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Deformable silicone-molded multi-layer vocal folds replicas are commonly used in physical studies of vocal folds auto-oscillation. Nevertheless, few studies deal with the reproducibility or the mechanical properties of silicone moldings. In the current study, the effective elastic Young's modulus of molded silicone bone-shaped specimens consisting of parallel and serial stacked layers is sought. The Young's modulus of each layer is pertinent for one of the anatomical vocal folds layers whereas layer dimensions are designed so that the dimension ratio between adjacent layers varies in the range observed on human vocal folds. The effective Young's modulus for onelayer, two-layer and three-layer specimens is then determined experimentally (between 4 kPa and 65 kPa) with uni-axial mechanical press tests or with precision loading tests so that both methods are cross-validated (difference less than 3.5 kPa). The overall layer dimension molding accuracy (1.5 mm) has no significant impact (less than 1.2 kPa) on the sought effective Young's modulus and the molding procedure is considered reproducible. Furthermore, an analytical model approach for multi-layer stacked specimen is validated (overall accuracy of 2.4 kPa) against the experimental data.

Physical studies of phonation or vocal fold (VF) auto-oscillation often rely on deformable mechanical VF replicas to assess the fluid-structure interaction in the larynx between the airflow coming from the lungs and the surrounding VF tissues. One major criterion for silicone VF replica design consists in mimicking, to some extent, the complex anatomical structure of a human VF illustrated in Fig 1(a). This results in multi-layer (ML) representations of a human VF such as the one depicted in Fig. 1(b). Deformable silicone mechanical VF replicas, mimicking the ML representation of a human VF, (a) ex-vivo observation (b) a multi-layer representation Figure 1: Illustration of the anatomical structure of a left human VF in the medio-frontal plane [START_REF] Rosen | Operative techniques in laryngology[END_REF]: a) realistic coronal section (adapted from [START_REF] Hirano | Clinical examination of voice[END_REF]), b) example of a multi-layer representation (adapted from [START_REF] Bouvet | Influence of water spraying on an oscillating channel[END_REF]).

are then obtained as an overlap of silicone molding layers [START_REF] Pickup | Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models[END_REF][START_REF] Murray | Vibratory responses of synthetic, self-oscillating vocal fold models[END_REF][START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF][START_REF] Tokuda | Effect of level difference between left and right vocal folds on phonation: Physical experiment and theoretical study[END_REF]. Fig. 2 illustrates three deformable multi-layered (ML) silicone VF replicas [START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF][START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF]. The M5 replica follows an anatomical two-layer (2L) body-cover representation including the vocalis muscle and the superficial layer [START_REF] Scherer | Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees[END_REF]. This 2L representation is mainly motivated by the mucosal wave theory of normal VF vibration, which situates vibration within the mucosal layers only [START_REF] Berke | Laryngeal biomechanics: an overview of mucosal wave mechanics[END_REF].

The MRI replica has an anatomical three-layer (3L) structure by adding a third thin surface layer representing the epithelium to the 2L structure of the M5 replica [START_REF] Pickup | Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models[END_REF][START_REF] Tokuda | Effect of level difference between left and right vocal folds on phonation: Physical experiment and theoretical study[END_REF]. The EPI replica is an anatomical four-layer (4L) structure obtained by inserting an extremely soft deep layer between the muscle and the superficial layer of the 3L structure of the MRI replica [START_REF] Murray | Vibratory responses of synthetic, self-oscillating vocal fold models[END_REF]. Physical studies [START_REF] Tokuda | Effect of level difference between left and right vocal folds on phonation: Physical experiment and theoretical study[END_REF][START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF] have shown that these VF replicas allow one to reproduce sustained VF auto-oscillation. Nevertheless, major flow and vibration properties, such as their auto-oscillation frequency and required minimum upstream pressure (phonation onset threshold), vary between replicas. These differences are partly attributed to the elasticity of the replicas, which depend on the adopted VF representation and the layer molding. Despite its role in the fluid-structure interaction, and hence on observed feature values and physical model validation, the effective elasticity of silicone VF replicas is rarely considered, instead the elasticity of the individual molding layers is mentioned.

Each molding layer composition within the silicone VF replicas is assumed to be an elastic and isotropic solid material consisting of a single constituent v vi or of a mixture of multiple constituents. The layers elasticity is then characterised by Young's modulus E for a single constituent (or component) and by effective Young's modulus E ef f for a mixture of constituents (or components). Considering a material portion with length l and cross-section A depicted in Fig. 3, Young's modulus

E (ef f ) relates stress σ, σ = F A , (1) 
exerted by an uni-axial force F, to its relative linear deformation strain ε,

ε = ∆l l , (2) 
expressing a linear stress-strain relationship

E (ef f ) = σ ε , (3) 
with ∆l ≥ 0 denoting the elongation along the force F direction.

The aim of this work is to consider and validate an analytical model for the effective Young's modulus E ef f of ML silicone composites from its layers properties, i.e. E ef f and geometry. A validated analytical model predicting E ef f of ML moldings is of interest for the (a-priori ) mechanical characterisation, and eventually the design of ML VF representations, for normal as well as for abnormal VF structures. Indeed, in the long term, such a model is of particular interest for physical studies (using deformable silicone-based molded replicas) involving a systematic elasticity variation mimicking either intra-and inter-speaker diversity (voice type, morphology, aging etc. [START_REF] Riede | Body size, vocal fold length, and fundamental frequency: implications for mammal vocal communication[END_REF]) or a structural pathology (scar, nodule, carcinoma, cyst etc. [START_REF] Rosen | Operative techniques in laryngology[END_REF]). In addition, the reproducibility of silicone moldings in terms of E ef f is sought.

Overview of layer compositions in silicone VF replicas

Each molding layer of the silicone VF replicas illustrated in Fig. 2 [START_REF] Hirano | Vocal fold physiology: contempory research and clinical issues[END_REF][START_REF] Alipour | Elastic models of vocal fold tissues[END_REF][START_REF] Min | Stress-strain response of the human vocal ligament[END_REF][START_REF] Chan | Relative contributions of collagen and elastin to elasticity of the vocal fold under tension[END_REF][START_REF] Smith | Effect of inferior surface angle on the selfoscillation of a computational vocal fold model[END_REF][START_REF] Murray | Vibratory responses of synthetic, self-oscillating vocal fold models[END_REF][START_REF] Chhetri | Measurement of Young's modulus of vocal folds by indentation[END_REF][START_REF] Miri | Mechanical characterization of vocal fold tissue: a review study[END_REF][START_REF] Zhang | Biaxial mechanical properties of human vocal fold cover under fold elongation[END_REF] and silicone replicas (M5 , MRI † , EPI ‡ [START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF]): Young's modulus E [kPa] for human VF anatomical layers, effective Young's modulus of mixtures in replica layers E ef f [kPa], mixtures TE (Thinner-Ecoflex) or TD (Thinner-Dragonskin) and mixing ratio M.

Adult VF replica

Layer Used mixtures (TE or TD), mixing ratios M and Young's moduli E (ef f )

E [kPa] E ef f [kPa] Mixture M [-]
for each layer in the M5, MRI and EPI replicas shown in Fig. 2, are detailed in Table 1 [START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF][START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF]. Young's moduli E ef f (up to 52 kPa) are consistent with the order of magnitudes (up to 60 kPa) associated with the anatomical layers of a human VF [START_REF] Hirano | Vocal fold physiology: contempory research and clinical issues[END_REF][START_REF] Alipour | Elastic models of vocal fold tissues[END_REF][START_REF] Min | Stress-strain response of the human vocal ligament[END_REF][START_REF] Chan | Relative contributions of collagen and elastin to elasticity of the vocal fold under tension[END_REF][START_REF] Smith | Effect of inferior surface angle on the selfoscillation of a computational vocal fold model[END_REF][START_REF] Murray | Vibratory responses of synthetic, self-oscillating vocal fold models[END_REF][START_REF] Chhetri | Measurement of Young's modulus of vocal folds by indentation[END_REF][START_REF] Miri | Mechanical characterization of vocal fold tissue: a review study[END_REF][START_REF] Zhang | Biaxial mechanical properties of human vocal fold cover under fold elongation[END_REF]. Layer thicknesses of silicone VF replicas indicated in Fig. 2 are of the same order of magnitude as those associated with a human VF [START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF][START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF]. The ratio of layer thicknesses with respect to the molding layer representing the superficial layer varies from 0.1 up to 6.4, i.e. 4.3 for M5, between 3.3 and 0.03 for MRI and between 6.4 and 0.1 for EPI. For all replicas the molding layer representing the muscle is thicker and has a higher Young's modulus than the molding layer representing the superficial layer.

A literature overview of Young's moduli E (ef f ) and densities ρ for TE and TD mixtures is given in Table 2 [START_REF] Pickup | Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models[END_REF][START_REF] Murray | Vibratory responses of synthetic, self-oscillating vocal fold models[END_REF][START_REF] Drechsel | Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model[END_REF][START_REF] Riede | Mammalian laryngseal air sacs add variability to the vocal tract impedance: Physical and computational modeling[END_REF][START_REF] Murray | Synthetic, multi-layer, self-oscillating vocal fold model fabrication[END_REF]. Individual components ((-)D, (-)E and T(-)) are denoted using the TD and TE mixture notation where viii 1 for the VF replicas shown in Fig. 2 measured densities for the VF replicas shown in Fig. 2 ‡ computed mixture densities using Eq. ( 4) with ρ T = 980 kg•m -3 ix the omitted component is replaced by (-). Properties for these individual components ((-)D, (-)E and T(-)) are obtained from the manufacturer [START_REF]Smooth-On, Material description[END_REF]. For silicone thinner (T(-)), a density range is indicated so that its value ρ T needs to be measured [START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF]. The densities of TE and TD mixtures, ρ T E and ρ T D , are both measured and computed from the mixing ratio M = r T : r E(D) as:

M = r T : r E(D) 1:2 1:2 2:2 4:2 8:2 0:2 0:2 1:0 E, E ef f [20] 22 - 4.1 - - - - - [21] - - 10 - - - - - [1] - - 8 
ρ T E(D) = r T + r E(D) r T ρ T + r E(D) ρ E(D) , (4) 
where ρ E (or ρ D ) denotes the density of the component (-)E (or (-)D) provided by the manufacturer [START_REF]Smooth-On, Material description[END_REF] and ρ T corresponds to the measured value (ρ T = 980 kg•m -3 in Table 2). Computed and measured mixture densities both increase with mass portion r T and their difference is less than 4.5% of measured mixture densities.

As the Young's modulus E of component (-)D is more than twice the value of component (-)E, E ef f is larger for TD mixtures than for TE mixtures at similar mixing ratios (r E = r D ). Thus, TD mixtures are more rigid than similar TE mixtures. In addition, Young's modulus E ef f decreases as the mixing ratio M, and hence the relative mass portion of silicone Thinner r T , increases as explicitly observed for TE mixtures. Comparing literature values of E ef f at similar M reveals that their value and increase with M differs considerably between cited studies. This is illustrated for E ef f values reported for TE mixtures in [START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF][START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF] and [START_REF] Murray | Vibratory responses of synthetic, self-oscillating vocal fold models[END_REF]: given E ef f values for M = 1 : 2 differ with 45% and they decrease to respectively 22% [START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF][START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF] or 13% [START_REF] Murray | Vibratory responses of synthetic, self-oscillating vocal fold models[END_REF] of their value for M = 4 : 2 or a 67% difference. As molding mixture compositions in this work are prepared exactly (same components, procedure and equipment) as described in [START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF][START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF], values herein are taken as a literature reference denoted E ref ef f hereafter.

Analytical model of the effective linear Young's modulus

ML composites are considered which consist of n elastic, isotropic and perfectly bounded layers, which are themselves composed of one or more constituents. The linear stress-strain behaviour of a ML composite is then

x described in the same way as for each individual layer by attributing an effective Young's modulus E ef f describing the linear stress-strain behaviour for an equivalent homogeneous elastic composite. It follows that Eq. ( 3) holds for each layer and for the equivalent homogeneous ML composite. An analytical model is sought predicting E ef f for the equivalent homogeneous composite for which adjacent layers are stacked either parallel ( ) or serial (⊥) with respect to the force or stress direction. Stacking orientations between adjacent layers are denoted o (j,j+1) ∈ {⊥, } with j = 1 . . . n -1. The stacking orientation is assumed to remain similar during all deformation stages. Thus, besides parallel (Fig. 4(a)) or serial (Fig. 4(b)) stacked composites, both stacking orientations ( and ⊥) can be combined to describe more complex ML composites (combined, ⊥ ) as illustrated in Fig. 4(c). Each layer i = 1 . . . n is characterised by its length l i (parallel to the force direction), height h i (transverse to the force direction) and Young's modulus E i . The effective Young's modulus E ef f for parallel or serial stacked layers is then modelled applying the theory of linear elasticity (Eq. ( 3)) to each layer and to the equivalent homogeneous composite.

E 2 l h 2 E 1 E 2 l h l 1 l 2 E 1 E 2 l h h 1 h 2 E 1 E 2 E 3 l h l 1 = l 2 l 3 h 1 h 2 1 (a) parallel, E 1 E 2 E 3 l h h 2 h 3 l 1 l 2 = l 3 E 1 E 2 l h l 1 l 2 E 1 E 2 l h h 1 h 2 E 1 E 2 E 3 l h l 1 = l 2 l 3 h 1 h 2 1 (b) serial, ⊥ E 1 E 2 E 3 l h h 2 h 3 l 1 l 2 = l 3 E 1 E 2 l h l 1 l 2 E 1 E 2 l h h 1 h 2 E 1 E 2 E 3 l h l 1 = l 2 l 3 h 1 h 2 1 (c) combined, ⊥
For n parallel stacked layers the force is distributed over the layers (F = n i=1 F i ) so that the strain ε in the equivalent homogeneous composite and the strain ε i=1...n in each layer is constant, i.e. ε i=1...n = ε. The effective Young's modulus of the equivalent homogeneous composite with transverse height h = n i=1 h i is then modelled using the Voigt hypothesis [START_REF] Voigt | Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper[END_REF] of hoxi mogeneous deformation as

E ef f = n i=1 h i • E i n i=1 h i . (5) 
Thus, E ef f is computed as the weighted arithmetic mean (WAM) of the layers Young's moduli E i . The arithmetic mean is weighted with transverse layer heights h i , which amounts to applying the rule of mixtures.

For n serial stacked layers the stress σ in the equivalent homogeneous composite and the stress σ i=1...n in each layer is constant, i.e. σ i=1...n = σ. The effective Young's modulus of the equivalent homogeneous composite with parallel length l = n i=1 l i is then modelled using the Reuss hypothesis [START_REF] Reuss | Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle[END_REF] of homogeneous stress as

E ⊥ ef f = n i=1 l i n i=1 l i E i . (6) 
Thus, E ⊥ ef f is obtained as the harmonic mean of the layers Young's moduli E i weighted with their parallel lengths l i . It is noted that applying the rule of mixtures would results in the weighted arithmetic mean of E i instead of the weighted harmonic mean (WHM) expressed in Eq. ( 6).

Both Eq. ( 5) and Eq. ( 6) result in E ⊥, ef f = E 1 when n = 1. Eq. ( 5) and Eq. ( 6) do not account for the stacking order so that modelled E ef f and E ⊥ ef f remain unaffected when layers are permuted or splitted as long as the overall composition and orientation of the stack is maintained. It is well established that WAM values are larger than WHM values. Therefore, layers with large E i tend to mask layers with lower Y i for modelled E ef f (WAM in Eq. ( 5))

whereas this is less the case for modelled E ⊥ ef f (WHM in Eq. ( 6)).

The equivalent Young's modulus E ⊥ ef f of more complex ML composites with combined (⊥ ) stacking, composed of both serial and parallel layers as illustrated in Fig. 4(c), is modelled using a two-step approach. Firstly, xii 

H d (1,2) = h 1 /h 2 and L d (1,2) = l 1 /l 2 .
Eq. ( 5) is used to homogenise parallel stacked layers. Secondly, Eq. ( 6) is applied to the resulting stack of serial layers. As WAM (Eq. ( 5)) and WHM (Eq. ( 6)) value layers with large E i differently, the layer order might affect the model value of E ⊥ ef f , which is not the case for ML composites consisting of serial or parallel layers only. 

Model analysis and selected specimen designs

In this section the E ef f model approach outlined in Section 3 is analysed for bone-shaped ML composites with two or three layers stacked parallel (Eq. ( 5), WAM), serial (Eq. ( 6), WHM) or combined (Eq. ( 5) followed by Eq. ( 6), WAM followed by WHM). The model analysis is then used to select and motivate the designs of bone-shaped specimen suitable to validate the model approach outlined in section 3 against experimental values obtained from uni-axial stress testing outlined in section 6. Design values are indicated with superscript d. Model analysis is then assessed for bone-shaped specimen designs containing a test section with dimensions l d = 80 mm, h d = 10 mm, w d = 15 mm and volume V d = 12 cm 3 as depicted in Fig. 5(a). Layers are indicated with indexes i = 1 . . . n and j = 1 . . . n -1. The layer width is held constant so that w d i = w d for all designs layers regardless of the stacking orientation. The geometrical specimen designs are then characterised from the height dimension ratio H d and the length dimension ratio xiii L d between adjacent stacked layers:

H d (j,j+1) = h d j h d j+1 , (7a) 
L d (j,j+1) = l d j l d j+1 . (7b) 
For two adjacent parallel stacked layers (o (j,j+1) = and l d j = l d j+1 ), the layers geometry is characterised by the height stacking dimension ratio H d

(j,j+1) since L d (j,j+1) = 1 is constant.
Similarly, for two adjacent serial stacked layers (o (j,j+1) =⊥ and h d j = h d j+1 ), the layers geometry is characterised by the length stacking dimension ratio L d (j,j+1) as H d (j,j+1) = 1 is constant. Consequently, the stacking geometry of ML specimens is fully defined by the series of stacking dimension ratios ∇ d (j,j+1) ∈ {H d (j,j+1) , L d (j,j+1) } associated with the stacking orientation between adjacent layers o (j,j+1) . It follows that for ML composites composed solely with either parallel or serial stacked layers, the series reduces to

∇ d (j,j+1) = H d (j,j+1) or ∇ d (j,j+1) = L d (j,j+1
) , respectively. Moreover, the design of ML composite specimens must satisfy 0.1 ≤ ∇ d (j,j+1) ≤ 6.4 in order to match the order of magnitude associated with the ratio of adjacent layer thicknesses for the silicone VF replicas outlined in section 2. The specimen designs composition is characterised from the composition ratio between the Young's moduli of adjacent layers as:

B d (j,j+1) = E d ef f j E d ef f j+1 . (8) 
Each layer must contain one of the mixtures pertinent to silicone VF replicas described in section 2. Therefore, model analysis of E d ef f is assessed for 0.2 ≤ B (j,j+1) ≤ 5 within the range pertinent for silicone VF replicas. In 205 the following, first (Section 4.1) three single layer compositions are detailed resulting in three one-layer (1L, n = 1) specimen designs, next (Section 4.2) model analysis motivates the designs of six two-layer (2L, n = 2) specimen and finally (in Section 4.3) the designs of seven three-layer (3L, n = 3) specimens is justified. in [START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF][START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF] as literature values (Table 2) of E ef f for similar moldings vary considerable, e.g. 67% for ES M = 4 : 2 as E ref ef f = 4.9 kPa in [START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF][START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF] compared to E ef f = 1.6 kPa in [START_REF] Murray | Vibratory responses of synthetic, self-oscillating vocal fold models[END_REF]. Single layer design dimensions of a 1L specimen match the dimensions of the test section, i.e.

l d 1 = l d , h d 1 = h d and w d 1 = w d .
An overview of 1L specimen designs is given in Table 3. The three 1L specimens, and hence their layer mixtures, are selected for three reasons: 1) there frequent use in ML silicone replicas (Table 1), 2) known reference E ref ef f from [3, 8] and 3) the resulting E ref ef f -range (4.9 ≤ E ref ef f ≤ 52 kPa) overlaps most of the E-range associated with anatomical VF layers (E ≤ 60 kPa, Table 1). Indeed, reported E ref ef f in Table 3 represent values reported for the muscle (I 2 ), superficial (I 3 ) and epithelium (I 1 ) layer of a human VF in Table 1.

These three mixtures are then used in the model analysis and resulting designs of the 2L and 3L composite specimens outlined hereafter. The layer mixtures (and associated 3) for these ML specimens are indicated referring to the corresponding 1L specimen, i.e. as I 1 , as I 2 or as I 3 .

E d ef f = E ref ef f in Table

2L specimen design

Two-layer composite specimens, labelled II, consist of two parallel (o (1,2) = in Fig. 4(a)) or two serial (o (1,2) =⊥ in Fig. 4(b)) stacked layers. The geometrical design is fully characterised considering the stacking dimension ratio between both layers given as

∇ d (1,2) = H d (1,2) for parallel ( ) stacking and ∇ d (1,2) = L d (1,2)
for serial (⊥) stacking. This is illustrated for color-molded specimens in Fig. 5(b). An overview of the 2L specimen designs and its characteristics is given in Table 4.

Modelled curves for E

,d ef f (from Eq. ( 5)) and for E ⊥,d ef f (from Eq. ( 6)) as a function of their stacking dimension ratio are plotted in Fig. 6(a 5) and harmonic (WHM) for serial stacking in Eq. ( 6). The resulting inter-model difference, E

,d ef f -E ⊥,d ef f ≥ 0, due to the stacking orientation is plotted in Fig. 6(c). The curves exhibit a maximum for dimension ratios in the range of interest (0.1 ≤ ∇ d (j,j+1) ≤ 6.4) and tend to zero for very small or very large ratios for which ) . An overview of the 3L specimen designs is given in Table 5.

E •,d ef f ≈ (E ref ef f ) 2 and E •,d ef f ≈ (E ref ef f ) 1 ,
H d (j,j+1) , L d (j,j+1) model (1, 2) (2, 3) 1 2 3 (1, 2) (2, 3) (1, 2) (2, 3) E •,d ef f III 1,⊥ ⊥ ⊥
Two 3L composite specimens (III 1,⊥ and III 2,⊥ ) with serial stacking (o (j,j+1) =⊥) are designed in order to evaluate the model property that layer splitting and layer permutation do not affect modelled E ⊥,d ef f . These specimens have the same overall composition as 2L specimens II 2,⊥ and II 3,⊥ respectively, so that modelled E ⊥,d ef f ∈ {6.7, 17.3} kPa in Table 5 and Table 4 match. Both 3L specimens are obtained by permuting half of the first layer (i = 1) of the 2L specimens to form a third layer (i = 3) on top of the second layer (i = 2) so that the dimension ratio L d 1,2 = 0.5 of the resulting 3L specimens amounts to half of the 2L specimens value and

L d 2,3 = L d 1,2 -1 . It follows that (E ref ef f ) 1 = (E ref ef f ) 3 so that B ref (1,2) = B ref (2,3) -1 with B ref (1,2) ∈ {2.
1, 5} as for the 2L specimens in Table 4. Serial (⊥, WHM in Eq. ( 6)) and not parallel ( , WAM in Eq. ( 5)) stacked specimens are considered as modelled E ⊥,d ef f are less affected by layers with large

E ref ef f than modelled E ,d
ef f , so that the potential influence of layer permutation in a parallel stack is more likely to go unnoticed. 

(o (1,2) , o (2,3) = , ∇ d (j,j+1) = H d (j,j+1) ), serial (o (1,2) , o (2,3) =⊥, ∇ d (j,j+1) = L d (j,j+1) ) or combined (o (1,2) =⊥, o (2,3) = , ∇ d (1,2) = L d (1,2) , ∇ d (2,3) = H d (2, 3 
) ) as schematically illustrated in Fig. 4(c).

Modelled curves for E

,d ef f (from Eq. ( 5)), E ⊥,d ef f (from Eq. ( 6)) and E ⊥,d ef f (from Eq. ( 5) followed by Eq. ( 6)) as a function of dimension ratio ∇ d

(1,2) are plotted in Fig. 7 

E ref ef f i=1 so that E •,d ef f ≈ E ref ef f i=1
. However, for small dimension ratios

∇ d 1,2
, the 3L specimen behaves as a 2L specimen composed of layers i = 2 and i = 3 so that modelled values depend on ∇ d

(2,3) (and implied orientation o (2,3) ). Concretely, modelled values for small ∇ d 1,2 vary in the range

E ref ef f i=3 < E •,d ef f < E ref ef f i=2 as E •,d ef f increases towards E ref ef f 2 with ∇ d (2,3) .
The layer stacking orientation influences the weighted average accounted for in the model for parallel ( , WAM), serial (⊥, WHM) or combined (⊥ , WAM followed by WHM) stacked 3L specimen designs. The influence of stacking orientations on modelled values is evaluated considering inter-model differences for similar dimension ratios (and composition ratios as these are held constant) so that inter-model discrepancies are solely due to the applied averaging: E 

(III •, , III •,⊥ or III •,⊥ ): a) E ,d ef f -E ⊥,d ef f , b) E ,d ef f -E ⊥ ,d ef f , c) E ⊥ ,d ef f -E ⊥,d ef f . xxi E ⊥ ,d ef f -E ⊥,d ef f > 0 in Fig. 8(c).
All plotted curves exhibit a maximum for dimension ratios 0.1 < ∇ d

(1,2) < 11 which is within or near the range of interest (0.1 < ∇ d

(1,2) ≤ 6.4). As for small dimension ratios ∇ d (1,2) each 3L specimen conducts itself as a 2L specimen characterised by ∇ d (2,3) , plotted inter-model differences in this range are governed by ∇ d

(2,3) . Therefore, 3L specimens with combined stacking (⊥ ) perform as 2L specimens with parallel stacking ( ) so that in this range: 1) inter-model differences obtained comparing either " versus ⊥" or "(⊥) versus ⊥" are similar (so for small ∇ d Curves in Fig. 7 and in Fig. 8 show that dimension ratios ∇ d (2,3) near unity (∇ d (2,3) ∈ {1, 1.5}) are suitable for 3L specimen designs. These ratios are then associated with both smaller (0. 

From designed to molded ML specimen: E

d ef f versus E s-ref ef f
Designed specimens are molded with a bone-shaped horizontal or vertical mold (volume 23.7 cm 3 and 3D printed, Stratasys ABS-P430, accuracy 0.33 mm) for parallel ( ) and serial (⊥) stacked layers respectively, following the mixture procedure outlined in [START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF][START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF]. All together, selected ML specimen designs contain 13 layers with parallel orientation and 24 layers with serial orientation. As specimens are molded layer by layer, the thickness of each molded layer along the molding direction is measured with a laser transceiver (Panasonic HL-G112-A-C5, wavelength 655 nm, accuracy 8 µm). Measured layer dimensions are indicated with superscript s. The dimensional accuracy of each molded layer is obtained as the difference between the measured and designed dimension denoted ∆h and ∆l for a parallel and serial layer orientation, respectively. The repartition of dimensional molding accuracies -2.8 mm ≤ ∆h, ∆l ≤ 2.8 mm is represented by a boxplot in Fig. 9(a).

Overall, accuracies are characterised by their mean plus minus their standard deviation as ∆h = 0.00 ± 0.65 mm and ∆l = 0.12 ± 1.46 mm, so that ∆h and ∆l are distributed around a small mean value near 0 mm. The overall dimensional molding accuracy from both ∆h and ∆l yields ±1.5 mm. Dimension ratios H s and L s of molded specimens (superscript s) are given in Table 6. Modelled E s-ref ef f values of molded specimens are obtained using xxiii given in Table 3. The relative molding accuracy ξ E ef f for 2L and 3L specimens expresses then the relative model discrepancy of the Young's modulus due to layer molding dimension accuracy as

model (1, 2) E ,⊥,s-ref ef f ξ E ef f (1, 2) (2, 3) E •,s-ref ef f ξ E ef f II 1, H s = 2.
ξ E ef f = ∆E ef f /E d ef f with molding accu- racy ∆E ef f = E s-ref ef f -E d ef f
, where E d ef f indicates as before the Young's modulus associated with the design dimensions of the specimen. The repartition of molding accuracies -1.2 kPa ≤ ∆E ef f ≤ 0.6 kPa is shown for 2L (II) and 3L (III) specimens by a boxplot in Fig. 9(b). Overall, ∆E ef f is characterised by their mean plus minus their standard deviation as ∆E II ef f = -0.03 ± 0.43 kPa for 2L specimens and ∆E III ef f = -0.43 ± 0.81 kPa for 3L specimens. Thus, ∆E ef f of the molded 2L specimens are distributed around a small mean value near 0 kPa as ±0.5 kPa whereas ∆E ef f of the molded 3L specimens are distributed around a negative mean value (-0.20 kPa) as -0.20 ± 0.56 kPa.

From the relative accuracies ξ E ef f in Table 6 for molded specimens remains limited to |∆E ef f | ≤ 1.2 kPa. Thus molded specimens are suitable to validate the model and to assess potential influences on modelled E ef f such as stacking orientation, dimension ratio or composition ratio. xxiv 

A x 1 A x 2 l 1 + ∆l 1 l 2 + ∆l 2 l 3 + ∆l 3 A x 1 A x 2 A x 3 l 1 + ∆l 1 A x 1 A x 2 A x 3 1 (a) parallel, l 1 + ∆l 1 l 2 + ∆l 2 A x 1 A x 2 l 1 + ∆l 1 l 2 + ∆l 2 l 3 + ∆l 3 A x 1 A x 2 A x 3 l 1 + ∆l 1 A x 1 A x 2 A x 3 1 (b) serial, ⊥ l 1 + ∆l 1 l 2 + ∆l 2 A x 1 A x 2 l 1 + ∆l 1 l 2 + ∆l 2 l 3 + ∆l 3 A x 1 A x 2 A x 3 l 1 + ∆l 1 (c) combined, ⊥

Uni-axial stress testing

Two different stress test methods are used to induce stress σ along the vertical x-axis either with a mechanical press (MP, section 6.2) or with precision loading (PL, section 6.3). Both methods result in experimental forceelongation curves F(∆l) as their elongation ∆l is obtained for different loads F (PL) or vice-versa (MP) so that both methods can be cross-validated on the same specimens. Specimens are positioned vertically by clamping its end terminations depicted in Fig. 5(a). Regardless of the applied stress test, additional geometrical measurements are gathered as outlined in section 6.1.

Geometrical measurements

Geometrical measurements on 3L specimens with different stacking are illustrated in Fig. 10.

The length l i + ∆l i of each layer i = 1 . . . n is measured (ruler with accuracy 1 mm) for different loads F (or elongations ∆l), where l i (i = 1 . . . n) denotes the initial layer length measured for the unloaded (F = 0 N) but vertically clamped specimen. As each clamped specimen is subjected to its own weight (25.2 ± 2.1 g), l i ≥ l s i holds, where l s i indicates the layer length of the molded specimen. The sought total elongation ∆l of each specimen as a function of F is then obtained from the measured layer elongations ∆l i . xxv For 1L specimens or ML specimens with parallel ( ) stacking (Fig. 10(a)), ∆l = ∆l 1 holds since all layers have equal length regardless of F. For ML 430 specimens with serial (⊥) stacking (Fig. 10(b)), ∆l = n i=1 ∆l i holds as the elongation of each layer depends on its molding composition and associated (E ef f ) i . For 3L specimens with combined serial and parallel (⊥ ) stacking (Fig. 10(c)), ∆l = ∆l 1 + ∆l 2 holds as parallel stacked layers (i = 2 and i = 3) have equal lengths for all F.
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The specimens cross-sectional area A perpendicular to the force or vertical x-direction is likely to reduce with F as schematically depicted in Fig. 3. It follows that A ≤ A s holds with A s the initial cross-sectional area of the unloaded (F = 0 N) but vertically clamped specimen. The sought area A of each specimen is obtained from cross-sectional areas A x• (caliper Mitutoyo 500-196-30, accuracy 0.01 mm) measured at two or three different vertical positions x • along its test section subjected to a constant load (F ≥ 0 N). For 1L specimens and ML specimens with parallel ( ) stacking (Fig. 10(a)), three area measurements A x 1 , A x 2 and A x 3 are taken at 25%, 50% and 75% of the test section with length l 1 + ∆l 1 . The sought cross-sectional area A is then obtained from their mean value,

A = A x 1 + A x 2 + A x 3 3 , (9) 
so that the measurement accuracy between different positions can be assessed. For serial (⊥) stacked ML specimens (Fig. 10(b)), the cross-sectional area or each layer (A x i with i = 1 . . . n) is measured midway. The sought cross-sectional area A is then obtained from the weighted arithmetic mean as

A ⊥ = n i=1 (l i + ∆l i )A x i l + ∆l . (10) 
For 3L specimens with combined serial and parallel (⊥ ) stacking (Fig. 10(c)), two cross-sectional areas A x 1 and A x 2 are measured midway of the serial (i = 1) and of the parallel (i = 2 or i = 3) stacked layers. The sought cross-sectional area A is thus given as the weighted arithmetic mean of the serial and one of the parallel layers (taken as i = 2) as

A ⊥ = 2 i=1 (l i + ∆l i )A x i l + ∆l . (11) xxvi 6.2 

. Mechanical press

An electro-mechanical press (3369, Instron Corp.) with 50 kN force sensor (2530-445/71212, Instron Corp., accuracy 0.2%) is used for uni-axial stress testing of specimens along the parallel x-axis (as depicted in Fig. 10) with typical forces F up to 8 N. The mechanical press (MP) was set for displacement control imposing four maximum elongations ∆l of 25, 50, 100 and 150 mm, respectively. The deformation rate was set to 1 mm/s for the 25, 50

and 100 mm elongations and to 2 mm/s for the 150 mm elongation. Force and elongation time series (sampling rate of 10 Hz) were measured during loading of the specimens so that for each specimen four MP datasets are obtained, i.e. one for each imposed maximum elongation. No plastic deformation was observed following their unloading (at 5 mm/s).

Due to the relative softness of the tested specimens (F ≤ 8 N compared to the 50 kN force sensor range), a moving-average filter with variable window size and 1 sample shift is applied to denoise the raw force sensor data in order to enhance the linearity in the force-elongation curves. Resulting smoothed MP force-elongation curves matches well with a linear fit of smoothed MP data as the coefficient of determination yields R 2 ≥ 80 % with a mean value of 88 % and a standard deviation of 6 %. Raw and smooth MP datasets for maximum elongation ∆l = 100 mm are illustrated in Fig. 11 for 2L specimens II 2,⊥ and II 3,⊥ . Overall, the window size in terms of elongation ranges from 0.3 mm up to 6.5 mm (or 2 up to 65 samples), where larger window sizes are used for softer specimen (with lower E ef f ) as illustrated in Fig. 11 for II 2,⊥ (window size 6.5 mm or 65 samples, modelled E ⊥,s-ref = 6.7 kPa) and II 3,⊥ (window size 0.7 mm or 7 samples, modelled E ⊥,s-ref = 16.9 kPa). The overall window elongation size corresponds to a mean plus minus standard deviation of 2.1 ± 1.9 mm (or 19 ± 17 samples), which is in accordance with the constant window size of 2.0 mm (or 20 samples) proposed in [START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF] for 1L specimens resulting in E ref ef f . In the following sections, smoothed MP force-elongation curves are considered.

Additional geometrical measurements described in section 6.1 are made for each clamped specimen without loading (∆l = 0 mm) and once each of the maximum elongations is reached. Cross-sectional areas A of the specimens xxvii are then obtained as outlined in section 6.1, so that A(F) contains 5 data points obtained at imposed maximum elongations ∆l ∈ {0, 25, 50, 100, 150} mm. Elongations ∆l deduced from geometrical measurements of layer lengths l i +∆l i as outlined in section 6.1, matches the imposed maximum elongations to within 1 mm (or ≤ 4% difference for ∆l ≥ 25 mm), which corresponds to the ruler accuracy. It follows that the estimated accuracy of elongations ∆l obtained from geometrical measurements yields ≥ 96% for ∆l ≥ 25 mm.

The accuracy increases with ∆l.

Precision loading

Uni-axial stress testing (along the parallel x-axis) of a specimen by means of precision loading (PL) is performed by clamping its end terminations so that its upper end is fixed while a weight m is added to the lower end. The weight is incremented with 5 up to 10 g (calibrated scale, Vastar 500G X 0.01G, accuracy 0.01 g). The load force F for added mass m yields F = m•g 0 with gravitational constant g 0 = 9.81 m/s 2 . For each weight increment, the specimens elongation ∆l is deduced from geometrical measurements of its layer lengths l i + ∆l i , as outlined in section 6.1, with an estimated accuracy (section 6.2) of ≥96% for ∆l ≥ 25 mm. Depending on the specimen, the assessed total elongation varies between 55 mm and 255 mm, corresponding to a total added weight between 71 g and 416 g. The cross-sectional area A 

ξ V0 = (V 0 -V s )/V s .
of tested specimens is measured as outlined in section 6.1 whenever the elongation increment due to added weights yields about 20 ± 5 mm so that A(F) contains between 6 and 18 data points depending on the total elongation. A single PL force-elongation dataset per specimen is gathered without data smoothing as illustrated in Fig. 11 for II 2,⊥ (m ≤ 52 g) and II 3,⊥ (m ≤ 196 g).

The PL force-elongation curves matches well with a linear PL data fit as the coefficient of determination yields R 2 ≥ 90 %.

Experimental results

7.1. Geometrical measurements on the test section 7.1.1. Initial test section geometry for clamped specimen at ∆l = 0 mm

The geometry of the test section of unmounted molded specimens (superscript s) matches its design (superscript d, Fig. 5(a)) so that length l s = l d (l d = 80 mm), cross-sectional area A s = A d (A d = 150 mm 2 ) and volume V s = V d (V d = 12 cm 3 ). When specimens are mounted vertically by clamping its end terminations for uni-axial MP or PL testing, the geometry of the test section is affected. The influence of clamping on the geometry of the test section of mounted specimens is then obtained from geometrical measurements, illustrated in Fig. 10, at the origin of the force-elongation curves for ∆l = 0 mm (MP) and F = 0 N (PL). The geometry of the test section of clamped specimens at the origin (superscript 0) is then characterised by length l 0 ≥ l s and cross-sectional area A 0 ≤ A s so that its volume is obtained xxix as V 0 = l 0 • A 0 . The relative discrepancy ξ • between geometrical test section characteristics of clamped and unmounted specimens is then quantified as:

ξ l 0 = l 0 -l s l s , ξ A 0 = A s -A 0 A s , ξ V 0 = V 0 -V s V s . ( 12 
)
The repartition of these initial geometrical discrepancies due to clamping at ∆l = 0 mm and F = 0 N is represented by boxplots in Fig. 12. Overall, clamping of the specimens results in an increase of their length l 0 as 14% ≤ ξ l 0 ≤ 34% and an associated decrease of their cross-sectional area A 0 as 6% ≤ ξ A 0 ≤ 16% for both MP and PL tests. The magnitude of ξ l 0 and ξ A 0 depends on the elasticity of the specimen as l 0 and A 0 vary so that volume conservation applies to the test section since V 0 = 12.6 ± 0.8 cm 3 for MP and V 0 = 13.2 ± 0.4 cm 3 for PL. Thus, V 0 varies little (≤ 6%) between specimens and between test methods MP and PL. This is also seen from the overall repartition of ξ V 0 in Fig. 12(c) for which the median and mean match to within 1% and the variation is mostly contained to within 6% of the medians. It is noted that the volume associated with the test section of the mounted molded specimens is increased up to ξ V 0 ≤ 12% compared to its design value V d = 12 cm 3 .

7.1.2. Area of the test section of specimens at ∆l ≥ 0 mm Geometrical measurements of the test sections cross-sectional areas (A x 1 , A x 2 , A x 3 depicted in Fig. 10) at different x-positions along the force direction are made for at least 5 different elongations ∆l (or points along F(∆l)) during uni-axial MP or PL stress testing (section 6.1). For each elongation ∆l, the cross-sectional area A of the test section is then obtained as either A = A (Eq. ( 9)), A = A ⊥ (Eq. ( 10)) or A = A ⊥ (Eq. ( 11)) depending on the stacking orientation of the specimen. It follows that geometrical data of the specimens cross-sectional area as a function of its elongation A(∆l) are gathered. Geometrical measurements (A x 1 , A x 2 , A x 3 ) and resulting A for a parallel (II 2, ) and serial (III 3,⊥ ) stacked specimen subjected to PL testing are illustrated in Fig. 13 xxxi less than 5 mm 2 ) area measurements A x 1 (∆l), A x 2 (∆l) and A x 3 (∆l) along the parallel stacked specimen II 2, in Fig. 13(a)) illustrate the accuracy and repeatability of these area measurements and resulting A(∆l) data. The accuracy of A(∆l) is further illustrated in Fig. 13(c) as plotted A(∆l) data obtained during MP and PL testing of the same specimen II 2,⊥ match (difference less than 9 mm 2 ). Moreover, A(∆l) data obtained for specimens with a similar overall composition overlap as shown for II 2,⊥ and III 1,⊥ subjected to PL testing in Fig. 13(c).

A quadratic fit is applied to the measured A(∆l) data for each specimen resulting in a continuous approximation A q (∆l). The non-zero constant in the quadratic fit is set to match A 0 , e.e. the initial value of A for the clamped specimen at ∆l = 0 mm (section 7.1.1). As volume conservation applies to the test section during deformation, an alternative expression for the area A * (∆l) is obtained using initial values l 0 and A 0 at ∆l = 0 mm as

A * (∆l) = A 0 l 0 l 0 + ∆l . (13) 
Consequently, A * requires no geometrical measurements other than l 0 and A 0 whereas the quadratic fit requires geometrical measurements at different ∆l ≥ 0 mm. Area approximations A q (∆l) (fit) and A * (∆l) (Eq. ( 13)) are plotted in Fig. 13(d) for specimen II 2,⊥ subjected to PL testing. Both, the quadratic fit A q (∆l) and volume conservation A * (∆l) provide accurate estimations of A(∆l). The coefficient of determination for A q (∆l) with respect to A(∆l) yields R 2 ≥ 94%. The coefficient of determination for A * (∆l) with respect to A(∆l) yields R 2 ≥ 84% for 1L specimens and R 2 ≥ 92% for 2L and 3L specimens. This shows that areas A deduced from measured values A x• with Eq. ( 9), Eq. [START_REF] Berke | Laryngeal biomechanics: an overview of mucosal wave mechanics[END_REF] or Eq. ( 11) provide realistic values for each stacking.

Young's modulus estimation

Force-elongation curves F(∆l) and geometrical test section characteristics obtained during MP or PL testing allow to obtain experimental stress-strain curves for each tested specimen. As the test sections geometry was shown to vary (e.g. cross-sectional area A in section 7.1.2), the true stress σ t and true strain ε t are assessed. The true stress σ t is then obtained as in Eq. (1) using xxxii instantaneous area A q (or alternatively A * ) so that

σ t = F A q . (14) 
Similarly, the true strain ε t = δl l is obtained using instantaneous length l so that

ε t = ln l l 0 . (15) 
The experimental elastic Young's modulus of each specimen from either MP (E M P ef f ) or PL (E P L ef f ) testing is then obtained as the slope of a linear fit to the elastic region in which stress σ t is proportional to the strain ε t so that

E • ef f = σ t ε t (16) 
in accordance with Hooke's law of linear elastic deformation. The elastic region 0 ≤ ε t ≤ 0.2 is extended to ε t > 0.2 as long as the linear fit accuracy 555 R 2 increases until at least R 2 ≥ 90%. The mean and standard deviation of the overall upper limit of the linear region yields ε t = 0.3±0.1 which corresponds to an elongation of 31 ± 9 mm for PL testing (R 2 ≥ 97%) and an elongation xxxiii in Table 6) and by the measured E M P ef f and E P L ef f for which modelled values are denoted E s-M P ef f and E s-P L ef f , respectively. It is further noted that since all 2L (II • ) and 3L (III • ) specimens are composed of a combination of the composition of the 1L specimens, all measured E M P ef f and E P L ef f are within the range spanned between the softest (I 3 ) and most rigid (I 1 ) 1L specimen.

The mean and standard deviation of the overall difference between mean E P L ef f and E M P ef f for all specimens yields -0.8±3.5 kPa. Thus the overall difference is of the same order of magnitude as the standard deviation ≤ 4.1 kPa observed between different MP tests on the same specimen so that both MP and PL tests provide accurate measurements of E ef f for all specimens. Therefore, most of the 3L specimens are subjected only to PL testing as PL testing provides the highest fit accuracy (R 2 ≥ 97%) of the linear elastic region with slope E P L ef f . Obtained E P L ef f for 2L and 3L specimens with similar compositions match as the difference is limited to 0.4 kPa between II 2,⊥ and III 1,⊥ and to -0.4 kPa between II 3,⊥ and III 2,⊥ . This confirms the model assumption that changing the layer order, in this case due to layer splitting and layer permutation, in ML specimens does not affect the Young's modulus when the overall composition remains similar.

Modelled Young's modulus validation for ML specimens

The effective Young's modulus for each of the molded ML specimens is modelled as outlined in section 3 while the stacking composition ratio B j,j+1 between adjacent layers is calculated using the single layer compositions E • ef f associated with 1L specimens summarised in Table 7. Thus layer compoxxxv sitions are either taken from literature (E ref ef f ) as during specimens design (Table 6), or obtained from the measured MP (E M P ef f ) and PL (E P L ef f ) tests on 1L specimens. The corresponding modelled effective Young's modulus of the homogeneous elastic specimen yields E •,s-ref and measured E M P ef f and E P L ef f for ML specimens (II • and III • ) are plotted in Fig. 16. Overall measured and modelled values are of the same order of magnitude so that the intended variation -reflecting the impact of stacking orientation, stacking dimension ratios and stacking composition underlying the ML specimens design -is observed for both the measured and modelled E ef f . The repartitions of the differences between the measured E P L ef f for each ML specimen and each of the model values E •,s-ref ef f , E •,s-M P ef f and E •,s-P L ef f is assessed by boxplots in Fig. 17. As a comparison, also the difference between measured E P L ef f and measured E M P ef f for ML specimens subjected to both PL and MP testing is shown as well. It is noted that model differences and measured differences are of the same order of magnitude so that the model approach is validated. In Fig. 16 is seen that E P L ef f is slightly underestimated by E •,s-ref ef f , so that the mean (1.7 kPa) and median (1.2 kPa) differences with respect to E •,s-ref . Consequently, the overall model accuracy in terms of these extrema yields ±3 kPa for E •,s-M P ef f and ±2.2 kPa for E •,s-P L ef f . Both repartitions of the differences between E P L ef f and either E •,s-M P ef f

or E •,s-P L ef f are characterised by a mean and median value near zero (< 1 kPa) and a standard deviation which is less than ±2.4 kPa, which is the same as the standard deviation obtained for the difference between experimental values E P L ef f and E M P ef f . Consequently, the overall model accuracy in terms of the standard deviation yields ±2.4 kPa.

It is noted that for the soft specimen with E P L ef f ≤ 15 kPa, this accuracy increases to ±1.5 kPa. 

Conclusion

Sixteen silicone-molded 1L, 2L or 3L specimens are considered. ML specimens were designed so that the stacking orientation (serial, parallel or combined) and the range of composition and dimension ratios affect the specimens effective elastic Young's modulus E ef f . Concretely, the specimens E ef f varies between 4 kPa and 65 kPa, which overlaps the range associated with normal human VF's (up to 60 kPa). The E ef f of six 2L and two 3L specimens is experimentally determined from MP and from PL testing so that both methods are cross-validated as their difference yields less than 3.5 kPa, which is of the same order of magnitude as the difference (≤ 4.1 kPa) associated with multiple MP testing on the same specimen. An analytical model of E ef f for ML specimens composed of serial and/or parallel stacked layers is then validated against the measured E ef f from PL testing on six 2L and seven 3L molded specimens. The overall model accuracy yields ±2.4 kPa. The composition and dimension of each layer are designed so that stacking composition ratios (0.2 ≤ B ≤ 5) and stacking dimension ratios (0.11 ≤ ∇ ≤ 6.6) of adjacent layers are pertinent to ML representations of human VF's. Future research is needed to validate the proposed model on silicone-molded VF replicas mimicking the ML structure of a human VF. Such a validation would contribute to the systematic study of the influence of the effective Young's modulus on the auto-oscillation of silicone-molded VF replicas. The dimensional overall molding accuracy of all serial and parallel molded layers yields ±1.5 mm. As this dimensional molding accuracy affects E ef f with less than 1.2 kPa, the molding of the specimens is considered reproducible.
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d superscript indicating design dimensions g 0 gravitational constant h height perpendicular to the force direction i = 1
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Figure 2 :Figure 3 :

 23 Figure 2: Coronal section (dimensions in mm) of a molded silicone VF replica layers (right VF) and its schematic multi-layer representation (left VF) [3, 8, 7]: a) M5, b) MRI and c) EPI. For illustrative purposes different layers of the right VF were molded with different colors.

  is a different mixture of silicone thinner and Ecoflex (TE, silicone Thinner and twopart A&B Ecoflex 00-30, Smooth-On, Inc., Easton, PA) or silicone thinner and Dragonskin (TD, silicone Thinner and two-part A & fast B Dragon Skin vii

10 ,

 10 Smooth-On, Inc., Easton, PA). The mass mixing ratio M = r T : r E(D) for each TE (or TD) mixture expresses the relative mass of silicone thinner to Ecoflex (or Dragonskin). The relative mass portion of silicone thinner r T is varied between 1 and 8 whereas the relative mass portion of two-part Ecoflex (or Dragonskin) is held constant r E(D) = 2 (1 part A and 1 part B).

Figure 4 :

 4 Figure 4: Layer stacking about the force direction (full arrows) in ML composites with the stacking orientation o j,j+1 ∈ {⊥, } of adjacent layers: a) 2L parallel ( ) with o (1,2) = , b) 2L serial (⊥) with o (1,2) =⊥, c) 3L combined (⊥ ) with o (1,2) =⊥ and o (2,3) = .

Figure 5 :

 5 Figure 5: Bone-shaped specimens: a) design (superscript d) for uni-axial stress testing (black arrows), end terminations for clamping and the test section (shaded) with l d = 80 mm, h d = 10 mm and w d = 15 mm, b) molded parallel ( ) and serial (⊥) 2L composites (colors) for stacking dimension ratios H d (1,2) = h 1 /h 2 and L d (1,2) = l 1 /l 2 .
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 41 1L specimen design One-layer specimens, labelled I, are designed in order to address the reproducibility of TD and TE mixtures compared to reference values E ref ef f xiv

  ) and Fig. 6(b), respectively. Modelled values for three different 2L composition xv

Figure 6 :

 6 Figure 6: Modelled E •,d ef f for 2L stacking for different B ref (1,2) as a function of dimension ratio. 2L specimen design values (symbols) are annotated (II •, or II •,⊥ ): a) H d (1,2) for parallel ( ), b) L d (1,2) for serial (⊥). Horizontal dashed lines indicate E ref ef f of individual layers (I • ), c) averaging (WAM ( ) or WHM (⊥)) induced difference E ,d ef f -E ⊥,d ef f .

  xviii

Figure 7 :

 7 Figure 7: Modelled E •,d ef f for 3L stacking with B ref (1,2) = 5 and B ref (2,3) = 2.1 as a function of dimension ratio ∇ d (1,2) for three different dimension ratios ∇ d (2,3) . 3L specimen design values (symbols) are annotated (III •, , III •,⊥ or III •,⊥ ): a) parallel, o (j,j+1) = and ∇ d (j,j+1) = H d (j,j+1) , b) serial, o (j,j+1) =⊥ and ∇ d (j,j+1) = L d (j,j+1) and c) combined o (1,2) =⊥ and o (2,3) = so that ∇ d (1,2) = L d (1,2) and ∇ d (2,3) = H d (2,3) . Horizontal dashed lines indicate E ref ef f of individual layers (I • ).

  (a), Fig. 7(b) and Fig. 7(c), respectively. Modelled values for three different dimension ratios 0.3 ≤ ∇ d (2,3) ≤ 3 are shown. As a reference, E ref ef f for 1L specimens are indicated (horizontal dashed lines annotated I 1,2,3 ). The shown stacking dimension ratio range (0 < ∇ d (1,2) ≤ 1000) is adapted so that modelled E •,d ef f vary within the range spanned between the smallest E ref ef f i=3 and largest E ref ef f i=1 single layer values. For large dimension ratios ∇ d 1,2 modelled E •,d ef f approximate the largest single layer value

Figure 8 :

 8 Figure 8: Differences in modelled E •,d ef f due to 3L layer stacking (parallel ( ), serial (⊥) or combined (⊥ )) with B ref (1,2) = 5 and B ref (1,2) = 2.1 as a function of dimension ratio ∇ d (1,2) for three different dimension ratios ∇ d (2,3) . 3L specimen design values (symbols) are annotated (III •, , III •,⊥ or III •,⊥ ): a) E

( 1 , 2 )

 12 Fig. 8(c) zooms in on Fig. 8(a)) and 2) inter-model comparison " versus (⊥) " (Fig. 8(b)) reduces to comparing with itself yielding negligible inter-model differences regardless of ∇ d (2,3) . For very large ∇ d (1,2) the influence of stacking orientation is small as for all stacking conditions E •,d ef f approximates single layer value I 1 . Within the range of interest 0.1 < ∇ d (1,2) < 6.4, inter-model differences mostly increase with ∇ d (1,2) . Inter-model differences between serial (⊥) and combined (⊥ ) stacking (Fig. 8(c)) remain limited to less than 2 kPa whereas inter-model comparisons involving parallel ( ) stacking (Fig. 8(a) and Fig. 8(b)) amounts to larger (by a factor ≈ 10) inter-model differences up to 23 kPa. This illustrates again the impact of a layer with large E ref ef f , such as layer i = 1 (by a factor 5 or more), when it is accounted for using WAM averages associated with parallel stacking (o (1,2) = ) instead of WHM averages associated with serial or combined stacking (o (1,2) =⊥).

  xxii

  (a) ∆h, ∆l [mm] (b) ∆E ef f [kPa]

Figure 9 :

 9 Figure 9: Boxplots with median (full line), mean (dotted line), interquartile range between the first and third quartile (box), extrema (whiskers) of molding accuracies (molded minus design values) of: a) parallel (∆h) and serial (∆l) stacked layer dimensions, b) modelled ∆E ef f for 2L (II) and 3L (III) specimens.

Figure 10 :

 10 Figure 10: Measurement of layer lengths l i + ∆l i and cross-sectional areas A x• at different positions x • along the test section following an uni-axial force F (full arrows) on 3L (n = 3) specimens with different stacking: a) parallel ( ) with l 1 + ∆l 1 = . . . = l n + ∆l n , b) serial (⊥), c) combined stacking (⊥ ) with l 2 + ∆l 2 = l 3 + ∆l 3 .

Figure 11 :

 11 Figure 11: Linear behavior (dashed line) of measured force-elongation curves F(∆l) with the mechanical press (MP, raw and smooth) for maximum elongation ∆l = 100 mm and with precision loading (PL) for 2L specimens: a) II 2,⊥ , modelled E ⊥,s-ref = 6.7 kPa, MP smooth with 6.5 mm (or 65 samples) window, PL for m ≤ 52 g, b) II 3,⊥ , modelled E ⊥,s-ref = 16.9 kPa, MP smooth with 0.7 mm (or 7 samples) window, PL for m ≤ 196 g.
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Figure 12 :

 12 Figure12: Boxplots with median (full line), mean (dotted line), interquartile range between the first and third quartile (box), extrema (whiskers) of the relative (%) impact of clamping on the test section of molded specimens (superscript s) prior (∆l = 0 mm) to testing with the mechanical press (MP) and with precision loading (PL): a) length ξ l0 = (l 0 -l s )/l s , b) cross-sectional area ξ A0 = (A s -A 0 )/A s , c) volume ξ V0 = (V 0 -V s )/V s .

Figure 13 :

 13 Figure 13: Cross-sectional area measurements (A x1 , A x2 , A x3 ) and specimens area A at different elongations ∆l during uni-axial MP and PL testing. Approximations from quadratic data fitting A q (∆l) and volume conservation A * (∆l): a) A x1 , A x2 and A x3 for II 2, (PL test), b) A x1 , A x2 and A x3 for III 3,⊥ (PL), c) A(∆l) for II 2,⊥ (PL and MP) and III 1,⊥ (PL), d) A(∆l) for II 2,⊥ (PL), fit A q (∆l) (R 2 = 99%) and volume conservation A * (∆l) (R 2 = 99%). Design value A d = 150 mm 2 (horizontal dashed line) is indicated.

  Figure 14: Examples of stress-strain curves σ t (ε t ) from MP (•) or PL (×) testing, data within the linear elastic region (fitted MP or PL) and linear fit (dashed line) whose slope (R 2 ≥ 90%) corresponds to the elastic Young's modulus E M P ef f or E P L ef f : a) MP results for specimens II 2,⊥ and II 3,⊥ , b) MP and PL results for specimen II 2, .

Figure 15 :

 15 Figure 15: Young's moduli E M P ef f (mean (•) and standard deviation (bar)) and E P L ef f (×) for 1L (I • ), 2L (II • ) and 3L (III • ) specimens. E ref ef f from Table 3 ([3, 8]) are plotted for I • .

Figure 16 :

 16 Figure 16: Measured and modelled E ef f for 2L (II • ) and 3L (III • ) specimens.

  ef f are positive. The overall model accuracy improves for E •,s-M P ef f and for E •,s-P L ef f compared to E •,s-ref ef f as the range spanned between the extrema reduces from [-2.2 5.3] kPa to within [-3.0 3.0] kPa for E •,s-M P ef f and even further to within [-2.2 1.7] kPa for E •,s-P L ef f

Figure 17 :

 17 Figure 17: Boxplots with median (full line), mean (dotted line), interquartile range between the first and third quartile (box), extrema (whiskers) of the overall difference for ML molded specimens between E P L ef f from PL tests and E β ef f set to: a) measured E M P ef f

Table 1 :

 1 VF layer properties for a male adult

Table 2 :

 2 Material properties for single components ((-)D, (-)E and T(-)) and mixtures (TD and TE) reported in literature: Young's modulus E [kPa] for components and E ef f [kPa] for their mixtures and density ρ [kg•m -3 ].

			Mixture		Component	
	Composition	TD	TE	(-)D	(-)E	T(-)

Table 3 :

 3 1L specimen design: label, mixture, mixing ratio M, reference E ref ef f[START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF][START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF].

	Specimen mixture ratio M E ref ef f [kPa]
	I 1	TD	1:2	52.0
	I 2	TE	2:2	10.4
	I 3	TE	4:2	4.9

Table 4 :

 4 

	2L specimen design: label, stacking orientation o (1,2) , layer composition, stacking
	composition ratio B ref (1,2) , stacking dimension ratio H d (1,2) or L d (1,2) , modelled E •,d ef f .
	Specimen o (1,2)	composition layer 1 layer 2	B ref (1,2)	H d (1,2) , L d (1,2)	model E •,d ef f
	II 1, II 2, II 3, II 1,⊥	⊥	as I 2 as I 2 as I 1 as I 2	as I 3 as I 3 as I 2 as I 3	2.1 2.1 5.0 2.1	H d = 5.0 H d = 1.0 H d = 1.0 L d = 5.0	9.5 kPa 7.7 kPa 31.2 kPa 8.8 kPa
	II 2,⊥ II 3,⊥	⊥ ⊥	as I 2 as I 1	as I 3 as I 2	2.1	L d = 1.0	6.7 kPa

Table 5 :

 5 5} (II 1,• versus II 2,• ) on the modelled E •,d ef f can be evaluated. The influence of stacking orientation o (1,2) on modelled E •,d ef f can be assessed as well (II •, versus II •,⊥ ). Modelled values E •,d ef f for 2L specimen designs are reported in Table 4 and indicated (symbols annotated with the specimen label II •,• ) in Fig. 6. 3L specimen design: label, stacking orientation o, layer composition, stacking composition ratios B ref , stacking dimension ratio ∇ d ∈ {H d , L d }, modelled E •,d ef f .

	Modelled curves show that stacking dimension ratios ∇ d (1,2) = {1, 5} are ef f differ between both stack-suitable for 2L specimen design as modelled E •,d (j,j+1) and differ ing orientations o (1,2) ∈ { , ⊥}, vary with dimension ratio ∇ d from layer values (E ref ef f ) i for all B ref (1,2) . Model curves for B ref (1,2) ∈ {2.1, 5.0} (1,2) = 10.6 (dotted (dashed and full curve in Fig. 6) enclose the curve for B ref ef f is curve in Fig. 6) so that the influence of the stacking composition on E d larger considering B ref (1,2) ∈ {2.1, 5.0} for 2L specimen design. The 2L speci-mens are thus designed so that for each stacking orientation o (1,2) ∈ { , ⊥} the influence of stacking composition B ref (1,2) ∈ {2.1, 5.0} (II 2,• versus II 3,• ) and stacking dimension ratio ∇ d (1,2) ∈ {1, xvii

respectively. The difference increases with composition ratio B ref (1,2) reflecting the increasing impact of layers with large E ref ef f to modelled E ,d ef f values. This is also seen from Fig. 6(a) and Fig. 6(b), e.g. comparing dimension ratios at which E •,d ef f increases from its lowest value (E ref ef f ) i=2 .

  as I 2 as I 3 as I 2 Three-layer composite specimens, labelled III, consist of three layers with 2 or 3 different mixtures. Adjacent layers are stacked either parallel or serial so that o (1,2) , o (2,3) ∈ { , ⊥}. Dimension ratios are chosen within the range

	III 2,⊥	⊥	⊥	as I 1 as I 2 as I 1	2.1 5.0	0.47 0.2	L d = 0.50 L d = 2.0 L d = 0.50 L d = 2.0	6.7 kPa 17.3 kPa
	III 3,⊥ III 4,⊥ III 1, III 1,⊥ III 2,⊥	⊥ ⊥ ⊥ ⊥	⊥ ⊥	as I 1 as I 2 as I 3	5.0	2.1	8.5 kPa 16.2 kPa H d = 0.50 H d = 1.0 16.5 kPa L d = 0.66 L d = 1.0 L d = 4.2 L d = 1.0 8.7 kPa L d = 0.14 H d = 1.5 L d = 2.1 H d = 1.5 14.4 kPa
	4.3. 3L specimen design					
	of interest 0.1 ≤ ∇ d (1,2) , ∇ d (2,3) ≤ 6.4. The 3L composition is characterised by composition ratios B ref (1,2) and B ref (2,3	

Table 6 :

 6 Molded 2L and 3L specimens: stacking dimension ratio ∇ s ∈ {H s , L s }, modelled E •,s-ref

	ef f and designed specimen dimensions, respectively. , relative model discrepancy ξ E ef f between E s-ref ef f	and E d ef f associated with molded
		2L specimen			3L specimen
	Label	H s , L s	model	Label	H s (j,j+1) , L s (j,j+1)

  is seen that for all 2L specimens |ξ E ef f | ≤ 7.5% and for all 3L specimens |ξ E ef f | ≤ 7.4%. The absolute difference between modelled E d ef f for designed specimens and E s-ref ef f

Table 7 :

 7 

	I 1	52.0	57.5	64.7
	I 2	10.4	12.7	14.4
	I 3	4.9	4.7	4.0
	of 29 ± 13 mm for MP testing (R 2 ≥ 90%). Examples of experimental MP and PL stress-strain curves, their linear elastic regions and associated linear
	stress-strain data fits are illustrated in Fig. 14. Sought slopes E M P ef f and E P L ef f for each of the tested specimen are plotted in Fig. 15. For each of the MP
	tested specimens, the mean and standard deviation (≤ 4.1 kPa) are plotted
	as four values are obtained, one for each of the imposed maximum elongations
	ef f ∆l ∈ {25, 50, 100, 150} mm. For the 1L specimens (I • ), literature values E ref reported in Table 3 [3, 8] are plotted as well.
	Values for 1L specimens (I • ) E ref ef f , E M P ef f and E P L ef f are detailed in Table 7. Although reference values E ref ef f ef f are of the same order or magnitude as E M P and E P L ef f for all three specimens, E ref ef f underestimates measured E M P ef f ef f and E P L for I 1 (with 5.5 kPa for MP and 12.7 kPa for PL) and for I 2 (with 2.3 kPa
	ef f -values (MP, PL and reference for MP and 4 kPa for PL) whereas all E • from literature) match to within 1 kPa for I 3 . Therefore, model validation
	for molded ML specimens in section 8 is assessed using layer values given
	by E ref ef f (as for the modelled design values of molded ML specimens E s-ref ef f
		xxxiv		

1L specimen and single layer composition: reference E ref ef f

[START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF][START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF] 

and measured E M P ef f and E P L ef f from MP and PL tests.

Specimen E ref ef f [kPa] E M P ef f [kPa] E P L ef f [kPa]
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