
HAL Id: hal-03326051
https://hal.science/hal-03326051v1

Preprint submitted on 25 Aug 2021 (v1), last revised 5 Mar 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical resolution of McKean-Vlasov FBSDEs using
neural networks *

Maximilien Germain, Joseph Mikael, Xavier Warin

To cite this version:
Maximilien Germain, Joseph Mikael, Xavier Warin. Numerical resolution of McKean-Vlasov FBSDEs
using neural networks *. 2019. �hal-03326051v1�

https://hal.science/hal-03326051v1
https://hal.archives-ouvertes.fr

Numerical resolution of McKean-Vlasov FBSDEs using neural
networks ∗

Maximilien Germain †, Joseph Mikael ‡, Xavier Warin §

August 25, 2021

Abstract

We propose several algorithms to solve McKean-Vlasov Forward Backward Stochastic Differ-
ential Equations (FBSDEs). Our schemes rely on the approximating power of neural networks to
estimate the solution or its gradient through minimization problems. As a consequence, we ob-
tain methods able to tackle both mean-field games and mean-field control problems in moderate
dimension. We analyze the numerical behavior of our algorithms on several examples including
non linear quadratic models.

Key words: Neural networks, McKean-Vlasov FBSDEs, Deep BSDE, mean-field games, machine
learning.

MSC Classification: 65C30, 68T07, 49N80, 35Q89.

1 Introduction

This paper is dedicated to the numerical resolution in moderate dimension of the following
McKean-Vlasov Forward Backward Stochastic Differential Equations (MKV FBSDEs){

Xt = ξ +
∫ t

0 b(s,Xs, Ys, Zs,L(Xs),L(Ys),L(Zs)) ds+
∫ t

0 σ(s,Xs,L(Xs)) dWs

Yt = g(XT ,L(XT)) +
∫ T
t f(s,Xs, Ys, Zs,L(Xs),L(Ys),L(Zs)) ds−

∫ T
t Zs dWs

(1)

with b : R × Rd × Rk × Rk×d × P2(Rd) × P2(Rk) × P2(Rk×d) 7→ Rd, σ : R × Rd × P2(Rd) 7→ Rd,
g : Rd × P2(Rd) 7→ Rk, and f : R× Rd × Rk × Rk×d × P2(Rd)× P2(Rk)× P2(Rk×d) 7→ Rk.
Wt is a d-dimensional Ft-Brownian motion where (Ω,A,Ft,P) is a given filtered probability space
and T > 0.
ξ is a given random variable in L2(Ω,F ,P;Rd) and P2(Rn) stands for the space of square integrable
probability measures over Rn endowed with the 2−Wasserstein distance

W2(µ, ν) = inf
{√

E[(X −X ′)2] | X,X ′ ∈ L2(Ω,F ,P;Rn), L(X) = µ, L(X ′) = ν
}
. (2)

At last L(.) is a generic notation for the law of a random variable.
∗This work is supported by FiME, Laboratoire de Finance des Marchés de l’Energie.
†EDF R&D, Université de Paris, LPSM mgermain at lpsm.fr
‡EDF R&D joseph.mikael at edf.fr
§EDF R&D & FiME xavier.warin at edf.fr

1

mailto:Maximilien.Germain at edf.fr
mailto:Joseph.Mikael at edf.fr
mailto:xavier.warin at edf.fr

This kind of equation is linked to non local PDEs kwown as master equations. We refer to [CD18],
chapter 4 and 5 of volume 2, for an introduction on the subject. In [CCD15], it is shown for example
that under regularity conditions, when the drift b is independent of time and the law L(Zt), the
driver f does not depend on time and the law L(Zt), σ does not depend on time, then the resolution
of equation (1) provides a way to estimate the solution of the equation

∂tU(t, x, µ)+b(x,U(t, x, µ), ∂xU(t, x, µ)σ(x, µ), µ, η).∂xU(t, x, µ)

+
1

2
Tr[∂2

xxU(t, x, µ)σσ>(x, µ)] + f(x,U(t, x, µ), ∂xU(t, x, µ)σ(x, µ), µ, η)

+

∫
Rd
∂µU(t, x, µ)(y).b(y,U(t, y, µ), ∂xU(t, x, µ)σ(x, µ), µ, η) dµ(y)

+

∫
Rd

1

2
Tr[∂x∂µU(t, x, µ)(y)σσ>(y, µ)] dµ(y) = 0 on [0, T]× Rd × P2(Rd) (3)

with initial condition U(0, x, µ) = g(x, µ) on Rd×P2(Rd), and where η is a notation for the image of
the probability measure µ by the mapping x ∈ Rd −→ U(t, x, µ) ∈ Rk. Under suitable assumptions,
[CCD15] proves that the solution to (1) admits the so-called decoupling field representation Ys =
U(s,Xs,L(Xs)) where (t, x, µ) ∈ [0, T] × Rd × P2(Rd) 7→ U(T − t, x, µ) is a classical solution to
(3). See Theorem 2.9 and equation (2.12) in [CCD15]. Their results are stated in the more general
of dynamics depending in the joint law of (Xt, Yt) but we state them here with the particular
case of dependence in the marginal laws L(Xt),L(Yt) to be coherent with (1). This MKV FBSDE
representation is used in [CCD19] to build a numerical scheme for the approximation of (3) when
the drift b is independent of Z. The equation above is non local due to the integral terms and the
term ∂µU(t, x, µ)(y) stands for the Wasserstein derivative of U in the direction of the measure at
point (t, x, µ) and evaluated at the continuous coordinate y.

Equations (1) appear as well as probabilistic formulations of mean-field games or mean-field con-
trols characterizing the value function V of the game. Mean-field games are introduced by [LL06a]
and [LL06b] to model games with interactions between many similar players. In this theory, each
player’s dynamics and cost take into account the empirical distribution of all agents. At the limit of
an infinite number of players, the search for a Nash equilibrium with close loop controls boils down
to a control problem concerning a representative player whose law enters in the cost and dynamics.
Two probabilistic approaches based on Forward Backward Stochastic Differential Equations can be
used to solve these problems:

• A first approach called the Pontryagin approach consists as shown in [CD13] in applying
the strong Pontryagin principle to these control problems. Under regularity and convexity con-
ditions, Yt appears to be a stochastic representation of the gradient of the value function V . In
this case the coefficients b, f of the related MKV FBSDE (1) do not depend on Zt,L(Yt),L(Zt)
and k = d.

• Another approach called the Weak approach permits to solve the optimization problem by
estimating directly Yt as the value function V of the problem as shown in [CL15]. In this case
the coefficients b, f of the related MKV FBSDE (1) do not depend on Yt,L(Yt),L(Zt) and
k = 1.

The numerical resolution of equations (1) is rather difficult since:

• The dynamics are coupled through both the drift and the driver of the BSDE.

• The McKean-Vlasov structure of the problem requires to solve a fixed point in probability
spaces.

2

In the linear-quadratic setting (with quadratic cost to minimize but linear dynamics) the weak
approach applied to mean-field problems gives a problem in low dimension but with quadratic
coupling in Zt appearing in the backward dynamic. In contrast, the Pontryagin approach exhibits
a problem in potentially high dimension (the Z component is a d× d matrix in this case) but with
a linear coupling in Yt which is easier to solve numerically.
In the case of mean-field games, only the law of Xt is present in the dynamic of (1). In other
applications, individuals interact through their controls instead of their states as in the application
of trade crowding in [CL18]. The law of the control thus appears in the dynamic of (1) and may
give rise to some FBSDE depending on the law of Zt in the weak approach or the law of Yt in the
Pontryagin approach.

Existence and uniqueness of a solution to the fully coupled system (1) are studied by [CD18] when
the drift does not depend on the law of Z. Their Theorem 4.29 gives existence of a solution under
a non-degeneracy condition. However, uniqueness is a priori only expected to hold in small time,
as stated in Theorem 4.24 from [CD18]. In the latter we will assume that existence and uniqueness
hold for the MKV FBSDE we aim to solve.

In [CCD19] and [Ang+19], tree and grid algorithms are proposed and tested in dimension 1. It is
worth mentioning that these techniques suffer from the so-called curse of dimensionality and cannot
be applied when the dimension describing a player state is too high (typically greater than 3 or 4).
This is due to the discretization of the state space.

However, new approaches using machine learning are developed since 2017 to solve non linear
parabolic PDEs through a BSDE representation. Two kinds of methods have emerged:

• The first to appear are global methods first proposed in [HJE17] to solve semi-linear PDEs.
They rely on a single high-dimensional optimization problem whose resolution is difficult. It
consists in the training of as many neural networks as time steps by solving in a forward way
the backward representation of the PDE solution. The Zt process is represented by a different
neural network Zθi with parameters θ at each date ti. Instead of solving the BSDE starting from
the terminal condition, the method writes it down as a forward equation and an optimization
problem aiming to reach the terminal condition g(XT) by minimizing a mean squared error
E|YT − g(XT)|2. The approach is extended to fully nonlinear equations (nonlinear in the
solution, its gradient and hessian) in [BEJ19] and the authors show that the methodology can
solve some equations in high dimension. [CWNMW19] showed that it is more effective to used
a single network for all dates and besides proposed an original fixed point algorithm to solve
semilinear PDEs.

• A second kind of local methods first proposed in [HPW20] is based on local optimization
problems solved at each time step in a backward way. Contrarily to the global method, the
successive optimization problems are here in moderate dimension. Each optimization step at
date ti consists in the training of only two local neural networks Y θ

i , Z
θ
i with parameters θ.

For instance, instead of solving 1 optimization problem with N neural networks in the global
method, [HPW20] solves N learning problems with 2 neural networks. Moreover the resolution
is simplified by the initialization of the neural networks at time ti to their previously computed
values at time ti+1, which provides a good approximation for the current value. This strategy
is inspired by the standard backward resolution of BSDE with conditional expectations from
[BT04] and [GLW05]. The methodology is extended to the much more challenging case of fully
nonlinear PDEs in [PWG21] by combining it with some ideas proposed in [Bec+19]. Extensive
tests performed in [HPW20] show that the local method gives better results than the global

3

one, such as [PWG21] in the case of fully nonlinear dynamics. Especially, these papers show
that local methods can be used with a larger time horizon T than the global method.

Machine learning techniques to solve coupled FBSDEs are investigated by several authors in
[HL20] and [Ji+20], and a first method for McKean-Vlasov FBSDEs with delay is studied by [FZ20]
for a linear quadratic equation in dimension one. Similar and more general ideas are presented and
tested in dimension one in [CL19] alongside convergence results, together with an additional method
directly solving mean-field control problems by minimizing the cost without writing down optimality
conditions. The resulting algorithms proposed all rely on the global approach first initiated in
[HJE17].

Our paper aims to extend these methods and to propose new ones for the resolution of McKean-
Vlasov FBSDEs in moderate dimension, and go beyond one dimensional examples for which standard
methods are already available (see [ACD10; Lau21]). In fact, one major advantage for the use of
neural networks for solving control problems is their ability to efficiently represent high-dimensional
functions without using space grids. We also study the influence of the maturity T on the algorithms.
We first propose to modify the previously proposed algorithm to stabilize its convergence. Our
modification allows us to reduce the variance of the estimators used in the dynamic of Xt and Yt.
Then we propose a second algorithm relaxing the fixed point iteration algorithm by adding a neural
network learning the distribution of the solution thanks to a penalization in the loss function. At
last we propose a resolution scheme based on some local resolution as in [HPW20].

To simplify the presentation, we consider first order interaction models, that is to say that the
dependency of the drift and cost function with respect to the laws L(Xt),L(Yt),L(Zt) only concerns
expectations in the form

ut = (uXt , u
Y
t , u

Z
t) := (E[ϕ1(Xt)],E[ϕ2(Yt)],E[ϕ3(Zt)]), (4)

for some continuous functions ϕ1, ϕ2, ϕ3 with adequate domains and codomains. In this framework
we can rewrite by abuse of notation

b(s,Xs, Ys, Zs,L(Xs),L(Ys),L(Zs)) = b(s,Xs, Ys, Zs, us)

σ(s,Xs,L(Xs)) = σ(s,Xs, u
X
s)

g(XT ,L(XT)) = g(XT , u
X
T)

f(s,Xs, Ys, Zs,L(Xs),L(Ys),L(Zs)) = f(s,Xs, Ys, Zs, us).

For instance when ϕ1, ϕ2, ϕ3 are power functions with positive integers as exponents we recover
probability distribution moments. See Remark 1 for more general cases beyond first order interaction.

We provide multidimensional tests to show how these machine learning approaches can overcome
the curse of dimensionality on some test cases first coming from a mean-field game of controls: we
solve the FBSDE derived from the weak approach and the Pontryagin approach. We also consider
an example arising from a non linear quadratic mean-field game. Then we compare all the methods
on some general test cases of FBSDE involving linear or quadratic dependence on the processes Xt,
Yt, Zt and on their distributions.

The structure of the paper is the following: in sections 2 and 3 we describe the proposed schemes,
and in section 4 we provide a numerical study of our methods in dimension 10 (except for the one-
dimensional Example of Section 4.2). We show that our algorithms can solve non linear-quadratic
models with small maturities.

4

2 Machine learning global solvers

In this section we propose three global algorithms based on the approach in [HJE17].

2.1 Algorithm principle

We propose a generalized and refined version of the Algorithm 2 from [CL19]. We recall that a
similar technique with additional networks is used in [FZ20] for delayed McKean-Vlasov equations
but is tested only on a one dimensional linear quadratic example. Our methods also take advantage
of different expectation computation methods, introduced in section 2.2. We present in section 4
several tests in dimension 10 where the laws of X,Y, Z are involved.

We consider the Euler-Maruyama discretized FBSDE system (1) on a regular time grid tk = kT
N

for k ∈ J0, NK: {
Xti+1 = Xti + b (ti, Xti , Yti , Zti , uti) ∆t+ σ

(
ti, Xti , u

X
ti

)
∆Wi

Yti+1 = Yti − f (ti, Xti , Yti , Zti , uti) ∆t+ Zti∆Wi.
(5)

with terminal condition YtN = g(XtN , u
X
tN

) and initial condition X0 = ξ. We recall that ut is defined
in (4). We note ∆t := ti+1 − ti = T

N and (∆Wi)i=0,··· ,N−1 := (Wti+1 −Wti)i=0,··· ,N−1 the Brownian
increments. In the FBSDE theory, one requires the processes (Xti , Yti , Zti) to be Fti-adapted.
Therefore the backward part of the system can also be written in the conditional expectation form{

Yti = E[Yti+1 + f (ti, Xti , Yti , Zti , uti) ∆t|Fti]
Zti = E[Yti+1

∆Wi
∆t |Fti],

(6)

where we see how the process Z is defined. This process, specific to the stochastic case, allows the
Y component to be Ft-adapted, even though we fix its terminal condition. It is a major difference
between backward ordinary differential equations and backward stochastic differential equations.
We see that the whole system is coupled therefore we need to design a method allowing to solve
simultaneously both equations of (5).

We solve the system by the Merged Deep BSDE method introduced in [CWNMW19]. Zti is
approximated by a single feedforward neural network Zθz(ti, Xti) and Y0 by a neural network Yθy(X0)
with parameters θ = (θy, θz). With this point of view, the discretized Brownian motion Wt acts as
training data in the language of machine learning, so that we can generate a training set as large as
desired. Extensive tests conducted in [CWNMW19] show that the use of a Merged network improves
the training in comparison with the Deep BSDE method of [HJE17]. Indeed it lowers the number
of parameters to learn hence reduces the complexity of the problem. It empirically improves the
accuracy of the method but also makes the training faster. That is why we focus on this architecture.
It is also used by [CL19] which considers controls in the form

(
ζ(ti, Xi)

)
i=1,...,N

for a neural network
ζ. The use of recurrent networks such as Long Short Term Memory networks as in [FZ20] is possible
but tests achieved in [CWNMW19] seem to show that is does not bring more accuracy on Markovian
problems. Other alternatives may include the GroupSort network [ALG19] for a better control of
the Lipschitz constant of the approximation, or some special networks preserving some properties
of the solution but they have not been tested.

The motivation for such an approximation comes from the notion of decoupling field, also used
for numerical purposes in [Ang+19] or [CCD19], which gives the existence of functions u, v (see the
paragraph below (3)) such that

Yt = u(t,Xt,L(Xt)), Zt = v(t,Xt,L(Xt)). (7)

5

Numerically, it is enough to consider Y and Z as a function of the couple (t,Xt). In fact, the law of
the solution (and therefore its moments) can be seen as a function of t. That’s why we search for a
representation

Yt = ũ(t,Xt), Zt = ṽ(t,Xt). (8)

The forward-backward system is transformed into a forward system and an optimization problem
aiming to satisfy the terminal condition of the BSDE through the loss function E

[(
YT − g

(
XT ,

uXtN
))2]. To simplify notations, Xi := Xti and similarly for Y and Z.

In practice the loss function is minimized with the Adam gradient descent method [KB14]. In any
case, the goal of our scheme is to learn both the optimal control and the distribution of Xt, Yt, Zt.
In the following, B is the batch size, N is the number of time steps andM is the number of previous
batches expectations to keep in memory.

We use for Z and Y feedforward neural networks with 3 hidden layers (d+10 neurons in each) with
hyperbolic tangent function as activation functions and an output layer with identity as activation.
It is worth noticing that because the merged neural network takes the couple (t,X) as inputs, we
cannot use batch normalization since the distribution of Xi is not stationary over time.

2.2 Estimation of the expectation

A key step for the methods is to estimate the mean-field parameter u. It has a significant effect on
the algorithms performances. We note θm = (θym, θzm) the neural network parameters at optimization
iteration m and ui = (uXi , u

Y
i , u

Z
i) the estimation of uti . In the algorithms described below, the

approximated processes are considered as functions of the parameters θ of the neural network.
Several methods can be used to approximate the moments of the solution involved in the stochastic
McKean-Vlasov dynamics:

• Direct: use the empirical mean of the current batch of particles

ui =
1

B

 B∑
j=1

ϕ1(Xj
i (θm)),

B∑
j=1

ϕ2(Y j
i (θm)),

B∑
j=1

ϕ3(Zji (θm))

 , i = 0, · · · , N − 1. (9)

Alternatively one could use instead the last batch particles to estimate the law

ui =
1

B

 B∑
j=1

ϕ1(Xj
i (θm−1)),

B∑
j=1

ϕ2(Y j
i (θm−1)),

B∑
j=1

ϕ3(Zji (θm−1))

 , i = 0, · · · , N − 1. (10)

The difference lies in the fact that in one case the optimization of the parameters θm at
iteration m modifies the current estimation of the law whereas using the previously computed
parameters θm−1 fixes the law and simplifies the optimization problem. In practice, for the
numerical tests of Section 4 we use the formula (9). This approach requires to handle very large
batches, typically of the order of B = 10, 000 sample paths get a reasonable approximation of
the laws. This is the approach used by [FZ20] and [CL19].

6

We solve the following optimization problem

min
θ=(θy ,θz)

1

B

B∑
k=1

∣∣∣Y k
N (θ)− g

(
Xk
N (θ),

1

B

B∑
j=1

ϕ1(Xj
N (θ))

)∣∣∣2
Xj
i+1(θ) = Xj

i (θ) + b
(
ti, X

j
i (θ), Y j

i (θ),Zθz
(
ti, X

j
i (θ)

)
, ui

)
∆t+ σ

(
ti, X

j
i (θ), uXi

)
∆W j

i

Y j
i+1(θ) = Y j

i (θ)− f
(
ti, X

j
i (θ), Y j

i (θ),Zθz
(
ti, X

j
i (θ)

)
, ui

)
∆t+ Zθz

(
ti, X

j
i (θ)

)
∆W j

i

ui =
1

B

 B∑
j=1

ϕ1(Xj
i (θ)),

B∑
j=1

ϕ2(Y j
i (θ)),

B∑
j=1

ϕ3

(
Zθz

(
ti, X

j
i (θ)

))
Xj

0 = ξj ∼ ξ, j = 1, · · · , B
Y j

0 (θ) = Yθy(Xj
0),

i = 1, · · · , N − 1.

The direct solver leads to algorithm 1.

Algorithm 1 Direct solver
1: Let Yθy(·) be a neural network with parameter θy, defined on Rd and valued in Rk , Zθz(·, ·) be a

neural network with parameter θz, defined on R+ ×Rd and valued in Rk×d, so that θ = (θy, θz)
is initialized with value θ0 = (θy0 , θ

z
0).

2: for m from 0 to K do . Stochastic gradient iterations
3: Sample (ξj)j=1,··· ,B from B independent copies of the initial condition ξ.
4: Set ∀j ∈ J1, BK, Xj

0(θm) = ξj ∈ Rd, Y j
0 (θm) = Yθym(ξj) ∈ Rk.

5: for i from 0 to N − 1 do
6: ui = (uXi , u

Y
i , u

Z
i) = 1

B

∑B
j=1

(
ϕ1(Xj

i (θm)), ϕ2(Y j
i (θm)), ϕ3

(
Zθzm

(
ti, X

j
i (θm)

)))
7: for j from 1 to B do
8: Sample δji from a d-dimensional standard Gaussian vector.
9: Xj

i+1(θm) = Xj
i (θm) + b

(
ti, X

j
i (θm), Y j

i (θm),Zθzm
(
ti, X

j
i (θm)

)
, ui

)
∆t +

√
∆t σ

(
ti, X

j
i (θm), uXi

)
δji

10: Y j
i+1(θm) = Y j

i (θm) − f
(
ti, X

j
i (θm), Y j

i (θm),Zθzm
(
ti, X

j
i (θm)

)
, ui

)
∆t +

√
∆t Zθzm

(
ti, X

j
i (θm)

)
δji

11: end for
12: end for
13: XN (θm) = 1

B

∑B
j=1 ϕ1(Xj

N (θm)),

14: J(θm) = 1
B

∑B
j=1

(
Y j
N (θm)− g

(
Xj
N (θm), XN (θm)

))2

15: Calculate ∇J(θm) by back-propagation.
16: Update θm+1 = θm − ρm∇J(θm).
17: end for

• Dynamic: a method which dynamically updates the estimation on (M + 1)B samples. The
expectations from the last M batches are kept in memory in an array

(ζi,r) i = 0, . . . , N − 1,
r = 0, . . . ,M − 1

7

initialized with values (E[ϕ1(ξ)], ϕ2(0), ϕ3(0))N×M .
At iteration m − 1, ν(m−1)

i is defined as the empirical mean on these previous sample paths.
On a new batch, the expectation is computed by averaging the previous estimation ν(m−1)

i and
the current batch empirical mean by the following algorithm used for i = 0, · · · , N − 1:

ν
(m−1)
i =

1

M

M−1∑
r=0

ζi,r,

ui =
Mν

(m−1)
i + 1

B

(∑B
j=1 ϕ1(Xj

i (θm)),
∑B

j=1 ϕ2(Y j
i (θm)),

∑B
j=1 ϕ3(Zji (θm))

)
M + 1

,

ζi,m%M =
1

B

 B∑
j=1

ϕ1(Xj
i (θm)),

B∑
j=1

ϕ2(Y j
i (θm)),

B∑
j=1

ϕ3(Zji (θm))

 . (11)

The notation m%M refers to the remainder of the Euclidian division of m by M . This
technique allows to use smaller batches of size 100 or 1000. Thus it is more efficient in terms
of convergence speed in comparison with the direct approach. This method can be seen as a
dynamic fixed point approach.

The idea behind this update rule comes from online learning in machine learning. 1/M can
be interpreted as a learning rate quantifying the updating speed. From the current estimation
of the particles law, we introduce a small correction related to the new observed samples.
Therefore the estimation is much more stable through iterations compared to the instantaneous
update of the law used by the Direct method. AfterM batches, the older samples are forgotten,
since they don’t represent anymore the current law. Indeed we expect the convergence for a
good choice of M . If this parameter is too small the stabilization would be inefficient and on
the contrary a too large M would slow down the learning process by introducing a bias in the
law. For instance in our numerical experiments of Section 4 we use M = 100 for a total of
2000 gradient descent iterations.

Remark 1. If the law dependence is more general than a first order interaction and is given
by a continuous function F : µ ∈ P2(Rd) 7→ Rk then the Direct method can be straightfor-
wardly applied to the equation by estimating F (L(Xt)) by the so-called empirical projection
F (1

B

∑B
j=1 δXj

ti

) for identically distributed particles (Xj
ti

)j=1,...,B on a time grid t0, · · · , tN .
Concerning the Dynamic approach, it would require to keep in memory the previously com-
puted particles from the last M batches which is costly.

Remark 2. The fixed point approach is known to be convergent theoretically only for small
maturities. In practice, the theoretical bound on the maturity found on the simple example
given for example in paragraph 3.1 in [Ang+19] is far too pessimistic. We will see that the
restriction is not relevant on all our test cases.

For a given iteration m, given the estimations (ζi,r) i = 0, . . . , N − 1,
r = 0, . . . ,M − 1

of ui on the last M

8

iterations, we perform one gradient descent step for the following optimization problem

min
θm=(θym,θzm)

1

B

B∑
k=1

∣∣∣Y k
N (θm)− g

(
Xk
N (θm),

1

B

B∑
j=1

ϕ1(Xj
N (θm))

)∣∣∣2
Xj
i+1(θm) = Xj

i (θm) + b
(
ti, X

j
i (θm), Y j

i (θm),Zθzm
(
ti, X

j
i (θm)

)
, ũi

)
∆t

+ σ
(
ti, X

j
i (θm), ũi

X(θm)
)

∆W j
i

Y j
i+1(θm) = Y j

i (θm)− f
(
ti, X

j
i (θm), Y j

i (θm),Zθzm
(
ti, X

j
i (θm)

)
, ũi

)
∆t

+ Zθzm
(
ti, X

j
i (θm)

)
∆W j

i

ui =
1

B

 B∑
j=1

ϕ1(Xj
i (θm)),

B∑
j=1

ϕ2(Y j
i (θm)),

B∑
j=1

ϕ3

(
Zθzm

(
ti, X

j
i (θm)

))
ũi =

∑M−1
r=0 ζi,r + ui
M + 1

Xj
0 = ξj ∼ ξ, j = 1, · · · , B

Y j
0 (θm) = Yθym(Xj

0)

i = 1, · · · , N − 1.

Then we update (ξi)i by forgetting the oldest estimation and keeping in memory the new one,
(ui)i (see (11)). The dynamic solver is given more explicitly in algorithm 2.

9

Algorithm 2 Dynamic solver
1: Let Yθy(·) be a neural network with parameter θy, defined on Rd and valued in Rk, Zθz(·, ·) be a

neural network with parameter θz, defined on R+ ×Rd and valued in Rk×d, so that θ = (θy, θz)
is initialized with value θ0 = (θy0 , θ

z
0).

2: Set ∀i ∈ J0, N − 1K, ∀r ∈ J0,M − 1K, ζi,r = (E[ϕ1(ξ)], ϕ2(0), ϕ3(0)).
3: for m from 0 to K do
4: Sample (ξj)j=1,··· ,B from B independent copies of the initial condition ξ.
5: Set ∀j ∈ J1, BK, Xj

0(θm) = ξj ∈ Rd, Y j
0 (θm) = Yθym(ξj) ∈ Rk.

6: for i from 0 to N − 1 do
7: ui = 1

B

(∑B
j=1 ϕ1(Xj

i (θm)),
∑B

j=1 ϕ2(Y j
i (θm)),

∑B
j=1 ϕ3

(
Zθzm

(
ti, X

j
i (θm)

)))
8: ũi = (ũi

X , ũi
Y , ũi

Z) =
∑M−1
r=0 ζi,r+ui
M+1

9: for j from 1 to B do
10: Sample δji from a d-dimensional standard Gaussian vector.
11: Xj

i+1(θm) = Xj
i (θm) + b

(
ti, X

j
i (θm), Y j

i (θm),Zθzm
(
ti, X

j
i (θm)

)
, ũi

)
∆t +

√
∆t σ

(
ti, X

j
i (θm), ũi

X
)
δji

12: Y j
i+1(θm) = Y j

i (θm) − f
(
ti, X

j
i (θm), Y j

i (θm),Zθzm
(
ti, X

j
i (θm)

)
, ũi

)
∆t +

√
∆t Zθzm

(
ti, X

j
i (θm)

)
δji

13: end for
14: ζi,m%M = ui
15: end for
16: XN (θm) = 1

B

∑B
j=1 ϕ1(Xj

N (θm)),

17: J(θm) = 1
B

∑B
j=1

(
Y j
N (θm)− g

(
Xj
N (θm), XN (θm)

))2

18: Calculate ∇J(θm) by back-propagation.
19: Update θm+1 = θm − ρm∇J(θm).
20: end for

• Expectation: estimate ut by a neural network ΨθΨ with input t and parameters θΨ.

ui(θ
Ψ) = ΨθΨ(ti) = (ΨX

θΨ(ti),Ψ
Y
θΨ(ti),Ψ

Z
θΨ(ti)), i = 0, · · · , N. (12)

A penalization term

E

 λ
N

N−1∑
i=0

∥∥∥∥∥∥ΨθΨ(ti)−
1

B

 B∑
j=1

ϕ1(Xj
i (θ)),

B∑
j=1

ϕ2(Y j
i (θ)),

B∑
j=1

ϕ3(Zji (θ))

∥∥∥∥∥∥
2

2

 ,
is added to the loss function. We will see that in practice this method is quite involved to use
because the performances heavily depend upon the choice of the parameter λ. This approach
provides a relaxation of the fixed point method.

10

We solve the following optimization problem

min
θ=(θy ,θz ,θΨ)

1

B

B∑
k=1

∣∣∣Y k
N (θ)− g

(
Xk
N (θ),

1

B

B∑
j=1

ϕ1(Xj
N (θ))

)∣∣∣2
+
λ

N

N−1∑
i=0

∥∥ui(θΨ)−ΨθΨ(ti)
∥∥2

Xj
i+1(θ) = Xj

i (θ) + b
(
ti, X

j
i (θ), Y j

i (θ),Zθz
(
ti, X

j
i (θ)

)
,ΨθΨ(ti)

)
∆t

+ σ
(
ti, X

j
i (θ),ΨθΨ(ti)

X
)

∆W j
i

Y j
i+1(θ) = Y j

i (θ)− f
(
ti, X

j
i (θ), Y j

i (θ),Zθz
(
ti, X

j
i (θ)

)
,ΨθΨ(ti)

)
∆t

+ Zθz
(
ti, X

j
i (θ)

)
∆W j

i

ui =
1

B

 B∑
j=1

ϕ1(Xj
i (θ)),

B∑
j=1

ϕ2(Y j
i (θ)),

B∑
j=1

ϕ3

(
Zθz

(
ti, X

j
i (θ)

))
Xj

0 = ξj ∼ ξ, j = 1, · · · , B
Y j

0 (θ) = Yθy(Xj
0)

i = 1, · · · , N − 1.

The expectation solver is described in algorithm 3. The parameter λ is chosen by trial and
error.

11

Algorithm 3 Expectation solver
1: Let Yθy(·) be a neural network with parameter θy, defined on Rd and valued in Rk, Zθz(·, ·)

defined on R+ × Rd, ΨθΨ(·) = (ΨX
θΨ(·),ΨY

θΨ(·),ΨZ
θΨ(·)) defined on R+ be neural networks with

parameters θz, θΨ, taking values respectively in Rk×d and Rd×Rk×Rk×d, so that θ = (θy, θz, θΨ)
is initialized with value θ0 = (θy0 , θ

z
0, θ

Ψ
0).

2: for m from 0 to K do
3: Sample (ξj)j=1,··· ,B from B independent copies of the initial condition ξ.
4: Set ∀j ∈ J1, BK, Xj

0(θm) = ξj ∈ Rd, Y j
0 (θm) = Yθym(ξj) ∈ Rk.

5: for i from 0 to N − 1 do
6: ui = 1

B

(∑B
j=1 ϕ1(Xj

i (θm)),
∑B

j=1 ϕ2(Y j
i (θm)),

∑B
j=1 ϕ3

(
Zθzm

(
ti, X

j
i (θm)

)))
7: for j from 1 to B do
8: Sample δji from a d-dimensional Gaussian vector.
9: Xj

i+1(θm) = Xj
i (θm) + b

(
ti, X

j
i (θm), Y j

i (θm),Zθzm
(
ti, X

j
i (θm)

)
,ΨθΨ

m
(ti)
)

∆t +
√

∆t σ
(
ti, X

j
i (θm),ΨX

θΨ
m

(ti)
)
δji

10: Y j
i+1(θm) = Y j

i (θm) − f
(
ti, X

j
i (θm), Y j

i (θm),Zθzm
(
ti, X

j
i (θm)

)
,ΨθΨ

m
(ti)
)

∆t +
√

∆t Zθzm
(
ti, X

j
i (θm)

)
δji

11: end for
12: end for
13: XN (θm) = 1

B

∑B
j=1 ϕ1(Xj

N (θm)),

14: J(θm) = 1
B

∑B
j=1

(
Y j
N (θm)− g

(
Xj
N (θm), XN (θm)

))2
+ λ

N

∑N−1
i=0

(
ui −ΨθΨ

m
(ti)
)2

15: Calculate ∇J(θm) by back-propagation.
16: Update θm+1 = θm − ρm∇J(θm).
17: end for

We will compare the performances of these techniques on several examples in section 4.

3 A local solver

We also propose a local method inspired by the Deep Backward Dynamic Programming introduced
by [HPW20] and [PWG21]. It considers local minimization problems between contiguous time steps.
In this case there are as many networks as time steps. We replace a global optimization setting by
a set of smaller problems.

In this method for i ∈ J0, N−1K, Zi and Yi are approximated by a neural network (Z i
θyi

(·) ,Y iθzi (·))
with parameters θ = (θy0 , θ

z
0, · · · , θ

y
N−1, θ

z
N−1). At iteration m, with θm = (θym,0, θ

z
m,0, · · · , θ

y
m,N−1,

θzm,N−1) , we simulate Xi(θm) with the previously computed parameters θm.

Xj
i+1(θm) = Xj

i (θm) + b

(
ti, X

j
i (θm),Y iθym,i

(
Xj
i (θm)

)
,Z iθzm,i

(
Xj
i (θm)

)
, ũi

)
∆t (13)

+ σ
(
ti, X

j
i (θm), ũi

X
)

∆W j
i .

This first step allows to find the areas visited by the controlled process. Using R samples, we

compute the empirical mean mi = 1
R

(∑R
j=1X

j
i (θm)

)
and variance Vi = 1

R

∑R
j=1

(
Xj
i (θm)

)2
−

12

1
R2

(∑R
j=1X

j
i (θm)

)2
of Xi(θm). We estimate ut as in the Dynamic method (11):

ui =
1

R

 R∑
j=1

ϕ1(Xj
i (θm)),

R∑
j=1

ϕ2

(
Y iθym,i

(
ti, X

j
i (θm)

))
,
R∑
j=1

ϕ3

(
Z iθzm,i

(
ti, X

j
i (θm)

))
ũi =

∑M−1
r=0 ζi,r + ui
M + 1

.

A priori R can be different from the batch size B. It is the batch size used for the estimation of the
law with the previously computed parameters. In the numerical tests of Section 4 we use B = 100
or B = 300 for the backward optimization and a larger value R = 50000 for the Monte-Carlo
forward estimation of the law. Then we solve backward problems to find the θm+1 by sampling B
independent copies of Xi through a Gaussian distribution N (mi, V

m
i) with frozen parameters θm :

• First sample B independent copies X1
N , · · · , XB

N of XN following a Gaussian distribution
N (mm

N , V
m
N). Y N

θym+1,N
(Xj

N) is set to the terminal condition g
(
Xj
N , u

X
N

)
.

• For i from N − 1 to 0:
Sample B independent copies X1

i , · · · , XB
i of Xi following a Gaussian distribution N (mm

i ,
V m
i). Diffuse according to the dynamics (13) of X, starting from X1

i , · · · , XB
i , to obtain

X1
i+1, · · · , XB

i+1.
Solve the local optimization problem

min
θ=(θy ,θz)

1

B

B∑
j=1

∣∣∣∣Y i+1
θym+1,i+1

(
Xj
i+1

)
− Y i

θy

(
Xj
i

)
+ f

(
ti, X

j
i ,Y

i
θy

(
Xj
i

)
,Z iθz

(
Xj
i

)
, ũi

)
∆t

−Z iθz
(
Xj
i

)
∆W j

i

∣∣∣2 ,
starting from the parameter value θm+1,i+1. We can then update the θ value by denoting as
θm+1,i the argmin value of the minimization problem.

• Repeat the previous steps for the iteration m+ 1 until reaching K iterations.

In the version of the local solver given in algorithm 4, we use the dynamic update of the
expectations introduced previously in the dynamic solver of section 2. In this algorithm H stands
for the number of gradient steps to perform at each step of the algorithm and R is the number of
samples for the laws estimation.

Remark 3. Because we have to learn the dynamic of the forward process, the use of a backward
resolution is not as obvious as in [Hur+21; Bac+21]. We have to alternate between forward dynamic
estimations and backward resolutions.
More precisely, here we solve fully coupled FBSDEs, whereas the works [HPW20; PWG21] consider
decoupled FBSDEs, where the forward process X can be simulated independently of Y,Z. Estimating
the law of X and sampling from a normal distribution allows us to decouple and solve locally the
FBSDEs in areas visited by X and its law. However, because of this freezing of the forward dynamics,
another fixed point problem has to be solved. Other approaches for fully coupled FBSDEs like [HL20]
and [Ji+20] rely on the global machine learning method initiated by [HJE17].

13

Algorithm 4 Local solver
1: Let (Y i

θyi
(·),Z iθzi (·)) be some neural networks defined on Rd with values in Rk × Rk×d for

i = 0, · · · , N − 1 and parameters θ = (θy0 , θ
z
0, · · · , θ

y
N−1, θ

z
N−1) initialized with values θ0 =

(θy0,0, θ
z
0,0, · · · , θ

y
0,N−1, θ

z
0,N−1).

2: Set ∀i ∈ J0, NK, ∀r ∈ J0,M − 1K, ζi,r = (E[ξ], 0, 0).
3: for m from 0 to K do
4: Sample δji from a d-dimensional standard Gaussian vector, i = 0, · · · , N , j = 1, · · · , R.
5: Sample (ξj)j=1,··· ,B from R independent copies of the initial condition ξ.
6: Set ∀j ∈ J1, RK, Xj

0(θm) = ξj ∈ Rd.
7: for i from 0 to N do . Forward estimation of the laws
8: lmi = 1

R

(∑R
j=1X

j
i (θm)

)
9: ui = 1

R

(∑R
j=1 ϕ1(Xj

i (θm)),
∑R

j=1 ϕ2(Y i
θym,i

(
Xj
i (θm)

)
),
∑R

j=1 ϕ3

(
Z iθzm,i

(
Xj
i (θm)

)))
10: V m

i = 1
R

∑R
j=1

(
Xj
i (θm)

)2
− 1

R2

(∑R
j=1X

j
i (θm)

)2

11: ũi =
∑M−1
r=0 ζi,r+ui
M+1

12: ζi,m%M = ui(θm)
13: for j from 1 to R do

14: Xj
i+1(θm) = Xj

i (θm) + b

(
ti, X

j
i (θm),Y i

θym,i

(
Xj
i (θm)

)
,Z iθzm,i

(
Xj
i (θm)

)
, ũi

)
∆t +

√
∆t σ

(
ti, X

j
i (θm), ũi

X
)
δji

15: end for
16: end for
17: for i from N − 1 to 0 do . Backward resolution
18: θ̂0 = θm,i
19: for h from 0 to H − 1 do . Gradient descent with simulated data for X
20: for j from 1 to B do
21: Sample Ξji ,Θ

j
i from d-dimensional standard Gaussian vectors.

22: xji = lmi +
√
V m
i Θj

i

23: xji+1 = xji + b

(
ti, x

j
i ,Y iθ̂yh

(
xji

)
,Z i

θ̂zh

(
xji

)
, ũi

)
∆t+

√
∆t σ

(
ti, x

j
i , ũi

X
)

Ξji

24: if i = N − 1 then
25: Y j

i+1 = g
(
xjN , ũN

X
)

26: else
27: Y j

i+1 = Y i+1
θm+1,i+1

(
xji+1

)
28: end if
29: end for
30: J i(θ̂h) = 1

B

∑B
j=1

(
f

(
ti, x

j
i ,Y iθ̂yh

(
xji

)
,Z i

θ̂zh

(
xji

)
, ũi

)
∆t + Y j

i+1 − Y iθ̂yh

(
xji

)
−

√
∆t Z i

θ̂zh

(
xji

)
Ξji

)2

31: Calculate ∇J i(θ̂h) by back-propagation.
32: Update θ̂h+1 = θ̂h − ρh∇J i(θ̂h).
33: end for
34: θm+1,i = θ̂H
35: end for
36: end for

14

4 Numerical results

The algorithms are implemented in Python with the Tensorflow library [Aba+16]. Each numerical
experiment is conducted using a node composed of 2 Intel® Xeon® Gold 5122 Processors, 192 Go
of RAM, and 2 GPU nVidia® Tesla® V100 16Go. The multi-GPU parallelization on the global
solver is conducted using the Horovod library [SDB18]. The methods we test are:

• Direct: algorithm 1 at page 7. Batch size B = 10000.

• Dynamic: algorithm 2 at page 10. Batch size B = 200 and M = 100.

• Expectation: algorithm 3 at page 12. Batch size B = 2000.

• Local: algorithm 4 at page 14. Batch size B = 300 (Weak), B = 100 (Pontryagin) and
M = 20, R = 50000.

If the algorithm is applied to equations coming from the Pontryagin (abbreviated in Pont.) or the
Weak approach, it is specified in its name.

4.1 Linear price impact model

We use a linear-quadratic mean-field game of controls model studied in [Ang+19] and [CD18] for
comparison. This model is useful for numerical tests since the analytic solution is known. The MFG
of controls model for the representative player is given by:

min
α∈A

E
[∫ T

0

(cα
2
‖αt‖2 +

cX
2
‖Xt‖2 − γXt · ut

)
dt+

cg
2
‖XT ‖2

]
subject to Xt = x0 +

∫ t

0
αs ds+ σ Wt

. (14)

and the fixed point E[αt] = ut. In this case, the mean-field interaction is exerted through the law of
the control process.
The Pontryagin optimality principle gives the system:

dXt = − 1
cα
Yt dt+ σ dWt

X0 = x0

dYt = −(cXXt + γ
cα
E[Yt]) dt+ Zt dWt

YT = cgXT .

(15)

In this case, the output Z of the neural network is a matrix of size d× d and Y is a vector of size d.
The weak representation of the value function gives:

dXt = − 1
cα
σ−1Zt dt+ σ dWt

X0 = x0

dYt = −
(
cX
2 ‖Xt‖2 + γ

cα
Xt · σ−1E[Zt] + 1

2cα

∥∥σ−1Zt
∥∥2
)

dt+ Zt dWt

YT =
cg
2 ‖XT ‖2 .

(16)

In this case, the output Z of the neural network is a vector of size d and Y is a scalar. Therefore
we may be able work in higher dimensions.

Remark 4. With LQ models, the dynamics of Y is linear in the Pontryagin approach and quadratic
in the Weak approach. Thus the potentially high dimension of one method is counterbalanced by the
complex dynamics of the other technique.

15

For our numerical experiments we take cX = 2, x0 = 1, σ = 0.7, γ = 2, cα = 2/3, cg = 0.3. If not
stated otherwise, the simulations are conducted with T = 1, d = 10,∆t = 0.01.

PPPPPPPPPMethod
T 0.25 0.75 1.0 1.5

Reference 0.7709 0.1978 0.0811 0.0125
Pontryagin 0.763 (1.3e-03) 0.187 (2.5e-03) 0.075 (2.7e-03) 0.012 (5.0e-03)
Dyn. Pont. 0.762 (2.3e-03) 0.189 (4.0e-03) 0.078 (5.5e-03) 0.013 (6.7e-03)
Exp. Pont. (0.1) 0.763 (1.6e-03) 0.604 (1.1e-01) 0.729 (1.1e-01) 0.803 (1.5e-01)
Exp. Pont. (1.) 0.762 (1.4e-03) 0.251 (2.7e-02) 0.467 (7.6e-02) 0.639 (1.1e-01)
Exp. Pont. (10.) 0.763 (1.5e-03) 0.216 (1.7e-02) 0.275 (3.7e-02) 0.574 (1.7e-01)
Exp. Pont. (100.) 0.776 (8.4e-03) 0.797 (1.1e-01) 1.042 (1.3e-01) 1.613 (2.6e-01)
Weak 0.778 (2.0e-03) 0.200 (1.4e-02) 0.092 (2.9e-02) 0.025 (2.0e-02)
Dyn. Weak 0.775 (4.4e-03) 0.212 (2.0e-02) 0.083 (4.1e-02) 0.016 (5.6e-02)
Exp. Weak (0.1) 0.877 (1.9e-02) 0.654 (9.9e-02) 0.595 (2.3e-01) 0.28 (6.0e-01)
Exp. Weak (1.) 0.901 (2.2e-03) 0.664 (9.8e-02) 0.617 (1.0e-01) 0.507 (1.9e-01)
Exp. Weak (10.) 0.887 (1.1e-02) 0.698 (7.3e-02) 0.6541 (6.3e-02) 0.49 (2.3e-01)
Exp. Weak (100.) 0.887 (2.0e-03) 0.650 (9.4e-02) 0.602 (9.1e-02) 0.492 (2.4e-01)
Pontryagin Loc. 0.767 (3.5e-04) 0.189 (6.3e-04) 0.076 (7.6e-04) 0.011 (7.5e-04)
Weak Loc. 0.944 (8.7e-04) 0.740 (2.6e-02) 0.692 (1.6e-02) 0.625 (2.2e-02)

Table 1: Mean of E[XT] over the 10 dimensions (and standard deviation) for several maturities
T (2000 iterations for global methods, 20000 iterations for local methods) on the price impact
model (14). For the expectation method, the value of the λ penalization parameter is given under
parenthesis.

Pontryagin 1877 s.
Dyn. Pontryagin 1336 s.
Exp. Pontryagin 1562 s.
Weak 2205s.
Dyn. Weak 1605 s.
Exp. Weak 1670 s.
Pontryagin Loc. 11627 s.
Weak Loc. 12689 s.

Table 2: Duration times of the methods (2000 iterations for global methods, 20000 iterations for
local methods) on the price impact model (14) with T = 1. on one run

16

0 250 500 750 1000 1250 1500 1750 2000

Iterat ion

10
� 5

10
� 4

10
� 3

10
� 2

10
� 1

10
0

10
1

L
o

s
s

T = 0.25

T = 0.75

T = 1

T = 1.5

0 250 500 750 1000 1250 1500 1750 2000

Iterat ion

10
� 5

10
� 4

10
� 3

10
� 2

10
� 1

10
0

10
1

L
o

s
s

T = 0.25

T = 0.75

T = 1

T = 1.5

Figure 1: Learning curves for direct (left) and dynamic (right) Pontryagin method on the price
impact model (14). The loss is the L2 error between YT and the terminal condition of the backward
equation.

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10−3

10−2

10−1

100

Lo
ss

T = 0.25
T = 0.75
T = 1
T = 1.5

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10−2

10−1

100

101

102
Lo

ss
T = 0.25
T = 0.75
T = 1
T = 1.5

Figure 2: Learning curves for Local Pontryagin (left) and Local Weak (right) method on the price
impact model (14). The loss is the sum of the local L2 errors between the neural network Y and
the Euler discretization for all time steps.

0 250 500 750 1000 1250 1500 1750 2000

Iterat ion

10
� 2

10
� 1

10
0

10
1

10
2

10
3

L
o

s
s

T = 0.25

T = 0.75

T = 1

T = 1.5

0 250 500 750 1000 1250 1500 1750 2000

Iterat ion

10
� 2

10
� 1

10
0

10
1

10
2

L
o

s
s

T = 0.25

T = 0.75

T = 1

T = 1.5

Figure 3: Learning curves for direct (left) and dynamic (right) Weak method on the price impact
model (14). The loss is the L2 error between YT and the terminal condition of the backward equation.

17

0.0 0.2 0.4 0.6 0.8 1.0

t

� 3.5

� 3.0

� 2.5

� 2.0

� 1.5

� 1.0

� 0.5

0.0
Opt im al cont rol

Com puted opt im al cont rol

Figure 4: First coordinate of the optimal control evaluated on a sample path for direct (left) and
dynamic (right) Pontryagin method after 2000 iterations on the price impact model (14) with T = 1.

0.0 0.2 0.4 0.6 0.8 1.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5
Optimal control
Computed optimal control

0.0 0.2 0.4 0.6 0.8 1.0

−8

−6

−4

−2

0

Optimal control
Computed optimal control

Figure 5: First coordinate of the optimal control evaluated on a sample path for Local Pontryagin
(left) and Local Weak (right) Local Weak method after 20000 iterations on the price impact model
(14) with T = 1.

All methods except Expectation Weak and Local Weak converge to the exact solution for small
maturities. These two solvers do not converge to the right solution for any time horizon.

The choice of the parameter λ influences a lot the output of the Pontryagin Expectation scheme,
as observed in Table 1. The best results are obtained when λ is of order 10 but we notice that a large
range of values seems to work fine for very small time horizon T . However the Weak Expectation
scheme never works. We won’t test the expectation methods on the other test cases since they are
less efficient than the other methods.

We see in Figure 2 that the Pontryagin Local method needs more iterations for the loss to stabilize
than the Global method. We cannot hope for more iterations to help the convergence in the Weak
method since the loss in the learning curves of Figure 3 reaches a plateau. The algorithms solving
the system coming from the Pontryagin principle perform better than the others. The dynamic
estimation of the expectation allows to gain training speed and to smooth the loss, as seen in Figure
1 and Table 2. As another accuracy test, we can also plot the optimal control for which we have an
analytical expression. We see in Figures 4, 5 that Global and Local Pontryagin methods perform
well but that the Local Weak method does not seem to converge, which confirms what is observed
in Table 1.

18

4.2 A one-dimensional mixed model

We consider the following one-dimensional example from [CL19; Ang+19]:{
dXt = −ρYt dt+ σ dWt, X0 = x0

dYt = arctan(E[Xt]) dt+ Zt dWt, YT = arctan(XT).
(17)

This model comes from the Pontryagin principle applied to the mean-field game problem

min
α

E
[∫ T

0

(1

2ρ
α2
s −Xs arctan(us)

)
ds+ g(XT)

]
dXt = αt dt+ dWt, X0 = x0,

with the fixed point us = E[Xs], and where g is an antiderivative of arctan. We take the same model
parameters as in [CL19] (T = 1 and x0 = 1) and obtain in Figure 6 with all our methods the same
results as in their Figure 4. For the numerical resolution we choose 100 time steps. Notice that we
use 3 hidden layers with 11 neurons in each when [CL19] uses 100 neurons by layer. We see that
our smaller number of neurons is enough for this example resolution.

1 2 3 4 5 6
0.400

0.375

0.350

0.325

0.300

0.275

0.250

0.225

Y 0

Direct method
Dynamic method
Local method

Figure 6: Value of Y0 as a function of parameter ρ for the model (17)

The duration of the methods are given in Table 3 which illustrates again the speed gain in using
the dynamic method.

Direct 535 s.
Dynamic 425 s.
Local 10900 s.

Table 3: Duration times of the algorithms for model (17) on one run
(2000 iterations for global methods, 20000 iterations for the local method)

4.3 Beyond the mean-field games case

In this Section we design non Linear Quadratic models in order to test the limitations of our meth-
ods. We construct general MKV FBSDES with explicit solutions following a log-normal distribution.
Let Xi

t be defined by

19

dXi
t = aiXi

t dt+ σitX
i
t dW i

t , (18)

Xi
0 = ξi. (19)

We obtain explicitly

Xi
t = ξie(ai− (σi)2

2
)t+σiW i

t ,

git := E[Xi
t] = ξiea

it,

kit := E[(Xi
t)

2] = ξie(2ai+(σi)2)t.

We choose g : (t, x) 7→ eαt log
(∏n

i=1 x
i
)
and the following dynamic for Yt

Yt = eαt log

(∏
i

Xi
t

)
= eαt

∑
i

[
log(ξi) + (ai − (σi)2

2
)t+ σiW i

t

]
,

such that

ct := E[Yt] = eαt
∑
i

[
log(ξi) +

(
ai − (σi)2

2

)
t

]
,

dt := E[Y 2
t] = e2αt

[∑
i

(
log(ξi) + ai − (σi)2

2

)
t

]2

+
∑
i

(σi)2t

 .

As we want Yt = u(t,Xt), we have Zit = σitX
i
t∂xu(t,Xt) following:

Zit = σite
αt

eit := E[Zit] = σite
αt,

f it := E[(Zit)
2] = (σit)

2e2αt.

Introducing

φ(t, x) := ∂tu+
∑
i

aixi ∂xiu+
∑
i

(σixi)
2

2
∂2
x2
i
u

= eαt

(
α log

(∏
i

xi

)
+
∑
i

(
ai − (σi)2

2

))
,

u(t,Xt) solves the PDE

∂tu+
∑
i

aix
i ∂xiu+

∑
i

(σi)2

2
∂2
x2
i
u− φ(t, x) = 0.

This semilinear PDE is related to the BSDE associated with the driver f(t, x) = −φ(t, x) for forward
dynamics (18).
Using some chosen Rd valued functions ψi and Rk valued functions κ, we express all dynamics in a
McKean-Vlasov setting:

dXi
t = (aiXi

t + ψi(Yt, Z
i
t ,E[Xi

t],E[(Xi
t)

2],E[Yt],E[Y 2
t],E[Zit],E[(Zit)

2])

−ψi
(
eαt log

(∏
iX

i
t

)
, σite

αt, git, k
i
t, ct, dt, e

i
t, f

i
t

)
dt+ σitX

i
t dW i

t

Xi
0 = ξi

dYt = −f(t,Xt, Yt, Zt,E[Xt],E[X2
t],E[Yt],E[Y 2

t],E[Zt],E[Z2
t]) dt+ Zt dWt

YT = eαT log
(∏

iX
i
T

)
(20)

20

with

f(t,Xt, Yt, Zt, x1, x2, y1, y2, z1, z2)

= −φ(t, x) + κ(Yt, Zt, x1, x2, y1, y2, z1, z2)− κ

(
eαt log

(∏
i

Xi
t

)
, σite

αt, git, k
i
t, ct, dt, e

i
t, f

i
t

)
.

and f : R× Rd × R× R1×d × Rd × Rd × R× R× R1×d × R1×d 7→ R.
We consider two models of this kind for numerical tests.

4.3.1 A fully coupled linear example

We consider a linear McKean-Vlasov FBSDE in Yt, Zt and their law dynamics for Xt and Yt:

dXi
t = (aiXi

t + b(Yt + Zit + E[Xi
t] + E[Yt] + E[Zit])

−b
(
eαt log

(∏d
i=1X

i
t

)
+ σite

αt + git + ct + eit

)
dt+ σitX

i
t dW i

t

Xi
0 = ξi

dYt =

(
φ(t,Xt) + b(Yt + 1

d

∑d
i=1 Z

i
t + 1

d

∑d
i=1 E[Xi

t] + E[Yt] + 1
d

∑d
i=1 E[Zit])

−b
(
eαt log

(∏d
i=1X

i
t

)
+ 1

d

∑d
i=1 σ

i
te
αt + 1

d

∑d
i=1 g

i
t + ct + 1

d

∑d
i=1 e

i
t

))
dt+ Zt dWt

YT = eαT log
(∏d

i=1X
i
T

)
.

(21)

We take a = b = 0.1, α = 0.5, σ = 0.4, ξ = 1.

PPPPPPPPPMethod
T 0.25 0.75 1.0 1.5

Reference 1.0253 1.0779 1.1052 1.1618
Global 1.025 (1.8e-03) 1.076 (3.3e-03) 1.095 (3.9e-03) 1.162 (7.2e-03)
Dyn. Global 1.026 (2.0e-03) 1.077 (3.6e-03) 1.105 (2.9e-03) 1.163 (4.8e-03)
Local 1.025 (2.3e-04) 1.092 (5.0e-04) 1.146 (7.9e-04) 1.28 (1.4e-03)

Table 4: Mean of E[XT] over the 10 dimensions (and standard deviation) for several maturities T
(2000 iterations for global methods, 20000 iterations for local method) on the fully coupled linear
model (21).

Global Dynamic Global Local
2081 s. 1308 s. 14811 s.

Table 5: Duration times of the methods (2000 iterations for global methods, 20000 iterations for
local method) on the fully coupled linear model (21) for T = 1.

21

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10−2

10−1

100

101

Lo
ss

T = 0.25
T = 0.75
T = 1
T = 1.5

Figure 7: Learning curves for Local method on the fully coupled linear model (21). The loss is the
sum of the local L2 errors between the neural network Y and the Euler discretization for all time
steps.

0.0 0.2 0.4 0.6 0.8 1.0

t

0.40

0.45

0.50

0.55

0.60

0.65
Exact Z

Com puted Z

0.0 0.2 0.4 0.6 0.8 1.0

0.40

0.45

0.50

0.55

0.60

0.65

0.70
Exact Z
Computed Z

Figure 8: First coordinate of Zt evaluated on a sample path for Dynamic Global (left) and Local
(right) methods after 2000 iterations (respectively 20000) on the fully coupled linear model (21).

0.0 0.2 0.4 0.6 0.8 1.0

t

� 1.00

� 0.75

� 0.50

� 0.25

0.00

0.25

0.50

0.75

1.00
Exact Y

Com puted Y

0.0 0.2 0.4 0.6 0.8 1.0

−0.5

0.0

0.5

1.0

1.5
Exact Y
Computed Y

Figure 9: First coordinate of Yt evaluated on a sample path for Direct Global (left) and Local method
(right) after 2000 iterations (respectively 20000) on the fully coupled linear model (21).

22

The three algorithms demonstrate good performances on this test case. Both processes Y,Z are
well represented by the neural network. However the local method is less precise than the global
methods when the maturity grows. We see in Table 4, Figure 8, Figure 9 that the Local method is
biased when T = 1 when the Global methods achieve a great accuracy. It looks like the results of
the Local method cannot be improved since the loss flattens in Figure 7.

4.3.2 A fully coupled quadratic example

We consider a quadratic McKean-Vlasov FBSDE in Yt, Zt and their law dynamics for Xt and Yt:

dXi
t = (aiXi

t + b(Yt + Zit + E[Xi
t] + E[Yt] + E[Zit])

−b
(
eαt log

(∏d
i=1X

i
t

)
+ σite

αt + git + ct + eit

)
+c

(
Y 2
t + (Zit)

2 + E[(Xi
t)

2] + E[Y 2
t] + E[(Zit)

2])

−c
(
e2αt log

(∏d
i=1X

i
t

)2
+ (σit)

2e2αt + (git)
2 + c2

t + (eit)
2

))
dt+ σitX

i
t dW i

t

Xi
0 = ξi

dYt =

(
φ(t,Xt) + b(Yt + 1

d

∑d
i=1 Z

i
t + 1

d

∑d
i=1 E[Xi

t] + E[Yt] + 1
d

∑d
i=1 E[Zit])

−b
(
eαt log

(∏d
i=1X

i
t

)
+ 1

d

∑d
i=1 σ

i
te
αt + 1

d

∑d
i=1 g

i
t + ct + 1

d

∑d
i=1 e

i
t

)
+c(Y 2

t + 1
d

∑d
i=1(Zit)

2 + 1
d

∑d
i=1 E[(Xi

t)
2] + E[Y 2

t] + 1
d

∑d
i=1 E[(Zit)

2])

−c
(
e2αt log

(∏d
i=1X

i
t

)2
+ 1

d

∑d
i=1(σit)

2e2αt + 1
d

∑d
i=1(git)

2 + c2
t + 1

d

∑d
i=1(eit)

2

))
dt

+Zt dWt

YT = eαT log
(∏d

i=1X
i
T

)
.

(22)
We take a = b = c = 0.1, α = 0.5, σ = 0.4, ξ = 1.

PPPPPPPPPMethod
T 0.25 0.75 1.0 1.5

Reference 1.0253 1.0779 1.1052 1.1618
Global 1.024 (1.8e-03) 1.065 (4.3e-03) 12.776 (3.3e-02) DV
Dyn. Global 1.025 (2.1e-03) 1.072 (3.1e-03) 0.961 (7.0e-03) DV
Local 1.024 (1.6e-04) -7.180 (9.0e-04) 0.411 (1.1e-03) DV

Table 6: Mean of E[XT] over the 10 dimensions (and standard deviation) for several maturities
T (2000 iterations for global methods, 20000 iterations for local methods) on the fully coupled
quadratic model (22).

Global Dynamic Global Local
2072 s. 1309 s. 14823 s.

Table 7: Duration times of the methods (2000 iterations for global methods, 20000 iterations for
local methods) on the fully coupled quadratic model (22) for T = 1

23

0 250 500 750 1000 1250 1500 1750 2000

Iterat ion

10
� 3

10
� 2

10
� 1

10
0

10
1

10
2

10
3

L
o

s
s

T = 0.25

T = 0.75

T = 1

0 250 500 750 1000 1250 1500 1750 2000

Iterat ion

10
� 3

10
� 2

10
� 1

10
0

10
1

10
2

L
o

s
s

T = 0.25

T = 0.75

T = 1

Figure 10: Learning curves for Direct Global (left) and Dynamic Global (right) method on the fully
coupled quadratic model (22). The loss is the L2 error between YT and the terminal condition of
the backward equation.

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10−1

101

103

105

107

109

Lo
ss

T = 0.25
T = 0.75
T = 1
T = 1.5

Figure 11: Learning curves for Local method on the fully coupled quadratic model (22). The loss
is the sum of the local L2 errors between the neural network Y and the Euler discretization for all
time steps.

0 1000 2000 3000 4000 5000 6000

Iterat ion

� 6

� 4

� 2

0

2

4

M
e

a
n

 e
x

p
e

c
ta

ti
o

n

T = 0.25

T = 0.75

T = 1

Figure 12: E[XT] for Local method on the fully coupled quadratic model (22).

24

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

t

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575
Exact Z

Com puted Z

0.00 0.05 0.10 0.15 0.20 0.25

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47
Exact Z
Computed Z

Figure 13: First coordinate of Zt evaluated on a sample path for Direct Global (left) (T = 0.75)
and Local method (right)(T = 0.25) method after 2000 iterations (respectively 20000) on the fully
coupled quadratic model (22).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

t

� 0.5

0.0

0.5

1.0

1.5

2.0 Exact Y

Com puted Y

0.00 0.05 0.10 0.15 0.20 0.25

0.0

0.2

0.4

0.6

Exact Y
Computed Y

Figure 14: First coordinate of Yt evaluated on a sample path for Dynamic Global (right) method
(T = 0.75) and Local method (right) (T = 0.25) after 2000 iterations (respectively 20000 for the
local method
) on the fully coupled quadratic model (22).

We observe in Table 6 convergence of the methods for small maturities and divergence beyond
T = 1. Note that the dynamic estimation of the expectation prevents the algorithm to explode for
T = 1, contrarily to the direct method. However, it does not converge to the true solution in this
case. Indeed the loss plateaus at the value 2 in Figure 10 (right), so the terminal condition of the
BSDE is not properly respected. The dynamic method also produces better result than the Direct
one (see Figure 14 and Table 6). We notice from Figure 13 and Figure 14 that the estimated Y, Z
processes have the good shape but some errors are still present after convergence.

Concerning the local method, we see in Figure 12 that the estimated expectations are stable around
zero for a few iterations but then become negative. It may be due to the lack of a contraction for
the fixed point problem. The loss explodes for T = 1.5, as seen on the learning curve from Figure
11. For T = 1., we see that it stays above 10.

25

5 Conclusion

We have shown that neural network methods can solve some moderate dimensional FBSDE of
McKean-Vlasov type. Comparing the different algorithms we find out that

• The dynamic update of the expectation is efficient in terms of computation speed (about 30%
faster than direct method) and seems to smooth the learning curve.

• The Pontryagin approach performs better than the Weak one for large maturities. On the
contrary, the Weak approach is the best for small maturities.

• For the linear model we observe no convergence problem whereas for the quadratic one we
can solve only the equation on a small time horizon. However the local method is not very
accurate for larger maturities.

• The local method faces more difficulties for quadratic problems than the global methods do.
It also requires more iterations, hence more time, to converge.

• The Expectation methods do not work well and require to empirically choose a proper penal-
ization parameter, which is troublesome.

• The methods can be used in dimension 10, thus applied to more realistic problems than usually.
For instance, in the price impact model, the number of dimensions corresponds to the number
of assets involved in the trading. Thus, developing methods able to deal with problems in high
dimensions can help us to handle large portfolios.

We recommend the use of the Dynamic method which offers the best accuracy and training speed
among all the tested methods. For linear quadratic mean-field games, it appears to be better to
use the Weak approach for small maturities and the Pontryagin method for larger time horizons.
The use of a local method is possible but requires too many iterations to converge hence it is not
competitive in terms of computation time.

References

[Aba+16] M. Abadi et al. “TensorFlow: A System for Large-scale Machine Learning”. In: Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation. OSDI’16. Savannah, GA, USA: USENIX Association, 2016, pp. 265–283.
isbn: 978-1-931971-33-1. url: http://dl.acm.org/citation.cfm?id=3026877.
3026899.

[ACD10] Y. Achdou and I. Capuzzo-Dolcetta. “Mean Field Games: Numerical Methods”. In:
SIAM Journal on Numerical Analysis 48 (Jan. 2010). doi: 10.1137/090758477.

[ALG19] C. Anil, J. Lucas, and R. Grosse. “Sorting Out Lipschitz Function Approximation”.
In: Proceedings of the 36th ICML. Ed. by K. Chaudhuri and R. Salakhutdinov.
Vol. 97. 2019, pp. 291–301.

[Ang+19] A. Angiuli et al. “Cemracs 2017: numerical probabilistic approach to MFG”. In:
ESAIM: Proceedings and Surveys 65 (Jan. 2019), pp. 84–113. doi: 10.1051/proc/
201965084.

[Bac+21] A. Bachouch et al. “Deep neural networks algorithms for stochastic control problems
on finite horizon: numerical computations”. In: Methodol. Comput. Appl. Probab
(2021).

26

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://doi.org/10.1137/090758477
https://doi.org/10.1051/proc/201965084
https://doi.org/10.1051/proc/201965084

[Bec+19] C. Beck et al. “Deep splitting method for parabolic PDEs”. In: arXiv preprint
arXiv:1907.03452 (2019).

[BEJ19] C. Beck, W. E, and A. Jentzen. “Machine Learning Approximation Algorithms for
High-Dimensional Fully Nonlinear Partial Differential Equations and Second-order
Backward Stochastic Differential Equations”. In: J. Nonlinear Sci. 29.4 (Aug. 2019),
pp. 1563–1619. issn: 1432-1467. doi: 10.1007/s00332-018-9525-3.

[BT04] B. Bouchard and N. Touzi. “Discrete-time approximation and Monte-Carlo simu-
lation of backward stochastic differential equations”. In: Stochastic Process. Appl.
111.2 (2004), pp. 175 –206.

[CCD15] J.-F. Chassagneux, D. Crisan, and F. Delarue. “A probabilistic approach to classical
solutions of the master equation for large population equilibria”. In: to appear in
Memoirs of the AMS (2015).

[CCD19] J.-F. Chassagneux, D. Crisan, and F. Delarue. “Numerical method for FBSDEs of
McKean-Vlasov type”. In: Annals of Applied Probability 29 (2019). doi: 10.1214/
18-AAP1429.

[CD13] R. Carmona and F. Delarue. “Probabilistic Analysis of Mean-Field Games”. In:
SIAM Journal on Control and Optimization 51.4 (2013), pp. 2705–2734. doi: 10.
1137/120883499. eprint: https://doi.org/10.1137/120883499. url: https:
//doi.org/10.1137/120883499.

[CD18] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games with Appli-
cations I-II. Springer, 2018.

[CL15] R. Carmona and D. Lacker. “A probabilistic weak formulation of mean field games
and applications”. In: Annals of Applied Probability 25.3 (June 2015), pp. 1189–1231.
doi: 10.1214/14-AAP1020. url: https://doi.org/10.1214/14-AAP1020.

[CL18] P. Cardaliaguet and C.-A. Lehalle. “Mean field game of controls and an application
to trade crowding”. In: Mathematics and Financial Economics 12.3 (2018), pp. 335–
363. doi: https://doi.org/10.1007/s11579-017-0206-z.

[CL19] R. Carmona and M. Laurière. “Convergence Analysis of Machine Learning Algo-
rithms for the Numerical Solution of Mean Field Control and Games: II – The
Finite Horizon Case”. In: arXiv preprint arXiv:1908.01613, to appear in The Annals
of Applied Probability (Aug. 2019).

[CWNMW19] Q. Chan-Wai-Nam, J. Mikael, and X. Warin. “Machine Learning for Semi Linear
PDEs”. In: Journal of Scientific Computing 79 (Feb. 2019), 1667–1712. doi: 10.
1007/s10915-019-00908-3.

[FZ20] J.-P. Fouque and Z. Zhang. “Deep Learning Methods for Mean Field Control Prob-
lems with Delay”. In: Frontiers in Applied Mathematics and Statistics 6 (2020). doi:
https://doi.org/10.3389/fams.2020.00011.

[GLW05] E. Gobet, J-P. Lemor, and X. Warin. “A regression-based Monte Carlo method to
solve backward stochastic differential equations”. In: Ann. Appl. Probab. 15.3 (2005),
pp. 2172–2202.

27

https://doi.org/10.1007/s00332-018-9525-3
https://doi.org/10.1214/18-AAP1429
https://doi.org/10.1214/18-AAP1429
https://doi.org/10.1137/120883499
https://doi.org/10.1137/120883499
https://doi.org/10.1137/120883499
https://doi.org/10.1137/120883499
https://doi.org/10.1137/120883499
https://doi.org/10.1214/14-AAP1020
https://doi.org/10.1214/14-AAP1020
https://doi.org/https://doi.org/10.1007/s11579-017-0206-z
https://doi.org/10.1007/s10915-019-00908-3
https://doi.org/10.1007/s10915-019-00908-3
https://doi.org/https://doi.org/10.3389/fams.2020.00011

[HJE17] J. Han, A. Jentzen, and W. E. “Solving high-dimensional partial differential equa-
tions using deep learning”. In: Proceedings of the National Academy of Sciences 115
(July 2017). doi: 10.1073/pnas.1718942115.

[HL20] J. Han and J. Long. “Convergence of the Deep BSDE Method for Coupled FBSDEs”.
In: Probability, Uncertainty and Quantitative Risk 5.1 (2020), pp. 1–33. doi: https:
//doi.org/10.1186/s41546-020-00047-w.

[HPW20] C. Huré, H. Pham, and X. Warin. “Deep backward schemes for high-dimensional
nonlinear PDEs”. In: Mathematics of Computation 89.324 (2020), pp. 1547–1579.
doi: https://doi.org/10.1090/mcom/3514.

[Hur+21] C. Huré et al. “Deep neural networks algorithms for stochastic control problems
on finite horizon: convergence analysis”. In: SIAM J. Numer. Anal. 59.1 (2021),
525–557.

[Ji+20] S. Ji et al. “Three Algorithms for Solving High-Dimensional Fully Coupled FBSDEs
Through Deep Learning”. In: IEEE Intelligent Systems 35.3 (2020), pp. 71–84. doi:
10.1109/MIS.2020.2971597.

[KB14] D. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: Interna-
tional Conference on Learning Representations (Dec. 2014).

[Lau21] M. Lauriere. “Numerical Methods for Mean Field Games and Mean Field Type
Control”. In: arXiv:2106.06231 (2021).

[LL06a] J.-M. Lasry and P.-L. Lions. “Jeux à champ moyen. I – Le cas stationnaire”. In:
Comptes Rendus Mathematique - C R MATH 343 (Nov. 2006), pp. 619–625. doi:
10.1016/j.crma.2006.09.019.

[LL06b] J.-M. Lasry and P.-L. Lions. “Jeux à champ moyen. II – Horizon fini et contrôle op-
timal”. In: Comptes Rendus. Mathématique. Académie des Sciences, Paris 10 (Nov.
2006). doi: 10.1016/j.crma.2006.09.018.

[PWG21] H. Pham, X. Warin, and M. Germain. “Neural networks-based backward scheme
for fully nonlinear PDEs”. In: SN Partial Differential Equations and Applications 2
(2021).

[SDB18] A. Sergeev and M. Del Balso. Horovod: fast and easy distributed deep learning in
TensorFlow. Feb. 2018.

28

https://doi.org/10.1073/pnas.1718942115
https://doi.org/https://doi.org/10.1186/s41546-020-00047-w
https://doi.org/https://doi.org/10.1186/s41546-020-00047-w
https://doi.org/https://doi.org/10.1090/mcom/3514
https://doi.org/10.1109/MIS.2020.2971597
https://doi.org/10.1016/j.crma.2006.09.019
https://doi.org/10.1016/j.crma.2006.09.018

	Introduction
	Machine learning global solvers
	Algorithm principle
	Estimation of the expectation

	A local solver
	Numerical results
	Linear price impact model
	A one-dimensional mixed model
	Beyond the mean-field games case
	A fully coupled linear example
	A fully coupled quadratic example

	Conclusion

