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Abstract

Our research concerns the problem of explainable decision in a context
of incomplete knowledge. We define a framework called Bipolar Layered
Framework with Support and Weights (BLFSW) that represents the set of ar-
gument graphs that can be used in the domain, enabling us to compute what
results can be obtained in the different decision situations. This framework
also contains information about the utilities/disutilities of these tangible re-
sults. This paper extends Bipolar Layered Frameworks defined in [1] by
enabling the expression of supports for decision principles and by giving the
user the possibility to fix the strength of inhibitors and supports with weights.
This increased expressiveness of the framework is important both for refining
the evaluation of alternatives and to improve the compactness of the repre-
sentation. The main result of this paper is to provide an automatic way to
explain a possibilistic decision setting in terms of a BLFSW which makes
explicit the principles that govern the decision.

Keywords: Possibility theory, qualitative decision theory, explanation.

1 Introduction

An individual decision analysis process involves an agent (the decision maker) tak-
ing account of the decision situation and then evaluating different courses of action
(decision alternatives). In order to be able to do so, the decision maker must char-
acterize the decision-making situation with respect to two distinct components: a
formulation of the decision goals and a characterization of the decision alterna-
tives [2]. Usually, the evaluation is based on an associated utility function (see e.g.
∗This is a draft version, the paper is published in the proceedings of IEEE International Con-

ference on Fuzzy Systems (FUZZ-IEEE 2019), New Orleans, Louisiana, USA, 23/06/19-26/06/19,
Alina Zare, Derek Anderson (Eds.), June 2019.
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the introductory book of [3]) which encodes the satisfaction degrees reached by
choosing each decision alternative. Despite a lot of works on decision theory, two
issues are often not easy to solve. The information of the agent about the decision
situation is often uncertain, incomplete and distributed. Hence the first issue is to
deal with imperfect information (uncertainty, incomplete and distributed knowl-
edge). The second issue is to be able to explain and justify the decisions that are
made. It is also a desirable goal to enable the decision makers to have a broader
view of the principles that govern the decision and to enable them to participate in
their elaboration. These issues are even more important when the decision to be
made concerns a group of autonomous agents that have their own knowledge and
preferences.

Classical qualitative decision-making approaches use aggregation criteria that
combine the measurement of uncertainty with utility (see e.g. [4]). Roughly speak-
ing we can sum up the standard approaches of decision under uncertainty as fol-
lows: the decision maker defines a utility function f(d, s) which associates a value
to a decision d in a given scenario s. The second step consists in defining an aggre-
gation function on all the possible scenarios given the uncertain current knowledge
about the real situation. We propose an approach which allows the user to choose
the best decision and also to explain it. Indeed, instead of using a utility function
over all possible states, we propose to use a set of decision principles (DP). A DP
relates some characteristic features of the situation to the achievement of a tangible
result (which has a utility level). For instance, if an agent wants to find a hotel, we
can enunciate a decision principle saying that “a priori, a hotel with a pool gives
the opportunity to swim” (where “swimming” is a tangible result with a good level
of utility for our agent). Our approach is a two step process: the first step computes
the certainty of the achievement of some tangible results, leading to compute the
function N(r|S) that gives the necessity of having the result r given a set of situ-
ations S (obtained by a decision made on an uncertain scenario). Then the second
step consists in aggregating (taking into account their importance, polarities and
certainty) the possible results that can be obtained in a given situation in order to
compare the different situations. For this step, we use an extension of the quali-
tative bipolar approach of Dubois and Fargier [5] where positive arguments (pros)
and negative arguments (cons) are uncertain.

The particular originality of the BLFSW is mainly its first step process which
is done by using several argumentation graphs, each argumentation graph enables
us to assess about the achievement of one tangible result. In argumentation theory,
there are two kinds of actions on arguments: attacks that tend to say that the con-
clusion of the argument (here the tangible result) is not achieved in a given situation
and supports that increase the belief degree that the result is achieved. Principles
in BLFSWs are akin to arguments in that they state a reason for believing that
a tangible result is obtained. The notion of argument in favor or against a deci-
sion has been developed in practical argumentation domain which has been widely
studied (see e.g. [6, 7]) since the initial proposal of Raz [8] and the philosophical
justification provided by Walton [9]. Practical argumentation aims at answering
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the question what is the right thing to do in a given situation which is clearly re-
lated to a decision problem. Several works are using argumentative approaches to
tackle it: Amgoud and Prade [10] propose a bipolar argumentation-based approach
distinguishing epistemic and practical arguments. Argumentation has also been
proposed to govern decision making in a negotiation context (see for instance [11]
and [12] for a survey). However in all the argumentative approaches mentioned
above, it is difficult to obtain a precise explanation of the decision: either because
the arguments are abstract and only the attack relation between them is informa-
tive, or because there is no clear explanation of how and why the content of the
argument justifies the final choices. BLFSW is a new method for reasoning about
decision arguments in which more place is given to explanation by making explicit
both the decision principles and their supports and inhibitors.

2 BLF with supports and weights

A BLFSW is a visual bipolar framework that represents all explicit information
known about a decision domain. Hence, it contains both the knowledge for rea-
soning about the achievement of tangible results (called goals) and the preference
information associated to these goals: namely their polarities and their importance
level. The polarity of a goal is positive if it is a desirable result, it is negative when
this result should be avoided.

We consider a set A of alternatives about which some information is available
and two languages LF (a propositional language based on a vocabulary VF ) repre-
senting information about some features that are believed to hold for an alternative
and LG (another propositional language based on a distinct vocabulary VG) rep-
resenting information about the achievement of some goals when an alternative is
selected. In the propositional languages used here, the logical connectors or, and,
not are denoted respectively by ∨, ∧, and ¬. A literal is a propositional symbol
x or its negation ¬x, the set of literals of LG are denoted by LITG. Classical
inference, logical equivalence and contradiction are denoted respectively by |=, ≡,
⊥. We use a special symbol  to encode an a priori deduction, called Decision
Principle, from some observations to a goal.

Example 1. Let us imagine an agent who wants to find a hotel which is not ex-
pensive (e) and in which he can swim (s). This agent prefers to avoid crowded
hotels (c). The possible pieces of information concern the following attributes: VF
= {p, f , w, o} that describes the respective features of the hotel "to have a pool",
"to be a four star hotel", "to be in a place where the weather is fine", "to propose
special offers". The agent may consider the following principles: P = {p  s,
f  e, w  c}. They respectively express that “a priori when there is a pool the
agent can swim”, “a priori if the hotel is four star then it is expensive” and “if the
weather is fine in this area then the hotel is a priori crowded”.

The principles can be supported or inhibited, this is represented by double and

3



single arcs that are weighted accordingly to the strength of the support/inhibition1.
For instance, a special offer increases the certainty to have a crowded hotel when
the weather is fine. Four star hotels are expensive but a special offer may inhibit
this deduction. The following picture is a graphical representation of this example
by a BLFSW: it is a tripartite graph represented in three columns, the DPs with
a positive goal are situated on the left column, the inhibitors and supports are in
the middle, and the DPs with a negative polarity are situated on the right. The
more important (positive and negative) DPs are in the higher part of the graph,
equally important DPs are drawn at the same horizontal level. Hence the highest
positive level is at the top left of the figure, the bottom right contains DPs with
negative goals of low importance. The heights of the inhibitors and supports are
not significant; only their existence is meaningful.

	 Inhib./Support ⊕
p sf  e

w  c

¬w

f

o
0.4

0.9

0.1 0.6

More formally, a BLFSW is defined as follows:

Definition 1 (BLFSW). A Bipolar Layered Framework with Supports and Weights
is a tuple (P, I,S, pol,�, w). P is a set of decision principles: P = {ϕ g|ϕ ∈
LF , g ∈ LITG}. I ⊆ (LF × P) is a set of inhibitors. S ⊆ (LF × P) is a set
of supports. pol is a function pol : VG → {⊕,	} which gives the polarity of a
goal g ∈ VG, this function is extended to goal literals by pol(¬g) = −pol(g) with
−⊕ = 	 and −	 = ⊕ and to DPs accordingly: pol(ϕ, g) = pol(g). LITG is
totally ordered by the relation � (“less or equally important than”) and DPs are
ordered accordingly: (ϕ  g) � (ψ  g′) iff g � g′. w : I ∪ S →]0, 1] is a
weight function on inhibitors and supports.

The weight on a support/inhibitor of a DP is expressing an increased/decreased
certainty degree about the fact that triggering this DP will lead to the achievement
of its conclusion. We do not allow for supports or inhibitors of weight 0, since it
would mean that there is no information about the supporting/inhibiting effects.

2.1 Reasoning about goal achievements

The first part of the process is a reasoning part: it consists in reasoning with the
argumentation graphs that concern each goal in order to check what are the realized
goals. This is done by considering what is known: given a consistent knowledge
base K, we first define a K-BLFSW as the BLFSW that is obtained when all what
is known is K. More formally,

1For a simpler representation, the drawing of a BLFSW obeys the convention that if no weight is
given for a set of supports and inhibitors concerning the same DP then all weights are equal to 1.
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Definition 2 (K-BLFSW). Given a consistent knowledge base K and a BLFSW
B = (P , I, S, pol, �, w), a K-BLFSW associated to B is a tuple (PK , IK , SK ,
pol, �, wK) where

• PK = {(ϕ, g) ∈ P, s.t. K |= ϕ} is the set of valid DPs in P (i.e., those
whose reason ϕ holds in K).

• IK = {(ϕ, p) ∈ I, s.t. K |= ϕ and p ∈ PK} is the set of valid inhibitions
according to K.

• SK = {(ϕ, p) ∈ S, s.t. K |= ϕ and p ∈ PK} is the set of valid supports
according to K.

• wK is the restriction of w on IK ∪ SK .

The DPs that are not inhibited in theK-BLFSW are the ones that are trusted, in
order to know if a DP is inhibited, we have to compare the weights of its inhibitors
and supports.

Definition 3. Given a K-BLFSW (PK , IK , SK , pol, �, wK), we define the acti-
vation level of p ∈ PK as follows:

α(p) =
∑

s∈SK(p)

wK(s, p)−
∑

i∈IK(p)

wK(i, p)

with SK(p) = {ψ ∈ LF |(ψ, p) ∈ SK}, IK(p) = {ψ ∈ LF |(ψ, p) ∈ IK}.
According to α(p), the DP p is either inhibited iff α(p) < 0, supported iff α(p) > 0
or unaffected iff α(p) = 0.

In other words, the weights of supports and inhibitors that concerns a given DP
p are used to determine whether p is globally supported or inhibited or unaffected.
The DP is said supported when supports are stronger than inhibitors, it is inhibited
in the opposite case. When inhibitors and supports are equal they cancel each other.

Definition 4 (realized goals). Given a K-BLFSW BK = (PK , IK , SK , pol, �,
wK), a goal g in LITG is said to be realized wrt BK if there is a DP in PK that
concludes g and that is not inhibited.

Example 1 (cont.): Let us consider K1 = {p ∧ w ∧ f ∧ o}, K2 = {p ∧ w ∧ f},
K3 = {p ∧ ¬w ∧ f}, K4 = {p ∧ ¬w ∧ f ∧ o}. The four corresponding BLFSWs
are:

K1: 	 I/S. ⊕
p s

w  c

f  e
f

o

0.9
0.1

0.6

K2: 	 I/S. ⊕
p sf  e

w  c
f 0.6

0.9

K3: 	 I/S. ⊕
p sf  e ¬w

f

0.4
0.6

K4: 	 I/S. ⊕
p sf  e ¬w

fo

0.4
0.6
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In K1, f  e is inhibited (since it has only one inhibitor with a default weight
of 1), w  c is inhibited (since it has an inhibitor of weight 0.9 which is heavier
than the weight 0.1 of its support) and p s is supported. Hence the only realized
goals of K1 is s. Similarly, we compute the realized goals of the other hotels: K2

and K3 have the same realized goals: e and s, K4 has only one realized goal: s
(since the p s is supported by a support that is heavier than its inhibitor).

2.2 Handling preferences

Once the reasoning step is done, we know what goals are realized in what alterna-
tive situation, then the second step consists in taking into account the preferences
expressed in terms of importance and polarities of the goals. Hence, the definition
of realized goals wrt a K-BLFSW allows us to compare alternatives according to
the goals they achieve.

In [13], three decision rules called Pareto, Bipolar Possibility and Bipolar Lex-
imin have been introduced. We have chosen to only translate the Bipolar Leximin
rule in order to compare two alternatives.

Definition 5 (BiLexi decision rule). Given a BLFSW B = (P, I,S, pol,�, w)
and two alternatives described respectively by K and K ′ with their associated
realized goals R and R′, the Bipolar Leximin dominance relation�BiLexi (BiLexi-
preferred to) is s.t.: let Xpol

g = {g′ ∈ X s.t. g ' g′ and pol(g′) = pol} and
M = max({g ∈ R ∪ R′ s.t. |R⊕g | 6= |R′⊕g | or |R	g | 6= |R′	g |},�)

K �BiLexi K ′ iff
∣∣∣∣ M exists and
|R⊕M | ≥ |R

′⊕
M | and |R	M | ≤ |R

′	
M |

K 'BiLexi K ′ iff M does not exist

In other words, an alternative described by K is BiLexi-preferred to another
one described by K ′ if there is a goal M such that the number of realized positive
and negative goals at levels strictly more important than M are the same for K ′,
but at the level M either the number of positive goals of K is greater than those of
K ′ or the number of negative goals of K is lower than those of K ′.

Example 1 (cont.): The ranks of the hotels are:

(K1 'BiLexi K4) �BiLexi (K2 'BiLexi K3)

Note that in case of equality between two alternatives, the activation levels of
the DPs that are justifying the goals achieved by the alternatives, can be used to
choose between them.This means that goals are associated with two evaluations,
one concerning their importance (that can be called utility when the goal is positive
and disutility when it is negative, in our framework it is characterized by� and pol)
and one concerning the certainty αK about their realization inK, as defined below.
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Definition 6 (Certainty of a realized goal). Given a BLFSW B = (P, I,S, pol,�
, w) and an alternative described by K, for all goal g realized in BK , the certainty
associated to g is:

αK(g) = max
ϕ∈LF ,p=ϕ g∈PK

α(p)

In other words, the certainty associated to g corresponds to the maximum acti-
vation level of a DP concluding g.

Definition 7 (BW decision rule). Given a BLFSW B = (P, I,S, pol,�, w) and
two alternatives described respectively by K and K ′ with their associated realized
goals R and R′, the BW dominance relation �BW (BiLexi&Weight-preferred to)
is defined by: K �BW K ′ iff K �BiLexi K ′ or (K 'BiLexi K ′ and

∃M = max({g ∈ R ∪ R′
maxg1∈R⊕g αK(g1) > maxg2∈R′⊕g αK′(g2) or
maxg1∈R	g αK(g1) < maxg2∈R′	g αK′(g2)

},�) )

In the previous definition, M is the highest important goal s.t. the maximum
weight of a positive or a negative achieved goal of same priority for K and K ′

differs in favor of K i.e., either the maximum weight of positive achieved goals
for K is strictly greater than the one for K ′ or the maximum weight of negative
achieved goals for K is strictly lower than the one for K ′.

Example 1 (cont.): We get: K1 �BW K4 �BW K2 �BW K3. Since in K1,
p  s is supported and not attacked hence the activation level of p  s is 0.6,
while in K4, p  s has an activation level of 0.6 − 0.4 = 0.2 which means that
the achievement of swim is more certain in the situation described by K1 than in
the situation described by K4. The same refinement is done to differentiate K2 and
K3, their negative goal e is achieved with the same certainty while the positive
goal s is more certainly achieved in K2 than in K3.

3 Towards an automatic Explanation of a Possibilistic de-
cision setting

As seen above, a BLFSW is a tool that enables the user to make explicit the decision
setting. This paper aims at translating classical decision settings into BLFSW in
order to give an automatic explanation to the utilities attached to decisions. In
this section, we first write a reminder about Possibility Theory and Defaults, then
we show how the decision principles, inhibitors and weights of a BLFSW can be
interpreted in terms of possibility theory. This is done by following up the work
of [14] in order to build DPs from uncertain knowledge expressed under the form
of a possibility distribution on worlds and from preferences expressed as utilities
associated to goals. In this process, a DP ϕ  g is viewed as a defeasible rule
saying that if ϕ holds then a priori g is achieved, and we explain how weighted
inhibitions and supports can be defined according to this view. The third subsection
show how to automatically build a BLFSW from possibilistic data.
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3.1 Background on Possibility Theory and Defaults

In [15], possibility theory is introduced as a basis for qualitative decision theory.
The author relate the expected pay-off u(x) of a situation x to a preference relation
� over situations s.t. x � y iff u(x) ≥ u(y). In presence of uncertainty, i.e.,
when situations are not precisely known, the belief state about what is the actual
situation is represented by a possibility distribution π. The theory of possibility is a
qualitative setting first introduced by Zadeh [16] and further developed by Dubois
and Prade in [17]. It is qualitative in the sense that the only operations required are
max, min and order-reversing operations. However, numbers in the scale [0,1] are
often used for convenience but the exact values of the numbers are not meaningful,
it is only their order in the scale that is taken into account.

A possibility distribution π is used to compare the plausibility of situations:
π(x) ≤ π(x′) means that it is at least as plausible for x′ to be the actual situation
as for x to be it. π(x) = 0 means impossibility, π(x) = 1 means that x is un-
surprising or normal. The state of total ignorance is represented by a possibility
distribution where any situation is totally possible (∀x, π(x) = 1). In order to rea-
son on formula (hence sets of situations), two measures Π and N are defined: the
possibility measure Π evaluates how unsurprising a formula is, hence Π(ϕ) = 0
means that ϕ is bound to be false. The necessity measure is its dual defined by
N(ϕ) = 1 − Π(¬ϕ): N(ϕ) = 1 means that ϕ is bound to be true. N is defined
from a possibility distribution π by: N(ϕ) = minω|=¬ϕ(1 − π(ω)): a formula is
all the more necessary as its counter models are less plausible.

In [4], the authors show that the utility of a decision d can be evaluated by
combining the plausibilities π(x) of the states x in which d is made and the util-
ity u(d(x)) of the possible resulting state d(x) after d, where u(d(x)) represents
the satisfaction to be in the precise situation d(x) (it is equal to the member-
ship degree to the fuzzy set of preferred situations). The pessimistic criterion
has been first introduced by Whalen [18] and leads to a pessimistic utility level
of a decision d defined as follows: upes(d) = infx∈X max(1 − π(x), u(d(x))).
The optimistic criterion has been first proposed by Yager [19] and is defined by:
uop(d) = supx∈X min(π(x), u(d(x))).

In possibilistic decision theory, the scales for possibilities and utilities are the
same, hence, commensurable. In our proposal the commensurability of the two
scales is not required: we do not aggregate possibilities and utilities, we rather
use a kind of chance constrained approach [20, 21] in which they are dealt with
separately.

Since a decision principle represents a defeasible reason to believe that some
goal is achieved, we also need to recall some basics about handling defeasible rules
in a possibilistic setting. A defeasible rule is a compact way to express a general
rule without mentioning every exception to it. In a BLFSW the exceptions to a
decision principle are its inhibitors. The conditional possibility measure denoted
Π(ϕ|ψ) is the possibility that ϕ holds in the worlds where ψ holds. It is related to
the conditional possibility distribution as follows: Π(ϕ|ψ) = maxω min(Π(ϕ|ω), π(ω|ψ)).
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A default rule a  b translates, in the possibility theory framework, into the
constraint Π(a ∧ b) > Π(a ∧ ¬b) which expresses that having b true is strictly
more possible than having it false when a is true [22]. Note that the constraint
Π(a ∧ b) > Π(a ∧ ¬b) is equivalent to N(b|a) > 0. Hence, if we know a and we
search for a conclusion which satisfies the constraint N() > 0 then a solution is
b. In this sense, decision principles are related to chance constraints in quantitative
optimization problem. In this article, we will use the min conditioning (|min) since
we are interested in qualitative decision problems, i.e.,

π(ω |min ϕ) =

∣∣∣∣∣∣
1 if ω |= ϕ and π(ω) = Π(ϕ);
π(ω) if ω |= ϕ and π(ω) < Π(ϕ);
0 if ω 6|= ϕ

3.2 Interpreting a BLFSW in Possibility Theory

This section is devoted to give an interpretation of Support/Inhibitor and strength of
a DP in a possibilistic setting. This will allow the designer of a Decision System to
move from one formalism to another in order to check the accuracy of his proposed
model. In addition, Possibility theory is recognized as a theory taking into account
uncertainty and qualitative reasoning, so showing that there is a translation from a
possibilistic representation of uncertainty and preferences to a BLFSW increases
the validity of this framework. The BLFSW is able to take into account the degree
of certainty of a DP which is not possible in a plain BLF. Nevertheless the possi-
bilistic meaning of a DP and an inhibitor in a BLFSW are the same as those found
for a BLF in [14]. First, we restate Π-DP and Π-inhibitor definitions: in order to
be well-defined a DP has to be informative, i.e., the DP ϕ  g is well-defined if
the necessity of the goal g increases when ϕ holds:

Definition 8 (Π-DP [14]). Given a possibility measure Π, a Π-DP ϕ  g is s.t.
N(g|ϕ) > 0

In other words, the DP is the piece of knowledge which increases the certainty
that the goal is realized. In the same way we can interpret the notion of inhibitor
and support in possibility theory: an inhibitor ψ makes the default rule ϕ  g no
more valid in such a way that we are no longer sure that g will be realized when
ϕ and ψ hold together. More precisely, ψ can be defined as an inhibitor of ϕ  g
if when ψ holds, the necessity of g being achieved (which was previously > 0) is
reduced to zero.

Definition 9 (Π-Inhibitor [14]). Given a possibility measure Π, the pair (ψ, p) is
a Π-Inhibitor of the DP p = ϕ g if N(g|ϕ ∧ ψ) = 0

In contrast, the support increases the certainty of the default rule. So when the
support ψ holds, we are more sure that g will be realized.

Definition 10 (Π-Support). Given a possibility measure Π, the pair (ψ, p) is a
Π-Support of the DP p = ϕ g if N(g|ϕ ∧ ψ) > N(g|ϕ)

9



Moreover to complete the interpretation of a BLFSW in possibility theory we
need to define the global strength α(p) of a DP p in possibilistic terms.

Definition 11 (Π-weight). Given a possibility measure Π and a weight function
w. w is a Π-weight function iff for all possible K-BLFSW (PK , IK , SK , pol, �,
wK ) where wK is the restriction of w on IK ∪ SK and for all decision principles
p = ϕ g, p′ = ϕ′  g′ ∈ PK

• α(p) < 0 iff N(g |ϕ
∧
ψ∈IK(p)∪SK(p) ψ) = 0

• α(p) ≥ 0 iff N(g |ϕ
∧
ψ∈IK(p)∪SK(p) ψ) > 0

• α(p) ≥ α(p′) ≥ 0 iff
N(g |ϕ

∧
ψ∈IK(p)∪SK(p) ψ) ≥ N(g′ |ϕ′∧

ψ∈IK(p′)∪SK(p′) ψ) > 0

with α(p) defined from wK according to Definition 3.

In other words, the activation level α(p) of p = ϕ  g defined in Definition
3 should reflect the certainty about the default rule ϕ  g and should behave as
stated in Definition 3: a negative activation level means that the default rule does
not hold in presence of all its supports and inhibitors, a strictly positive one means
that the goal is all the more likely to be achieved that the level is high, two distinct
positive activation levels should be ranked according to the two necessities of the
DPs. This last point will allow us to rank order alternatives more precisely. Using
the definitions above we are now in position to define a Π-BLFSW.

Definition 12 (Π-BLFSW). A BLFSW B = (P , I, S, pol, �, w) is a Π-BLFSW
iff there exists a possibility distribution π over Ω and a utility function u on the set
of goals LITG, s.t.

• ∀p = ϕ g ∈ P , u(g) 6= 0

• ∀g ∈ LITG, pol(g) = ⊕ iff u(g) > 0

• ∀g, g′ ∈ LITG, g � g′ iff u(g) ≤ u(g′)

• for all consistent knowledge base K, ∀g ∈ LITG s.t. u(g) 6= 0, ∀ω ∈ Ω,
π(g|ω) satisfies the constraints of Definitions 8, 9, 10 and 11

Intuitively, in a Π-BLFSW the polarities and importances of the goals are based
on a utility function and the weights on supports and inhibitors of DPs are consis-
tent with the necessities of the default rules associated to DPs.

Thanks to this last definition, the designer can check whether her BLFSW is
a Π-BLFSW hence whether it is consistent wrt a classical qualitative theory of
uncertainty. If the possibility distribution does not seem realistic to the designer,
she should modify the BLFSW (which summarizes it).
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Remark 1. It may happen that the agents want to distinguish between the strengths
of two DPs p1 = (ϕ1  g1) and p2 = (ϕ2  g2) because she knows that
N(g1|ϕ1) > N(g2|ϕ2). In order to do that, she may use the notion of support, by
adding a support s1 = (ϕ1, p1). In that case, αp1 = w(s1) is necessarily greater
than αp2 = 0.

The following proposition shows the relation between the weight associated to
a goal in a K-BLFSW and its necessity to hold wrt this knowledge base K. The
ranking on alternatives described by K based on the goals achieved in K is the
same as the one obtained in a Π-BLFSW based on K.2

Proposition 1. Given a Π-BLFSW B = (P, I,S, pol,�, w) built on a possibility
distribution π on the set of worlds Ω and on a utility function u on LITG. B is s.t.
for all consistent knowledge bases K,K ′ and for any goals g, g′:

• g not realized wrt BK iff N(g|K) = 0 or u(g) = 0

• if g realized wrtBK and g′ realized wrtBK′ thenαK(g) > αK′(g
′) iff N(g|K) >

N(g′|K ′)

Proof. (sketch) The first item follows from definitions 8 and 12, the second one
from definitions 3 and 11. �

3.3 From Possibility theory to BLFSW: An Example

Building a BLFSW can be done in two independent steps: first define the DPs and
their weighted relationships from a given possibility distribution, second use the
utilities of goals in order to filter out DPs with goals of null utility and to rank the
DPs in the BLFSW. Here, we only present the first step based on the knowledge
of a possibility distribution over all possible worlds ω ∈ Ω and the possibility for
each goal to be true in each world (Table.1).

For each goal in LITG (here in {s,¬s, c,¬c, e,¬e}), we check whether we
can generate a DP concluding it by checking Definition 8, on all the conjunctive
formulas that can be built, starting from formulas restricted to a single literal and
adding new literals progressively. Let us consider the goal s when we know p, we
have N(s|p) = 1 − Π(¬s|p) = 1 −maxω(min(π(ω|p), Π(¬s|ω))) = 1 − 0.4 =
0.6 > 0 hence p1 = p  s is a DP. If we suppose that we know w, N(s|w) =
1 − Π(¬s|w) = 1 − 1 = 0 due to the world ω12 hence s  w is not a DP. Let us
look for supports and inhibitors, we have N(s|p ∧ f) = 0.8 > N(s|p), so due to
definition 10, s1 = (f, p1) is a support. p1 has also an inhibitor since adding ¬w
we get N(s|p ∧ ¬w) = 0. N(s|p ∧ f ∧ ¬w) = 0.7 thus s2 = (f ∧ ¬w, p1) is also
a support. Using the same process on the other two goals, we obtain p2 = w  c,
N(c|w) = 0.6, i2 = (f, p2), N(c|w∧ f ∧ o) = 0, s3 = (o, p2), N(c|w∧ o) = 0.7,
i3 = (f ∧ o, p2), N(c|w∧ f ∧ o) = 0, p3 = (f, e), N(e|f) = 0.6 and i4 = (o, p3),

2This ranking can be obtained with the relations �BiLexi or �BW .
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ω π(ω)Π(s|ω)Π(¬s|ω)Π(c|ω)Π(¬c|ω)Π(e|ω)Π(¬e|ω)

ω1: pwfo 0.3 1 0 1 1 0.2 1
ω2: pwf¬o 0.3 1 0 0.8 1 1 0.4
ω3: pw¬fo 1 1 0 1 0.3 0 1
ω4: pw¬f¬o 1 1 0 1 0.4 0 1
ω5: p¬wfo 0.2 1 0.3 0.2 1 0.2 1
ω6: p¬wf¬o 0.2 1 0.3 0.1 1 1 0.4
ω7: p¬w¬fo 0.4 1 1 0.8 1 0 1
ω8: p¬w¬f¬o 0.4 1 1 0 1 0 1
ω9: ¬pwfo 0.3 0 1 1 1 0 1
ω10: ¬pwf¬o 0.3 0 1 0.8 1 1 0.4
ω11: ¬pw¬fo 1 0 1 1 0.3 0 1
ω12: ¬pw¬f¬o 1 0 1 1 0.4 0 1
ω13: ¬p¬wfo 0.3 0 1 0.2 1 0 1
ω14: ¬p¬wf¬o 1 0 1 0.1 1 1 0.4
ω15: ¬p¬w¬fo 1 0 1 0.2 1 0 1
ω16: ¬p¬w¬f¬o 0.4 0 1 0 1 0 1

Table 1: Possibility distributions on worlds and goals

N(e|f ∧ o) = 0. Let us now focus on the weight assignments. The weights must
satisfy all the constraints entailed by Definition 11. For instance, ws1 > ws1 +
ws2 −wi1 > 0 and 0 ≥ −wi1 . Note that if N(s|p ∧ f ∧ ¬w) = N(s|p ∧ f) = 0.6
then w(f ∧ ¬w,P1) = w(s|p ∧ ¬w). In that case the inhibitor ¬w is cancelled by
the support f ∧ ¬w. The possible assignments of weights are infinite, for instance
the one given in Example 1: wp1 = 0.4, ws1 = 0.6, ws2 = 0, wi1 = 0.4 satisfies
the constraints. Using the same process on the other two goals, for c we have
wp2 + ws3 − wi3 ≤ 0, wp2 − wi3 ≤ 0 and ws3 > 0 for instance the one given in
Example 1: wi3 = 0.9, ws3 = wp2 = 0.1. So the decision problem defined by
Table.1 is equivalent to the BLFSW of Example 1.

4 Conclusion

This paper proposes an extension of the BLF of [1] in order to deal with supports
and weights.The framework is a visual way to encode and explain a qualitative de-
cision theory. The BLFSW’s main benefit is to provide a representation that allows
a user to clearly express the principles and utility levels which govern the decision
process. In BLFSW, the decision is justified by the importance and polarities of the
tangible results that are realized if the alternative is chosen, these results are also
explained by the valid principles (not inhibited DPs) that apply in the situation. The
ability to explain how the weights of inhibitors and supports of DPs are computed
is one of the main result of this paper. This result is based on a procedure that
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builds a BLFSW from utilities and uncertain knowledge expressed in possibilistic
terms.
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