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Abstract—This paper proposes a data-driven framework for
Remaining Useful Life (RUL) prediction, based on the Brownian
Motion model (BM) and the similarity principle, for an operating
system given its health indicator. It addresses the issues of noisy
and limited run-to-failure (R2F) data. The Percentile filtering is
used to extract, from the R2F data, 100 monotonic profiles used
as references in the modeling and the RUL prediction. Then, the
similarity is computed between these references and the Health
Indicator (HI) of the operating system. Fitting the most similar
reference into the BM improves the RUL prediction. A numerical
application using simulated data justifies the accuracy of this
approach.

I. INTRODUCTION

Nowadays, Condition-Based Maintenance (CBM) [1] is a
maintenance strategy that the manufacturing industry tries to
adopt more and more in order to reduce the life cycle cost of
the equipment units and to extend their availability. CBM uses
real-time information to optimize the maintenance moment by
restoring the functional properties of the equipment units. It is
based on the current health monitoring of the equipment units,
thus it is important to add prognosis tools to predict the future
state and to anticipate the maintenance.

Fault prognosis is one of the major tasks in CBM. It
estimates the RUL of the equipment units based on the
condition monitoring information.
Generally, prognosis approaches can be classified into three
main categories depending on the type of the used information.
These categories [2], [3] are defined as physical model-
based approaches, data-driven approaches and fusion-based
approaches.

The physical model-based approaches [4] use an explicit
mathematical model to represent a dynamical system’s degra-
dation. Data-driven approaches are based on condition mon-

itoring data for analyzing and predicting the current and
the future health conditions. Fusion-based approaches [5] are
a combination of these two approaches. In the real case,
understanding and modeling the degradation of complex sys-
tems are difficult especially when taking into account all
possible degradation effects. Thus, the physical model-based
approaches are complicated to use even though they give the
most accurate RUL estimation. On the other hand, data-driven
approaches do not require understanding the physical behavior
and the degradation process which makes them faster to deploy
compared to the other approaches. Hence, for these reasons,
this category of approaches is adopted in this paper.

Data-driven approaches include mainly statistical and Ar-
tificial Intelligence (AI) methods. The statistical methods
estimate the RUL based on the expected health trend under
known operating conditions (e.g. Wiener Process [6], Gamma
Process [7], autoregressive model [8], Hidden Markov / Semi-
Markov models [9]). The AI methods estimate the RUL by
mimicking human brain structure using several methods like
neural networks (e.g. Long short-term memory [10]), support
vector machine [11], etc.

The Brownian Motion [12] is one of the statistical methods
widely used to model degradation processes. In [13], it is
used with an adaptive drift parameter to model the HI of
the operating device and to predict its future state for RUL
prediction, based on its past degradation information and R2F
indicator. In [14], the BM is introduced in the similarity-
based approach. This category of approach employs all the
R2F profiles generated in the same operating conditions of
the operating device to predict its RUL [15]. These R2F
profiles similar to the operating device’s HI provide additional
contributions to the prediction. Thus, in our work we combine



the strengths of these two methods by using the adaptive
BM model proposed in [13] that introduces the references’s
information and the operating device’s HI after a similarity
computation as in [14]. However, the problem is that the R2F
data are sometimes limited as the devices are not allowed to
be used until failure for finance and safety issues. Hence, the
objective of this paper is to deal with the lack of R2F data.
The proposed solution consists in generating references for the
RUL prediction in the case of the availability of just one noisy
R2F indicator. This can be done using the Percentile filtering
suggested in [16]. Then, the similarity principle is introduced
in the BM model in a new way in order to predict the RUL.

The remainder of this paper is structured as follows: the
proposed approach is detailed in section II. Section III presents
the approach’s application on simulated data and a comparison
with a non-similarity-based approach [13]. Finally, section IV
concludes the work and presents some perspectives.

II. APPROACH FRAMEWORK

The proposed approach is illustrated in Fig.1. Given the
R2F indicator of a system, the objective is to predict the RUL
of an operating device sharing similar operating conditions.
Generally, health indicators are highly noisy, hence a pre-
processing step is required. The filtering method proposed
in [16] and based on the notion of percentile is applied
for this purpose. This filter extracts from the R2F indicator,
100 monotonic profiles that cover it and are considered as
references in this study. Similarly, the HI of the operating
device is also filtered but only the 50th extracted profile is
used for RUL prediction as it is the median profile. At each
prediction time, the similarity between the references and
the 50th extracted profile from the operating device’s HI is
calculated and the most similar reference to it is chosen and
modeled by BM as in [13]. Its parameters are used to predict
the RUL of the operating device. The different parts of this
approach are detailed in the following subsections.

Fig. 1: Framework of the proposed approach

A. HI filtering

The Percentile filtering is used since it minimizes informa-
tion loss and uncertainty in the data compared to other existing
methods, and it is suitable for finding a solution to our issues
[16]. This method is briefly described in the following steps.

Let Yt be the raw HI that measures the degradation over
time t, VN and VF be respectively the normal and the failure
threshold values set by the experts.
• First, the interval [VN , VF ] is divided into several sub-

intervals with step s, where s is chosen in such a
way to make a compromise between the preservation of
information and the complexity of calculation:

s = min

[
Median(|Yt − Yt−1|)

10
, 0.01

]
(1)

where, Median(|Yt − Yt−1|) is the median value of the
variability (Yt − Yt−1).

• The splitting values v of [VN , VF ] are summarized in V =
{VN , VN+s, VN+2s, . . . VF }. A set Tv = {t1, t2, . . . , tn},
with n the number of its elements, is constructed for each
value v, by selecting the time ti verifying the following
condition (see Fig.2):

(Yti < v) & (Yti+1
≥ v) (2)

This selection is based on the fact that the HI is noisy
and it can cross the value v many times.
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Fig. 2: Yt passes through a value v many times

• In the following, for each v ∈ V , the goal is to calculate
the percentiles denoted as tpv for p ∈ {1, 2, . . . , 100} of
the set Tv . They are used next to construct the monotonic
profiles (tpv, v) relative to each p. These percentiles are
computed in two steps:

1) After placing the values ti of the set Tv in ascending
order, the n corresponding percentiles to these val-
ues are computed according to relative position cal-
culation as: p = 100(j − 0.5)/n, j ∈ {1, 2, . . . , n}.

2) The value of the rest (100 − n) percentiles is
calculated as follows:

tpv =


t1 for p < 100(1− 0.5)/n

tn for p > 100(n− 0.5)/n

LI for (1− 0.5) < np
100 < (n− 0.5)

(3)

where LI stands for Linear Interpolation: given (p1, t
p1
v )

and (p2, t
p2
v ) two pairs of a percentile and its correspond-

ing value respectively, the percentiles pi between p1 and
p2 (with p1 < p2) are computed by LI as follows:

tpiv = tp1v + (pi − p1)
tp2v − tp1v
p2 − p1

(4)



• 100 profiles are generated, each one corresponding to
a percentile p (see Fig. 3). These profiles Y pt are con-
structed by assimilating to each splitting value v of V ,
the time tpv corresponding to the percentile p of Tv . The
tpv that breaks the monotony of the profile is omitted.

B. HI modeling

The Brownian Motion with an adaptive drift parameter is
used to model the HI as in [13] and [17]. The evolution of the
filtered HI is modeled iteratively over time. The strength of
this method relies on the introduction of the current and the
historical degradation information in the model to forecast the
future trend of the health indicator. This is done by updating
the drift parameter whenever a new observation is available.
The degradation model is given as follows:

yti = yti−1 + µti−1(ti − ti−1) + σεti−1,ti (5)

where, yti is the degradation information at time ti, µti−1
is

the updated drift parameter at ti−1 after observing yti−1
, σ

is a constant and σεti−1,ti is the error such that εti−1,ti ∼
N (0, ti − ti−1) by the BM. The variance ti − ti−1 makes
sense as the random quantity should somehow increases when
ti − ti−1 increases.
The Kalman Filter (KF) [18] is a recursive procedure used
in this case to estimate and update the drift parameter. It
computes the optimal estimator of µt at time t, based on the
available observations up to yt and including it. In order to
apply the KF, the system and the observation equations are
given respectively in the following:

µti = µti−1 + ν (6)

yti − yti−1 = µti−1(ti − ti−1) + σεti−1,ti (7)

where, ν is the system error normally distributed such as
ν ∼ N (0, Q).
Under the normality assumption, the initial µt0 has a normal
distribution with mean µ̂t0 and variance P0. Thus, µt>0 is a
linear combination of two random variables, both with normal
distributions, hence it is itself normally distributed and its
mean (8) and variance (9) are updated by KF as follows:

µ̂ti = µ̂ti−1+Pi|i−1(ti−ti−1)F−1i (yti−yti−1−µ̂ti−1(ti−ti−1))
(8)

Pi = Pi|i−1 − Pi|i−1(ti − ti−1)2F−1i Pi|i−1 (9)

where,{
Pi|i−1 = Pi−1 +Q

Fi = (ti − ti−1)2Pi|i−1 + σ2(ti − ti−1)
(10)

Thus, the model of the future behavior of the HI after
observing yti is:

yt = yti + µ̂ti(ti − ti−1) + σεti−1,ti (11)

where µ̂ti is a function of (y1, . . . , yti) for t1<t2< . . .<
ti≤ t.

C. Similarity

In this subsection, the key elements of the similarity prin-
ciple are presented. Let Yop and Yrk be respectively the
health indicator of the operating device and the reference k
considered both in the same operating conditions. Thus, the
references can improve the device’s RUL prediction.

As in [14] and [15], the similarity between the operating
device’s HI and a reference is measured over a time interval
I by a similarity function S. For the similarity computation,
(N + 1) consecutive monitoring points are considered. In
particularly, the last (N + 1) observations of the operating
device’s HI are chosen as they reflect the current state of
the device. Thus, the time interval can be represented as
I = (N + 1)∆t, where ∆t is the condition monitoring time
interval.

In this paper, S is the Euclidean distance and Sop↔k(ti, N)
denotes the similarity calculated between the operating device
and the reference k at the time ti for a determined duration I:

Sop↔k(ti, N) =

N∑
n=0

[Yop(ti − n∆t)− Yrk(ti − n∆t)]2 (12)

Note that the following condition should be satisfied:

N + 1 ≤ min(Nop, Nrk) (13)

where Nop and Nrk are respectively the number of condition
monitoring points of Yop and Yrk .

At each prediction time ti, the most similar reference to Yop
is determined and used as a support for the RUL prediction.
It is chosen in such a way to minimize the similarity function
Sop↔k(ti, N) and is denoted as rsim:

rsim = arg min
1<k<NT

Sop↔k(ti, N) (14)

where, NT is the total number of references.

D. RUL prediction

The objective of our work is to predict accurately the time
required for the system to fail. It is done by forecasting
the path of the degradation indicator Yop up to the failure
threshold. For the RUL prediction, only the profile Y 50

op of
the operating device (p = 50) is considered after filtering
as it is the median of the generated profiles. At each pre-
diction time, the degradation information is available until ti
(Y 50
op (t1 −→ ti)) and when the profile Y 50

op exceeds the normal
operating threshold VN , the prognosis is triggered.

In order to have an accurate prediction, the degradation
information of both Y 50

op and Yrsim are used in the BM model
[13]: the behavior of Yrsim is taken into account in order to
forecast Y 50

op until failure. This is done by predicting the future
evolution of the drift parameter of Y 50

op based on the evolution
of Yrsim as detailed just below. At each prediction time ti:
• The corresponding time tc on which Yrsim has almost the

same degradation state as Y 50
op is determined as :

Yrsim(tc) ≤ Y 50
op (ti) ≤ Yrsim(tc+1) (15)



• The drift parameter µ̂op of Y 50
op and µ̂sim of Yrsim are

calculated using the KF (equations 8-10).
• The residual is computed as:

ri = µ̂opti − µ̂
sim
tc (16)

• The predicted values of the drift parameter µ̂op to con-
sider for t > ti are:

Pti = {µ̂simtc + |ri|, µ̂simtc+1 + |ri|, . . . µ̂simtMax
+ |ri|} (17)

where tMax is the time of the last monitoring point
of Yrsim . The absolute value of ri is taken in order to
keep the index monotone and subsequently to avoid its
divergence from the failure threshold VF .

• The expected value of Y 50
op is predicted iteratively over t

as:
� for 0 ≤ k < tMax − tc

E
[
Y 50
op (ti+k+1)

]
=E

[
Y 50
op (ti+k)+µ̂simtc+k+|ri|+σε0,1

]
=E

[
Y 50
op (ti+k)

]
+ µ̂simtc+k + |ri| (18)

� for [�]k ≥ tMax − tc

E
[
(Y 50
op (ti+k+1)

]
=E

[
Y 50
op (ti+k)+µ̂simtMax

+|ri|+σε0,1
]

=E
[
Y 50
op (ti+k)

]
+ µ̂simtMax

+ |ri| (19)

• The predicted RUL at ti is equal to k̂∆t unit of time,
such that:

k̂ = inf{k : E(Y 50
op (ti+k)) ≥ VF } (20)

III. APPLICATION

The proposed approach is tested on simulated data on Mat-
lab. Its evaluation is then performed using metrics dedicated
to fault prognosis.

In order to highlight the effectiveness of our approach, it
is compared to a non-similarity-based approach [13]. For that,
the RUL is computed in two ways:

• With similarity (approach presented in this paper): the
RUL is computed by picking at each prediction time ti,
the suitable reference to Y 50

op from the entire available
collection.

• Without similarity (non-similarity-based approach): the
RUL is predicted using the same reference during all the
prediction times ti as in [13]. For this computation, the
50th profile of the operating device and the reference Yr50
are used.

The two approaches are compared on two different scenar-
ios: in the first one, the HI of the operating device and the
reference present almost the same trend, but their tendencies
are different in the second one.

In the remainder of this section, the given data and the
Percentile filtering are presented in (III-A), the RUL prediction
based on the similarity principle and the BM is detailed in
(III-B). Finally, the approaches’s evaluation is given in (III-C).

A. Data & Filtering

The R2F indicator and its 100 extracted profiles by the
Percentile filtering are displayed in Fig.3. The normal and the
failure threshold are predefined as VN = −10 and VF = 28
respectively. As shown, this indicator (in blue) is noisy. Thus,
the filtering is required as the quality of the HI affects the
RUL prediction. The extracted profiles are monotonic and each
one corresponds to a percentile p. They represent the useful
information drowned in the noise of the HI. These extracted
profiles are the references in the two cases.
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Fig. 3: Profiles extracted from the R2F indicator

In Fig.4, the health indicator of the operating device (in red)
and the previous R2F indicator (in blue) are illustrated for the
two scenarios.
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(a) Scenario 1
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(b) Scenario 2

Fig. 4: Health indicators of the operating device and the
reference

These indicators are then filtered by the Percentile method,
and as mentioned previously, only Y 50

op of the operating
device is used. This profile, in addition to the references, are
illustrated in Fig.5.

For the first scenario, the profiles Y 50
op and Yr50 have almost

the same degradation dynamics but a notable difference is es-
pecially shown in the second scenario. In fact, the degradation
of Y 50

op is slow at first in comparison with the reference Yr50 ,
and becomes faster after the 1000th instant. Therefore, this
scenario is considered to show the impact of the similarity on
RUL prediction.
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(a) Scenario 1
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(b) Scenario 2

Fig. 5: Y 50
op , Yr50 and the rest extracted profiles from the R2F

indicator

B. RUL Prediction

When the profile Y 50
op exceeds the phase of normal func-

tioning (VN = −10), RUL prediction is launched. Thus, the
prediction starts at Tinit = 500 in the first scenario, and at
Tinit = 600 in the second one (Fig.5). In this application, N
is set to 50 and ∆t to 1 unit of time.

The real failure time denoted as Tend is the time when the
50th filtered profile of the operating system reaches the failure
threshold as:

Tend = inf{ti : Y 50
op (ti) ≥ VF } (21)

In the first scenario, Tend = 1907, and the real RUL at each
prediction time ti is RULreal(ti) = Tend − ti. This RUL is
computed in order to evaluate our predictions. Idem for the
second case where Tend = 1807.

The comparison between the two predicted RUL (with and
without similarity) is performed for the two scenarios and
illustrated respectively in Fig.6 and Fig.7.
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Fig. 6: Predicted RUL (with and without similarity) of the
operating device and a zoom on the last 200 times - Scenario1

The result shows that the proposed approach outperforms
the non-similarity-based approach as the difference between
the real and the predicted RUL is more important when fixing
the reference than in our approach. It can also be noticed that
the RUL prediction is improved during the time as more data
become available. This is especially notable on the last 200

prediction times of our approach as shown on the zoom in the
figures.
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Fig. 7: Predicted RUL (with and without similarity) of the
operating device and a zoom on the last 200 times - Scenario2

The improvement of the RUL prediction by the proposed
approach is explained by the fact that using the most similar
reference to Y 50

op at each prediction time ti is more effective
especially when the two HI do not have exactly the same trend.
In Fig.8, the similar references chosen by our approach during
the prediction are presented.

0 500 1000 1500 2000

Time

-15

-10

-5

0

5

10

15

20

25

30

H
I

(a) Scenario 1

0 500 1000 1500 2000

Time

-15

-10

-5

0

5

10

15

20

25

30

H
I

(b) Scenario 2

Fig. 8: The similar profiles to Y 50
op extracted from the R2F

indicator

For the first scenario, these references belong to the set
p = {27, . . . , 48} and are close to Yr50 and Y 50

op since the two
HI have the same trend all along the time interval. However,
in the second scenario, a greater variety of similar profiles is
chosen: 67 profiles are particularly picked by the proposed
approach between p = 1 and p = 75 following the same
evolution of Y 50

op . Thus, using only Yr50 as the reference for
the RUL prediction is not sufficient specially when Yr50 and
Y 50
op have different trends.
The introduction of the similarity principle in the RUL

prediction is suitable for cases like this scenario where the
degradation information of the operating device and the R2F
data are not exactly the same as in the first one (ideal scenario).
In addition, this approach is more robust and more suitable for
real cases as it improves RUL prediction when R2F data are
limited.



C. Evaluation

To evaluate numerically the two presented approaches, the
Root Mean Square Error (RMSE) and the (α−λ) accuracy are
computed. These metrics [19] can only be used when the real
RUL is available. They evaluate the prognosis’s results from
different aspects and allow us to compare these approaches.

1) RMSE is defined by:

RMSE =

√∑Tend

ti=Tinit
(RULreal(ti)− RULpred(ti))2

Tend − Tinit
(22)

This metric is computed for the two approaches throughout
the prediction interval and over the last 200 predictions time
(see Table I).

TABLE I: The result of the metric RMSE

Non-similarity-based Proposed
approach approach

Prediction interval Scenario 1 141.22 121.85
Scenario 2 104.23 102.29

Last 200 Scenario 1 37.20 22.76
predictions Scenario 2 48.67 19.59

It can be noticed that the prediction error is smaller when
the similarity principle is introduced in the BM model to
predict the RUL.

2) (α−λ) accuracy is a binary metric that determines weth-

er a prediction result falls or not within the accuracy zone at
a specific time tλ, where λ ∈ [0, 1]. The accuracy zone is
defined with respect to a percentage α of accuracy related to
the real RUL. This zone becomes smaller as time increases
by reflecting that the prediction accuracy increases as more
data are available. In this application, α is fixed at 20% for
precision.

The time tλ is computed between the beginning time of the
prediction (λ = 0) and the real failure time (λ = 1) as in the
following:

tλ = Tinit + λ(Tend − Tinit) (23)

It can be noticed as shown in Fig.9 and Fig.10, that the
predicted RUL corresponding to tλ for λ ∈ [0, 0.1, 0.2, . . . , 1]
falls more in the accuracy zone in our approach compared
to the non-similarity-based approach. This result is also valid
for λ calculated in a step of 1/100 between 0 and 1. When
computing the RUL at each of these tλ, we found that 70
predictions in our approach fall in the accuracy zone compared
to only 53 in the non-similarity-based approach. Similarly, for
the second scenario where 29 more predictions in the proposed
approach belong to the accuracy zone especially in the last 200
prediction times as seen in the figures.

According to these metrics, the proposed approach out-
performs the non similarity-based approach confirming the
graphic results.
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Fig. 9: The result of the metric (α− λ) accuracy - Scenario1
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Fig. 10: The result of the metric (α−λ) accuracy - Scenario2

IV. CONCLUSION

This paper deals with the problem of RUL prediction when
R2F data are limited. It proposes a new approach that com-
bines the Brownian Motion model and the similarity principle
after a pre-processing step of the health indicators by the
Percentile filtering. An implementation with experiments on
simulated data is carried out. The obtained results show the
effectiveness of our approach compared to existing methods
particularly to the non-similarity-based approaches.

In the future, we intend to extend this work in at least
two directions: testing another method for HI modeling and
applying the approach to real data.
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