontryagin method for larger time horizons. The use of a Local Dynamic method is possible but requires too many iterations to converge hence it is not competitive in terms of computation time.

  Global Dynamic: algorithm 2 at page 10. Batch size B = 200 and M = 100. Global Expectation: algorithm 3 at page 12. Batch size B = 2000. Local Dynamic: algorithm 4 at page 15. Batch size B = 300 (Weak), B = 100 (Pontryagin) and M = 20, R = 50000.
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 12345 Figure 1: Learning curves for Global Direct (left) and Global Dynamic (right) Pontryagin methods on the price impact model (14). The loss is the L 2 error between Y T and the terminal condition of the backward equation.

Figure 6 :

 6 Figure 6: Value of Y 0 as a function of parameter ρ for the model (17)
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 789 Figure 7: Learning curves for Local Dynamic method on the fully coupled linear model (21). The loss is the sum of the local L 2 errors between the neural network Y and the Euler discretization for all time steps.
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 101112 Figure 10: Learning curves for Global Direct (left) and Global Dynamic (right) methods on the fully coupled quadratic model (22). The loss is the L 2 error between Y T and the terminal condition of the backward equation.

Figure 13 :

 13 Figure 13: First coordinate of Z t evaluated on a sample path for Global Direct (left) (T = 0.75) and Local Dynamic methods (right)(T = 0.25) methods after 2000 iterations (respectively 20000) on the fully coupled quadratic model (22).

Figure 14 :

 14 Figure 14: First coordinate of Y t evaluated on a sample path for Global Dynamic (right) method (T = 0.75) and Local Dynamic method (right) (T = 0.25) after 2000 iterations (respectively 20000 for the local method) on the fully coupled quadratic model (22).

Table 1 :

 1 Mean of E[X T ] over the 10 dimensions (and standard deviation) for several maturities T

	P P Method P P P Reference P	T P P P	0.25 0.7709	0.75 0.1978		1.0 0.0811	1.5 0.0125
	Glob. Direct Pontryagin	0.763 (1.3e-03)	0.187 (2.5e-03)	0.075 (2.7e-03)	0.012 (5.0e-03)
	Glob. Dyn. Pont.	0.762 (2.3e-03)	0.189 (4.0e-03)	0.078 (5.5e-03)	0.013 (6.7e-03)
	Glob. Exp. Pont. (0.1)	0.763 (1.6e-03)	0.604 (1.1e-01)	0.729 (1.1e-01)	0.803 (1.5e-01)
	Glob. Exp. Pont. (1.)	0.762 (1.4e-03)	0.251 (2.7e-02)	0.467 (7.6e-02)	0.639 (1.1e-01)
	Glob. Exp. Pont. (10.)	0.763 (1.5e-03)	0.216 (1.7e-02)	0.275 (3.7e-02)	0.574 (1.7e-01)
	Glob. Exp. Pont. (100.)	0.776 (8.4e-03)	0.797 (1.1e-01)	1.042 (1.3e-01)	1.613 (2.6e-01)
	Glob. Direct Weak	0.778 (2.0e-03)	0.200 (1.4e-02)	0.092 (2.9e-02)	0.025 (2.0e-02)
	Glob. Dyn. Weak	0.775 (4.4e-03)	0.212 (2.0e-02)	0.083 (4.1e-02)	0.016 (5.6e-02)
	Glob. Exp. Weak (0.1)	0.877 (1.9e-02)	0.654 (9.9e-02)	0.595 (2.3e-01)	0.28 (6.0e-01)
	Glob. Exp. Weak (1.)	0.901 (2.2e-03)	0.664 (9.8e-02)	0.617 (1.0e-01)	0.507 (1.9e-01)
	Glob. Exp. Weak (10.)	0.887 (1.1e-02)	0.698 (7.3e-02)	0.6541 (6.3e-02)	0.49 (2.3e-01)
	Glob. Exp. Weak (100.)	0.887 (2.0e-03)	0.650 (9.4e-02)	0.602 (9.1e-02)	0.492 (2.4e-01)
	Loc. Dyn. Pont	0.767 (3.5e-04)	0.189 (6.3e-04)	0.076 (7.6e-04)	0.011 (7.5e-04)
	Loc. Dyn. Weak	0.944 (8.7e-04)	0.740 (2.6e-02)	0.692 (1.6e-02)	0.625 (2.2e-02)
			Global Direct Pontryagin	1877 s.
			Global Dyn. Pontryagin	1336 s.
			Global Exp. Pontryagin	1562 s.
			Global Direct Weak	2205s.
			Global Dyn. Weak	1605 s.
			Global Exp. Weak	1670 s.
			Local Dynamic Pontryagin	11627 s.
			Local Dynamic Weak	12689 s.
	Table 2: Duration times of the methods (2000 iterations for global methods, 20000 iterations for
	local methods) on the price impact model (14) with T = 1. on one run

on the price impact model (14). We perform 2000 iterations for global (glob.) methods and 20000 iterations for local (loc.) methods. For the expectation method, the value of the λ penalization parameter is given under parenthesis.

  that Global Pontryagin and Local Dynamic Pontryagin methods perform well but that the Local Dynamic Weak method does not seem to converge, which conrms what is observed in Table 1.

	Global Direct	535 s.
	Global Dynamic	425 s.
	Local Dynamic	10900 s.

Table 3 :

 3 Duration times of the algorithms for model (17) on one run (2000 iterations for global methods, 20000 iterations for the local method)

	4.2 A one-dimensional mixed model
	We consider the following one-dimensional example from [CL19; Ang+19]:

Table 4 :

 4 Mean of E[X T ] over the 10 dimensions (and standard deviation) for several maturities T

	)

Table 5 :

 5 Duration times of the methods (2000 iterations for global methods, 20000 iterations for local method) on the fully coupled linear model (21) for T = 1.

	with

Table 6 :

 6 Mean of E[X T ] over the 10 dimensions (and standard deviation) for several maturities T

	P P Method P P P Reference P	T P P P	0.25 1.0253		0.75 1.0779		1.0 1.1052	1.5 1.1618
	Global Direct	1.024 (1.8e-03)	1.065 (4.3e-03)	12.776 (3.3e-02)	DV
	Global Dynamic	1.025 (2.1e-03)	1.072 (3.1e-03)	0.961 (7.0e-03)	DV
	Local Dynamic	1.024 (1.6e-04)	-7.180 (9.0e-04)	0.411 (1.1e-03)	DV
	(2000 iterations for global methods, 20000 iterations for Local method) on the fully coupled quadratic
	model (22).					
		Global Direct	Global Dynamic	Local Dynamic
		2072 s.		1309 s.		14823 s.

Table 7 :

 7 Duration times of the methods (2000 iterations for global methods, 20000 iterations for local method) on the fully coupled quadratic model (22) for T = 1.